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Arrow's theorem and max-star transitivity∗

Conal Duddy†, Juan Perote-Peña‡and Ashley Piggins§

February 4, 2009

Abstract

In the literature on social choice with fuzzy preferences, a central

question is how to represent the transitivity of a fuzzy binary rela-

tion. Arguably the most general way of doing this is to assume a

form of transitivity called max-star transitivity. The star operator in

this formulation is commonly taken to be a triangular norm. The fa-

miliar max-min transitivity condition is a member of this family, but

there are in�nitely many others. Restricting attention to fuzzy aggre-

gation rules that satisfy counterparts of unanimity and independence

of irrelevant alternatives, we characterise the set of max-star transi-

tive relations that permit preference aggregation to be non-dictatorial.

This set contains all and only those triangular norms that contain a

zero divisor.

1 Introduction

A fuzzy set is the extension of a vague predicate, so if �small� is vague then the
set of small objects is a fuzzy set. More precisely, let X denote the universal
set and let W denote a subset of X in the classical sense, W ⊆ X. The
set W is characterised by the function fW : X → {0, 1} where fW (x) = 1 if
x ∈ W , and fW (x) = 0 if x /∈ W . Given x ∈ X, fW (x) is the degree to which
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x belongs to W . The generalisation to a fuzzy subset occurs by permitting
this degree to take more than two values, typically by allowing any value
in [0, 1].1 If G denotes a fuzzy subset of X and fG(x) = 1 then x �clearly�
belongs to G, and if fG(x) = 0 then x �clearly does not� belong to G. In
between there are various degrees of belonging.

A fuzzy (binary) relation F de�ned on a choice space X is characterised
by a function fF : X ×X → [0, 1]. If this relation represents an individual's
(weak) preferences, then fF (x, y) can be interpreted as the degree to which
this individual is con�dent that �x is at least as good as y�. This is not
the only possible interpretation of fF (x, y); another is that it measures the
intensity of an individual's belief, or how true they regard the proposition �x
is at least as good as y�.

For a fuzzy relation to count as a representation of preferences, it must
satisfy certain criteria.2 One is re�exivity, fF (x, x) = 1 for all x ∈ X. An-
other is connectedness, fF (x, y) = 0 implies fF (y, x) = 1 for all x, y ∈ X.
The most di�cult condition to formulate is transitivity. There are many
possible ways to model the transitivity of a fuzzy binary relation. Any con-
dition is legitimate provided that it satis�es the weak constraint that, for
all x, y, z ∈ X, fF (x, y) = 1 and fF (y, z) = 1 implies fF (x, z) = 1. For ex-
ample, this condition is met by the familiar max-min transitivity condition
fF (x, z) ≥ min {fF (x, y), fF (y, z)}, and also by the Lukasiewicz transitivity
condition fF (x, z) ≥ fF (x, y) + fF (y, z)− 1.

Arguably the most general way of expressing the transitivity property is
to assume a form of transitivity called max-star transitivity. If ? is a binary
operation on [0, 1] then this condition says that fF (x, z) ≥ fF (x, y)?fF (y, z).
The star operator in this formulation is commonly taken to be a triangular
norm3, i.e. a function T from [0, 1]2 to [0, 1] such that for all x, y, z ∈ [0, 1]
the following conditions are satis�ed,

(i) T (x, y) = T (y, x),
(ii) T (x, T (y, z)) = T (T (x, y), z),
(iii) T (x, y) ≤ T (x, z) if y ≤ z,

1In so-called �ordinal� versions of fuzzy set theory [0,1] is replaced by an abstract set
on which a particular mathematical structure is de�ned. See Goguen (1967), Barrett,
Pattanaik and Salles (1992), Basu, Deb and Pattanaik (1992) and Duddy, Perote-Peña
and Piggins (2008).

2A sample of the literature on fuzzy preferences is Orlovsky (1978), Ovchinnikov (1981),
Basu (1984), Billot (1995), Dutta, Panda, Pattanaik (1986), Dutta (1987), Jain (1990),
Ponsard (1990), Dasgupta and Deb (1991, 1996, 2001), Ovchinnikov and Roubens (1991,
1992) and Banerjee (1993, 1994). The philosophical underpinnings of these ideas are
discussed in Piggins and Salles (2007).

3Klement, Mesiar and Pap (2000) is a detailed account of triangular norms.
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(iv) T (x, 1) = x.

Throughout this paper we use the notation x?y and T (x, y) interchange-
ably.

It is easy to see that max-min transitivity and Lukasiewicz transitivity
are particular max-star transitive relations. There are in�nitely many oth-
ers. Of course, some valid transitivity conditions are not max-star transitive
relations; fF (x, z) ≥ 1

2
(fF (x, y) + fF (y, z)) is an example.

Max-min transitivity possesses a technical property that is not shared by
Lukasiewicz transitivity. It contains no zero divisor. A triangular norm T
contains no zero divisor if and only if for all x, y ∈ (0, 1), T (x, y) 6= 0 . The
Lukasiewicz triangular norm TL(x, y) = 0 when x = 1

2
, y = 1

2
and so this

norm contains a zero divisor. This condition is central to this paper.

2 Social choice

This paper is a contribution to the literature on social choice with fuzzy
preferences. A comprehensive survey of the literature is Salles (1998).4 The
literature has been motivated by the idea that fuzziness can have a �smooth-
ing� e�ect on preference aggregation and so perhaps the famous impossibility
results of Arrow (1951) and others can be avoided.5

The literature typically focuses on criteria that imply that preference
aggregation must be undemocratic in some sense. These results are akin
to Arrow's impossibility theorem. In these papers the relevant conditions
are su�cient conditions; if an aggregation rule satis�es them then it implies
that there must be an undesirable concentration of power in society. Our
approach is di�erent, we identify both a necessary and su�cient condition
for preference aggregation to be undemocratic in a particular sense. More
speci�cally, we show that an aggregation rule satisfying certain criteria is
dictatorial if and only if the triangular norm used in the formulation of the
transitivity condition has no zero divisor. A consequence of this result is that

4Various results can be found in, among others, Barrett, Pattanaik and Salles (1986),
Dutta (1987), Ovchinnikov (1991), Banerjee (1994), Billot (1995), Richardson (1998),
Dasgupta and Deb (1999), Fono and Andjiga (2005), Perote-Peña and Piggins (2007,
2008a, 2008b), Duddy, Perote-Peña and Piggins (2008). See also Leclerc (1984, 1991) and
Leclerc and Monjardet (1995).

5Our approach like others in the literature allows for social preferences to be vague
even if the underlying pro�le of individual preferences is exact. This is what we mean by
smoothing. A similar suggestion is made by Sen (1970). Note that an exact preference is
a fuzzy preference fF (x, y) such that fF (x, y) ∈ {0, 1} for all x, y ∈ X. A vague preference
is a fuzzy preference fF (x, y) such that fF (x, y) /∈ {0, 1} for some x, y ∈ X.
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max-min transitivity leads to dictatorship, whereas Lukasiewicz transitivity
does not.

An equivalent way of putting the matter is this. Restricting attention to
aggregation rules that satisfy counterparts of unanimity and independence of
irrelevant alternatives, we characterise the set of max-star transitive relations
that permit preference aggregation to be non-dictatorial. This set contains
all and only those triangular norms that contain a zero divisor.

Preliminaries

X is a set of social alternatives with #X ≥ 3.
N = {1, ..., n} with n ≥ 2 is a �nite set of individuals.
A fuzzy binary relation (FBR) over X is a function f : X ×X → [0, 1].
An exact binary relation over X is an FBR g such that g(X ×X) ⊆ {0, 1}.
S is the set of all FBRs over X.
H is the set of all r ∈ S satisfying the conditions

(i) for all x ∈ X, r(x, x) = 1,
(ii) for all x, y ∈ X, r(x, y) = 0 implies r(y, x) = 1,
(iii) for all x, y, z ∈ X, r(x, z) ≥ r(x, y) ? r(y, z) where ? is a triangular

norm.
The FBRs in H will be interpreted as fuzzy weak preference relations.6

A fuzzy aggregation rule (FAR) is a function Φ : Hn → H. We write
r = Φ(r1, ..., rn), r′ = Φ(r′1, ..., r

′
n) and so on (where Φ is the FAR). We

write r(x, y) to denote the restriction of r to (x, y), and r′(x, y) to denote the
restriction of r′ to (x, y) and so on.
Φ is independent (I) if and only if, for all (r1, ..., rn), (r′1, ..., r

′
n) ∈ Hn and all

x, y ∈ X,
rj(x, y) = r′j(x, y) for all j ∈ N implies r(x, y) = r′(x, y).

Φ is unanimous (U) if and only if, for all (r1, . . . , rn) ∈ Hn, all x, y ∈ X and
all v ∈ [0, 1], rj(x, y) = v for all j ∈ N implies r(x, y) = v.
Φ is neutral if and only if, for all (r1, ..., rn), (r′1, ..., r

′
n) ∈ Hn and all x, y, z, w ∈

X,
rj(x, y) = r′j(z, w) for all j ∈ N implies r(x, y) = r′(z, w).

6It is possible to factor out of a fuzzy weak preference relation a fuzzy strict preference
relation, and a fuzzy indi�erence relation. There are several ways of doing this (Dasgupta
and Deb, 2001). However, this issue does not arise in this paper. Our theorem requires
the fuzzy weak preference relation only. Moreover, we adopt the philosophical position
that indi�erence is not a vague concept. It is perhaps more natural to think of preferences
as being vague when neither exact strict preference nor exact indi�erence exist, and in
these cases no degree of preference or degree of indi�erence is de�ned. For this reason, we
prefer to work with the fuzzy weak preference relation as a primitive.
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Φ is dictatorial if and only if there exists an individual i ∈ N such that for
all x, y ∈ X, and for every (r1, . . . , rn) ∈ Hn, ri(x, y) = r(x, y).

I is stronger than the condition commonly used in the literature, but
it can be shown to follow from the requirement that a non-constant FAR
cannot be manipulated.7 The same is true for U, which is stronger than
the requirement that the FAR is compensative.8 Our dictatorship condition
is strong too, but it is important to characterise when dictatorship in this
strong sense arises. This is what we accomplish in this paper.

3 Theorem

Theorem. If ? has no zero divisor then any FAR satisfying I and U is
dictatorial. Moreover, if ? has a zero divisor then a non-dictatorial FAR
exists that satis�es I and U.

We �rst prove su�ciency. The following lemma holds for any triangular
norm.9

Lemma 1. Any FAR satisfying I and U is neutral under any triangular
norm.

Proof. Let Φ be an FAR. Case 1: If (a, b) = (c, d) then the result follows
immediately from the fact that Φ is I.

Case 2: (a, b), (a, c) ∈ X×X. Take (r1, ..., rn) ∈ Hn such that rj(b, c) = 1
for all j ∈ N . U implies that r(b, c) = 1. Since r is max-star transitive, we
have r(a, c) ≥ r(a, b). In addition, since rj(b, c) = 1 for all j ∈ N and indi-
vidual preferences are max-star transitive, it follows that rj(a, c) ≥ rj(a, b)
for all j ∈ N . Select a pro�le (r1, ..., rn) ∈ Hn such that rj(b, c) = 1
and rj(c, b) = 1 for all j ∈ N . From the argument above we know that
r(a, c) ≥ r(a, b) and rj(a, c) ≥ rj(a, b) for all j ∈ N . However, an identical
argument shows that r(a, b) ≥ r(a, c) and rj(a, b) ≥ rj(a, c) for all j ∈ N .
Therefore, it must be the case that r(a, b) = r(a, c) and rj(a, b) = rj(a, c)
for all j ∈ N . Since (r1, ..., rn) ∈ Hn is arbitrary, this condition holds for all
pro�les (r1, ..., rn) ∈ Hn such that rj(b, c) = 1 and rj(c, b) = 1 for all j ∈ N .
Let F n denote the set of such pro�les. Take any pro�le (r̂1, ..., r̂n) ∈ Hn

such that r̂j(a, b) = r̂j(a, c) for all j ∈ N . Then there exists a pro�le
(r′1, ..., r

′
n) ∈ F n such that r̂j(a, b) = r̂j(a, c) = r′j(a, b) = r′j(a, c) for all

7Perote-Peña and Piggins (2007, 2008a, 2008b), Duddy, Perote-Peña and Piggins
(2008).

8García-Lapresta and Llamazares (2001).
9This lemma generalises Lemma 1 in Perote-Peña and Piggins (2007).
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j ∈ N . I implies that r̂(a, b) = r̂(a, c) = r′(a, b) = r′(a, c). Take any pair
of distinct pro�les (r′′1 , ..., r

′′
n), (r∗1, ..., r

∗
n) ∈ Hn such that r′′j (a, b) = r∗j (a, c)

for all j ∈ N . Then there exists a pro�le (r∗∗1 , ..., r
∗∗
n ) ∈ F n such that

r′′j (a, b) = r∗j (a, c) = r∗∗j (a, b) = r∗∗j (a, c) for all j ∈ N . I implies that
r′′(a, b) = r∗(a, c) = r∗∗(a, b) = r∗∗(a, c).

Case 3: (a, b), (c, b) ∈ X×X. Take (r1, ..., rn) ∈ Hn such that rj(a, c) = 1
for all j ∈ N . U implies that r(a, c) = 1. Since r is max-star transitive, we
have r(a, b) ≥ r(c, b). In addition, since rj(a, c) = 1 for all j ∈ N and indi-
vidual preferences are max-star transitive, it follows that rj(a, b) ≥ rj(c, b)
for all j ∈ N . Select a pro�le (r1, ..., rn) ∈ Hn such that rj(a, c) = 1
and rj(c, a) = 1 for all j ∈ N . From the argument above we know that
r(a, b) ≥ r(c, b) and rj(a, b) ≥ rj(c, b) for all j ∈ N . However, an identical
argument shows that r(c, b) ≥ r(a, b) and rj(c, b) ≥ rj(a, b) for all j ∈ N .
Therefore, it must be the case that r(a, b) = r(c, b) and rj(a, b) = rj(c, b) for
all j ∈ N . Since (r1, ..., rn) ∈ Hn is arbitrary, this condition holds for all
pro�les (r1, ..., rn) ∈ Hn such that rj(a, c) = 1 and rj(c, a) = 1 for all j ∈ N .
Let Gn denote the set of such pro�les. Take any pro�le (r̂1, ..., r̂n) ∈ Hn

such that r̂j(a, b) = r̂j(c, b) for all j ∈ N . Then there exists a pro�le
(r′1, ..., r

′
n) ∈ Gn such that r̂j(a, b) = r̂j(c, b) = r′j(a, b) = r′j(c, b) for all

j ∈ N . I implies that r̂(a, b) = r̂(c, b) = r′(a, b) = r′(c, b). Take any pair
of distinct pro�les (r′′1 , ..., r

′′
n), (r∗1, ..., r

∗
n) ∈ Hn such that r′′j (a, b) = r∗j (c, b)

for all j ∈ N . Then there exists a pro�le (r∗∗1 , ..., r
∗∗
n ) ∈ Gn such that

r′′j (a, b) = r∗j (c, b) = r∗∗j (a, b) = r∗∗j (c, b) for all j ∈ N . I implies that

r
′′
(a, b) = r∗(c, b) = r∗∗(a, b) = r∗∗(c, b).
Case 4: (a, b), (c, d) ∈ X×X with a, b, c, d distinct. Take (r1, ..., rn) ∈ Hn

such that rj(b, d) = rj(d, b) = rj(a, c) = rj(c, a) = 1 for all j ∈ N . U implies
that r(d, b) = 1. Since r is max-star transitive, we have r(a, b) ≥ r(a, d).
However, an identical argument shows that r(a, d) ≥ r(a, b) and so r(a, b) =
r(a, d). In addition, since rj(d, b) = rj(b, d) = 1 for all j ∈ N and individual
preferences are max-star transitive, it follows that rj(a, b) = rj(a, d) for all
j ∈ N . We can repeat this argument to show that r(a, d) = r(c, d) and
rj(a, d) = rj(c, d) for all j ∈ N . Since (r1, ..., rn) ∈ Hn is arbitrary, this
condition holds for all pro�les (r1, ..., rn) ∈ Hn such that rj(b, d) = rj(d, b) =
rj(a, c) = rj(c, a) = 1 for all j ∈ N . Let Jn denote the set of such pro�les.
Take any pro�le (r̂1, ..., r̂n) ∈ Hn such that r̂j(a, b) = r̂j(c, d) for all j ∈ N .
Then there exists a pro�le (r′1, ..., r

′
n) ∈ Jn such that r̂j(a, b) = r̂j(c, d) =

r′j(a, b) = r′j(c, d) for all j ∈ N . I implies that r̂(a, b) = r̂(c, d) = r′(a, b) =
r′(c, d). Take any pair of distinct pro�les (r′′1 , ..., r

′′
n), (r∗1, ..., r

∗
n) ∈ Hn such

that r′′j (a, b) = r∗j (c, d) for all j ∈ N . Then there exists a pro�le (r∗∗1 , ..., r
∗∗
n ) ∈

Jn such that r′′j (a, b) = r∗j (c, d) = r∗∗j (a, b) = r∗∗j (c, d) for all j ∈ N . I implies
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that r′′(a, b) = r∗(c, d) = r∗∗(a, b) = r∗∗(c, d).
Case 5: (a, b), (b, a) ∈ X × X. Take any pro�le (r1, ..., rn) ∈ Hn such

that rj(a, b) = rj(a, c) = rj(b, c) = rj(b, a) for all j ∈ N . Cases (2) and (3)
imply that r(a, b) = r(a, c) = r(b, c) = r(b, a). Let W n denote the set of such
pro�les. Take any pro�le (r1, ..., rn) ∈ Hn such that rj(a, b) = rj(b, a) for
all j ∈ N . Then there exists a pro�le (r′1, ..., r

′
n) ∈ W n such that rj(a, b) =

rj(b, a) = r′j(a, b) = r′j(b, a) for all j ∈ N . I implies that r(a, b) = r(b, a) =
r′(a, b) = r′(b, a). Take any pair of distinct pro�les (r′′1 , ..., r

′′
n), (r∗1, ..., r

∗
n) ∈

Hn such that r′′j (a, b) = r∗j (b, a) for all j ∈ N . Then there exists a pro�le
(r∗∗1 , ..., r

∗∗
n ) ∈ W n such that r′′j (a, b) = r∗j (b, a) = r∗∗j (a, b) = r∗∗j (b, a) for all

j ∈ N . I implies that r′′(a, b) = r∗(b, a) = r∗∗(a, b) = r∗∗(b, a).

Lemma 2. If ? has no zero divisor then any FAR satisfying I and U is
dictatorial.

Proof. By the previous lemma, Φ is neutral. Let (r1, ..., rn) ∈ Hn denote a
pro�le such that ri(a, b) = 0 for all i ∈ N . U implies that r(a, b) = 0. Let
(r′1, ..., r

′
n) ∈ Hn denote a pro�le such that r

′
i(a, b) = 1 for all i ∈ N . U

implies that r
′
(a, b) = 1. Consider the following sequence of pro�les:

R(0) = (r1, ..., rn),

R(1) = (r′1, r2, .., rn),

R(2) = (r′1, r
′
2, r3, .., rn),

...

R(n) = (r′1, ..., r
′
n).

At some stage in this sequence, the social value of (a, b) rises from 0 to
some number greater than 0. Without loss of generality, assume that this
happens at R(2) when individual 2 changes his or her preferences from r(a, b)
to r′(a, b). We prove that this individual is a dictator.

First of all, consider a pro�le (r′1, r2, r
′
3, .., r

′
n) ∈ Hn. We claim that at

this pro�le the social value of (a, b) is zero. To see this consider the pro�le
(r∗1, ..., r

∗
n) ∈ Hn. At this pro�le, every individual's (a, c) preference is the

same as their (a, b) preference at R(1). Everyone's (a, b) preference is the
same as their (a, b) preference at (r′1, r2, r

′
3, .., r

′
n). Finally, everyone's (b, c)

preference is the same as their (a, b) preference at R(2).
Max-star transitivity implies r∗(a, c) ≥ r∗(a, b) ? r∗(b, c). Since Φ is

neutral, this means that 0 ≥ T (r∗(a, b), α) where α > 0. If α = 1 then
r∗(a, b) = 0. If α < 1 then because T contains no zero divisor, r∗(a, b) = 0. I
implies that at (r′1, r2, r

′
3, .., r

′
n) ∈ Hn the social value of (a, b) is zero, which

is what we wanted to demonstrate.
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Note, however, that at this pro�le connectedness implies that r2(b, a) = 1
and also that the social value of (b, a) must be equal to 1. This is true
irrespective of everyone else's (b, a) values. Neutrality therefore implies that
for all (r1, ..., rn) ∈ Hn and for all (a, b) ∈ X × X, r2(a, b) = 1 implies
r(a, b) = 1.

The proof can now be completed as follows. Take a pro�le (r1, . . . , rn) ∈
Hn such that r2(c, b) = r2(b, c) = 1, and ri(a, c) = r2(a, b) for all i ∈ N .
The other individuals can assign any value they choose to (a, b). We know
from the argument above that r(c, b) = r(b, c) = 1, and that U implies
r(a, c) = r2(a, b). Since r is max-star transitive, we have r(a, c) ? r(c, b) ≤
r(a, b) and r(a, b) ? r(b, c) ≤ r(a, c). In other words, r2(a, b) ? 1 ≤ r(a, b) and
r(a, b) ? 1 ≤ r2(a, b). Since ? is a triangular norm it must be the case that
r(a, b) = r2(a, b). Again, neutrality implies that for all (r1, ..., rn) ∈ Hn and
for all (a, b) ∈ X ×X, r2(a, b) = r(a, b).

We now prove necessity. Before we do so, we note the following lemma.

Lemma 3. If ? is a triangular norm with a zero divisor, then there exists a
zero divisor x such that T (x, x) = 0.

Proof. Assume, by way of contradiction, that no such divisor exists. There-
fore, there exists x, y ∈ (0, 1) with x 6= y such that T (x, y) = 0. Without loss
of generality assume that x > y. But then T (y, y) = 0 from the requirement
that every triangular norm satis�es property (iii). This is a contradiction.

We now de�ne the following sets.
Let M(a, b) = {x ∈ [0, 1] such that at (r1, . . . , rn) ∈ Hn there exists an

i ∈ N such that ri(a, b) = x and ri(a, b) ≥ rj(a, b) for all j ∈ N}.
Let m(a, b) = {x ∈ [0, 1] such that at (r1, . . . , rn) ∈ Hn there exists an

i ∈ N such that ri(a, b) = x and rj(a, b) ≥ ri(a, b) for all j ∈ N}.

Lemma 4. If ? has a zero divisor then a non-dictatorial FAR exists that
satis�es I and U.

Proof. De�ne the function Φ : Hn → H as follows. For all a, b ∈ X and
all (r1, . . . , rn) ∈ Hn, let r(a, b) be equal to the median value of the three
numbers M(a, b), x and m(a, b) where x is a zero divisor with the property
T (x, x) = 0. This function satis�es I and U and is non-dictatorial. All we
have to prove is that the function takes values in H. The function clearly
satis�es re�exivity and connectedness, we just need to prove that it satis�es
max-star transitivity.

Assume, by way of contradiction, that the function does not satisfy max-
star transitivity. Then there exists (r1, . . . , rn) ∈ Hn and a, b, c ∈ X such

8



that r(a, b) ? r(b, c) > r(a, c). First of all, let us rule out the possibility that
r(a, b) ≤ x and r(b, c) ≤ x. We know that T (x, x) = 0 and so, given that
every triangular norm satis�es property (iii), if it is the case that r(a, b) ≤ x
and r(b, c) ≤ x then we would have T (r(a, b), r(b, c)) = 0 which contradicts
the assumption that r(a, b) ? r(b, c) > r(a, c).

Secondly, we can rule out the possibility that r(a, b) > x and r(b, c) >
x. Suppose it is the case that r(a, b) > x and r(b, c) > x. Recalling the
de�nition of Φ, r(a, b) > x and r(b, c) > x implies that r(a, b) = m(a, b)
and r(b, c) = m(b, c). Let j ∈ N be an individual such that rj(a, c) =
m(a, c). Since individual j's preferences are max-star transitive, we know
that rj(a, b)?rj(b, c) ≤ rj(a, c). From the de�nition ofm(.) it must be the case
that rj(a, b) ≥ m(a, b) and rj(b, c) ≥ m(b, c), which implies rj(a, b) ≥ r(a, b)
and rj(b, c) ≥ r(b, c). Given that T satis�es property (iii), it must be the
case that r(a, b) ? r(b, c) is less than or equal to rj(a, b) ? rj(b, c). Hence
r(a, b) ? r(b, c) ≤ rj(a, c). We have rj(a, b) = m(a, c) and we know that
m(a, c) ≤ r(a, c) ≤ M(a, c), and so we have r(a, b) ? r(b, c) ≤ r(a, c). This
contradicts our assumption that r(a, b) ? r(b, c) > r(a, c).

Only two possibilities remain. Either (i) r(a, b) > x and r(b, c) ≤ x, or
(ii) r(a, b) ≤ x and r(b, c) > x. Assume, without loss of generality, that (i) is
true. Given that T satis�es property (iii), we know that r(a, b) ? x is greater
than or equal to r(a, b) ? r(b, c). Therefore, given our earlier assumption that
r(a, b) ? r(b, c) > r(a, c), it must be the case that r(a, b) ? x > r(a, c). We
know by property (iv) that 1 ? x = x. Given that T satis�es property (iii)
and r(a, b) ≤ 1, we have r(a, b) ? x ≤ x. Since we have r(a, b) ? x > r(a, c)
and r(a, b) ? x ≤ x, it must be true that x > r(a, c). Returning again to
the de�nition of Φ, note that x > r(a, c) implies r(a, c) = M(a, c). Note too
that r(a, b) > x implies r(a, b) = m(a, b). We know then that for all i ∈ N ,
ri(a, b) ≥ r(a, b) and ri(a, c) ≤ r(a, c). So there must exist an individual k ∈
N such that rk(a, b) ≥ r(a, b), rk(a, c) ≤ r(a, c) and rk(b, c) = M(b, c). Since
individual k's preferences are max-star transitive, we know that rk(a, b) ?
rk(b, c) ≤ rk(a, c). We know that m(b, c) ≤ r(b, c) ≤ M(b, c), and so we
have r(b, c) ≤ M(b, c) = rk(b, c). Given that T satis�es property (iii) and
r(a, b) ≤ rk(a, b) and r(b, c) ≤ rk(b, c), it must be true that r(a, b) ? r(b, c) is
less than or equal to rk(a, b) ? rk(b, c). Hence r(a, b) ? r(b, c) ≤ rk(a, c) and
so, since rk(a, c) ≤ r(a, c), we have r(a, b) ? r(b, c) ≤ r(a, c). However, this
contradicts our assumption that r(a, b) ? r(b, c) > r(a, c).
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