Show simple item record

dc.contributor.authorYousefian, Sajjad
dc.contributor.authorQuinlan, Nathan J.
dc.contributor.authorMonaghan, Rory F. D.
dc.identifier.citationYousefian, Sajjad, Quinlan, Nathan J., & Monaghan, Rory F. D. (2018). Simulation of turbulent flow in a rapid compression machine: Large Eddy Simulation and computationally efficient alternatives for the design of ignition delay time experiments. Fuel, 234, 30-47. doi:
dc.description.abstractRapid compression machines (RCMs) are widely used by the fuel research community to provide engine-relevant conditions to study ignition delay time (IDT), which is a crucial target for validating chemical kinetic mechanisms for fuels. Creviced piston heads are routinely used to ensure temperature homogeneity within the combustion chambers of RCMs. However, due to the exponential dependence of kinetic rate coefficients on temperature, homogeneity of the temperature field is vital for a clear interpretation of results and identification of chemical kinetic mechanisms. The overall aims of this work are to (1) support operators of RCMs in ensuring that their devices achieve sufficient levels of in-chamber temperature homogeneity and (2) validate performance of a previously-developed correlation for temperature inhomogeneity in RCMs at different conditions. Large Eddy Simulation (LES) is conducted to resolve 3D unsteady structure of turbulent flow, throughout compression and long post-compression times, at two representative operating conditions in the NUI Galway RCM. Results show that at higher pressures, 3D LES temperature and velocity fields are well approximated by a previous 2D laminar model. At low pressures, 2D laminar and 3D LES agree well for flow during compression, but predict different evolution of roll-up vortices and temperature distribution after compression. However, across all conditions there is a satisfactory agreement between 2D laminar and 3D LES results for global temperature inhomogeneity. Moreover, the previously developed correlation (based on 2D laminar simulations) for temperature inhomogeneity is found to agree with 3D LES to within ±20%. Therefore, the correlation may be used for preliminary design and evaluation of RCMs and RCM experiments. We propose a framework for design of RCM experiments based on the use of correlations, supported by 2D laminar simulations, and finally 3D LES of selected cases for confirmation.en_IE
dc.description.sponsorshipThis study is supported by an NUI Galway College of Engineering and Informatics Scholarship and by Science Foundation Ireland and Gas Networks Ireland through the Research Centre for Marine and Renewable Energy in Ireland (MaREI) under grant number 12/RC/2302. Computational facilities, software licences and technical support were provided through a Class B project award from the DJEI/DES/SFI/HEA-backed Irish Centre for High-End Computing (ICHEC).en_IE
dc.subjectRapid compression machine (RCM)en_IE
dc.subjectIgnition delay time (IDT)en_IE
dc.subjectLarge Eddy Simulation (LES)en_IE
dc.subjectRoll-up vortexen_IE
dc.subjectTemperature inhomogeneityen_IE
dc.titleSimulation of turbulent flow in a rapid compression machine: Large Eddy Simulation and computationally efficient alternatives for the design of ignition delay time experimentsen_IE
dc.description.peer-reviewedNot peer reviewed
dc.contributor.funderCollege of Engineering and Informatics Scholarship, NUI Galwayen_IE
dc.contributor.funderScience Foundation Irelanden_IE
dc.contributor.funderGas Networks Irelanden_IE
dc.contributor.funderResearch Centre for Marine and Renewable Energy in Ireland (MaREI)en_IE
dc.local.contactNathan Quinlan, Mechanical & Biomedical Eng, Eng-2042, New Engineering Building, Nui Galway. 2726 Email:
dcterms.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2302/IE/Marine Renewable Energy Ireland (MaREI) - The SFI Centre for Marine Renewable Energy Research/

Files in this item

Attribution-NonCommercial-NoDerivs 3.0 Ireland
This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. Please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

The following license files are associated with this item:


This item appears in the following Collection(s)

Show simple item record