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Abstract

It is well known that many social decision procedures are manipu-
lable through strategic behaviour. Typically, the decision procedures
considered in the literature are social choice correspondences. In this
paper we investigate the problem of constructing a social welfare func-
tion that is non-manipulable. In this context, individuals attempt to
manipulate a social ordering as opposed to a social choice.

Using techniques from an ordinal version of fuzzy set theory, we
introduce a class of ordinally fuzzy binary relations of which exact bi-
nary relations are a special case. Operating within this family enables
us to prove an impossibility theorem. This theorem states that all
non-manipulable social welfare functions are dictatorial, provided that
they are not constant. This theorem generalizes the one in Perote-
Peña and Piggins [Perote-Peña, J., Piggins, A., 2007. Strategy-proof
fuzzy aggregation rules. J. Math. Econ. vol 43, p.564-p.580]. We con-
clude by considering several ways of circumventing this impossibility
theorem.
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1 Introduction
The fact that many social decision procedures are manipulable through strate-
gic behaviour is now well understood in the literature. Typically, the social
decision procedures considered in the literature have been social choice cor-
respondences. A social choice correspondence selects a nonempty subset of
the feasible set of alternatives at each profile of individual preferences. If
these chosen subsets contain exactly one element, then we obtain the special
case of a social choice function.

In this paper, we investigate the problem of constructing a social welfare
function that is non-manipulable. In this context, individuals attempt to
manipulate a social ordering as opposed to a social choice.1

In order to illustrate the importance of strategic behaviour in this setting,
consider the following example. Imagine that an academic department wishes
to appoint a new member, in order to fill a vacant position. Five candidates
have been interviewed for the position and each member of the department
has been asked to rank them. In accordance with an established procedure,
the chair of the department aggregates these individual rankings using the
Borda rule and then uses this aggregate ranking to determine who is to receive
the offer of appointment. Imagine that the chair makes the initial offer to the
candidate who emerges at the top of this aggregate ranking (ties are broken
by employing a device that gives each candidate an equal probability of being
selected). If the top-ranked candidate rejects the offer then the chair either
offers the position to the other tied candidate(s), or moves down the list to
the second-placed candidate. This process continues until someone accepts
the position.

When placing the candidates in order, each member of the department
has no idea as to which of the candidates would accept the position in the
event of it being offered to them. For instance, a candidate might decline
the position if he or she has already received a better offer elsewhere. This
means that it is not just the candidate(s) at the top of the aggregate ordering
that matters to the individual department member, but the entire ordering
itself becomes relevant.

Naturally, an individual member of the department could behave strate-
gically in such circumstances and submit an insincere ranking as opposed to
a sincere one. This is done in the hope that the aggregate ranking which
emerges from such strategic behaviour is “closer” to the member’s truthful
ranking than would otherwise be the case. Therefore, studying the manipu-

1There has been hardly any treatment of manipulation in the context of social welfare
functions. Exceptions are Pattanaik (1973) and Bossert and Storcken (1992).
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lability of social welfare functions is important in its own right. This is the
problem we analyze in this paper.

1.1 Preferences
An important feature of the paper is the assumption we make about pref-
erences. Using techniques from an ordinal version of fuzzy set theory, we
introduce a class of ordinally fuzzy binary relations (OFBRs) of which ex-
act binary relations are a special case. We use these OFBRs to represent
preferences, both individual and social. The assumption that preferences
are represented by OFBRs gives us some mathematical generality. However,
it can also be given an independent philosophical motivation. In order to
illustrate this, let us return to our original example.

Suppose that a member of our hypothetical department is comparing two
possible candidates, and what she cares about is how they fare with respect
to teaching and research. Imagine that one of the candidates (candidate A)
is better at research than the other (candidate B). To complicate matters,
imagine that candidate A is worse at teaching than candidate B. How would
our department member place these two candidates in order? Often it is
hard to say, but not always.

For instance, imagine that candidate A is much better at research than
candidate B and only slightly worse at teaching. In such cases, it seems
reasonable to suppose that our department member would place A above B
in her ranking. The reason for this is that most members of an academic
department would be willing to trade-off slightly inferior teaching quality in
order to acquire a colleague who is significantly better at research. In cases
like this we say that preferences are “exact”.

Unfortunately, things are not always this straightforward. For instance,
what if candidate A is much worse at teaching than candidate B? In cases
like this, it might be extremely difficult for our department member to place
the two candidates in a clear order. She might feel that to some extent
candidate A is better than candidate B. At the same time however, she
might also feel that to some extent candidate B is better than candidate A.
These conflicting feelings may be difficult to integrate into a clear expression
of preference or indifference.

In cases like this we could perhaps describe our department member’s
preferences as “non-exact” or “vague”. Fuzzy binary relations are a natural
mathematical device for representing preferences that are either exact or
non-exact.2 To see how non-exactness can be expressed, recall our second

2An exact preference is an element of the set of fuzzy preferences.
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example. In that example the department member feels that to some extent
candidate A is better than candidate B, and yet at the same time she also
feels that to some extent candidate B is better than candidate A. In the
version of fuzzy set theory that we use in this paper, which originates in work
by Goguen (1967), these “extents” are elements of a set L of which there are
at least two members. Importantly, in Goguen’s theory the elements of L
are ordered (possibly incompletely) by a binary relation ".

A special case of this framework is the standard version of fuzzy set
theory. In the standard version L is taken to be [0, 1] and the elements of L
are ordered by ≥. This is sometimes referred to as the “cardinal” approach
to fuzziness. Goguen pioneered the “ordinal” approach to fuzziness which is
formally more general. This is the approach we adopt in this paper.3

An OFBR defined on a set of alternatives X is a function f : X×X → L.
If the semantic concept the fuzzy relation f represents is (weak) preference
then f(x, y) can be interpreted as the degree of confidence that “x is at least
as good as y”. This is not the only possible interpretation of f(x, y). It can
be interpreted as the degree of truth of the sentence “x is at least as good as
y”. Others refer to it as the extent to which (or the degree to which) x is at
least as good as y.

1.2 Outline
This paper is a contribution to the literature on social choice with fuzzy
preferences.4 This literature has been motivated by the idea that fuzziness
can have a “smoothing” effect on preference aggregation and so perhaps the
famous impossibility results of Arrow (1951) and others can be avoided.5
Unfortunately, this is not always the case.6 In fact, in this paper a very
strong concept of dictatorship emerges.7

3Some arguments in favour of the ordinal approach can be found in Basu, Deb and
Pattanaik (1992).

4A comprehensive survey of the literature is Salles (1998). The papers closest to this
one are Barrett, Pattanaik and Salles (1992) and Basu, Deb and Pattanaik (1992). Both of
these papers consider ordinal approaches to fuzziness. The former paper deals with social
choice theory explicitly. A discussion of the underlying philosophical issues is contained
in Piggins and Salles (2007).

5Our approach, like others in the literature, allows for social preference to be vague
even if the underlying profile of individual preferences is exact. This is what we mean by
smoothing. A similar suggestion is made by Sen (1970a).

6Barrett, Pattanaik and Salles (1986), Dutta (1987), Ovchinnikov (1991), Banerjee
(1994), Billot (1995), Richardson (1998), Dasgupta and Deb (1999), and Fono and Andjiga
(2005). See also Leclerc (1984, 1991) and Leclerc and Monjardet (1995).

7We do, however, establish several possibility results at the end of the paper. These
involve weakening our transitivity assumption on social preferences. For one of these
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We investigate the structure of social welfare functions which, for every
permissible profile of fuzzy individual preferences, specify a fuzzy social pref-
erence. We show that all social welfare functions that are non-manipulable
and not constant must be dictatorial. This means that there is an individual
whose fuzzy preferences determine the entire fuzzy social ranking at every
profile in the domain of the social welfare function. To prove this theorem,
we show that all social welfare functions that are non-manipulable and not
constant must satisfy counterparts of independence of irrelevant alternatives
and a condition that is like the Pareto principle.

Of course, this result is a variant of the Gibbard-Satterthwaite theorem
but in the context of social welfare functions with fuzzy preferences.8 A proof
of this theorem first appeared in Perote-Peña and Piggins (2007). However,
in that paper L is taken to be [0, 1] and the elements of L are ordered by ≥.
The theorem in this paper generalises this earlier theorem in that L is any
set with at least two elements and the elements of L are ordered by a binary
relation ".9 Moreover, the earlier proof in the cardinal framework involved
an unnecessarily complicated argument involving vectors. The proof of the
more general theorem contained in this paper is considerably simpler.

2 Preliminaries
Environment

Let A be a set of social alternatives with #A ≥ 3.

Individuals

Let N = {1, ..., n}, n ≥ 2, be a finite set of individuals.

results we permit intransitive exact preference, which is also considered in the cardinal
setting by Perote-Peña and Piggins (2008a).

8Gibbard (1973) and Satterthwaite (1975). An important precursor to the present study
in the case of exact preferences is Pattanaik (1973). To the best of our knowledge, the
only other papers that consider the manipulability problem in a fuzzy framework are Tang
(1994), Côrte-Real (2007), Perote-Peña and Piggins (2007, 2008a, 2008b) and Abdelaziz,
Figueira and Meddeb (2008). Barberà (2001) and Taylor (2005) are good introductions
to the conventional social choice literature.

9The precise mathematical structure is described in the next section.
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Degree structure

Let L be a set of degrees with #L ≥ 2. Let " be a reflexive, transitive
and complete binary relation on L.10 The asymmetric part of " is denoted
by & and the symmetric part is denoted by ∼. We assume that the sets
{d∗ ∈ L | d∗ " d for all d ∈ L} and {d∗ ∈ L | d " d∗ for all d ∈ L} are
non-empty. Moreover, these sets are assumed to be singletons with d∗& d∗.

d∗ and d∗ are the counterparts, respectively, of 1 and 0 in the cardinal
theory.

Preferences

An ordinally fuzzy binary relation (OFBR) is a function f : A×A → L. An
exact binary relation is an OFBR g such that g(A× A) ⊆ {d∗, d∗}.

Let T denote the set of all OFBRs.
Let H be the set of all r ∈ T which satisfy the following three conditions.

(i) For all a ∈ A, r(a, a) = d∗.
(ii) For all distinct a, b ∈ A, r(a, b) = d∗ implies that r(b, a) = d∗.
(iii) For all a, b, c ∈ A, r(a, c) " r(a, b) or r(a, c) " r(b, c).

The OFBRs in H will be interpreted as fuzzy weak preference relations.
Thus if ri ∈ H is interpreted as the fuzzy weak preference relation of indi-
vidual i, then ri(a, b) is to be interpreted as the degree to which individual i
is confident that “a is at least as good as b”.

Property (i) is the fuzzy counterpart of the traditional reflexivity con-
dition, property (ii) is a completeness condition, and property (iii) is the
ordinal version of the familiar max-min transitivity condition. The cardinal
version of this condition was used in Perote-Peña and Piggins (2007). As
is noted in that paper, this condition is somewhat controversial.11 Despite
this, max-min transitivity remains the most commonly used transitivity con-
dition in the literature on fuzzy relations. Since our objective in this paper
is to generalise the theorem in Perote-Peña and Piggins (2007), we leave to
future research the task of systematically exploring weakenings of this condi-
tion. That said, we do demonstrate at the end of this paper that weakening
transitivity can lead to possibility results.12

10Sen (1970b, p.8).
11Barrett and Pattanaik (1989) and Dasgupta and Deb (1996, 2001).
12It is perhaps worth comparing the conditions in this paper to the corresponding ones

in Perote-Peña and Piggins (2007). In that paper a fuzzy binary relation α is a function
from Ā to [0, 1] where Ā = {(a, b) ∈ A×A | a *= b}. For this reason there is no counterpart
of condition (i) in that paper. The counterpart of condition (ii) is: for all distinct a, b ∈
A, α(a, b) + α(b, a) ≥ 1. The counterpart of condition (iii) is: for all a, b, c ∈ A, α(a, c) ≥
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Note that within H are all (exact) reflexive, transitive and complete weak
preference relations. The standard approach to preferences is, therefore, a
special case.

Social welfare function

A social welfare function (SWF) is a function Ψ : Hn → H.
Intuitively, an SWF specifies a fuzzy social weak preference relation given

an n-tuple of fuzzy individual weak preference relations (one for each indi-
vidual). The elements of Hn are indicated by (r1, ..., rn), (r

′
1, ..., r

′
n), etc. We

write r = Ψ(r1, ..., rn), r
′
= Ψ(r

′
1, ..., r

′
n) and so on (where Ψ is the SWF).

We write r(a, b) to denote the restriction of r to (a, b), and r
′
(a, b) to denote

the restriction of r
′ to (a, b) and so on.

Manipulation

We need some way of prohibiting the profitable misrepresentation of a social
welfare function. For expositional purposes assume for the moment that we
are operating in the cardinal framework.

Take any pair of alternatives (a, b) and any preference profile at which
you truthfully report your preferences. Imagine that at this profile the social
welfare function assigns a larger social degree of confidence to (a, b) than
the one you happen to hold. Then, if the social welfare function is non-
manipulable, whenever you misrepresent your preferences the social degree
assigned to (a, b) will either rise or remain constant. Conversely, if the social
degree assigned to (a, b) is smaller than your individual (a, b) value, whenever
you misrepresent your preferences the social degree assigned to (a, b) will ei-
ther fall or remain constant. Loosely speaking, what this means is as follows.
Whenever someone unilaterally switches from telling the truth to lying, the
fuzzy social ranking moves “at least as far away” from their truthful ranking
as was initially the case. In other words, whenever someone misrepresents
their preferences, the “distance” between their truthful ranking and the social
ranking (weakly) increases. In such circumstances, individuals do not gain
by misrepresenting their preferences. We say that a social welfare function
is non-manipulable if and only if it satisfies this property.13

Here are the relevant formal definitions, stated in the ordinal framework.

min{α(a, b), α(b, c)}. The theorem in this paper shows that a weakening of condition (ii)
is possible in the cardinal framework.

13Obviously there are other ways of formulating a non-manipulation condition for social
welfare functions, but this one strikes us as a natural place to start. Weaker condi-
tions are possible but inevitably they would be more controversial as conditions of non-
manipulation. Our condition should be viewed as establishing a benchmark case.
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We denote by (r1, .., r
′
i, .., rn) ∈ Hn the profile obtained from (r1, .., ri, .., rn)

when individual i replaces ri ∈ H with r
′
i ∈ H.

We write r−i ⊗ r
′
i = Ψ(r1, .., r

′
i, .., rn) and r−i ⊗ r

′
i{a, b} denotes the re-

striction of r−i⊗ r
′
i to (a, b). Similarly, r−i−j ⊗ r

′
i⊗ r

′
j = Ψ(r1, .., r

′
i, .., r

′
j, ..rn)

and r−i−j ⊗ r
′
i ⊗ r

′
j{a, b} denotes the restriction of r−i−j ⊗ r

′
i ⊗ r

′
j to (a, b).

An SWF Ψ is non-manipulable if and only if it satisfies the following
property.
(NM) For all (a, b) ∈ A × A, all (r1, ..., rn) ∈ Hn, all i ∈ N and all r′i ∈ H,
both (i) and (ii) hold.
(i) r(a, b) ≺ ri(a, b) → r−i ⊗ r

′
i{a, b} - r(a, b).

(ii) r(a, b) & ri(a, b) → r−i ⊗ r
′
i{a, b} " r(a, b).

To clarify the nature of this condition, consider Figure 1. Again, for ex-
positional purposes, assume that we are operating in the cardinal framework.



 















Figure 1: An illustration of the NM condition.

In Figure 1, we restrict attention to the ordered pair (a, b) and the ordered
pair (b, a). Individual j’s fuzzy preferences are denoted by the vector (rj(a, b),
rj(b, a)). Social preferences are denoted by the vector (r(a, b), r(b, a)). If in-
dividual j misrepresents her preferences, then the new vector of social values
(r∗(a, b), r∗(b, a)) is constrained to lie in Ω.

Finally, we need a condition that eliminates trivially non-manipulable
SWFs. Let Ā = {(a, b) ∈ A× A | a *= b}.
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SWFs that are not constant

An SWF Ψ is not constant if and only if it satisfies the following property.
(NC) For all (a, b) ∈ Ā, there exists (r1, ..., rn) ∈ Hn such that r(a, b) = d∗.

This condition is mild and is reminiscent of the familiar non-imposition
axiom in social choice theory. It implies, by virtue of the connectedness
condition, that for each pair of social alternatives two profiles exist in the
domain of the social welfare function that produce different social values
in {d∗, d∗} for this pair. This condition rules out social welfare functions
that assign constant values to pairs of alternatives, irrespective of individual
preferences.

Coalitions

Let P denote the set of all subsets of N . A non-empty subset of N is called
a coalition. Given a coalition C = {i1, ..., im} in which i1 < i2 < ... < im,
and given (r1, ..., rn) ∈ Hn, rC(a, b) denotes (ri1(a, b), ..., rim(a, b)) ∈ Lm.

Note that rN(a, b) denotes (ri1(a, b), ..., rin(a, b)) ∈ Ln. So given N =
{1, ..., n}, ri1(a, b) in the vector rN(a, b) denotes individual 1’s fuzzy prefer-
ence over (a, b), rin(a, b) in the vector rN(a, b) denotes individual n’s fuzzy
preference over (a, b) and so on.

We write rC(a, b) " r
′
C(a, b) if ri(a, b) " r

′
i(a, b) for all i ∈ C. We write

rC(a, b) ∼ r
′
C(a, b) if ri(a, b) ∼ r

′
i(a, b) for all i ∈ C. We write rC(a, b) !

r
′
C(a, b) if there exists an i ∈ C such that ri(a, b) ! r

′
i(a, b).

Arrow-like properties

We now introduce some other properties that SWFs might satisfy.
Let Max (rN(a, b)) denote the set {d ∈ L | ∃i ∈ N with ri(a, b) ∼ d and

ri(a, b) " rj(a, b) for all j ∈ N − {i}}.
Let Min (rN(a, b)) denote the set {d ∈ L | ∃i ∈ N with ri(a, b) ∼ d and

rj(a, b) " ri(a, b) for all j ∈ N − {i}}.
An SWF Ψ is Arrow-like if and only if it satisfies the following two prop-

erties.
(IIA) For all (r1, ..., rn), (r

′
1, ..., r

′
n) ∈ Hn, and all (a, b) ∈ A× A,

rN(a, b) ∼ r
′

N(a, b) implies r(a, b) ∼ r
′
(a, b).

(PC) For all (r1, ..., rn) ∈ Hn, all (a, b) ∈ A×A, all d ∈ Max (rN(a, b)), and
all d ∈ Min (rN(a, b)),

d " r(a, b) " d.
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Of course, IIA is a version of Arrow’s (1951) independence of irrelevant
alternatives condition. Similarly, PC is a Pareto-like condition.

Neutrality

An SWF Ψ is neutral if and only if it satisfies the following property. For all
(r1, ..., rn), (r

′
1, ..., r

′
n) ∈ Hn, and all (a, b), (c, d) ∈ A× A,

rN(a, b) ∼ r
′

N(c, d) implies r(a, b) ∼ r
′
(c, d).

Neutrality is a strengthening of independence. Loosely speaking, neutral-
ity says that the names of the alternatives do not matter.

Dictatorship

An SWF Ψ is dictatorial if and only if there exists an individual i ∈ N such
that for all (a, b) ∈ A× A, and for every (r1, ..., rn) ∈ Hn, ri(a, b) ∼ r(a, b).

In order to explain this condition, let Ψ be a dictatorial SWF. Then there
is an individual (the dictator) who can can ensure that at every profile in the
domain of Ψ, the social degree of confidence for every pair of alternatives is
in the same equivalence class (induced by ∼) as his or her own.

3 Theorem
We now state and prove our central result.

Theorem 1. Any non-manipulable SWF that is not constant is dictatorial.

The proof of this theorem involves a number of steps.14

Lemma 1. Let Ψ be a non-manipulable SWF that is not constant. Then Ψ
is Arrow-like.

Proof. Let Ψ be a non-manipulable SWF that is NC. We start by proving
that Ψ must satisfy IIA. Assume, by way of contradiction, that Ψ does not
satisfy IIA. Therefore, ∃(a, b) ∈ A×A and ∃(r1, ..., rn), (r

′
1, ..., r

′
n) ∈ Hn with

14Our proof uses an argument in Perote-Peña and Piggins (2008a) that simplifies the
original proof in Perote-Peña and Piggins (2007). Both of these papers consider cardinal
fuzziness and so the theorem presented here is more general.
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rj(a, b) ∼ r
′
j(a, b) ∀j ∈ N such that r(a, b) ! r

′
(a, b). Consider the following

sequence of fuzzy preference profiles:

R(0) = (r1, ..., rn),

R(1) = (r′1, r2, .., rn),

R(2) = (r′1, r
′
2, r3, .., rn),

...

R(n) = (r′1, ..., r
′
n).

Assume, without loss of generality, that r(a, b) ∼ k and r
′
(a, b) ∼ k′ with

k′ & k. First of all, compare r−1 ⊗ r
′
1{a, b} with r(a, b). There are two

possibilities.
Case 1. r−1 ⊗ r

′
1{a, b} ! k. If k ≺ r−1 ⊗ r

′
1{a, b} - r1(a, b) or k &

r−1 ⊗ r
′
1{a, b} " r1(a, b) then NM is violated in the move from R(0) to R(1).

Similarly, if k - r1(a, b) ≺ r−1 ⊗ r
′
1{a, b} then NM is violated either in the

move from R(0) to R(1) or in the move from R(1) to R(0). If k " r1(a, b) &
r−1 ⊗ r

′
1{a, b} then NM is violated either in the move from R(0) to R(1) or

in the move from R(1) to R(0). Finally, if r1(a, b) & k & r−1 ⊗ r
′
1{a, b} or

r1(a, b) ≺ k ≺ r−1 ⊗ r
′
1{a, b} then NM is violated in the move from R(1) to

R(0). The only case remaining is Case 2.
Case 2. k ∼ r−1 ⊗ r

′
1{a, b}.

We now proceed to move from R(1) to R(2) by changing the fuzzy pref-
erences of individual 2. However, we can treat this case in exactly the same
manner as the move from R(0) to R(1) and so r−1−2 ⊗ r

′
1 ⊗ r

′
2{a, b} ∼ k. Re-

peating this argument for each individual ensures that when we reach R(n)

we have r
′
(a, b) ∼ k which contradicts the assumption that r

′
(a, b) ∼ k′ & k.

Therefore, Ψ satisfies IIA.
We now prove that Ψ satisfies PC.
First of all, we prove that Ψ satisfies the following property.
(*) For all (r1, ..., rn), (r

′
1, ..., r

′
n) ∈ Hn and every (a, b) ∈ A × A, (i) if

rN(a, b) = (d∗, ..., d∗) then r(a, b) = d∗ and (ii) if r
′
N(a, b) = (d∗, ..., d∗) then

r
′
(a, b) = d∗.15

To see that (*) holds note that NC implies that there exists (r1, ..., rn) ∈
Hn such that r(a, b) = d∗. Let (r∗1, ..., r

∗
n) ∈ Hn denote a profile such that

r∗N(a, b) = (d∗, ..., d∗). If rN(a, b) = (d∗, ..., d∗) then (i) of (*) holds immedi-
ately by IIA. Assume that r∗N(a, b) ! rN(a, b). Therefore, ∃Q ⊆ N such that
rj(a, b) & d∗ for all j ∈ Q. Let q ∈ Q and note that r−q ⊗ r∗q{a, b} = d∗.
If not, then NM is violated in the move from (r1, .., rq, .., rn) ∈ Hn to

15We write rN (a, b) = (d, ..., d) to denote that rN (a, b) is a n-vector of d’s. Writing
rN (a, b) *= (d, ..., d) means that rN (a, b) is not a n-vector of d’s.
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(r1, .., r∗q , .., rn) ∈ Hn. If Q − {q} is non-empty then let z ∈ Q − {q} and
note that r−q−z ⊗ r∗q ⊗ r∗z{a, b} = d∗. If not, then NM is violated in the move
from (r1, .., r∗q , rz, .., rn) ∈ Hn to (r1, .., r∗q , r

∗
z , .., rn) ∈ Hn. Simply repeating

this argument for the remaining members of Q ensures that r∗(a, b) = d∗.
Since (r∗1, ..., r

∗
n) ∈ Hn is arbitrary, part (i) of (*) is proved.

The proof of part (ii) of (*) is similar and therefore is omitted. We now
prove that Ψ satisfies PC.

We prove by contradiction. Assume that ∃(a, b) ∈ A × A, ∃(r̂1, ..., r̂n) ∈
Hn, and ∃d ∈ Min (r̂N(a, b)) such that r̂(a, b) ≺ d. Note that if r̂N(a, b) =
(d∗, ..., d∗) then (*) implies that r̂(a, b) = d∗ and so d∗ ≺ d, a contradiction.
So r̂N(a, b) *= (d∗, ..., d∗).

Consider any fuzzy preference profile (r∗1, ..., r
∗
n) ∈ Hn such that r∗i (a, b) =

d∗ for all i ∈ N .
Consider the following sequence of fuzzy preference profiles:

G(0) = (r̂1, ..., r̂n),

G(1) = (r∗1, r̂2, .., r̂n),

G(2) = (r∗1, r
∗
2, r̂3, .., r̂n),

...

G(n) = (r∗1, ..., r
∗
n).

Consider G(1). If r̂−1⊗r∗1{a, b} & r̂(a, b) then NM is violated in the move
from G(0) to G(1). If r̂−1⊗r∗1{a, b} ≺ r̂(a, b) then NM is violated in the move
from G(1) to G(0). Therefore, r̂−1 ⊗ r∗1{a, b} ∼ r̂(a, b).

We can repeat this argument as we move from G(1) to G(2) and so r̂−1−2⊗
r∗1 ⊗ r∗2{a, b} ∼ r̂(a, b). Again, repeating this argument for each individual
ensures that when we reach G(n) we have r∗(a, b) ∼ r̂(a, b). However, this
contradicts (*) and so r̂(a, b) " d for all d ∈ Min (r̂N(a, b)).

In order to complete the proof that Ψ satisfies PC, assume that ∃(a, b) ∈
A × A, ∃(r1, ..., rn) ∈ Hn, and ∃d ∈ Max (rN(a, b)) such that r(a, b) & d.
Note that if rN(a, b) = (d∗, ..., d∗) then (*) implies that r(a, b) = d∗ and so
d∗ & d, a contradiction. So rN(a, b) *= (d∗, ..., d∗).

Consider any fuzzy preference profile (r∗∗1 , ..., r∗∗n ) ∈ Hn such that r∗∗i (a, b) =
d∗ for all i ∈ N .
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Consider the following sequence of fuzzy preference profiles:

H(0) = (r1, ..., rn),

H(1) = (r∗∗1 , r2, .., rn),

H(2) = (r∗∗1 , r∗∗2 , r3, .., rn),

...

H(n) = (r∗∗1 , ..., r∗∗n ).

Consider H(1). If r−1 ⊗ r∗∗1 {a, b} ≺ r(a, b) then NM is violated in the
move from H(0) to H(1). If r−1 ⊗ r∗∗1 {a, b} & r(a, b) then NM is violated in
the move from H(1) to H(0). Therefore, r−1 ⊗ r∗∗1 {a, b} ∼ r(a, b).

We can repeat this argument as we move from H(1) to H(2) and so r−1−2⊗
r∗∗1 ⊗ r∗∗2 {a, b} ∼ r(a, b). Again, repeating this argument for each individual
ensures that when we reach H(n) we have r∗∗(a, b) ∼ r(a, b). However, this
contradicts (*) and so r(a, b) - d.

Therefore, Ψ satisfies PC.
We have proved that Ψ is Arrow-like.

Lemma 2. An Arrow-like SWF Ψ is neutral.

Proof. Case 1: If (a, b) = (c, d) then the result follows immediately from the
fact that Ψ is Arrovian.

Case 2: (a, b), (a, d) ∈ A×A. Take (r1, ..., rn) ∈ Hn such that rN(b, d) =
(d∗, ..., d∗). Then PC implies that r(b, d) = d∗. Since r is max-min transitive,
we have r(a, d) " r(a, b).

In addition, since rN(b, d) = (d∗, ..., d∗) and individual preferences are
max-min transitive, it follows that rN(a, d) " rN(a, b).

Select a profile (r1, ..., rn) ∈ Hn such that rN(b, d) = (d∗, ..., d∗) and
rN(d, b) = (d∗, ..., d∗). From the argument above we know that r(a, d) "
r(a, b) and rN(a, d) " rN(a, b). However, an identical argument shows that
r(a, b) " r(a, d) and rN(a, b) " rN(a, d). Therefore, it must be the case that
r(a, b) ∼ r(a, d) and rN(a, b) ∼ rN(a, d).

Since (r1, ..., rn) ∈ Hn is arbitrary, this condition holds for all profiles
(r1, ..., rn) ∈ Hn such that rN(b, d) = (d∗, ..., d∗) and rN(d, b) = (d∗, ..., d∗).
Let F n denote the set of such profiles. Take any profile (r̂1, ..., r̂n) ∈ Hn such
that r̂N(a, b) ∼ r̂N(a, d). Then there exists a profile (r

′
1, ..., r

′
n) ∈ F n such

that r̂N(a, b) ∼ r̂N(a, d) ∼ r
′
N(a, b) ∼ r

′
N(a, d). IIA implies that r̂(a, b) ∼

r̂(a, d) ∼ r
′
(a, b) ∼ r

′
(a, d).

Take any pair of distinct profiles (r
′′
1 , ..., r

′′
n), (r∗1, ..., r

∗
n) ∈ Hn such that

r
′′
N(a, b) ∼ r∗N(a, d). Then there exists a profile (r∗∗1 , ..., r∗∗n ) ∈ F n such that
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r
′′
N(a, b) ∼ r∗N(a, d) ∼ r∗∗N (a, b) ∼ r∗∗N (a, d). IIA implies that r

′′
(a, b) ∼

r∗(a, d) ∼ r∗∗(a, b) ∼ r∗∗(a, d).
Case 3: (a, b), (c, b) ∈ A× A. Take (r1, ..., rn) ∈ Hn such that rN(a, c) =

(d∗, ..., d∗). Then PC implies that r(a, c) = d∗. Since r is max-min transitive,
we have r(a, b) " r(c, b).

In addition, since rN(a, c) = (d∗, ..., d∗) and individual preferences are
max-min transitive, it follows that rN(a, b) " rN(c, b).

Select a profile (r1, ..., rn) ∈ Hn such that rN(a, c) = (d∗, ..., d∗) and
rN(c, a) = (d∗, ..., d∗). From the argument above we know that r(a, b) "
r(c, b) and rN(a, b) " rN(c, b). However, an identical argument shows that
r(c, b) " r(a, b) and rN(c, b) " rN(a, b). Therefore, it must be the case that
r(a, b) ∼ r(c, b) and rN(a, b) ∼ rN(c, b).

Since (r1, ..., rn) ∈ Hn is arbitrary, this condition holds for all profiles
(r1, ..., rn) ∈ Hn such that rN(a, c) = (d∗, ..., d∗) and rN(c, a) = (d∗, ..., d∗).
Let Gn denote the set of such profiles. Take any profile (r̂1, ..., r̂n) ∈ Hn such
that r̂N(a, b) ∼ r̂N(c, b). Then there exists a profile (r

′
1, ..., r

′
n) ∈ Gn such that

r̂N(a, b) ∼ r̂N(c, b) ∼ r
′
N(a, b) ∼ r

′
N(c, b). IIA implies that r̂(a, b) ∼ r̂(c, b) ∼

r
′
(a, b) ∼ r

′
(c, b).

Take any pair of distinct profiles (r
′′
1 , ..., r

′′
n), (r∗1, ..., r

∗
n) ∈ Hn such that

r
′′
N(a, b) ∼ r∗N(c, b). Then there exists a profile (r∗∗1 , ..., r∗∗n ) ∈ Gn such

that r
′′
N(a, b) ∼ r∗N(c, b) ∼ r∗∗N (a, b) ∼ r∗∗N (c, b). IIA implies that r

′′
(a, b) ∼

r∗(c, b) ∼ r∗∗(a, b) ∼ r∗∗(c, b).
Case 4: (a, b), (c, d) ∈ A×A with a, b, c, d distinct. Take (r1, ..., rn) ∈ Hn

such that rN(b, d) = rN(d, b) = rN(a, c) = rN(c, a) = (d∗, ..., d∗). Then PC
implies that r(d, b) = d∗. Since r is max-min transitive, we have r(a, b) "
r(a, d). However, an identical argument shows that r(a, d) " r(a, b) and so
r(a, b) ∼ r(a, d).

In addition, since rN(d, b) = rN(b, d) = (d∗, ..., d∗) and individual prefer-
ences are max-min transitive, it follows that rN(a, b) ∼ rN(a, d).

We can repeat this argument to show that r(a, d) ∼ r(c, d) and rN(a, d) ∼
rN(c, d). Since (r1, ..., rn) ∈ Hn is arbitrary, this condition holds for all
profiles (r1, ..., rn) ∈ Hn such that rN(b, d) = rN(d, b) = rN(a, c) = rN(c, a) =
(d∗, ..., d∗). Let Jn denote the set of such profiles.

Take any profile (r̂1, ..., r̂n) ∈ Hn such that r̂N(a, b) ∼ r̂N(c, d). Then
there exists a profile (r

′
1, ..., r

′
n) ∈ Jn such that r̂N(a, b) ∼ r̂N(c, d) ∼ r

′
N(a, b) ∼

r
′
N(c, d). IIA implies that r̂(a, b) ∼ r̂(c, d) ∼ r

′
(a, b) ∼ r

′
(c, d).

Take any pair of distinct profiles (r
′′
1 , ..., r

′′
n), (r∗1, ..., r

∗
n) ∈ Hn such that

r
′′
N(a, b) ∼ r∗N(c, d). Then there exists a profile (r∗∗1 , ..., r∗∗n ) ∈ Jn such that

r
′′
N(a, b) ∼ r∗N(c, d) ∼ r∗∗N (a, b) ∼ r∗∗N (c, d). IIA implies that r

′′
(a, b) ∼

r∗(c, d) ∼ r∗∗(a, b) ∼ r∗∗(c, d).
Case 5: (a, b), (b, a) ∈ A × A. Take any profile (r1, ..., rn) ∈ Hn such
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that rN(a, b) ∼ rN(a, c) ∼ rN(b, c) ∼ rN(b, a). Cases (2) and (3) imply that
r(a, b) ∼ r(a, c) ∼ r(b, c) ∼ r(b, a). Let W n denote the set of such profiles.
Take any profile (r1, ..., rn) ∈ Hn such that rN(a, b) ∼ rN(b, a). Then there
exists a profile (r

′
1, ..., r

′
n) ∈ W n such that rN(a, b) ∼ rN(b, a) ∼ r

′
N(a, b) ∼

r
′
N(b, a). IIA implies that r(a, b) ∼ r(b, a) ∼ r

′
(a, b) ∼ r

′
(b, a).

Take any pair of distinct profiles (r
′′
1 , ..., r

′′
n), (r∗1, ..., r

∗
n) ∈ Hn such that

r
′′
N(a, b) ∼ r∗N(b, a). Then there exists a profile (r∗∗1 , ..., r∗∗n ) ∈ W n such

that r
′′
N(a, b) ∼ r∗N(b, a) ∼ r∗∗N (a, b) ∼ r∗∗N (b, a). IIA implies that r

′′
(a, b) ∼

r∗(b, a) ∼ r∗∗(a, b) ∼ r∗∗(b, a).

Given that Ψ is neutral we can complete the proof in the following way.
Take any (a, b) ∈ A×A and any profile (r1, ..., rn) ∈ Hn such that rN(a, b) =
(d∗, ..., d∗). By PC it must be the case that r(a, b) = d∗. Take some other
profile (r∗1, ..., r

∗
n) ∈ Hn such that r∗N(a, b) = (d∗, ..., d∗). By PC it must be

the case that r∗(a, b) = d∗.
Consider the following sequence of fuzzy preference profiles:

W(0) = (r1, ..., rn),

W(1) = (r∗1, r2, .., rn),

W(2) = (r∗1, r
∗
2, r3, .., rn),

...

W(n) = (r∗1, ..., r
∗
n).

At some profile in this sequence, the social value assigned to (a, b) must
rise from d∗ to a degree d such that d & d∗. By PC, the latest this can
happen is when we reach W(n). We shall assume, without loss of generality,
that this happens at W(2) when individual 2 raises her (a, b) value from d∗
to d∗.

Now consider the profile W(α) = (r∗1, r2, r∗3, .., r
∗
n). We claim that the

social value of (a, b) at this profile is d∗. To see this note that, by assumption,
the social value of (a, b) at W(1) is d∗. We can construct a profile (r̂1, ..., r̂n) ∈
Hn in which individuals have the following preferences over three alternatives
a, b and c. Individual preferences over (a, b) at this profile are the same as
they are over (a, b) at W(α). Individual preferences over (a, c) at this profile
are the same as they are over (a, b) at W(1). Finally, individual preferences
over (b, c) at this profile are the same as they are over (a, b) at W(2). We
write aRb ←→ r̂(a, b) = d∗ and aPb ←→ aRb ∧ r̂(b, a) = d∗. Therefore at
(r̂1, ..., r̂n) ∈ Hn individuals hold the following preferences:

Individual 1: aRbRc
Individual 2: bRcPa
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Everyone else: cPaRb.
Neutrality implies that r̂(a, b) is identical to the value (a, b) takes at W(α).

Similarly, it implies that r̂(b, c) = d & d∗ and that r̂(a, c) = d∗. Note that by
max-min transitivity r̂(a, c) " r̂(a, b) or r̂(a, c) " r̂(b, c) and so r̂(a, b) = d∗.
Therefore, the social value (a, b) takes at W(α) is d∗. At W(α) individual 2
assigns the value d∗ to (a, b) but everyone else assigns the value d∗. Despite
this, the social value of (a, b) is d∗. Neutrality implies that this will remain
the case whenever these preferences are replicated over any other pair of
distinct social alternatives at any profile.

Now consider any profile W(αα) = (r1, ..., rn) ∈ Hn in which individual 2
assigns the value d∗ to some pair of distinct social alternatives. Furthermore,
at this profile, individual 1 assigns the value d1 to this pair, individual 3
assigns the value d3 to this pair, and so on with d1, d3, ..., dn ∈ L. The NM
condition implies that the social value assigned to this pair must remain d∗
for all d1, d3, ..., dn ∈ L.

Let us now return to W(α). To recall, individual 2 assigns the value d∗
to (a, b) at this profile but everyone else assigns the value d∗. Despite this,
the social value of (a, b) is d∗. Completeness implies that, at this profile,
individual 2 must assign the value d∗ to (b, a) and so must society. This is
true irrespective of everyone else’s (b, a) value. Neutrality implies that any
profile W(ββ) = (r̂1, ..., r̂n) ∈ Hn in which individual 2 assigns the value d∗

to some pair of distinct social alternatives, and in which individual 1 assigns
the value d∗1 to this pair, individual 3 assigns the value d∗3 to this pair, and so
on with d∗1, d

∗
3, ..., d

∗
n ∈ L, must be consistent with the social welfare function

assigning a social value of d∗ to this pair.
To see that individual 2 is a dictator, fix some ordered pair (a, b). By the

above argument, whenever individual 2 assigns a value of d∗ to this pair then
so must society, irrespective of everyone else’s (a, b) value. Imagine now that
individual 2 changes his or her (a, b) value to some value in L− {d∗}. If this
value is d∗ then the social value of (a, b) must be d∗ due to the argument above
about W(αα). Imagine that individual 2 selects a value v where d∗ & v & d∗.
Let d denote the social value of (a, b) at this profile. If d & v then individual
2 can profitably misrepresent by lowering his or her value to d∗. If v & d
then individual 2 can profitably misrepresent by changing his or her value to
d∗. Neither of these things can happen and so d ∼ v.

We have demonstrated at every profile in the domain of the social welfare
function Ψ, individual 2 can ensure that the social degree of confidence that
“a is at least as good as b” is always in the same equivalence class as his or
her own. Since Ψ is neutral, individual 2 is a dictator.

This completes the proof of the theorem.
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4 Discussion
It is worth pointing out that Arrow’s theorem can be viewed as a special case
of the theorem above. It corresponds to the case where the cardinality of L
is 2.

One way of circumventing the impossibility theorem is to relax the as-
sumption that exact social preference is transitive.16 This enables us to state
the following, rather trivial, theorem.

Theorem 2. There exists a function Φ : Hn → T that is non-manipulable,
not constant and not dictatorial.

Proof. Define the function Φ : Hn → T as follows. For all (a, b) ∈ A × A
and all (r1, ..., rn) ∈ Hn, r(a, b) = Max (rN(a, b)). This function is non-
manipulable, not constant and not dictatorial.

Are there functions that satisfy our normative properties without resort-
ing to social intransitivity? Such functions would be much more attractive
than the one proposed in the theorem above. In order to answer this ques-
tion, we need to introduce a new set of preferences and use this set to expand
the set of social welfare functions.

Let D be the set of all r ∈ T which satisfy the following three conditions.
(i) For all a ∈ A, r(a, a) = d∗.
(ii) For all distinct a, b ∈ A, r(a, b) = d∗ implies that r(b, a) = d∗.
(iii*) For all a, b, c ∈ A, r(a, b) = d∗ and r(b, c) = d∗ implies that r(a, c) = d∗.

Note that H ⊆ D ⊆ T . These conditions on preferences are identical to
our earlier ones with the exception of (iii*). Condition (iii*) is the weakest
possible transitivity condition that respects transitive exact preference. Dn

is, therefore, the largest possible domain of fuzzy preferences.
However, for our next theorem, we only require that the co-domain of the

social welfare function is D. For consistency, we shall keep as our domain Hn.
This is because enlarging the co-domain is all that is required to generate a
possibility result.

Theorem 3. Assume that the cardinality of L is 3. Then there exists a func-
tion Ξ : Hn → D that is non-manipulable, not constant and not dictatorial.

16This is actually Peter Fishburn’s position expressed in Fishburn (1970). Fishburn
argues that the idea of a social welfare function is untenable since it assumes social tran-
sitivity. Fishburn suggests that transitivity is a much less appealing assumption than
Arrow’s independence condition. Of course, if we accept this line of reasoning then much
of traditional social choice theory loses its paradoxical character. Despite this, an inter-
pretation of the classic impossibility theorems in terms of social choice functions would
still be possible and this may be, in fact, what Fishburn is implicitly arguing for.
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Proof. Define the function Ξ : Hn → D as follows. For all (a, b) ∈ A × A
and all (r1, ..., rn) ∈ Hn, if Max (rN(a, b)) = Min (rN(a, b)) = α ∈ {d∗, d∗}
then r(a, b) = α, otherwise r(a, b) = L − {d∗, d∗}. This function is non-
manipulable, not constant and not dictatorial.

This social welfare function is very simple to describe. It respects, for
each pair of alternatives, unanimous exact preference whenever it exists. In
the event that it does not exist, then society assigns the value L − {d∗, d∗}
to this pair.

To give an interpretation to this social welfare function, suppose that
the elements of L correspond to degrees of truth in a three-valued logic.17

Then r(a, b) = d∗ means that the proposition “a is socially at least as good
as b” is true, r(a, b) = d∗ means that the proposition is false, and r(a, b) =
L−{d∗, d∗} means that the proposition is neither true nor false. Put simply,
social preference is vague whenever unanimous exact preference is absent.

This social welfare function shares some conceptual similarities with Sen’s
“Pareto-extension” rule.18 However, there are some important differences.
For one thing, vagueness replaces indifference whenever people in society
hold conflicting preferences.19 More significantly, this social welfare function
is transitive. As is well-known, Sen’s rule is quasi-transitive but not fully
transitive, and the above rule does not suffer from this defect.20

That said, one weakness with the social welfare function above is that it
requires the cardinality of L to be 3. If the cardinality of L is 4 or larger, then
the function above is manipulable (provided that the degree society assigns
in the absence of unanimity is always the same).21

However, the following social welfare function remedies this deficiency.
In fact, it coincides with the function above whenever the cardinality of L
is 3 and so it can be viewed as a generalisation. In order to describe this
new function, we need to formally define the concept of a median. In the
following definition N denotes the set of natural numbers.

17Williamson (1994) contains a detailed discussion of these kinds of logics.
18Sen (1970b), Gaertner (2006).
19Note that this is not the same thing as social incomparability which would require

both r(a, b) = d∗ and r(b, a) = d∗. The difference between vagueness and incomparability
is discussed in Broome (1997) and Piggins and Salles (2007).

20In the language of our theory, Sen’s rule is a function Λ : Hn → T defined as: for
all (a, b) ∈ A × A and all (r1, ..., rn) ∈ Hn, if rN (a, b) = (d∗, ..., d∗) then r(a, b) = d∗,
otherwise r(a, b) = d∗.

21This degree can be interpreted as a social “disagreement” point.
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Median

For all m ∈ N − {0} and all (d1, . . . , dk) ∈ Lk where k = 2m − 1, let
Med(d1, . . . , dk) denote the set {d ∈ L | ∃{x1, . . . , xk} = {1, . . . , k} with dx1 "
dx2 " . . . " dxk

and d ∼ dxm}.
It might help to translate this formal definition into English. Imagine

that m is 2 and so k is 3. L3 is the set of all logically possible combinations
of 3 degrees. Since " is complete, we can index these 3 degrees by x1, x2 and
x3 according to the relationship dx1 " dx2 " dx3 . Since m is 2, the median
degree is the set containing dx2 and all degrees in the same equivalence class
as dx2 . The reader will be able to see that this procedure can be applied to
numbers larger than 2.

We now state our final possibility theorem, which can be viewed as a
generalisation of theorem 3.

Theorem 4. Assume that the cardinality of L is 3 or more. Then there
exists a function Γ : Hn → D that is non-manipulable, not constant and not
dictatorial.

Proof. Define the function Γ : Hn → D as follows. For all (a, b) ∈ A × A
and all (r1, ..., rn) ∈ Hn, r(a, b) ∈ Med(d, d, d) where d ∈ Max (rN(a, b)),
d ∈ Min (rN(a, b)) and d ∈ L − {d∗, d∗}. This function is non-manipulable,
not constant and not dictatorial.

It should be clear that this function coincides with our earlier one when-
ever the cardinality of L is 3. In such a case, the elements of L must be
d∗, d∗ and d = L − {d∗, d∗}. As before the social welfare function respects,
for each pair of alternatives, unanimous exact preference whenever it exists.
It assigns the disagreement value L− {d∗, d∗} in all other cases.

Now let us consider how this social welfare function performs whenever
the cardinality of L exceeds 3. First of all, note that this function respects
both unanimous exact preference and unanimous inexact preference. To
demonstrate the latter, note that if dα = Max (rN(a, b)) = Min (rN(a, b))
and dα /∈ {d∗, d∗} then dα = Med(dα, d, dα) provided that dα ! d. Secondly,
the disagreement value itself varies; it is not fixed at L − {d∗, d∗}. Consider
a profile that is consistent with d & d & d. At this profile the social value of
(a, b) is d, not d. In other words, the disagreement point is specific to a profile
and not fixed to a particular degree. To put the matter somewhat loosely,
in the absence of unanimity society adopts the value d unless there is a con-
sensus that this value is too low or too high. In this sense, unlike our earlier
formulation, the disagreement point responds to individual preferences.
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It should be emphasised that all of the social welfare functions discussed
in this section satisfy IIA and PC. In fact any function from Hn to T that
satisfies NC and NM must satisfy IIA and PC. The reader will notice from
lemma 1 that the co-domain of the social welfare function is irrelevant for
establishing this result.
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