Finite rigid sets in curve complexes
dc.contributor.author | ARAMAYONA, JAVIER | |
dc.contributor.author | LEININGER, CHRISTOPHER J. | |
dc.date.accessioned | 2018-09-20T15:59:57Z | |
dc.date.available | 2018-09-20T15:59:57Z | |
dc.date.issued | 2013-06-01 | |
dc.identifier.citation | ARAMAYONA, JAVIER; LEININGER, CHRISTOPHER J. (2013). Finite rigid sets in curve complexes. Journal of Topology and Analysis 5 (2), 183-203 | |
dc.identifier.issn | 1793-5253,1793-7167 | |
dc.identifier.uri | http://hdl.handle.net/10379/10271 | |
dc.description.abstract | We prove that curve complexes of surfaces are finitely rigid: for every orientable surface S of finite topological type, we identify a finite subcomplex X of the curve complex C(S) such that every locally injective simplicial map X -> C(S) is the restriction of an element of Aut(C(S)), unique up to the (finite) pointwise stabilizer of X in Aut(C(S)). Furthermore, if S is not a twice-punctured torus, then we can replace Aut(C(S)) in this statement with the extended mapping class group Mod(+/-)(S). | |
dc.publisher | World Scientific Pub Co Pte Lt | |
dc.relation.ispartof | Journal of Topology and Analysis | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Ireland | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/ie/ | |
dc.subject | surfaces | |
dc.subject | curve complex | |
dc.subject | mapping class group | |
dc.subject | mapping class-groups | |
dc.subject | automorphisms | |
dc.title | Finite rigid sets in curve complexes | |
dc.type | Article | |
dc.identifier.doi | 10.1142/s1793525313500076 | |
dc.local.publishedsource | http://arxiv.org/pdf/1206.3114 | |
nui.item.downloads | 0 |