Show simple item record

dc.contributor.authorCaniza, H.
dc.contributor.authorRomero, A. E.
dc.contributor.authorHeron, S.
dc.contributor.authorYang, H.
dc.contributor.authorDevoto, A.
dc.contributor.authorFrasca, M.
dc.contributor.authorMesiti, M.
dc.contributor.authorValentini, G.
dc.contributor.authorPaccanaro, A.
dc.date.accessioned2018-09-20T16:02:36Z
dc.date.available2018-09-20T16:02:36Z
dc.date.issued2014-03-22
dc.identifier.citationCaniza, H. Romero, A. E.; Heron, S.; Yang, H.; Devoto, A.; Frasca, M.; Mesiti, M.; Valentini, G.; Paccanaro, A. (2014). Gossto: a stand-alone application and a web tool for calculating semantic similarities on the gene ontology. Bioinformatics 30 (15), 2235-2236
dc.identifier.issn1367-4803,1460-2059
dc.identifier.urihttp://hdl.handle.net/10379/10676
dc.description.abstractWe present GOssTo, the Gene Ontology semantic similarity Tool, a user-friendly software system for calculating semantic similarities between gene products according to the Gene Ontology. GOssTo is bundled with six semantic similarity measures, including both term-and graph-based measures, and has extension capabilities to allow the user to add new similarities. Importantly, for any measure, GOssTo can also calculate the Random Walk Contribution that has been shown to greatly improve the accuracy of similarity measures. GOssTo is very fast, easy to use, and it allows the calculation of similarities on a genomic scale in a few minutes on a regular desktop machine.
dc.publisherOxford University Press (OUP)
dc.relation.ispartofBioinformatics
dc.titleGossto: a stand-alone application and a web tool for calculating semantic similarities on the gene ontology
dc.typeArticle
dc.identifier.doi10.1093/bioinformatics/btu144
dc.local.publishedsourcehttps://academic.oup.com/bioinformatics/article-pdf/30/15/2235/7249339/btu144.pdf
nui.item.downloads0


Files in this item

This item appears in the following Collection(s)

Show simple item record