

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the published version when available.

Title	Endocannabinoid-mediated modulation of stress responses: Physiological and pathophysiological significance
Author(s)	Finn, David P.
Publication Date	2009
Publication Information	Finn D.P. (2009). Endocannabinoid-mediated modulation of stress responses: physiological and pathophysiological significance. Immunobiology, in press.
Publisher	Elsevier
Link to publisher's version	http://dx.doi.org/10.1016/j.imbio.2009.05.011
Item record	http://hdl.handle.net/10379/837

Downloaded 2024-03-13T07:58:35Z

Some rights reserved. For more information, please see the item record link above.

Figure 1

Figure 1. The CB₁ receptor antagonist/inverse agonist rimonabant (SR141716A; 3 mg/kg i.p.), but not the cannabinoid receptor agonist HU210 (100μg/kg i.p.) or the CB₂ receptor antagonist SR144528 (3 mg/kg i.p.) potentiates lipopolysaccharide (LPS; 100μg/kg i.p.)-induced increases in plasma corticosterone in rats. Corticosterone levels were measured 2 hours post-LPS or saline and rats received cannabinoid or vehicle injections 30 minutes prior to LPS administration. Data are expressed as means + S.E.M. (n=6–8 per group). **P<0.01 vs. Vehicle+Saline (black line). [†]P<0.05 vs. Vehicle+LPS (Student–Newman–Keuls post hoc test following ANOVA). Reproduced with permission from Roche et al. (2006).