Show simple item record

dc.contributor.authorDessì, Paolo
dc.contributor.authorPorca, Estefania
dc.contributor.authorHaavisto, Johanna
dc.contributor.authorLakaniemi, Aino-Maija
dc.contributor.authorCollins, Gavin
dc.contributor.authorLens, Piet N. L.
dc.date.accessioned2018-09-20T16:05:44Z
dc.date.available2018-09-20T16:05:44Z
dc.date.issued2018-01-01
dc.identifier.citationDessì, Paolo; Porca, Estefania; Haavisto, Johanna; Lakaniemi, Aino-Maija; Collins, Gavin; Lens, Piet N. L. (2018). Composition and role of the attached and planktonic microbial communities in mesophilic and thermophilic xylose-fed microbial fuel cells. RSC Advances 8 (6), 3069-3080
dc.identifier.issn2046-2069
dc.identifier.urihttp://hdl.handle.net/10379/11145
dc.description.abstractA mesophilic (37 degrees C) and a thermophilic (55 degrees C) two-chamber microbial fuel cell (MFC) were studied and compared for their power production from xylose and the microbial communities involved. The anodeattached, membrane-attached, and planktonic microbial communities, and their respective active subpopulations, were determined by next generation sequencing (Illumina MiSeq), based on the presence and expression of the 16S rRNA gene. Geobacteraceae accounted for 65% of the anodeattached active microbial community in the mesophilic MFC, and were associated to electricity generation likely through direct electron transfer, resulting in the highest power production of 1.1 W m(-3). A lower maximum power was generated in the thermophilic MFC (0.2 W m(-3)), likely due to limited acetate oxidation and the competition for electrons by hydrogen oxidizing bacteria and hydrogenotrophic methanogenic archaea. Aerobic microorganisms, detected among the membraneattached active community in both the mesophilic and thermophilic MFC, likely acted as a barrier for oxygen flowing from the cathodic chamber through the membrane, favoring the strictly anaerobic exoelectrogenic microorganisms, but competing with them for xylose and its degradation products. This study provides novel information on the active microbial communities populating the anodic chamber of mesophilic and thermophilic xylose-fed MFCs, which may help in developing strategies to favor exoelectrogenic microorganisms at the expenses of competing microorganisms.
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.ispartofRSC Advances
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectextracellular electron-transfer
dc.subjectgeobacter-sulfurreducens
dc.subjectelectricity-generation
dc.subjectphylogenetic analyses
dc.subjectenrichment culture
dc.subjectwaste-water
dc.subjectperformance
dc.subjectbiofilm
dc.subjectbacterium
dc.subjectsludge
dc.titleComposition and role of the attached and planktonic microbial communities in mesophilic and thermophilic xylose-fed microbial fuel cells
dc.typeArticle
dc.identifier.doi10.1039/c7ra12316g
dc.local.publishedsourcehttp://pubs.rsc.org/en/content/articlepdf/2018/ra/c7ra12316g
nui.item.downloads0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland