Show simple item record

dc.contributor.authorMadden, Pádhraig
dc.contributor.authorAl-Raei, Abdul M.
dc.contributor.authorEnright, Anne M.
dc.contributor.authorChinalia, Fabio A.
dc.contributor.authorde Beer, Dirk
dc.contributor.authorO'Flaherty, Vincent
dc.contributor.authorCollins, Gavin
dc.date.accessioned2018-09-20T16:15:23Z
dc.date.available2018-09-20T16:15:23Z
dc.date.issued2014-07-24
dc.identifier.citationMadden, Pádhraig; Al-Raei, Abdul M. Enright, Anne M.; Chinalia, Fabio A.; de Beer, Dirk; O'Flaherty, Vincent; Collins, Gavin (2014). Effect of sulfate on low-temperature anaerobic digestion. Frontiers in Microbiology 5 ,
dc.identifier.issn1664-302X
dc.identifier.urihttp://hdl.handle.net/10379/12562
dc.description.abstractThe effect of sulfate addition on the stability of, and microbial community behavior in, low-temperature anaerobic expanded granular sludge bed-based bioreactors was investigated at 15 degrees C. Efficient bioreactor performance was observed, with chemical oxygen demand (COD) removal efficiencies of >90%, and a mean SO42- removal rate of 98.3%. In situ methanogensis appeared unaffected at a COD: SO42- influent ratio of 8:1, and subsequently of 3:1, and was impacted marginally only when the COD: SO42- ratio was 1:2. Specific methanogenic activity assays indicated a complex set of interactions between sulfate-reducing bacteria (SRB), methanogens and homoacetogenic bacteria. SO42- addition resulted in predominantly acetoclastic, rather than hydrogenotrophic, methanogenesis until >600 days of SO42--influenced bioreactor operation. Temporal microbial community development was monitored by denaturation gradient gel electrophoresis (DGGE) of 16S rRNA genes. Fluorescence in situ hybridizations (FISH), qPCR and microsensor analysis were combined to investigate the distribution of microbial groups, and particularly SRB and methanogens, along the structure of granular biofilms. qPCR data indicated that sulfidogenic genes were present in methanogenic and sulfidogenic biofilms, indicating the potential for sulfate reduction even in bioreactors not exposed to SO42-. Although the architecture of methanogenic and sulfidogenic granules was similar, indicating the presence of SRB even in methanogenic systems, FISH with rRNA targets found that the SRB were more abundant in the sulfidogenic biofilms. Methanosaeta species were the predominant, keystone members of the archaeal community, with the complete absence of the Methanosarcina species in the experimental bioreactor by trial conclusion. Microsensor data suggested the ordered distribution of sulfate reduction and sulfide accumulation, even in methanogenic granules.
dc.publisherFrontiers Media SA
dc.relation.ispartofFrontiers in Microbiology
dc.subjectbiogas
dc.subjectlow-temperature anaerobic digestion
dc.subjectsulfate
dc.subjectsulfide
dc.subjectmethane
dc.subjectmethanogenesis
dc.subjectwastewater
dc.subjectwaste-water treatment
dc.subjectvolatile fatty-acid
dc.subject16s ribosomal-rna
dc.subjecttargeted oligonucleotide probes
dc.subjectmicrobial community structure
dc.subjectpolymerase-chain-reaction
dc.subjectin-situ hybridization
dc.subjectreducing bacteria
dc.subjectmethanogenic activity
dc.subjectbiological treatment
dc.titleEffect of sulfate on low-temperature anaerobic digestion
dc.typeArticle
dc.identifier.doi10.3389/fmicb.2014.00376
dc.local.publishedsourcehttps://doi.org/10.3389/fmicb.2014.00376
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record