Show simple item record

dc.contributor.authorClyne, N.
dc.contributor.authorAkras, S.
dc.contributor.authorSteffen, W.
dc.contributor.authorRedman, M. P.
dc.contributor.authorGonçalves, D. R.
dc.contributor.authorHarvey, E.
dc.date.accessioned2018-09-20T16:03:30Z
dc.date.available2018-09-20T16:03:30Z
dc.date.issued2015-10-01
dc.identifier.citationClyne, N. Akras, S.; Steffen, W.; Redman, M. P.; Gonçalves, D. R.; Harvey, E. (2015). A morpho-kinematic and spectroscopic study of the bipolar nebulae: m 2−9, mz 3, and hen 2−104. Astronomy & Astrophysics 582 ,
dc.identifier.issn0004-6361,1432-0746
dc.identifier.urihttp://hdl.handle.net/10379/10814
dc.description.abstractContext. Complex bipolar shapes can be generated either as a planetary nebula or a symbiotic system. The origin of the material ionised by the white dwarf is very different in these two scenarios, and it complicates the understanding of the morphologies of planetary nebulae. Aims. The physical properties, structure, and dynamics of the bipolar nebulae, M 2-9, Mz 3, and Hen 2-104, are investigated in detail with the aim of understanding their nature, shaping mechanisms, and evolutionary history. Both a morpho-kinematic study and a spectroscopic analysis, can be used to more accurately determine the kinematics and nature of each nebula. Methods. Long-slit optical echelle spectra are used to investigate the morpho-kinematics of M 2-9, Mz 3, and Hen 2-104. The morpho-kinematic modelling software SHAPE is used to constrain both the morphology and kinematics of each nebula by means of detailed 3D models. Near-infrared (NIR) data, as well as optical, spectra are used to separate Galactic symbiotic-type nebulae from genuine planetary nebulae by means of a 2MASS J-H/H-Ks diagram and a lambda 4363/H gamma vs. lambda 5007/H beta diagnostic diagram, respectively. Results. The best-fitted 3D models for M 2-9, Mz 3, and Hen 2-104 provide invaluable kinematical information on the expansion velocity of its nebular components by means of synthetic spectra. The observed spectra match up very well with the synthetic spectra for each model, thus showing that each model is tightly constrained both morphologically and kinematically. Kinematical ages of the different structures of M 2-9 and Mz 3 have also been determined. Both diagnostic diagrams show M 2-9 and Hen 2-104 to fall well within the category of having a symbiotic source, whereas Mz 3 borders the region of symbiotic and young planetary nebulae in the optical diagram but is located firmly in the symbiotic region of the NIR colour-colour diagram. The optical diagnostic diagram is shown to successfully separate the two types of nebulae, however, the NIR colour-colour diagram is not as accurate in separating these objects. Conclusions. The morphology, kinematics, and evolutionary history of M 2-9, Mz 3, and Hen 2-104 are better understood using the interactive 3D modelling tool shape. The expansion velocities of the components for each nebula are better constrained and fitted with a vector field to reveal their direction of motion. The optical and NIR diagnostic diagrams used are important techniques for separating Galactic symbiotic-type nebulae from genuine planetary nebulae.
dc.publisherEDP Sciences
dc.relation.ispartofAstronomy & Astrophysics
dc.subjectplanetary nebulae: general
dc.subjectbinaries: symbiotic
dc.subjectstars: kinematics and dynamics
dc.subjectstars: winds, outflows
dc.subjectstars: jets
dc.subjectinfrared: stars
dc.subjectgalactic planetary-nebulae
dc.subjectsouthern symbiotic stars
dc.subjectresolution line-profiles
dc.subjectchemical abundances
dc.subjectechelle spectroscopy
dc.subjectbutterfly nebula
dc.subjectraman-scattering
dc.subjectm2-9
dc.subjectemission
dc.subjectoutflow
dc.titleA morpho-kinematic and spectroscopic study of the bipolar nebulae: m 2−9, mz 3, and hen 2−104
dc.typeArticle
dc.identifier.doi10.1051/0004-6361/201526585
dc.local.publishedsourcehttp://www.aanda.org/articles/aa/pdf/2015/10/aa26585-15.pdf
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record