
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T10:56:21Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Endocannabinoid-mediated modulation of stress responses:
Physiological and pathophysiological significance

Author(s) Finn, David P.

Publication
Date 2009

Publication
Information

Finn D.P. (2009).  Endocannabinoid-mediated modulation of
stress responses: physiological and pathophysiological
significance. Immunobiology, in press.

Publisher Elsevier

Link to
publisher's

version
http://dx.doi.org/10.1016/j.imbio.2009.05.011

Item record http://hdl.handle.net/10379/837

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


 1 

Endocannabinoid-mediated modulation of stress responses: physiological and 
pathophysiological significance 

 

Short title: Endocannabinoid system and stress 

David P. Finn 

 

Department of Pharmacology & Therapeutics, NCBES Neuroscience Cluster and Centre for Pain 

Research, University Road, National University of Ireland, Galway, Ireland 

 

Address for correspondence: 

David P. Finn, 

Department of Pharmacology and Therapeutics, 

National University of Ireland, Galway, 

University Road, 

Galway, 

Ireland. 

Tel. +353 91 495280 

Fax. +353 91 525700 

E-mail: david.finn@nuigalway.ie 

 

Keywords: 2-arachidonoylglycerol; Analgesia; anandamide; Anxiety; Cannabinoid; Depression; 

HPA axis; Immune system; Stress 

 

 

mailto:david.finn@nuigalway.ie�


 2 

 

List of abbreviations: 

2-AG, 2-arachidonoylglycerol 

5-HIAA, 5-hydroxyindoleacetic acid 

AA-5-HT, N-arachidonoyl-serotonin 

ACTH, adrenocorticotrophic hormone 

BDNF, brain-derived neurotrophic factor 

BLA, basolateral amygdala 

CB, cannabinoid 

CCK, cholecystokinin 

CRF, corticotrophin releasing factor 

DOPAC, 3,4-dihydroxyphenylacetic acid 

ERK, extracellular signal-regulated kinase 

FAAH, fatty acid amide hydrolase 

FCA. Fear-conditioned analgesia 

GABA, gamma-aminobutyric acid 

HPA, hypothalamo-pituitary-adrenal  

MGL, monoacylglycerol lipase 

mRNA, messenger ribonucleic acid 

PAG, periaqueductal grey 

PTSD, post-traumatic stress disorder 

PVN, paraventricular nucleus 

RVM, rostral ventromedial medulla 
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SIA, stress-induced analgesia 

SSRI, selective serotonin reuptake inhibitor 

TRPV1, transient receptor potential vanilloid receptor 1 
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Abstract 

 

The stress response is associated with a broad spectrum of physiological and behavioural effects 

including hypothalamo-pituitary-adrenal (HPA) axis activation, altered central nervous system 

activity, neuroimmune alterations, anxiety- and depressive-like behaviour and analgesia.  While 

the acute stress response has essential survival value, chronic stress and dysfunction of the stress 

response can be maladaptive, contributing to the development and severity of psychiatric and 

pain disorders.  The endogenous cannabinoid (endocannabinoid) system has emerged as an 

important lipid signalling system playing a key role in mediating and/or modulating behavioural, 

neurochemical, neuroendocrine, neuroimmune and molecular responses to stress. The weight of 

evidence, reviewed here, points largely to a system which serves to constrain HPA axis activity, 

facilitate adaptation or habituation of HPA axis and behavioural responses to stress, reduce 

anxiety- and depressive-like behaviour and mediate analgesic responses to unconditioned or 

conditioned stress.  Possible involvement of the immune system and associated signalling 

molecules (e.g. cytokines) in endocannabinoid-mediated modulation of neuroendocrine and 

behavioural responses to stress is considered.  The goal now should be to exploit our 

understanding of the role of the endocannabinoid system in fundamental stress physiology and 

pathophysiological processes to better understand and treat a range of stress-related disorders 

including anxiety, depression and pain. 

.   
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Introduction 

 

Stress may be defined as a complex dynamic condition in which the normal homeostasis, or the 

steady-state internal milieu of an organism, is disturbed or threatened (Wilder, 1995).  All 

animals are exposed to a plethora of acute and chronic stressors throughout their lives which can 

be physical, psychological or immunological in nature.  Stress may derive from the influence of 

external (e.g. bereavement, exposure to a virus) or internal (e.g. autoimmune disease) forces.  The 

process of evolution has equipped animals with the biological machinery necessary to deal with 

many different types of stress.  This complex physiological coping mechanism has been termed 

the stress response.  The ability to mount an adequate response to stress is crucial for survival.  It 

follows that disturbances in the biochemical processes necessary for the stress response may 

result in the development of a number of pathological states including psychiatric conditions such 

as anxiety and depression and chronic pain disorders such as rheumatoid arthritis.  For example, 

exposure to stress may predispose individuals to depression (Anisman and Zacharko, 1991; 

Connor and Leonard, 1998) and exacerbate the inflammatory symptoms of rheumatoid arthritis 

(Affleck et al., 1987).  Furthermore, malfunctions in the biochemistry of the stress system are 

evident in these diseases (Arborelius et al., 1999; Chikanza et al., 1992; Hatzinger, 2000; Masi 

and Chrousos, 1996; Mokrani et al., 1997; Sternberg et al., 1992) and are often resolved or 

reversed following successful treatment (Barden et al., 1995; Gudbjornsson et al., 1996; Hall et 

al., 1994; Nemeroff et al., 1991).  Thus, in addition to its fundamental physiological significance, 

a greater understanding of the stress response and the factors that modulate it may prove useful in 

understanding the aetiology of stress-related disorders and in developing new approaches for 

their treatment. 



 6 

 

The endogenous cannabinoid (endocannabinoid) system is a neuroactive lipid signalling system 

comprised of two Gi/o-protein coupled receptors, CB1 and CB2 (Devane et al., 1988; Matsuda et 

al., 1990; Munro et al., 1993), endogenous ligands (endocannabinoids) that bind to and activate 

these receptors, and enzymes which either synthesise or degrade the endocannabinoids.  The two 

best characterized endocannabinoids are N-arachidonoylethanolamide (anandamide) and 2-

arachidonoylglycerol (2-AG) (Devane et al., 1992; Sugiura et al., 1995).  Synthesis and 

degradation of these and other arachidonic acid-derived endocannabinoids likely occur via 

multiple biochemical pathways (for recent review see Ahn et al., 2008).  Anandamide can be 

synthesised through the action of N-acylphosphatidylethanolamine specific phospholipase D (Di 

Marzo et al., 1996) while 2-AG synthesis is catalysed by the enzyme diacylglycerol lipase (Stella 

et al., 1997).  In turn, fatty acid amide hydrolase (FAAH) and monacylglycerol lipase (MGL) are 

the enzymes primarily responsible for catalyzing the degradation of anandamide and 2-AG, 

respectively (Cravatt et al., 1996; Dinh et al., 2002; Ueda et al., 1995).  The CB1 receptor is 

expressed widely and in high density throughout the rodent and human brain (Herkenham et al., 

1991; Mackie, 2005; Mato and Pazos, 2004; Tsou et al., 1998).  Its localization is predominantly 

presynaptic and it responds to endocannabinoids that are synthesised ‘on demand’ in the 

postsynaptic neuron and signal in a retrograde manner (Lovinger, 2008; Wilson and Nicoll, 

2002).  The CB2 receptor is expressed in tissues and cells of the immune system (Munro et al., 

1993; Parolaro, 1999).  Its localization on glial cells (Cabral and Marciano-Cabral, 2005; Massi 

et al., 2008; Walter et al., 2003) means that it too may be capable of modulating central nervous 

system functioning and some recent evidence also suggests that CB2 receptors may be expressed 

in neurones (Gong et al., 2006; Onaivi et al., 2008; Van Sickle et al., 2005). The above is a 
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cursory introduction to a signalling system whose intriguing complexity has become more and 

more evident with the proliferation of research papers on this topic in recent years.  

Pharmacological tools and the development of transgenic mice have facilitated elucidation of the 

role of the endocannabinoid system in health and disease.  It is also clear that novel, non-

CB1/non-CB2

The present review will focus on the dual aspects of how stress impacts on the endocannabinoid 

system and how, in turn, the endocannabinoid system acts to regulate physiological and 

behavioural responses to stress.  The concept of the endocannabinoid system as a key regulator of 

the stress response, facilitating adaptation or habituation to stress, protecting against the 

development of stress-related disease and dysfunction and, ultimately, promoting survival, will 

be discussed. The effects of exogenously administered agonists which act directly at cannabinoid 

receptors will not be considered in detail as a number of recent reviews have dealt 

comprehensively with this literature (see Chhatwal and Ressler, 2007; Steiner and Wotjak, 2008; 

Valverde, 2005; Viveros et al., 2005 and others referenced throughout manuscript).  Instead, the 

review will first focus on the role of endocannabinoids and their receptors in regulation of stress-

induced alterations in hypothalamo-pituitary-adrenal (HPA) axis.  Endocannabinoid-mediated 

modulation of behavioural stress coping (anxiety- and depression-related behaviour and stress-

 receptor targets for exogenous cannabinoids and endocannabinoids exist.  A 

detailed discussion of the complexities of the endocannabinoid system is beyond the scope of the 

present review but readers can find excellent overviews of this system elsewhere in this special 

issue (insert refs to other articles in the issue once known) and in the recent scientific literature 

(Ahn et al., 2008; Alexander and Kendall, 2007; Di Marzo, 2008a; Di Marzo, 2008b; Fowler, 

2008; Pacher et al., 2006; Pertwee, 2006).   
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induced analgesia) will then be considered.  The review will finish by speculating on the potential 

role of the immune system in mediating or facilitating the effects of endocannabinoids on 

neuroendocrine and behavioural responses to stress and highlighting some areas which deserve 

further research. 

 

Regulation of the HPA axis by the endocannabinoid system 

 

The HPA axis is the principal neuroendocrine component of the response to stress.  Exposure to 

acute stress results in release of corticotrophin-releasing factor (CRF) from neurones of the 

hypothalamic paraventricular nucleus (PVN) which terminate in the median eminence.  CRF then 

stimulates release of adrenocorticotrophic hormone (ACTH) from the anterior pituitary, which 

travels in the systemic circulation to induce the increased synthesis and release of glucocorticoids 

from the adrenal cortex: cortisol in humans or corticosterone in rodents.  Glucocorticoids help 

maintain homeostasis during times of stress, however, it is critical that the HPA axis response is 

adequate to meet the challenge but not excessive or prolonged.  Dysfunction of the HPA axis has 

been linked with stress-related disorders including anxiety disorders, depression and rheumatoid 

arthritis.  A body of evidence has emerged indicating a key role for the endocannabinoid system 

both in regulating basal HPA axis activity and in ‘fine-tuning’ the HPA axis response to stress.   

 

A number of studies have examined basal HPA axis activity in transgenic mice lacking the CB1 

receptor (Barna et al., 2004; Cota et al., 2007; Fride et al., 2005; Haller et al., 2004a; Uriguen et 

al., 2004; Wade et al., 2006).  Although there are some discrepancies between studies which are 

likely due to differences in background genetic strain or other methodological differences related 
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to sampling or animal handling, the weight of evidence points towards increased CRF mRNA in 

the PVN, decreased glucocorticoid receptor mRNA in the CA1 hippocampus and significantly 

higher ACTH secretion from pituitary corticotrophs in response to CRF and forskolin challenges 

as compared with pituitary cells derived from wild type mice.  These alterations in the central 

components of the HPA axis are accompanied by increased circulating levels of corticosterone 

and ACTH in plasma at the onset of the dark cycle and an impaired inhibitory response to low 

dose dexamethasone (Cota et al., 2007).  These findings are supported by pharmacological 

studies which have shown that acute systemic administration of the CB1 receptor 

antagonist/inverse agonist rimonabant (SR141716) to rodents results in increased circulating 

corticosterone levels (Patel et al., 2004; Steiner et al., 2008a; for an excellent recent summary of 

relevant studies using genetic and pharmacological approaches see Table 3 in Steiner and 

Wotjak, 2008; Wade et al., 2006). Together, these studies suggest that basal HPA axis activity is 

under tonic inhibitory control by CB1

Mice lacking the CB

 receptors and the actions of endocannabinoids thereon.   

 

1 receptor also exhibit enhanced stress-induced secretion of ACTH and 

corticosterone compared with wild type controls (Aso et al., 2008; Barna et al., 2004; Haller et 

al., 2004a; Steiner et al., 2008a; Uriguen et al., 2004).  Acute stressors studied include novelty 

stress, restraint, forced swimming and tail suspension. Once again, these findings are paralleled 

by pharmacological studies demonstrating that systemic administration of the CB1 receptor 

antagonist/inverse agonist rimonabant potentiates stress-induced increases in circulating levels of 

corticosterone (Finn et al., 2004b; Gonzalez et al., 2004; Patel et al., 2004; Steiner et al., 2008a; 

Steiner and Wotjak, 2008), suggesting that alterations in HPA axis activity in CB1 knockout mice 

are not a result of developmental compensation. The studies above demonstrate that 
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pharmacological blockade of the CB1 receptor potentiates the HPA axis response to either 

psychological (e.g. open-field exposure, social defeat, restraint) or combined physical-

psychological (22 kHz ultrasound exposure, forced swimming) stressors.  Interestingly, our 

recent work has shown that these effects of rimonabant also generalize to the immune stress of 

systemic lipopolysaccharide administration in rats (Roche et al., 2006) (Figure 1).  Further 

evidence that endocannabinoids act at CB1 receptors to constrain stress-induced activation of the 

HPA axis comes from the work of Patel et al. (2004) who demonstrated that pretreatment of mice 

with either the endocannabinoid transport inhibitor AM404, or the FAAH inhibitor URB597 

decreased or eliminated restraint-induced release of corticosterone in a manner similar to the CB1

Clearly then, the endocannabinoid system is an important negative modulator of basal and acute 

stress-induced HPA axis activity.  But what are the sites and cellular mechanisms underpinning 

this activity?  While the possibility of actions at the level of the pituitary or adrenal glands 

remains to be clarified, it seems unlikely that these represent critical sites of action given the 

sparse expression of CB

 

receptor agonist, CP55940.  The inhibitory effects of URB597 on HPA axis activity may be 

stressor specific since it did not affect corticosterone responses to injection stress or forced 

swimming (Steiner and Wotjak, 2008). 

 

1 receptors in rodent corticotrophs (Wenger et al., 1999) and adrenal 

glands (Buckley et al., 1998; Galiegue et al., 1995; Niederhoffer et al., 2001). We know from the 

work of Manzanares and colleagues that direct intracerebroventricular administration of 

rimonabant increases plasma levels of both ACTH and corticosterone in rats (Manzanares et al., 

1999), suggesting that CB1 receptors located supraspinally play in a key role.  Moreover, Patel et 

al. (2004) demonstrated that the potentiation of restraint stress-induced corticosterone secretion 
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by rimonabant was accompanied by a potentiation of restraint-induced c-Fos expression in the 

hypothalamic PVN. Additional convincing evidence of a key role for endocannabinoid-CB1 

signalling at the level of the PVN comes from in vitro studies demonstrating that the negative 

fast-feedback actions of glucocorticoids on CRF-containing neurons in the PVN are dependent on 

the endocannabinoid system.  Thus, glucocorticoids are capable of inducing the synthesis and 

release of the endocannabinoids anandamide and 2-AG in the PVN, which in turn act on CB1 

receptors located on presynaptic glutamatergic terminals to inhibit excitatory neurotransmission 

onto post-synaptic CRF neurons and negatively regulate the HPA axis (Di et al., 2003; Di et al., 

2005; Malcher-Lopes et al., 2006).  These data from in vitro studies, however, are somewhat at 

odds with a study in vivo which has shown that acute exposure of mice to 30 minutes of restraint 

stress results in a significant reduction in levels of 2-AG in the hypothalamus and no change in 

anandamide levels (Patel et al., 2004).  It is possible, however, that the reduction in 2-AG levels 

observed 30 min post-restraint reflects depletion of a hypothalamic storage pool due to earlier 

release/mobilization of 2-AG as suggested by Gorzalka et al. (2008), and further profiling of the 

temporal and spatial kinetics of stress-induced alterations in subregions/nuclei of the 

hypothalamus is warranted.  Interestingly, although acute restraint was associated with reduced 

hypothalamic 2-AG, repeated exposure to restraint for 5 days resulted in increased tissue levels of 

2-AG in the hypothalamus and an accompanying attenuation of the corticosterone response to 

restraint (Patel et al., 2004).  These findings have been interpreted as a sensitization of the 

hypothalamic 2-AG response to repeated homotypic stress, the purpose of which may be to 

facilitate habituation of the HPA axis response to this type of repeated challenge to homeostasis 

(Gorzalka et al., 2008; Patel and Hillard, 2008). 
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The PVN receives regulatory input from a number of extrahypothalamic CB1-containing brain 

regions, including the amygdala and hippocampus. It has been shown that systemic 

administration of the FAAH inhibitor, URB597, or genetic deletion of FAAH, prevents restraint-

induced increases in c-Fos expression in the central nucleus of the amygdala in mice (Patel et al., 

2005a).  Furthermore, acute restraint stress results in significant reductions in tissue levels of 

anandamide in the mouse amygdala and hippocampus (Gorzalka et al., 2008; Patel et al., 2004; 

Patel et al., 2005b). The stress-induced reduction in hippocampal anandamide may be mediated 

by increased levels of glucocorticoids since recent work has shown that a single acute 

administration of corticosterone to rats results in reduced tissue levels of anandamide in the 

hippocampus 18 hours later.  Finally, an interesting study by Steiner et al (2008c) demonstrated 

that conditional mutant mice lacking CB1

Aberrant regulation of neurochemical and neuroendocrine responses to stress is believed to play a 

key role in the precipitation, maintenance and/or exacerbation of a number of psychiatric and 

neurological disorders including anxiety, depression and chronic pain.  Preclinical work utilising 

animal models of behavioural stress coping have illuminated our understanding of the 

 receptor expression in principal forebrain neurons 

(CaMK-CB1(-/-)) exhibit increased forced swim stress-induced corticosterone secretion 

compared with wildtype controls.  Overall then, it is likely that the endocannabinoid-mediated 

regulation of the HPA axis occurs at the level of local PVN circuitry and possibly also via 

modulation of neuronal activity in extrahypothalamic regions which regulate the activity of the 

PVN. 

 

Endocannabinoid-mediated modulation of behavioural responses to stress 
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neurobiological mechanisms underpinning behavioural responses to stress.  Studies that have 

focused on the role of the endocannabinoid system in modulating behavioural responses of 

relevance to anxiety, depression and pain will now be reviewed.  Again the focus will be on the 

endogenous cannabinoids and their receptors.  Excellent reviews of the plethora of studies 

assessing the behavioural effects of exogenously administered synthetic cannabinoid receptor 

agonists or phytocannabinoids can be found elsewhere (Bambico and Gobbi, 2008; Chhatwal and 

Ressler, 2007; Lafenetre et al., 2007; Moreira and Lutz, 2008; Valverde, 2005; Viveros et al., 

2005) 

 

Anxiety-related behaviour 

 

Broadly speaking, studies can be divided into those that have assessed unconditioned, innate 

anxiety-related behaviour and those that have investigated conditioned fear/aversion.  A number 

of studies have assessed unconditioned anxiety-related behaviour in transgenic mice lacking 

expression of the CB1 receptor.  These mice exhibit an anxiogenic profile in the elevated plus-

maze (Haller et al., 2002; Haller et al., 2004b; Uriguen et al., 2004) (but see also Houchi et al., 

2005; Ledent et al., 1999; Marsicano et al., 2002), the light-dark box (Maccarrone et al., 2002; 

Martin et al., 2002; Uriguen et al., 2004), open-field arena (Maccarrone et al., 2002; Uriguen et 

al., 2004) and social interaction test (Uriguen et al., 2004).  Contrasting results have been 

obtained with transgenic mice deficient for FAAH, the enzyme which degrades anandamide.  

Following an initial study demonstrating no differences in the behaviour of these mice versus 

wild type mice in the elevated plus-maze (Naidu et al., 2007), a more recent study reported 

reduced anxiety-like behaviour of FAAH knockout mice in the elevated plus maze and light-dark 
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box compared with wild type mice and these effects were prevented by systemic administration 

of the CB1 receptor antagonist/inverse agonist rimonabant (Moreira et al., 2008).  This latter 

study, together with data from CB1 knockout mice, support the hypothesis that endocannabinoids 

act at CB1

Findings in transgenic mice are supported by pharmacological studies which have administered 

CB

 receptors to reduce anxiety. 

 

1 receptor antagonists/inverse agonists, endocannabinoid degradation inhibitors or 

endocannabinoids themselves, to probe the role of the endocannabinoid system in unconditioned 

anxiety in rodents.    A review of the literature, however, suggests that the effects of rimonabant 

may be different in rats versus mice.  For example, in the rat elevated plus-maze (Arevalo et al., 

2001; Navarro et al., 1997), defensive withdrawal test (Navarro et al., 1997) and ultrasonic 

vocalisation test (McGregor et al., 1996) systemic administration of rimonabant had an 

anxiogenic profile.  Syrian hamsters too exhibited an anxiogenic response to rimonabant in the 

elevated plus-maze (Moise et al., 2008).  In mice, however, rimonabant reduced anxiety-related 

behaviour in the elevated plus-maze (Haller et al., 2002; Rodgers et al., 2003) and in the light-

dark test (Akinshola et al., 1999).  Interestingly, the study by Haller et al. (2002) found that the 

anxiolytic effects of rimonabant were still evident in mice lacking the CB1 receptor, suggesting 

that a novel target for rimonabant may be involved in mediating its anxiolytic effects in mice.  

However, in a follow-up study, these workers found that another CB1 receptor antagonist, 

AM251, had an anxiogenic effect in wild type mice tested on the elevated plus-maze, an effect 

which was abolished in CB1 receptor knockout mice (Haller et al., 2004b).  It is of importance to 

note, however, that clinical data on rimonabant tie in more closely with the rat literature and 

suggest that this drug may be associated with increased anxiety and depressed mood (Curioni and 
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Andre, 2006; Doggrell, 2008; Rosenstock et al., 2008; Scheen, 2008; Van Gaal et al., 2008).  

These adverse psychiatric effects of rimonabant have lead to the rejection of marketing approval 

for rimonabant by the US Food and Drug Administration 

(http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4306b1-00-index.htm; 

http://www.fda.gov/ohrms/dockets/ac/07/briefing/2007-4306b1-fda-backgrounder.pdf) and  

recent suspension of its use and marketing as an anti-obesity drug across the European Union 

following a recommendation issued by the European Medicines Agency (www.emea.europa.eu; 

Doc. Ref. EMEA/CHMP/537777/2008).   

 

If pharmacological blockade of CB1 receptors is associated with anxiety, then one might 

hypothesise that pharmacological enhancement of endocannabinoid levels and signaling would 

result in anxiolysis.  Preclinical data largely support this idea.  Thus, systemic administration of 

the FAAH inhibitors URB597 and URB532 reduced anxiety-related behaviour in the rat elevated 

zero-maze and isolation-induced ultrasonic vocalisation tests (Kathuria et al., 2003).  These 

effects were dose-dependent and blocked by rimonabant.   URB597 has also been shown to be 

anxiolytic in the rat elevated plus-maze and open field tests (Hill et al., 2007) and has recently 

been shown to reduce anxiety-related behaviour in the elevated plus-maze in Syrian hamsters 

(Moise et al., 2008).  The FAAH inhibitor and endocannabinoid re-uptake inhibitor AM404 also 

exhibits a dose-dependent anxiolytic profile in the elevated plus-maze, defensive withdrawal test 

and ultrasonic vocalisation test (Bortolato et al., 2006).  These anxiolytic effects of AM404 were 

blocked by rimonabant and accompanied by an increase in tissue levels of anandamide, but not 2-

AG, in the medial prefrontal cortex.  However, the effect of anandamide itself on unconditioned 

anxiety is complex and appears to depend on dose with low doses tending to be anxiolytic and 

http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4306b1-00-index.htm�
http://www.fda.gov/ohrms/dockets/ac/07/briefing/2007-4306b1-fda-backgrounder.pdf�
http://www.emea.europa.eu/�
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higher doses anxiogenic (Akinshola et al., 1999; Chakrabarti et al., 1998; Rubino et al., 2008; 

Scherma et al., 2008).  Caution should be exercised when attributing the effects of anandamide, 

or drugs which increase its availability, to CB1 receptors, since anandamide (and indeed AM404) 

has direct agonistic activity at the vanilloid receptor TRPV1 (De Petrocellis et al., 2000; De 

Petrocellis et al., 2001; Di Marzo et al., 2001; Ross et al., 2001; Smart et al., 2000; Zygmunt et 

al., 1999; Zygmunt et al., 2000) and recent evidence suggests that this ion channel also plays a 

role in regulation of anxiety-related behaviour (Marsch et al., 2007; Rubino et al., 2008; Santos et 

al., 2008; Terzian et al., 2008).  Moreover, since simultaneous blockade of TRPV1 and FAAH 

inhibition with the dual FAAH/TRPV1 blocker, N-arachidonoyl-serotonin (AA-5-HT) results in 

more potent anxiolysis than selective blockers of FAAH or TRPV1 alone, it has been suggested 

that simultaneous indirect activation of CB1

Conditioned fear/anxiety is also subject to regulation by the endocannabinoid system.  

Understanding the role of the endocannabinoid system in conditioned fear and aversive memories 

is important because a number of anxiety disorders including post traumatic stress disorder 

(PTSD) and phobias are thought to result from dysregulated fear neurocircuitry (Rauch et al., 

2006).  Aspects of conditioned fear which have been studied include acquisition, expression and 

extinction of fear-related behaviour and all appear to be dependent on endocannabinoid signalling 

although there appear to be differences between contextual fear conditioning and cued fear 

conditioning (for review see Chhatwal and Ressler, 2007).  Contextually-induced fear responding 

was abolished in mice lacking the CB

 receptors and antagonism of TRPV1 might represent 

an effective therapeutic strategy for the treatment of anxiety (Micale et al., 2008).   

 

1 receptor, an effect mimicked by systemic administration 

of the CB1 receptor antagonist AM251 30 minutes before behavioural testing (Mikics et al., 



 17 

2006).  These workers found, however, that cannabinoids did not affect expression of cue-

induced conditioned fear but did promote its extinction (but see also Arenos et al., 2006).  

Similarly, Marsicano et al. (2002) demonstrated that CB1 knockout mice acquired and expressed 

cue-induced conditioned fear in a manner comparable with that observed in wild type mice, but 

exhibited impaired short- and long-term extinction of cue-induced conditioned fear responding.  

Again these results were mimicked by pharmacological blockade of CB1 with rimonabant 

(Marsicano et al., 2002) and have been replicated by other groups both for extinction of cue- or 

context-induced fear responding (Chhatwal et al., 2005; Lafenetre et al., 2007; Lutz, 2007; 

Niyuhire et al., 2007; Suzuki et al., 2004).  Moreover, the study by Chhatwal et al. (2005) 

demonstrated that pharmacological activation of endocannabinoid signaling with systemic 

administration of AM404 promoted extinction of fear memories, a finding recently replicated 

following either systemic (Pamplona et al., 2008) or intracerebroventricular (Bitencourt et al., 

2008) administration of this endocannabinoid transport inhibitor. Additional work has suggested 

that the CB1 receptor mediates fear extinction primarily via habituation-like processes rather than 

through associative safety learning (Kamprath et al., 2006). CRF or corticosterone appear not to 

be involved in CB1-mediated acute fear adaptation (Kamprath et al., 2008) but a recent study 

demonstrated that interactions between the endocannabinoid and cholecyctokininergic system at 

the level of the basolateral amygdala (BLA) may play a key role in endocannabinoid-mediated 

enhancement of fear extinction (Chhatwal et al., 2009).  Our work has shown that administration 

of rimonabant systemically (Finn et al., 2004a) or directly into the right BLA (Roche et al., 

2007b), attenuated the short-term extinction of contextually-induced fear in rats.  In the latter 

study, the rimonabant-induced prolongation of contextually-induced aversive behaviour was 

accompanied by reduced dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), levels in the 
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hippocampus, and increased levels of dopamine and 5-hydroxyindoleacetic acid (5-HIAA) in the 

periaqueductal grey (PAG) (Roche et al., 2007b).  Again focusing on the PAG, a recent study 

demonstrated that intra-dorsolateral PAG administration of AM404 or anandamide reduces 

expression of contextually-induced fear in rats (Resstel et al., 2008).  These effects were blocked 

by pretreatment with the CB1 receptor antagonist AM251, which, when administered alone, was 

without effect (Resstel et al., 2008).  In a shock-probe burying test of active and passive 

avoidance, CB1 knockout mice had lower burying scores and fewer contacts with the probe 

compared with wild-type mice, indicative of an anxiolytic profile in this test (Degroot and 

Nomikos, 2004).  In another study, CB1 knockout mice showed a significant increase in the 

conditioned responses produced in the active avoidance model (Martin et al., 2002).    

 

Overall then, genetic models and pharmacological studies with endocannabinoid system 

modulators (as opposed to more potent exogenous agonists) suggest that endocannabinoid 

signaling through CB1

Many animal models of depression or tests for antidepressant-like activity assess behavioural 

despair or behavioural adaptation to stress.  Modulation of endocannabinoid signalling influences 

 receptors in key brain regions acts largely to reduce or extinguish anxiety-

related behaviour.  As was the case for the HPA axis response to stress, it appears that 

behavioural responses to stress are also modulated by the HPA axis via adaptive, habituation-like 

processes which may involve interaction with or recruitment of a number of other 

signalling/neurotransmitter systems. 

 

Behavioural despair and behavioural adaptation to stress 
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both of these responses.  A brief overview of the literature supporting a role for the 

endocannabinoid system in the pathophysiology of depression and as a target for development of 

novel antidepressants will be provided but for more detailed considerations, please refer to recent 

reviews covering this topic (Bambico and Gobbi, 2008; Gorzalka et al., 2008; Hill and Gorzalka, 

2005b; Mangieri and Piomelli, 2007; Patel and Hillard, 2008; Serra and Fratta, 2007; Vinod and 

Hungund, 2006; Wotjak, 2005).   

 

Genetic deletion or pharmacological blockade of CB1 receptors has been shown generally to 

reduce immobility in the forced swim and tail suspension tests of behavioural despair (Griebel et 

al., 2005; Shearman et al., 2003; Steiner et al., 2008a; Tzavara et al., 2003) although some studies 

report no effects of either genetic deletion (Jardinaud et al., 2005; Shearman et al., 2003; Steiner 

et al., 2008a) or pharmacological blockade (Gobbi et al., 2005; Gobshtis et al., 2007; Hill and 

Gorzalka, 2005a; Hill et al., 2007) of CB1 receptors, or even increases in immobility (Aso et al., 

2008; Steiner et al., 2008b).  The depressive-like behaviour observed in the CB1 receptor 

knockout mice in the latter studies was associated with reduced levels of brain-derived 

neurotrophic factor (BDNF) in the hippocampus (Aso et al., 2008; Steiner et al., 2008b), a 

finding which supports the idea that CB1-mediated stimulation of neurotrophin release and 

neurogenesis in this brain region may be important in maintaining healthy mood states.  Indeed, 

there is a body of evidence in support of a role for the endocannabinoid system in regulating 

neurogenesis and neural progenitor cell proliferation (for review see Galve-Roperh et al., 2006, 

2007).  A recent study demonstrated efficacy of subthreshold doses of rimonabant or AM251 in 

the forced swim or tail suspension tests when co-administered with selective serotonin re-uptake 

inhibitors (SSRIs) (Takahashi et al., 2008), perhaps suggesting involvement of brain 
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monoaminergic systems in endocannabinoid-mediated modulation of behavioural despair.  

Further evidence for endocannabinoid-monoaminergic interactions during behavioural stress 

coping come from the work of Gobbi et al. (2005) who demonstrated that systemic 

administration of the FAAH inhibitor URB597 exerted potent antidepressant-like effects in the 

mouse forced swim and tail suspension tests and increased the firing of serotonergic neurons in 

the dorsal raphé nucleus and noradrenergic neurons in the locus coeruleus.  Gorzalka, Hill and 

colleagues also showed that both URB597 and AM404 reduce immobility time in the rat forced 

swim test (Hill and Gorzalka, 2005a; Hill et al., 2007).  Together with the studies described 

above, these reports suggest that either genetic deletion/pharmacological blockade of CB1 

receptors, or pharmacological enhancement of endocannabinoid signalling at CB1

When one analyses studies that have looked at the role of the endocannabinoid system in 

behavioural responses to repeated or chronic stress then the picture is somewhat clearer but 

 receptors can 

reduce behavioural despair in the forced swim test. A full explanation for these seemingly 

paradoxical findings is needed. However, for studies of this nature, it should be noted that 

differences in methodological aspects and testing conditions between studies can have a 

significant impact.  A recent study found, for example, that genetic deletion or pharmacological 

inhibition of FAAH had no effect on immobility in the forced swim or tail suspension tests unless 

ambient light was altered and sample sizes increased (Naidu et al., 2007). It is likely that the 

manner in which the test is set up and run, impacts on the extent to which it is stressful or 

aversive to the rodent, which, in turn, may affect endocannabinoid levels in key brain regions, 

providing a basis for differential effects of endocannabinoid modulating drugs or gene deletion 

dependent on the nature of the experimental paradigm. 
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dependent on whether the stressor is a repeated homotypic challenge (i.e. same stressor) or 

chronic heterotypic stress (e.g. chronic mild stress or chronic unpredictable stress paradigms).  

Systemic administration of rimonabant to mice, for example, reinstates the behavioural escape 

response to restraint stress, following habituation of this response after 5 days of repeated 

restraint exposure (Patel et al., 2005b).  Moreover, tissue levels of 2-AG in the forebrain and 

amygdala (Patel et al., 2005b) or hypothalamus (Patel et al., 2004) were increased following 5 

days of repeated restraint stress.  Taken together, these data suggest that 2-AG may act at CB1 

receptors in these key limbic brain regions to facilitate behavioural adaptation or habituation to 

repeated restraint stress.    Another behavioural consequence of repeated restraint stress in mice 

and a symptom of depression in humans is anhedonia.  It has been shown that the restraint-

induced reduction in sucrose preference in mice could be reversed by pre-treatment with the 

FAAH inhibitor URB597 and enhanced by the CB1

In line with the above findings, Martin et al. (2002) showed that CB

 receptor antagonist rimonabant (Rademacher 

and Hillard, 2007). After 10 days of repeated restraint, when the behavioural effect of rimonabant 

was most potent, 2-AG tissue levels were increased in the prefrontal cortex, amygdala and ventral 

striatum and anandamide tissue levels were reduced in the prefrontal cortex and amygdala were 

observed (Rademacher et al., 2008). These data strongly suggest that the endocannabinoid system 

is progressively recruited to counteract the effects of repeated homotypic stress on reward-

motivated behaviour. 

 

1 receptor knockout mice 

exhibited a depressive-like phenotype in a chronic mild stress paradigm.  However, this contrasts 

with the work of Griebel and colleagues who showed that 5 weeks of treatment with rimonabant 

improved the deleterious effects of chronic mild stress in mice (Griebel et al., 2005).  These 
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discrepancies may relate to methodological differences in stress paradigms and end-points used 

to assess depressive-like phenotype.  Alternatively they may be due to differences in the adaptive 

changes that result from genetic deletion of CB1 versus pharmacological blockade of CB1 with a 

drug which has a complex pharmacology. Supporting the idea that increased endocannabinoid 

signalling results in an antidepressant-like phenotype, chronic administration of the FAAH 

inhibitor URB597 to mice for 5 weeks attenuated chronic mild stress-induced reductions in body 

weight gain and sucrose intake, effects accompanied by increased tissue levels of anandamide in 

the midbrain, striatum and thalamus (Bortolato et al., 2007).  Chronic unpredictable stress is also 

associated with reduced CB1 receptor expression, reduced tissue levels of 2-AG and increased 

expression of FAAH in the rat hippocampus (Hill et al., 2005; Hill et al., 2008a; Reich et al., 

2009), although differential effects of chronic unpredictable mild stress on CB1 receptor 

expression in male versus female rats have also been demonstrated (Reich et al., 2009). C 

Reduced CB1 receptor expression in the hypothalamus and ventral striatum and decreased tissue 

levels of anandamide in the prefrontal cortex, hippocampus, hypothalamus, amygdala, midbrain 

and ventral striatum have also been reported (Hill et al., 2008a).  The reductions in CB1 receptor 

density in the hypothalamus and ventral striatum, but not those reductions in CB1 receptor 

density in the hippocampus or tissue levels of anandamide, were reversed by chronic treatment 

with the tricyclic antidepressant imipramine (Hill et al., 2008a). Other studies have demonstrated 

effects of other antidepressants from different classes on CB1 receptor density and tissue levels of 

anandamide in a number of brain regions implicated in depression (Hill et al., 2006; Hill et al., 

2008b).  Using [35S] GTPγS autoradiography, we recently showed that chronic treatment of rats 

for 14 days with the SSRI citalopram, reduced cannabinoid receptor agonist stimulated G-protein 

coupling in the hypothalamic PVN, the hippocampus and the medial geniculate nucleus (Hesketh 
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et al., 2008).  Though the effects are dependent on the individual antidepressant administered, it 

is nevertheless very clear that, in general, antidepressants are capable of altering CB1 receptor 

density and function under basal conditions.  Moreover, it is possible that the therapeutic efficacy 

of antidepressants used routinely in clinical practice lies partly in their ability to normalise 

dysfunctional endocannabinoid signalling.  One recent study demonstrated that increases in CB1

Rodríguez-Gaztelumendi 

 

receptor density and functionality in the prefrontal cortex in the rat olfactory bulbectomy model 

of depression were reversed by chronic treatment with fluoxetine, effects which were also 

accompanied by an attenuation of the open-field hyperactivity observed in this model 

( et al., 2009). It follows then, based on the preclinical data reviewed 

above and recent clinical data demonstrating that women with minor or major depression have 

altered plasma levels of endocannabinoids (Hill et al., 2008c; Hill et al., 2009), that direct 

modulation of the endocannabinoid system, probably by increasing endocannabinoid signalling 

through CB1

We have seen how the endocannabinoid system plays a key role in facilitating adaptive 

neuroendocrine and neuropsychiatric responses to stress.  Another evolutionarily conserved 

behavioural response to stress is that of adaptive pain suppression or stress-induced analgesia 

(SIA) (Amit and Galina, 1986; Ford and Finn, 2008) and a number of lines of evidence suggest 

that the endocannabinoid system plays a critical role in mediating this important survival 

response (for review see Ford and Finn, 2008; Hohmann and Suplita, 2006; Vaughan, 2006) 

, may represent a viable therapeutic option for the treatment of depressive disorders. 

 

 

Stress-induced analgesia  

 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Rodr%C3%ADguez-Gaztelumendi%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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(Table 1).  Early work had indicated that SIA was mediated via both opioid and non-opioid 

mechanisms and then in 2000, it was shown that transgenic mice lacking the CB1 receptor did not 

exhibit opioid-mediated antinociception following a forced swim in water at 34oC (Valverde et 

al., 2000).  In 2004, Finn and colleagues demonstrated that systemic administration of the CB1 

receptor antagonist/inverse agonist rimonabant to rats completely prevented the suppression of 

formalin-evoked nociceptive behaviour expressed upon re-exposure to an aversively conditioned 

context previously paired with footshock (i.e. fear-conditioned analgesia; FCA) (Finn et al., 

2004a).  A series of studies from Hohmann and colleagues then demonstrated a key role for the 

endocannabinoid system in an opioid-independent form of unconditioned SIA in rats (footshock 

followed immediately by tail-flick testing) and identified some of the brain regions involved.  

SIA was attenuated in rats tolerant to the cannabinoid receptor agonists WIN55,212-2 or ∆9-

tetrahydrocannabinol (Hohmann et al., 2005; Suplita et al., 2008).  Furthermore, rats exposed 

acutely to footshock were hypersensitive to the antinociceptive effects of WIN55,212-2 and ∆9-

tetrahydrocannabinol and, in turn, acute ∆9-tetrahydrocannabinol and WIN55,212-2 

administration potentiated SIA, suggesting a bidirectional sensitization between 

endocannabinoid-mediated SIA and exogenous cannabinoid-induced antinociception.  Systemic 

administration of CB1 receptor antagonists (Hohmann et al., 2005), or direct administration into 

the dorsolateral PAG (Hohmann et al., 2005; Suplita et al., 2005), brainstem rostral ventromedial 

medulla (Suplita et al., 2005), BLA (Connell et al., 2006), but not spinal cord (Suplita et al., 

2006), suppressed SIA.  Footshock stress was shown to increase the formation of anandamide 

and 2-AG in the PAG (Hohmann et al., 2005) and systemic or intra-PAG administration of drugs 

which inhibit the enzymatic degradation or transport of endocannabinoids was shown to 

potentiate SIA (Hohmann et al., 2005; Suplita et al., 2005). Similar potentiation of SIA was 
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observed following direct injection of a FAAH inhibitor into the rostral ventromedial medulla 

(Suplita et al., 2005) or intrathecal injection of FAAH and MGL inhibitors (Suplita et al., 2006).  

Thus, although endocannabinoids at the spinal level were capable of regulating this form of 

unconditioned SIA, mediation of this behavioural response was critically dependant on 

endocannabinoid-CB1 signalling in key supra-spinal sites including the PAG and rostral 

ventromedial medulla.  Although intra-BLA administration of rimonabant suppressed 

unconditioned SIA (Connell et al., 2006), inhibitors of endocannabinoid hydrolysis had no effect 

on SIA when injected into this brain region (Connell et al., 2006).  Moreover, we have recently 

shown that that injection of rimonabant into the right (Roche et al., 2007b) or bilateral (Roche et 

al., 2007a) BLA has no effect on FCA in rats.  Differences in the effects of rimonabant injected 

into this brain region may relate to differences in the models of unconditioned vs conditioned 

SIA studied.  For example, unlike the model used by Hohmann and colleagues, our model of 

conditioned SIA/FCA has an opioid-mediated component.  Indeed, we have recently shown that 

the enhancement of FCA in this model, by systemic administration of the FAAH inhibitor 

URB597, is prevented by co-administration of the opioid receptor antagonist naloxone, as well as 

by rimonabant and the selective CB2 receptor antagonist SR144528 (Butler et al., 2008)  The 

URB597-induced enhancement of FCA was also accompanied by reduced expression of 

phosphorylated extracellular signal-regulated kinases  (ERK) 1 and 2 in the amygdala, although 

the extent to which these signalling molecules may be causally involved in endocannabinoid-

mediated FCA remains unclear (Butler et al., 2008).  Recent work in mice has suggested that 

interactions between the endocannabinoid system and the cholecystokininergic system 

(particularly CCK 2 receptors) are important for expression of an opioid-dependent form of 

unconditioned SIA (Kurrikoff et al., 2008).   In summary, it is clear that the endocannabinoid 
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system plays a key role in mediating non-opioid and opioid-dependent forms of endogenous pain 

suppression in response to either unconditioned or conditioned stressors. 

 

Could the immune system play a role in endocannabinoid-mediated regulation of stress 

responses? 

 

A number of the review articles in this special issue of Immunobiology (see … include 

references to relevant articles in special issue once known) and others in the recent literature 

(Correa et al., 2005; Klein and Cabral, 2006; Massi et al., 2006; Wolf et al., 2008; Wolf and 

Ullrich, 2008) have provided detailed coverage of the interactions between the endocannabinoid 

and immune systems. This final section will consider the possible involvement of the immune 

system in mediating or modulating the effects of the endocannabinoid system on neuroendocrine 

and behavioural responses to stress.  The section is necessarily speculative because, although the 

field of psychoneuroimmunology has grown considerably in recent years, there is currently a 

paucity of studies investigating whether endocannabinoid-mediated modulation of immune 

function may underpin some of the effects of this lipid signalling system on HPA axis and 

behavioural responses to stress.  Clearly, the endocannabinoid system is capable of modulating 

the function of all of the major types of immune cells and tissues, including glial cells of the 

central nervous system.  These cells release a range of chemokines and cytokines which allow for 

bidirectional communication between the brain and immune system.  There is now very good 

evidence to suggest that cytokines directly modulate HPA axis activity (Dunn, 2000; Jara et al., 

2006; Mastorakos and Ilias, 2006; Mulla and Buckingham, 1999; Rivest, 2001; Savastano et al., 

1994; Torpy and Chrousos, 1996; Turnbull and Rivier, 1999), anxiety- and depression-related 
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behaviour (Anisman and Merali, 1999; Breese et al., 2008; Connor and Leonard, 1998; Craddock 

and Thomas, 2006; Leonard, 2001; Leonard, 2006; Nautiyal et al., 2008; O'Brien et al., 2004; 

Schiepers et al., 2005; Silverman et al., 2007; Wichers and Maes, 2002) and pain (McMahon et 

al., 2005; Moalem and Tracey, 2006; Sommer and Kress, 2004; Thacker et al., 2007; Watkins et 

al., 2003; Wieseler-Frank et al., 2005a; Wieseler-Frank et al., 2005b).  Our recent work (Roche et 

al., 2006; Roche et al., 2008), and that of others (Croci et al., 2003; Panikashvili et al., 2001; 

Smith et al., 2000; Smith et al., 2001a; Smith et al., 2001b), has demonstrated a role for the 

endocannabinoid system in regulating peripheral and brain cytokine responses to immune 

challenge/stress in vivo.  It is not inconceivable that, in addition to modulation of classical 

neurotransmitters such as GABA, glutamate and the monoamines, or neuropeptides such as 

cholecystokinin or CRF, modulation of cytokine signalling may also mediate the effects of 

endocannabinoids on HPA axis and behavioural (e.g. anxiety, despair, analgesia) responses to 

stress.  Such a neuroimmunological mechanism of action has already been proposed for other 

psychotropic drugs, including antidepressants (Craddock and Thomas, 2006; Leonard, 2001; 

O'Brien et al., 2004).  In this context, it is also interesting to note that a number of recent studies 

have demonstrated a role for the CB2 receptor, classically associated with the immune system, in 

anxiety- and depression-related behaviour.  Thus, intracerebroventricular administration of 

antisense oligonucleotide sequence directed against CB2 mRNA reduced anxiety-like behaviour 

in the mouse elevated plus-maze (Onaivi et al., 2008).  Moreover, a high incidence of the Q63R 

polymorphism in the CB2 receptor gene was found in Japanese subjects diagnosed with 

depression (Onaivi et al., 2008).  The CB2 receptor appears now to be expressed on both glia 

(Cabral and Marciano-Cabral, 2005; Massi et al., 2008; Walter et al., 2003) and neurons (Gong et 

al., 2006; Onaivi et al., 2006a; Van Sickle et al., 2005) of the brain, albeit at much lower levels 
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than the CB1 receptor. CB2 receptor protein and mRNA was found to be increased in the mouse 

brain following a 4-week chronic mild stress paradigm (Onaivi et al., 2006b).  The extent to 

which CB1 or CB2

The endocannabinoid system has emerged as one of the most important facilitators of stress 

adaptation in the body.  We have seen how it responds to stress in a way which enables HPA axis 

responses to be restrained.  At the behavioural level, despite complexities associated with some 

of the tools and animal models used to study the system and its effects, the picture is largely one 

of a system that serves to facilitate habituation to stress, reduce innate anxiety responses, promote 

extinction of conditioned fear responding, reduce behavioural despair or anhedonia and mediate 

analgesic responses to unconditioned and conditioned stress.  In other words, the 

endocannabinoid system promotes activities and responses which are beneficial for our survival 

in the face of challenges to homeostasis.  Resilience to stress-related disease and dysfunction may 

depend, at least in part, on the physiological integrity and proper functioning of the 

endocannabinoid system.  The bulk of our understanding has come from laboratory animal 

studies and there is a relative paucity of clinical studies.  Studies which investigate the role of the 

endocannabinoid system in regulation of basal and stress-induced HPA axis activity in humans 

are required.  So too, are clinical trials which investigate the potential therapeutic efficacy of 

drugs that enhance endocannabinoid levels in anxiety disorders including phobias and PTSD.  

 receptor-mediated modulation of anxiety-, depression, or pain-related 

behaviour may involve alterations in cytokines and neuroimmune signalling remains to be 

determined.  

 

Concluding remarks 
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Furthermore, lipidomic profiling of alterations in levels of endocannabinoids and related 

compounds in anxiety, depression and pain should be pursued to explore the potential usefulness 

of endocannabinoids as biomarkers of these disorders.  The hope then is that we may be able to 

exploit our understanding of the role of this intriguing lipid signalling system in fundamental 

physiological and pathophysiological processes to better understand and treat a range of stress-

related disorders. 
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Pharmacological or genetic 
intervention 

Route of 
admin. 

Species Model     Effect Reference 

CB1 NA KO  Mice Forced swim 
(34 0

SIA abolished 
C) + hot 

plate test        

Valverde et al., 
2000 

Rimonabant i.p. Rats FCA: 
conditioned fear 
+ formalin test 

FCA abolished Finn et al., 2004a 

Rimonabant Intra-BLA Rats FCA: 
conditioned fear 
+ formalin test 

No effect on FCA Roche et al., 
2007a and Roche 
et al., 2007b 

URB597 i.p. Rats FCA: 
conditioned fear 
+ formalin test 

Enhancement of FCA; blocked 
by rimonabant, SR144528 or 
naloxone 

Butler et al., 2008 

WIN55,212-2 tolerance 
induction 

i.p. Rats Footshock + 
tail-flick test 

SIA attenuated Hohmann et al., 
2005 

WIN55,212-2 and ∆9 i.p. -
tetrahydrocannabinol 
administered acutely 

Rats Footshock + 
tail-flick test 

Enhancement of SIA  Suplita et al., 
2008 

Rimonabant i.p. 
intra-dlPAG 
intra-RVM 
intra-BLA 

Rats Footshock + 
tail-flick test 

SIA attenuated Hohmann et al., 
2005; Suplita et 
al., 2005; Connell 
et al., 2006 

URB597 i.p. 
intra-dlPAG 
intrathecal 
 
intra-BLA 

Rats 
 
 
 
 
 

Footshock + 
tail-flick test 

Enhancement of SIA; blocked by 
rimonabant  
 
 
No effect on SIA 

Hohmann et al., 
2005; Suplita et 
al., 2006 
 
Connell et al., 
2006 

AA-5-HT i.p. 
intra-dlPAG 
intra-RVM 
intrathecal 

Rats Footshock + 
tail-flick test 

Enhancement of SIA; blocked by 
rimonabant 

Suplita et al., 
2005; Suplita et 
al., 2006 
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Palmitoyltrifluoromethylketone i.p. Rats Footshock + 
tail-flick test 

Enhancement of SIA; blocked by 
rimonabant 

Suplita et al., 
2005 

URB602 Intra-dlPAG 
Intrathecal 
 
 
Intra-BLA 

Rats Footshock + 
tail-flick test 

SIA potentiated; blocked by 
rimonabant 
 
 
No effect on SIA 

Hohmann et al., 
2005; Suplita et 
al., 2006 
 
Connell et al., 
2006 

Rimonabant i.p. Mice Footshock + 
tail-flick test 

SIA attenuated in wild-type mice 
but not in CCK2 receptor KO 
mice 

Kurrikoff et al., 
2008 

 

Table 1.  Summary of studies investigating the role of the endocannabinoid system in stress-induced analgesia (SIA). 

 NA: not applicable; KO: knockout; i.p. intraperitoneal; FCA: fear-conditioned analgesia; dlPAG: dorsolateral periaqueductal grey; 

RVM: rostral ventromedial medulla; BLA: basolateral amygdala 
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