Show simple item record

dc.contributor.authorDall'Osto, M.
dc.contributor.authorOvadnevaite, J.
dc.contributor.authorCeburnis, D.
dc.contributor.authorMartin, D.
dc.contributor.authorHealy, R. M.
dc.contributor.authorO'Connor, I. P.
dc.contributor.authorKourtchev, I.
dc.contributor.authorSodeau, J. R.
dc.contributor.authorWenger, J. C.
dc.contributor.authorO'Dowd, C.
dc.date.accessioned2018-09-20T16:04:53Z
dc.date.available2018-09-20T16:04:53Z
dc.date.issued2013-05-15
dc.identifier.citationDall'Osto, M. Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C. (2013). Characterization of urban aerosol in cork city (ireland) using aerosol mass spectrometry. Atmospheric Chemistry and Physics 13 (9), 4997-5015
dc.identifier.issn1680-7324
dc.identifier.urihttp://hdl.handle.net/10379/11025
dc.description.abstractAmbient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).
dc.publisherCopernicus GmbH
dc.relation.ispartofAtmospheric Chemistry and Physics
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Ireland
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/ie/
dc.subjectpositive matrix factorization
dc.subjectorganic aerosols
dc.subjecthigh-resolution
dc.subjectair-quality
dc.subjectchemical-characterization
dc.subjectsource apportionment
dc.subjectmexico-city
dc.subjectsubmicron particles
dc.subjectparticulate matter
dc.subjectairborne particles
dc.titleCharacterization of urban aerosol in cork city (ireland) using aerosol mass spectrometry
dc.typeArticle
dc.identifier.doi10.5194/acp-13-4997-2013
dc.local.publishedsourcehttp://doi.org/10.5194/acp-13-4997-2013
nui.item.downloads0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Ireland
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Ireland