• Login
    ARAN - Access to Research at NUI Galway
    View Item 
    •   ARAN Home
    • Support Services
    • Externally hosted open access publications with NUI Galway authors (2)
    • View Item
    •   ARAN Home
    • Support Services
    • Externally hosted open access publications with NUI Galway authors (2)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ARANCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Help

    How to submit and FAQs

    Adsorption of the natural protein surfactant rsn-2 onto liquid interfaces

    Thumbnail
    View/Open
    Full Text
    Date
    2017-01-01
    Author
    Brandani, Giovanni B.
    Vance, Steven J.
    Schor, Marieke
    Cooper, Alan
    Kennedy, Malcolm W.
    Smith, Brian O.
    MacPhee, Cait E.
    Cheung, David L.
    Metadata
    Show full item record
    Usage
    This item's downloads: 0 (view details)
    Cited 5 times in Scopus (view citations)
    
    Recommended Citation
    Brandani, Giovanni B. Vance, Steven J.; Schor, Marieke; Cooper, Alan; Kennedy, Malcolm W.; Smith, Brian O.; MacPhee, Cait E.; Cheung, David L. (2017). Adsorption of the natural protein surfactant rsn-2 onto liquid interfaces. Phys. Chem. Chem. Phys. 19 (12), 8584-8594
    Published Version
    http://eprints.gla.ac.uk/138421/13/138421.pdf
    Abstract
    To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.
    URI
    http://hdl.handle.net/10379/10506
    Collections
    • Externally hosted open access publications with NUI Galway authors (2)
    • Copyright @ NUI Galway
    • Library
    • NUI Galway