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“The key to growth is the introduction of higher dimensions of 
consciousness into our awareness.” 

~ Lao Tzu 
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Abstract 

 

This thesis aims to examine and investigate methods that could potentially utilize images 

captured by consumer cameras such as smartphones to estimate depth and generate a 3D 

structure.  

After more than a century of research in depth sensing and 3D reconstruction, there are still 

open and unsolved challenges, and ultimately a practical solution for each problem will have 

to rely on combining a range of techniques as there is no single best solution which can 

satisfy all the requirements of a depth sensing application. 

Based on this, a number of methods and frameworks are presented to take advantage of the 

existing consumer cameras in depth sensing applications. A method is presented to post-

process the depth maps with respect to the geometrical structure of the scene. Later, this 

method is adopted to evaluate the effectiveness of the deep learning approaches in 

monocular depth estimation. To utilize the current mono cameras available on smartphones, 

a framework is presented to use the pre-capturing small motions for 3D reconstruction and 

depth sensing applications. Similarly, a mono camera can be used to capture a sequence of 

images in different focal planes known as focal stack. A framework is designed to estimate 

dense depth map from focal stack in a reasonably fast processing time for high resolution 

images. Lastly, to investigate the potentials of the current consumer multi-camera arrays, a 

framework is proposed to estimate dense depth map from these cameras. 

The advanced capabilities of today’s smartphones brings hope that we can arrive at a 

consensual depth sensing imaging system in the next decade or so, and hopefully some of 

the contributions of this research will contribute in part to this solution. 
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Chapter 1.  

Depth in Images – Its History and Relevance in 

Contemporary Imaging Technology 

 

In this mobile-first world, having access to high accuracy depth information would introduce 

great applications on smartphones. However, integrating active depth sensing sensors into 

mobile phones is not practical due to the size and power limitation. Despite the presence of 

DLP projectors for smartphones [1] and ToF depth cameras, some practical issues such as 

energy efficiency and measurement range have to be taken into consideration. The primary 

objective of the work described in this thesis is to examine methods of estimating depth and 

3D reconstruction for lightweight computational devices such as smartphones. The main 

contributions of this work fall into the following categories: 

• Stereo Matching and Depth Estimation 

• Depth from Monocular Camera using DNN 

• Category of Small Motions: 

1. Structure from Small Motion (SfSM) 

2. Depth from Focal Stack 

3. Depth from Multi-Camera Array 

1.1 Human’s Visual System and Depth Perception 

Human’s vision is a unique system with a full range of benefits among all the species. We 

are equipped with wide-field peripheral vision with an angle of ~175°. Human’s vision 

system contains two frontal eyes which are located side by side and create an area of clear 

vision with an angle of ~85-95°. 

Each eye captures its own view of a scene from a slightly different angle. The brain unifies 

the images into a single image by matching up the similarities and filling in the small 

differences. The fused final image is a 3-Dimensional (3D) stereo picture. The word "stereo" 

comes from the Greek word στέρεος (stéreos) which means firm or solid. With stereo vision, 

an object is represented as solid in three spatial dimensions including width, height, and 

depth. 

It is believed that depth perception in humans’ visual system comes from a cue-based 

approach, meaning that we identify informative elements that relate to the depth of a scene. 

Generally, the depth cues are divided into three categories: 
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1- Monocular - Cues identifiable with one eye. 

2- Binocular - Cues identifiable with two eyes. 

3- Oculomotor - These are cues based on the ability to sense the position of the objects 

and the tension in the eye muscles. 

1.1.1 Monocular Cues 

Monocular cues are the elements of the scene which provide the information for one eye to 

approximate the depth. These cues are divided into two categories including: Pictorial cues 

and Movement-based cues. 

1.1.1.1 Pictorial Cues 

Pictorial cues are the depth information that can be presented in 2-Dimensional (2D) space 

as a photo, including occlusion, relative height, cast shadows, relative size, familiar size, 

atmospheric perspective, linear perspective and texture gradient. 

1.1.1.2 Movement-Based Cues  

As we move in our environment, the objects at different distances seem to move at different 

rates relative to us. When we are moving, the objects at a closer distance seem to move 

faster in the opposite direction than the objects located at a further. This dynamic depth cue 

is known as motion parallax. 

Another concept is “deletion and accretion”, which is the degree to which a closer object 

reveals or covers a further object as we pass them. As we move, some parts of the objects 

get revealed or occluded. The rate of deletion and accretion provides information about the 

depth of the objects. 

1.1.2 Binocular Cues 

As mentioned previously, each eye captures its own view of a scene from a slightly different 

angle. The eyes are separated by a distance of about ~6.3 cm. The brain utilises the 

differences between the left and right view to perceive depth information. This distance is 

greater for the objects that are closer to the observer. This process is known as stereopsis, 

where the information from both eyes is used to derive depth information. 

1.1.3 Oculomotor Cues 

When we are trying to focus on the objects at different distances, the information sent to the 

brain from the tension in the eye muscles can provide depth information. These cues are 

categorised as accommodation and convergence. 
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1.1.3.1 Accommodation 

Accommodation refers to the contraction of the ciliary muscle in the eye, which is what 

holds the lens allowing the eye to focus. When we are trying to focus on a close object, a 

contraction happens. 

1.1.3.2 Convergence 

Convergence helps the eyes focus on close objects. When an object moves away from the 

observer, the eyes diverge to maintain focus. Muscle movements provide information about 

the depth of the object. 

Good depth perception is important for humans’ daily interaction with their environment, as 

it affects coordination and hand to eye skills, aiding in ease of survival. Without this sense, 

recognizing a location in space becomes very difficult. Depth perception affects many daily 

activities, such as jumping, catching, throwing, navigation, collision avoidance, size 

judgment, and recognition, walking, running etc. Depth perception also helps us to recognise 

danger from a far distance and enables us to discriminate and identify objects.  

1.2 Historical Origin of Stereoscope and 3D Revolution Era 

In 1832 at the very early stage of photography, Charles Wheatstone invented a device 

composed of two mirrors at a 45-degree angle to the viewer’s eyes to create the illusion of 

depth [2], [3]. This device is known as the first invention of the Stereoscope in the world of 

photography. Wheatstone's stereoscope was designed to show two offset images separately 

to the left and right eye. The combination of these 2D views in the brain gave the perception 

of 3D depth data. Later in 1849, David Brewster replaced the mirrors in the stereoscope with 

lenses and invented the lenticular stereoscope [4].  

In 1851, 3D received a historical boost and caught the public's attention. David Brewster’s 

stereoscope was displayed at the Crystal Palace World Fair Exhibition in London. 

Stereoviews proved to be crowd pleasers at the 1851 Great Exhibition [5]. Brewster 

presented one to Queen Victoria, who was quite fascinated by this new innovation [6]. At 

the same exhibition, a picture of Queen Victoria was taken by Louis Jules Duboscq using 

Brewster's stereoscope which became very well known throughout the world. 

By that time, the stereo viewers were heavy wooden boxes, clumsy and expensive to build. 

In 1859, Oliver Wendell Holmes came up with a revolutionary design for the stereoscopes. 

He invented a light version of the device which was known as the Holmes stereoscope [7], 

[8]. His device allowed the viewer to hold the apparatus in one hand while using the other to 

position the stereograph in one of several grooves carved into a wooden arm extending from 

the eye tubes [9]. Holmes wrote: "It appeared to me that the box stereoscopes were 
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cumbrous and awkward affairs. I had one of Smith and Beck’s, and one or more of other 

patterns, but I did not like them; and so one day I cut out a piece of wood in some shape as 

this, the lines representing slots in which the stereograph was to be placed, stuck an awl in 

for a handle, and there was my stereoscope." [10]. 

In 1861, Coleman Sellers patented a stereoscopic moving picture peep show machine which 

he called Kinematoscope [11], [12]. His kinematoscope was made of a spinning blade inside 

a cabinet where a series of stereographs were mounted on the blade. Sellers discovered the 

principle of intermittent motion for moving pictures and his kinematoscope is considered 

one of the most important precursors to motion pictures and cinema.  

From the 1840s through the 1920s, stereoscopes turned into one of the main gadgets for 

home entertainment, education, and virtual travel. In 1893, William Friese Greene patented a 

3D viewing scheme using two side-by-side screens. The images were viewed through a 

cumbersome stereoscope [11].  

In 1915, Edwin S Porter presented his new invention, the first red-green anaglyphic 

stereoscopic movie projection system. He presented a number of short movies in Astor 

Theatre, New York City [13].  

In 1922, the first public 3D movie, "The Power of Love," was screened, followed by the first 

3D colour movie in 1935 [14].  

This technology lost its popularity between the late 1920s and early 1930s due to the Great 

Depression. But the 1950s saw a comeback for the 3D technology and it is known as the 

golden era of 3D movies. During these times, TVs had become very popular. By 1953, a 

number of 3D movies were released, such as "Bwana Devil," "House of Wax" and "Man in 

the Dark". But not all movie theatres had the equipment to screen 3D movies [14]. Many 

people reported that watching out of sync or unfocused 3D movies caused them nausea or 

headaches and they preferred watching them in the normal 2D and flat mode. The movies 

were also expensive to rent for theatres. 

The 1960s saw another comeback of the 3D technology when Arch Oboler invented a new 

technology known as Space-Vision 3D. Oboler's invention did not require any 

synchronization and it was cheaper and easier to maintain. His new technology utilised a 

single print solution and removed the need to use two cameras to display 3D movies. The 

first movie which was screened using this technology was "The Bubble" [15]. 

In 1970, a new technology called Stereovision was introduced. A special anamorphic lens 

was used in Stereovision to stretch the picture using a series of polaroid filters. The first 

movie released using this technology was "The Stewardesses." The movie cost only 

$100,000 and it earned about $27 million in North America after showing at just 800 

theatres. This movie became the most profitable 3D film of all time [15]. 
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By 1980, more movies were screened using the 3D technology, such as "Friday the 13th Part 

III" and "Jaws 3D."  

Later in the 1990s, the first 3D movie, "Echoes of the Sun," was produced in Canada using 

polarized glasses. IMAX projectors moved the 3D cinema to another level. Some of the 

most famous movies released in IMAX 3D are "Into the Deep" and "Wings of Courage." 

1.2.1 The 21st Century 

In early 2000, big 3D movies such as "Spy Kids 3D: Game over," "Aliens of the Deep," 

"The Adventures of Sharkboy and Lavagirl” and "The Polar Express" were screened using 

High-Definition (HD) video cameras. 

3D TVs and vision became very popular in late 2009 and early 2010 after the big release of 

the movie "Avatar" [15]. These days many educational shows, sports events, and 

documentaries are displayed in 3D, and still, the long and interesting story of 3D technology 

continues.  

The success of 3D technology in the movie industry has introduced the so-called “3D 

revolution” and has facilitated the rapid development of 3D equipment. Stereoscopic and 

autostereoscopic technology have found their way to home entertainment equipment, 

vehicles, drones, TVs, mobile devices and PC screens. Nowadays, stereo cameras are 

available for consumers at a very reasonable price. Capturing and displaying stereoscopic 

media has been revolutionised by deploying stereoscopic displays and cameras, and we are 

at the early stage of the new stereoscopic multimedia era. Although stereoscopic hardware 

has developed rapidly in both acquisition and display technology, there has not been much 

progress on stereoscopic processing software development, especially in consumer devices. 

In the world of consumer electronics, Microsoft Kinect was the world's first consumer depth 

camera which introduced a new era in depth-sensing technology. Taking advantage of the 

structured light, Kinect uses pattern projection and relies on parallel computing to capture 

real-time frames at 30 frames per second (fps). For applications such as robotics and 

emerging Virtual and Augmented Reality (VR/AR), high-performance depth cameras are 

required to capture real-time information. Microsoft HoloLens [16] is the recent examples of 

these cameras. “The displays on HoloLens refresh 240 times a second, showing four 

separate colour fields for each newly rendered image, resulting in a user experience of 60 

FPS (frames per second). To provide the best experience possible, application developers 

must maintain 60 FPS.” [17] 
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1.3 Digital Camera Technology and Its Challenges 

The use of consumer lightweight cameras, specifically smartphones, is growing 

continuously and the level of expectation around what these cameras can do is increasing 

yearly. With the growing use of these cameras, deriving the 3D information has become an 

important challenge in consumer imaging.  

The capabilities of imaging sensors deployed in smartphones are limited, and they have a 

poor performance under low light conditions (lux < ~100). Images are captured blurry and 

suffer from notable aberration. The small size of the Charge-Coupled Device (CCD) sensors 

increases the amount of noise in the image and decreases the performance of the computer 

vision algorithms. A larger sensor could solve this problem, but the size of the components 

is restricted in smartphones, and consumers are not eager to mount an extra lens on their 

smartphone camera. 

Many specs of the advanced Digital Single-Lens Reflex (DSLR) cameras such as optical 

zoom, shutter speed, aperture, white balance and ISO settings, are not accessible or are only 

accessible in limited form in smartphones. 

In general, because of all these limitations, it has been very challenging to capture DSLR 

camera quality images using smartphones. However, most of these challenges have been 

addressed by deploying advanced mobile processors such as the Image Signal Processor 

(ISP), which introduced many complex post-processing algorithms to compensate for the 

shortcomings of the limited optical components of smartphones. The current ISP technology 

provides many processing capabilities through advanced image processing blocks such as 

demosaicing, noise filtering, colour correction, tone mapping, auto focus, auto exposure, 

white balance, lens shading correction etc. 

The other limitation in smartphones is the battery power. High resolution and high frame 

rate cameras require a lot of energy to run. Intensive computer vision algorithms, including 

Augmented Reality (AR) applications, tend to drain the smartphones’ batteries. 

All these limitations make 3D information generation a very challenging task in the 

smartphone industry. Mobile device manufacturers are exploiting depth information to see 

the world in 3D. Considering all the physical limitations of the cameras, there are still 

potential features, such as camera motion [18], [19], focal sweeps [20]–[22] and microlenses 

[23], which could potentially be used to generate 3D information. 

1.4 The importance of Depth Information 

Most of the conversion methods that generate 3D information from a set of 2D pixels are 

based on the depth values computed for each 2D point. In a depth map, each pixel is defined 

not by colour, but by the distance between an object and the camera. 
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Having the depth and 3D information of a scene enables consumers to infer and understand 

its semantics and geometric structure as well as enabling many applications in computer 

vision such as autonomous navigation [24], 3D geographic information systems [25], object 

detection and tracking [26], medical imaging [27], advanced graphical applications [28], 3D 

holography [29], 3D television [30], multi-view stereoscopic video compression [31], and 

disparity-based segmentation [32].  

For example, having depth information along with an image in a smartphone allows users to 

simulate a Bokeh effect [33] and to change the focus points or lighting after the image has 

been taken. Apps could be designed to entirely remove or add an object to a scene with 

different lighting, shading and other special effects.  

Another example could be Virtual and Augmented Reality (VR/AR) where the depth of a 

real environment can be captured and reconstructed to enable virtual tours or visits. Faces 

can be scanned as 3D avatars for teleconferencing and gaming purposes. Virtual maps can 

be designed for house redecoration [34]. Online shopping can be revolutionised using 

AR/VR technology [35], [36]. Driving habits and behaviors can be improved using AR/VR 

glasses with a navigation system. 

In another context, depth sensing technologies provide a great opportunity to significantly 

increase the navigation and interaction capabilities of vehicles. The importance of depth 

information has been demonstrated in the autonomous car driving. It is essential for an 

autonomous vehicle to accurately and reliably perceive the geometrical features of the 

environment, which can potentially lead to obstacle detection. 

1.5 Overview of Technical Challenges 

After more than a century of research in depth sensing and 3D reconstruction, there are still 

open and unsolved challenges, and ultimately a practical solution for each problem will have 

to rely on combining a range of techniques. There are many problems such as depth 

estimation in an uncalibrated environment, handling occlusion and missing data, real-time 

performance, estimating depth from single RGB images, fast linear and non-linear solvers, 

and 3D map compression, which still require an extensive amount of research to be solved. 

Acquiring accurate depth information using the minimum computational resources is one of 

the main open challenges in lightweight imaging systems such as smartphones [37], [38]. 

Smartphone cameras have limited capabilities and optical properties which make it difficult 

to understand the geometrical features of the scene. Most of the phones are equipped with 

only one camera. This problem remains challenging because there are no reliable cues for 

inferring depth from a single image. For example, temporal information and stereo 

correspondences are missing from such images. There are low-cost algorithms that can be 
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employed on lightweight devices, but the accuracy of the depth and 3D information 

estimated by those algorithms is considerably low [39], [40]. Most importantly, they do not 

preserve the geometrical structure of the scene, which makes it very difficult to distinguish a 

specific object. Another challenge is discovering how we can utilise features such as the 

accidental motion of the camera or the optical properties of current cameras, like focal 

sweeps, to estimate depth information.  

In the application of autonomous navigation, it is essential to have real-time accurate depth 

and 3D data. Autonomous navigation devices can be divided into two categories: battery 

operated drones, and vehicles. The use of a camera, or sets of cameras, is limited in this 

application as they can be interfered with different lighting conditions, reflective surfaces, 

weather conditions etc. 

Laser scanners can be used to generate 3D data for autonomous navigation. However, the 

scanners are expensive and they require a significant power source to operate, which limits 

their performance on battery operated drones. The more important challenge is how to 

densify the sparse data generated by a laser scanner while preserving the structure of the 

scene [41]–[43].  

Another important challenge is to consider factors that affect the quality of a depth map 

while designing an algorithm including occlusion prediction, regularization term, and 

consistency term. 

One of the factors for visually inspecting the quality of a 3D reconstruction is through the 

incorporation of the colour of every point on the object. The results provided by recent 

reconstruction methods are not very accurate. The current methods employ a volumetric 

blending approach that integrates colour samples over a voxel grid [44]–[49] to colour the 

geometric models produced using consumer depth cameras. The colour maps generated 

using these methods respect an object’s general appearance; however, they suffer from a 

number of artifacts such as blurring and ghosting, which are visible at close range. 

Another important factor that can decrease the quality of depth estimation and 3D 

reconstruction is the presence of noise, which can lead to a faulty geometrical reconstruction 

and inaccurate camera pose estimation. For consumer devices that are equipped with a depth 

and a colour camera, asynchronous shutters commonly cause the misalignment of projected 

images. In RGB-D consumer cameras, the images mostly suffer from the artifacts introduced 

by optical distortion [50]. 

The advanced capabilities of today’s smartphones bring hope that we can arrive at a 

consensual depth sensing imaging system in the next decade or so, and hopefully, some of 

the contributions of this research will contribute in part to this solution. 
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The research presented in this dissertation aims to examine and investigate methods that 

could potentially utilise images captured by consumer cameras to estimate depth and 

generate a 3D structure. 

1.6 Contribution Summary of the Thesis 

1.6.1 Generic Post-Processing Method to Refine Depth Map 

For the purpose of exploring the challenges of estimating depth from stereo image sets and 

taking advantage of the growing computational capabilities of embedded imaging systems, a 

generic post-processing method is proposed which is capable of preserving the structure of 

the scene in the depth map. The framework starts with a state of the art stereo matching 

algorithm known as “Adaptive Random Walk with Restart” [51]. To refine the depth map 

generated by this method, we introduced a form of median solver/filter based on the concept 

of the mutual structure, which refers to the structural information in both images. This filter 

is further enhanced by a joint filter. Next, a transformation in image domain is introduced to 

remove the artifacts, which cause distortion in the image. Note that this algorithm is generic 

and can be employed to increase the accuracy of the depth maps in any application. 

1.6.2 Models to Estimate Depth from Monocular Camera by Employing a Semi-

Parallel Deep Neural Network 

To overcome the extensive computational power of stereo matching techniques and utilise 

the monocular camera, the potential of an advanced deep learning technique is investigated 

which may soon be embedded in the hardware processing chipsets of the image processing 

pipeline. A Convolutional Neural Network (CNN) model is applied to the problem of 

determining the depth from a single camera image (monocular depth). Eight different 

networks are designed to perform depth estimation. After designing a set of networks, these 

models are combined into a single network topology using graph optimisation techniques. In 

this study, four Semi Parallel Deep Neural Network (SPDNN) models are trained and 

evaluated at two stages on a common dataset. To evaluate the performance of the post-

processing method presented in Section  4.1, we trained two of the networks using the post-

processed depth maps. 

1.6.3 A Method to Compute Depth and 3D Structure from Small Motion 

This technique utilises sudden motion of the camera to estimate depth and 3D structure. 

Since consumer cameras usually employ pre-capturing initialization, we propose a novel 

method by utilising the pre-captured small motions to estimate a depth map and generate a 
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semi-dense 3D structure of a scene. The method uses a sequence of images captured on a 

narrow baseline in smartphones. The basic idea is to make use of the small movements of 

the camera such as natural hand-shake to estimate a depth map. In such movements, the 

baseline between sequences of frames is considered small if it is less than ~8 mm. The 

proposed framework starts by tracking common features throughout an uncalibrated image 

sequence and generating a 3D structure which is later optimised using a modified bundle 

adjustment.  

1.6.4 Depth Measurement from a Focal Stack Framework 

This technique can take advantage of the faster frame rates and improved focus ranges of 

some of the most recent smartphones. It utilises the optical properties of consumer cameras 

to estimate depth from a stack of images captured in different focal planes. Similar to small 

motions in smartphone cameras, one can record a short sequence of frames with varying 

focal points. In smartphones, this feature is known as a focal stack which is generated by 

automatic focal plane sweeps to find the camera's best auto-focus setting while taking 

photos. A method is proposed to estimate depth from a focal stack for post-capture 

refocusing purposes. The method initiates by aligning the images in the stack using Epipolar 

homography alignment. Later, a Modified Laplacian is used to calculate the focus function. 

The initial depth map is calculated by modeling the focus function using a 3-point Gaussian 

distribution. The problem of the noisy depth map is reformulated to a convex minimisation 

problem to be solved by Preconditioned Alternating Direction Method of Multipliers 

(PADMM) which results in recovering uncertain depth values. 

1.6.5 Speed Optimised Depth Measurement from a Multi-Camera Array Framework 

The last contribution of this thesis focuses on the new trend of smartphone cameras known 

as a multi-camera array. These cameras provide multiple views with a small baseline from a 

scene. One of the known technologies in this category, which has received much attention in 

the past years, is PiCam [52] where 16 microlenses are placed in an array to generate a 

camera module which is 3 mm thick. By introducing this camera, Pelican imaging brought 

light field technology in a compact form to mobile devices. The images captured by this 

camera can be used for post-capture refocusing, 3D modeling and printing applications, AR 

and segmentation. 

Several methods have been recently proposed to estimate depth and 3D structure from these 

cameras. However, the computational requirements of these methods make them impractical 

for many applications. A framework is proposed based on Epipolar Plane Image (EPI) to 

estimate a high-quality dense depth map from the multi-camera array. The initial depth map 
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is estimated by utilising the local EPI and it is later refined using Total Variation (TV) 

minimisation based on the Fenchel-Rockafellar duality [53]. 

1.7 Summary of Structure 

Section  4.1 presents a novel post-processing technique to improve the accuracy of the depth 

map estimated by a state of the art method. In Section  4.2, the challenge of depth estimation 

from monocular images is tackled by utilising Semi Parallel Deep Neural Network. 

Section  4.3 investigates general camera motions and introduces a method to estimate depth 

from a specific type of motion known as “small motions”. Section  4.4 analyses the optical 

properties of the camera and take advantage of its focus/defocus modeling to generate a 

regularized dense depth map. Section  4.5 starts by studying the light field imaging theory. 

Next, a novel framework is proposed to estimate a dense depth map from the multi-camera 

array and light field image sets. Finally,  Chapter 5 summarises the contribution of the whole 

thesis and discusses possible future works. 
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Chapter 2.  

On the Importance of Depth Estimation and 3D 

Information 

 

Compact and lightweight mobile technologies such as smartphones have evolved 

significantly while their prices are constantly diminished. The advancement of consumer 

devices with high-resolution displays and 3D graphics capabilities has introduced a new 

generation of mobile Augmented Reality (AR) apps which are known to mix the real 

environment with the virtual. The first 15 years of the 21st century has seen major and rapid 

development in AR. Leaders of the consumer electronics industry such as Google [54] and 

Apple [55] are utilising AR to provide an interactive experience for users. Last year Google 

introduced Lens [56] which allows users to browse the environment through smart text 

selection and style match. Apple's ARKit [57] and Google's ARCore [58] are the new 

examples of the Visual Inertial Odometry (VIO) systems which allow both developers and 

consumers to take advantage of AR on their smartphones. Both devices can track users’ 

position in space using accelerometer and gyroscope. They generate 3D models based on a 

sparse 3D point clouds which uses much less memory and CPU time. 

Social media are utilising AR to give a better and more creative experience to their users. 

The tourist industry is taking advantage of the technology to help travelers in choosing their 

destination and planning their trips.  The video game industry is investing in advanced 

solutions that incorporate AR technology and mobile gaming to improve their customers’ 

experiences. All these applications require accurate depth data to create a realistic 

augmented scene. 

Consumer depth sensing sensors, motion-sensing controllers, and virtual human interfaces 

have become a part of daily human-computer interaction [59]. Head-mounted displays 

(HMD) are another example of consumer devices which utilise 3D information for virtual 

reality purposes and became important for medical, gaming and military applications to view 

a 3D scene with 360° × 90° angle of view [60], [61]. 

Autonomous vehicles are revolutionising our mobility behavior by enabling safer and more 

reliable transportation. Major auto manufacturers have already released, or are soon to 

release, self-driving features that give the car some ability to drive itself. In order to operate 

safely, autonomous vehicles will require high precision depth and 3D data which contain 

significantly detailed information about their surrounding environment [62]. 
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Most of the main smartphone companies [63]–[65] are using depth and 3D information in 

their products to give a new and different experience of digital photography to their 

customers. Having access to the depth information on a smartphone enables consumers to 

virtually interact with the environment by remove objects, isolate single objects, and even 

remove and replace the entire background of a picture. The rapidly growing use of the depth 

sensing technologies in smartphones may entirely change the way that people will interact 

with technology in the near future. 

Another area of computer vision that takes advantage of depth sensing sensors and 3D 

reconstruction methods is 3D facial recognition. Most of the existing recognition systems 

use 2D images to identify a person; however, many of these systems can be fooled using 

photographs or video clips known as 2D-media attacks [66]. 3D face modeling provides 

more accurate details than 2D models for recognition purposes and liveliness detection, such 

as the iPhone's new Face ID, which employs a dot projector sensor to generate a 3D facial 

map [67]. However, developing such a technology and its integration with lightweight 

mobile devices is a costly process. 

Considering the current trend of employing depth sensing technologies on handheld and 

wearable devices, it is expected that 3D cameras will be a standard part of smartphones 

within the next few years. This technology is not restricted solely to the applications 

mentioned above. Depth and 3D information introduce new aspects to different fields of 

computer vision, such as object detection and tracking [68], [69], medical applications [70]–

[72], semantic segmentation [73] and micro aerial vehicle navigation [74]–[76].  

2.1 Common Depth Estimation Systems and the Challenges 

2.1.1 Time of Flight (ToF) 

ToF cameras work by calculating the time required for a ray of light to travel from a light 

source to an object and back to the sensor. Generally, these cameras only perform well at 

short range (< 2m); increasing the power of the illumination source can, to some degree, 

increase the sensing range (8-9m). The resolution of a typical ToF camera is usually about 

200 × 200 [77]. The highest resolution ToF sensor currently available in the market is 

Microsoft Kinect for Xbox One with a 512 × 424 pixel resolution [78]. Kinect sensor has 

the capability of being modulated at up to 130 MHz, however, there are not many discrete 

frequency settings used to resolve the phase wrapping ambiguities [79] which causes the 

measured distance in the depth map to be much shorter than the actual distance. Another 

issue is that the raw data from the sensor and the firmware to control the signal generator are 

complex and the algorithms are not publicly available, so it is difficult to base research work 
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on such devices. Microsoft HoloLens is a recent example of commercial ToF cameras. 

HoloLens is known as a mixed reality device which combines real and digital worlds. It 

displays at 60 fps and has the memory limit of 900MB RAM. The goggles are equipped with 

a camera which helps the device to locate the objects in the environment and project 3D 

images on top of them [16]. 

Nevertheless, there is some public research work on ToF cameras. To challenge the phase-

based sampling of the current ToF sensors, Kadambi et al. [80] proposed a new ToF 

architecture for depth estimation purposes inspired by micron-scale microscopic 

interferometry. Although in this architecture the depth sensing range is increased without the 

presence of wrapping artifacts (the measured range is equal to the actual range), the 

prototype is designed on a phase ToF CMOS sensor which is not suitable for frequency 

sweeps. To challenge the low-resolution issue of the existing ToF cameras, Schuon et al. 

[81] showed that it is possible to generate high-quality depth maps from ToF cameras using 

multi-frame super-resolution methods, which are based on [82]. The initial depth map in 

[81] is regularized using a bilateral filter. This method requires a high number of frames (15 

frames) to estimate the initial depth map. It also assumes that the motion in capturing the 

frames is purely translational. Meaning that the motion does not contain any rotation which 

is very unlikely for practical applications. 

Zhu et al [83] focused on conditions such as highly textured scenes where ToF sensors do 

not perform well. To solve this, they proposed a method to combine the information from 

the ToF sensor and the passive stereo matching method. Their proposed method combines 

the probability distribution functions in depth from each method using a Markov random 

field (MRF) model. In a similar study, Marin et al. [84] upsampled the ToF depth data using 

bilateral filter and image segmentation. Parallel to the upsampling process, they estimated a 

dense depth map using the Semi-Global Matching (SGM) stereo algorithm. Later, a 

confidence map is calculated for each depth map. The depth information from ToF and SGM 

are combined at the final step by considering the local consistency of depth data. In another 

depth fusion study similar to [84], Agresti et al. [85] upsampled the ToF depth data using 

bilateral filter and image segmentation and they used SGM for stereo matching purposes. 

However, the confidence map estimation for ToF depth data and SGM is done using a 

Convolutional Neural Network (CNN). The proposed CNN in [85] takes as input both ToF 

and stereo clues and outputs the confidence map for each of them. The upsampled ToF data 

and the stereo disparity are finally fused together to construct the final depth map. 

In another study, Noraky et al. [86] studied the power limits in ToF cameras. To minimise 

the amount of power required for depth estimation, they utilised the motion across images 

collected alongside the ToF camera to estimate a new depth map without illuminating the 
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scene. They estimate the camera motion using optical flow based on block matching. The 

paper claims that the implementation of the method on ODROID-XU3 board consumes a 

total of 678 mW. 

2.1.2 Structured Light 

The concept of depth estimation using structured light has been studied since the 1990s 

[87]–[90]. Structured light methods utilise a projector and a camera. The projector 

illuminates the scene using patterned light such as a single point pattern or coded pattern 

[91]. The RGB camera captures the pattern reflection, and the depth information is 

calculated using triangulation. The key challenges of structured light systems are projector 

calibration and light interference. The difficulty in calibrating the projector comes from the 

fact that the sensors cannot capture images actively [92]. The projector might be considered 

an inverse camera [93], however, it is dependent on the camera parameters. 

In the context of using structured light for depth estimation purposes, Scharstein et al. [94] 

proposed a method to automatically capture high-resolution stereo image sets and their 

corresponding ground truth data. A pair of cameras and light projectors is used to capture the 

scenes. Each scene is illuminated using a sequence of structured lights, which results in each 

pixel being illuminated by at least one projector. These image sets are commonly known as 

Middlebury dataset. 

In another study, Zhang et al. [95] addressed the problem of finding the optimum 

illumination for object surfaces located at different depth levels in the scene by proposing an 

adaptive illumination framework. The whole system contains a programmable projector, a 

camera, and a PC. Initially, the camera captures the whole illuminated scene. Afterward, the 

corresponding depth map is calculated and analysed to generate the next illumination 

pattern. Similar to many other structured light depth sensing systems, the performance of the 

method in [95] is limited by the low power of the projector. 

Chan et al. [96] proposed an optical system to measure depth by projecting a periodic line 

pattern and a setting for triangulation purposes. In this design, the captured images are 

converted to the frequency domain to estimate depth information. The projector in [96] 

contains an IR laser diode and a computer-generated hologram. The evaluation indicates that 

the framework proposed in [96] is a valid design, however, it has limited applications. “This 

method can be only applied to the depth measuring of uniform and monotone surfaces: 

uneven surfaces will distort the results.” [96] 

Fanello et al. [97] proposed an algorithm to estimate depth using structured light based on a 

learning-based classification-regression. The algorithm is independent of the general 

window matching that is commonly used in stereo matching methods. Each pixel is 
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classified using a label that corresponds to the subpixel position. An IR projector is also used 

in the setup to generate random dot patterns on the scene. The algorithm learns to recognise 

the class of the labels in the input image and its depth.  

Gupta et al. [98] introduced the concept of light concentration to overcome the challenge of 

strong ambient illumination, especially in the outdoor environment. The key idea [98] is to 

show that by properly distributing the light, acquisition time can be reduced. They also make 

the illumination adaptive using information determined from ambient light. This method 

requires a high number of input images and it fails in the presence of reflective surfaces, as 

they concentrate the ambient light. 

Wang et al. [99] presented a new method to deal with the interference of the multiple 

structured light depth sensors. The method takes advantage of a plane sweeping algorithm. 

The gaps in the initial depth information, which is obtained from the sensors, are filled by 

maximizing the likelihood of the projector-camera constraint. 

In general, structured light systems have been used for a variety of applications during the 

past decade such as 3D face recognition [100], plant phenotyping [101], [102], underwater 

imaging [103]. However, they have a number of limitations such as:  

• Ambiguity of measurements. 

• Multiple reflections. 

• Mixed measurements. 

• Sensitivity to material reflectance. 

• Sensitive to background lighting. 

2.1.3 LIDAR 

LIDAR scanners have a similar framework to ToF cameras, however, they use laser 

scanners to gather depth information [104]. They are generally expensive and bulky devices, 

as they contain laser scanning hardware. The advantage of these systems is their 

performance in providing long-range (up to 1000m) depth information. Generally, LIDAR 

scanners provide a 3D point cloud. The transformation of the point cloud to a 2D image 

plane generates a sparse distribution of the points. This issue has been addressed in [105] 

where the 3D point cloud is solely processed using a sliding window and bilateral filter to 

generate a dense depth map. The same issue has been tackled in [106] where a LIDAR 

scanner and a CCD camera are synchronously used to capture a scene. It is assumed that the 

LIDAR and the camera are perfectly calibrated so that each 3D point corresponds to a pixel 

in the RGB image. Then, the 3D points are projected onto RGB images. The sparse depth 

map is later upsampled into a dense depth map using a self-adaptive method where the RGB 

image and the anisotropic diffusion tensor are utilised to guide upsampling. The final result 
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is refined by applying convex minimisation. The same problem is studied in [107] using the 

similar self-adaptive method. The framework presented in [107] also calculates the normal 

map using a trilateral filter which is based on the depth map and the RGB image. 

Maddern et al. [108] proposed a probabilistic method to combine the sparse 3D data from 

LIDAR with stereo matching data to generate a dense depth map. The probabilistic approach 

is based on [39] and pyramid interpolation is employed for upsampling purposes. 

Ding et al. [109] claimed that it is not required for the camera and the LIDAR sensor to be 

deployed dependently. They use a set of RGB images and a Structure from Motion (SfM) 

method to estimate a rough 3D structure. Using the estimated alignment information from 

SfM, the 3D LIDAR points are reprojected onto image planes and are used to estimate the 

dense depth map. The depth maps are later post-processed using a bilateral filter. 

To provide a standard benchmark to evaluate the methods which have been developed for 

depth estimation purposes, Geiger et al. [110] presented a benchmark commonly known as 

KITTI, which is captured in rural areas. Their recording platform is equipped with high-

resolution cameras, a laser scanner to generate the ground truth depth map and a localisation 

system. To minimise the registration error, the cameras are triggered by the laser scanner. 

Premebida et al. [111] proposed a strategy to use the depth data captured by a laser scanner 

for pedestrian detection. Two feature maps are extracted from RGB and depth images using 

HOG features. A multiscale deformable part model [112] is later trained on the feature maps 

to learn the part positions and bounding boxes. Tan et al. [113] proposed a framework to 

detect curbs for driver assistance systems. They recover the dense depth map using a filter-

based fusion system presented in [114]. Based on the normal map of the surface, a Markov 

chain model is created to capture the consistency property of the curb. 

LIDAR scanners have also been used intensively for Simultaneous Localisation And 

Mapping (SLAM) and navigation purposes during the last decade [115]–[123]. 

2.1.4 Multi-Camera Approaches 

Multi-camera or Multi-view approaches aim to estimate depth information from multiple 

viewpoints. The cameras are placed in a different position to capture a scene from different 

angles. These types of depth estimation methods can be divided into several categories such 

as dual cameras or stereo view, multi-array cameras, depth, and SfM. Generally, the depth 

estimation in multi-view methods (more than two) is divided into two steps. Initially, a depth 

map is estimated for each viewpoint and then the depth maps are merged to generate the 

final depth map or 3D structure.  



 
On the Importance of Depth Estimation and 3D Information 

 

19 
 

2.1.4.1 Binocular Stereo Matching 

Traditional binocular stereo matching systems utilise the horizontal displacement of a point 

to estimate disparity information. In human vision, disparity refers to the difference in the 

location of an object/point in two images (left and right) [124] and is inversely proportional 

to depth, meaning that an object that is located at a further point has a smaller horizontal 

displacement or disparity than an object that is closer to the camera (larger disparity.) 

Considering the focal length of the camera and the distance between two cameras, which is 

called the baseline, the disparity can be converted to depth.  

For left and right images in a binocular stereo, the pixel (𝑥𝑥,𝑦𝑦) in the disparity map is 

calculated by finding the distance between the pixel (𝑥𝑥,𝑦𝑦) in one image (e.g. left image) and 

the corresponding pixel (𝑥𝑥′ ,𝑦𝑦′) in the second image (e.g. right image.) 

 

Figure  2.1: The inverse relation of depth and disparity 

Figure  2.1 illustrates the inverse geometrical relation between depth and disparity where the 

disparity value is 𝑑𝑑 = 𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑟𝑟 . The left and right pixels are shown as 𝑥𝑥𝑙𝑙 and 𝑥𝑥𝑟𝑟 , respectively. 

𝑓𝑓 represents the focal length of the camera, 𝐵𝐵 shows the baseline or the distance between 

two cameras and 𝑀𝑀 is the object. 𝑂𝑂𝑙𝑙 and 𝑂𝑂𝑟𝑟  represent left and right cameras, respectively. 𝑐𝑐𝑥𝑥 

shows the projection of the object 𝑀𝑀 in both cameras. The conversion of disparity to depth 

can be defined as Equation ( 2.1): 

𝑍𝑍 =
𝑓𝑓𝑓𝑓

𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑟𝑟
 ( 2.1) 

In general, traditional stereo matching methods consist of four steps [124]: computing 

matching cost, cost aggregation, disparity estimation,  and disparity refinement.  

To find the closest match in the target image to the reference image in a stereo set, a 

matching cost has to be calculated for each candidate. The most commonly used matching 

𝑓𝑓𝑓𝑓

𝐵𝐵

𝑍𝑍
𝑥𝑥𝑟𝑟𝑥𝑥𝑙𝑙 𝑐𝑐𝑥𝑥𝑐𝑐𝑥𝑥

𝑂𝑂𝑙𝑙 𝑂𝑂𝑟𝑟

𝑀𝑀
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costs in the state of the art include Sum of Square Difference (SSD), Sum of Absolute 

Difference (SAD), Absolute Differences (AD), and Census transform [125]. Considering the 

intensity of the reference pixel in the left image as (𝑥𝑥𝑙𝑙 ,𝑦𝑦) and a candidate pixel in right 

image as (𝑥𝑥𝑙𝑙 − 𝑑𝑑, 𝑦𝑦) then, SSD, SAD and AD can be calculated using the following 

equations. 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑙𝑙 ,𝑦𝑦,𝑑𝑑) = ��(𝑥𝑥𝑙𝑙 ,𝑦𝑦)− (𝑥𝑥𝑙𝑙 − 𝑑𝑑,𝑦𝑦)�2

𝑥𝑥,𝑦𝑦

 ( 2.2) 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑙𝑙 ,𝑦𝑦,𝑑𝑑) = �|(𝑥𝑥𝑙𝑙 ,𝑦𝑦) − (𝑥𝑥𝑙𝑙 − 𝑑𝑑,𝑦𝑦)|
𝑥𝑥,𝑦𝑦

 ( 2.3) 

𝐴𝐴𝐴𝐴(𝑥𝑥𝑙𝑙 ,𝑦𝑦,𝑑𝑑) = �(𝑥𝑥𝑙𝑙 ,𝑦𝑦)− (𝑥𝑥𝑙𝑙 − 𝑑𝑑,𝑦𝑦)� ( 2.4) 

Note that SSD and SAD matching costs are usually calculated using a window search with 

the size of ((2𝑤𝑤 + 1) × (2𝑤𝑤 + 1)) where (𝑥𝑥𝑙𝑙 ,𝑦𝑦) is the central pixel and 𝑤𝑤 is the search 

range. 

Census transform relies on the ordering of the intensity values rather than their absolute 

values. This transform maps the intensity values of the pixels within a square window to a 

bit string, which results in capturing the structure of the image. Comparisons are done such 

that if a pixel in a window has an intensity smaller than the center pixel, it is marked as 1. If 

the intensity of the pixel is larger than or equal to the center pixel, then it is marked as 0. The 

final matching cost is calculated using the, Hamming distance of the binary vectors. 

Based on [124], the matching costs are summed and averaged in a given region at the cost 

aggregation step. This step results in a smoother matching cost and it reduces disparity 

estimation mismatches. 

Generally, the process of choosing the correct disparity value for a pixel starts by taking the 

minimum cost within a disparity range. This process is known as Winner-Take-All (WTA.) 

The main problem in WTA is that the disparity value may be estimated incorrectly due to 

the presence of strong local minima. It has been suggested to use a confidence matrix to 

solve this issue [126], [127]. 

The disparity refinement step aims to enhance the accuracy of the disparity maps using a 

variety of filters such median, bilateral or left-right, right-left consistency checks. 

The depth from motion or SfM methods use common feature points in multiple images to 

generate a 3D structure. The common features are tracked throughout the images and the 

corresponding 3D point can be reconstructed by triangulation. In a similar category as SfM, 

Simultaneous Localisation And Mapping (SLAM) has made astonishing progress over the 

last 40 years, enabling large-scale real-world applications, and witnessing a steady transition 

of this technology to industry. Most of the SLAM methods present the 3D models as a set of 
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sparse points corresponding to the features of the scene such as lines and corners [128]–

[130]. Unlike the feature based SLAM, dense representations are introduced to provide high 

resolution models of the 3D geometry [131]–[133]. Generally dense models are visually 

more pleasant. However, they are usually cumbersome and they require a large amount of 

storage to save the data. 

2.1.4.2 Literature Review 

Many disparity and depth estimation methods have been developed since the 1970s with the 

goal of estimating depth from two or more views [134]–[136]. Due to the large distribution 

of these methods in different applications and fields, we refer to Middlebury Stereo Vision 

benchmark [124], [137] where most of the state of the art algorithms are evaluated based on 

their performance. Although the high accuracy algorithms provide better visual and 

quantitative results, their iterative refinement processes and computational times require 

large memory and computational power. 

Taniai et al. [37] proposed a stereo matching method based on local expansion moves which 

utilises the spatial propagation of graph cuts. The per-pixel 3D plane labels are deduced on a 

pairwise MRF, which is based on the heuristics in PatchMatch. In another attempt, Li et al. 

[38] proposed a cost-aggregation method that utilises a minimum spanning tree to aggregate 

3D costs. To reduce the complexity of computing the cost for every pixel, they developed 

several minimum spanning tree structures for cost aggregation. Drouyer et al. [138] 

presented a refinement method to densify sparse or noisy depth maps using hierarchical 

segmentation, which is accomplished by modeling each noisy or incomplete part of the 

disparity map using a bivariate linear polynomial. Li et al. [139] challenged the issue of 

assigning 3D labels to each pixel in stereo images for more accurate depth estimation by 

proposing an algorithm called PatchMatch-based Superpixel Cut. 3D labelling methods 

simultaneously estimate the disparity and normal direction of a pixel and they are optimised 

using superpixels. They also proposed a bilayer matching scheme based on a pre-trained 

CNN that measures the similarity of 3D labels. 

Zhang et al. [140] presented a global method to estimate depth and generate 3D structure 

from stereo images. The initial idea starts by splitting the images into 2D triangles with joint 

vertices. Each triangle is modeled by a slanted plane, and a 2-layer MRF optimisation is 

used to model the depth discontinuities at the object boundaries. One layer is responsible for 

modeling the splitting properties to properly split the vertices in the 3D model, and the other 

layer optimises region-based stereo matching. 

Wei et al. [141] proposed a method to estimate depth from multi-view stereo images. Their 

proposed method is based on the PatchMatch algorithm and it starts by initializing a sparse 
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depth map. The images and estimated depth maps are later down-sampled and a 

propagation-filtering approach is used as part of the hierarchical estimation. Outliers are then 

eliminated by cross-view filtering which helps in propagating reliable information. A 

consistency check is applied after upsampling the depth and normal maps, and they are 

refined using an edge-aware filter. 

Very recently, many deep learning approaches have been developed to estimate depth from 

stereo [142]–[147] and multi-view images [148], [149].  

Park at al. [150] proposed a CNN model to learn the stereo matching cost by designing a 

per-pixel pyramid-pooling layer, which is the modification of spatial-pyramid-pooling 

presented in [151]. The proposed layer performs multiple pooling, with different window 

sizes to respect fine details of the scene, and the final feature map is generated by 

concatenating the outputs of each pooling. 

Ye et al. [152] focused on the first and last steps of the stereo matching pipeline. They 

modeled the matching cost step by proposing a patch-based network, and the refinement step 

used a regression network architecture. The cost aggregation is based on SGM. Two initial 

disparity maps (left and right) and the left RGB images are used for refinement purposes. 

The refinement is based on a probability error map calculated from the fusion of two depth 

maps. Unlike [152], Liang et al. [153] proposed a CNN architecture which performs all the 

common steps of stereo matching algorithms. Their CNN model consists of three parts. The 

first part is responsible for extracting multiscale shared features. The second part calculates 

the initial disparity estimation, which is later refined by the third sub-network. The disparity 

estimation sub-network utilises encoder-decoder architecture, and the refinement process in 

part three is formulated as a Bayesian inference process. 

2.1.5 Learning-based Single Camera 

Most of the binocular or multi-view methods are able to estimate fairly accurate depth 

information. However, their computational time and memory requirements are important 

challenges for many applications. The idea of using the monocular image to capture depth 

information could potentially solve the memory requirement issue, but it is computationally 

difficult to capture the global properties of a scene [154] such as texture variation or defocus 

information. This topic is one of the challenging research fields in computer vision that has 

been recently tackled utilising deep learning techniques. The current state of the art methods 

related to the development of deep learning techniques for monocular depth estimation 

utilise large network architecture with millions of parameters. Although these networks have 

fast computational time, they are not optimised enough to be implemented on low power 

hardware. Most of these models also perform on low-resolution images for memory 

efficiency purposes and to reduce the computational overload. 
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Saxena et al. [154], [155] proposed a supervised learning approach to estimate depth from a 

single image. The image is divided into small patches and the depth is estimated for each 

patch. The depth of each patch is estimated using two types of features which represent the 

absolute depth of the patch and its difference with another neighboring patch. Later, an MRF 

is used to model the differences in depth between a patch and its other neighbors. 

Liu et al. [156] proposed a deep CNN by formulating the single image depth estimation task 

as a Conditional Random Fields (CRF) learning problem. The image is divided into 

superpixels. The depth of each superpixel is represented by its central pixel. Later, the 

conditional probability distribution of the continuous depth values of all superpixels are 

modeled based on CRF and the depth is estimated by solving a Maximum A Posteriori 

Probability (MAP) problem.  

Kuznietsov et al. [157] presented a semi-supervised approach to estimate depth from 

monocular images which takes advantage of both supervised and unsupervised learning. The 

supervised part of the model is trained on a set of sparse depth maps generated by LIDAR 

scanner. To complement the trained model, the geometry principles of stereo matching are 

used to learn depth prediction in an unsupervised manner. The network architecture is based 

on the encoder-decoder scheme similar to [158]. 

Garg et al. [159] proposed an unsupervised framework to estimate depth from a single 

camera. The stereo image sets and the motion between two frames are used for training. A 

convolutional encoder is trained to learn the transformation from an image to the depth map. 

The loss used for learning is the photometric difference between the input image (e.g. left 

image) and the inverse warped target (e.g. right image). Similar to [159], Godard et al. [160] 

proposed an unsupervised approach to estimate depth from monocular images. However, 

their method utilises a left-right disparity consistency loss which results in a higher accuracy 

disparity map. 

Eigen et al. [161] proposed a network that consists of two sub-networks to estimate depth 

from single images. The first network aims to globally estimate the depth of the scene, and 

the second network is designed to refine the global depth map within its local regions. The 

concept of augmentation is also used in this paper where the training data is scaled, rotated 

and flipped. The input data is also down-sampled to half for training purposes, which 

requires the final depth maps to be upsampled. 

2.2 Comparison of the Depth/3D Imaging Methods 

All the depth estimation methods described in the previous section have their own strengths 

and weaknesses. Table  2.1 presents a brief comparison between the common depth 

estimation methods including their strengths and weaknesses. Ten factors are chosen to 
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describe the general performance of each method in terms of range, depth accuracy, 

resolution and scanning speed etc. As an example, ToF cameras take advantage of active 

illumination. Their performance varies under different lighting condition and they have quite 

high power consumption. ToF cameras usually cover short scanning range unless the power 

of the pulse emitting source is increased. The accuracy of the depth varies from mm to cm 

based on the resolution of the sensor. ToF cameras have fast scanning speed but they 

provide QQVGA and QVGA output. Besides their low overall system cost and real-time 

capability, they are sensitive to scattered light and sunlight.  

Despite all the limitations of the depth sensors, they give computers an entire dimension of 

data, expanding computer vision applications and their capability. Among all the sensors 

presented in Table  2.1, ToF camera is the promising technology which could be used for 

consumer imaging. Especially lately, as imaging sensors have been developing rapidly, the 

high cost and low resolution are not the problems anymore. With the low cost ToF cameras 

on consumer devices, a new application area can be expected to emerge. 

 

 

 

 

 

 



 
On the Importance of Depth Estimation and 3D Information 

 

25 
 

 

Table  2.1: Comparison of the depth/3D imaging technologies
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Chapter 3.  

Research Contributions to the Problem of Depth 

Estimation 

 

There are five primary contributions for this research. First, for the purpose of exploring the 

challenges of estimating depth from stereo image sets, we develop a novel generic post-

processing method to increase the structural accuracy of the depth maps calculated by state 

of the art techniques. Second, to overcome the extensive computational power of the stereo 

matching techniques, we tackle the ill-posed problem of depth estimation from monocular 

images by exploiting the relation between colour pixels and depth using end-to-end trainable 

CNN architecture. Third, since the consumer cameras usually employ pre-capturing 

initialization, we propose a novel method by utilising the pre-capturing small motions to 

estimate a depth map and generate a semi-dense 3D structure of a scene. Fourth, we take 

advantage of the optical properties of consumer cameras to estimate depth from a stack of 

images captured in different focal planes. Fifth, since the consumer multi-camera array in 

smartphones has received much attention in the past years, we develop a framework to 

generate a high-quality continuous depth map from these cameras. 

3.1 A Depth Map Post-Processing Approach based on Adaptive 

Random Walk with Restart 

The copy of the paper published based on this section is presented in Appendix A. This 

section was published in: 

H. Javidnia and P. Corcoran, "A Depth Map Post-Processing Approach Based on Adaptive 

Random Walk With Restart," in IEEE Access, vol. 4, pp. 5509-5519, 2016. doi: 

10.1109/ACCESS.2016.2603220 

3.1.1 Overview 

To increase the structural accuracy of the depth estimation methods, we proposed a generic 

post-processing method to preserve the structure of the reference image including corners 

and edges in the depth map. The proposed method utilises the mutual information between 

the RGB image and the initial depth map, and normalised-interpolated convolution. The 

method is implemented on top of a state of the art stereo matching algorithm known as 
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Adaptive Random Walk with Restart [51]. A quantitative evaluation is done based on 

Middlebury benchmark [124], [137] which indicates the competitive performance of the 

proposed method against the top stereo matching algorithms. The final depth maps 

calculated using the proposed post-processing method are later compared qualitatively with 

the Google Lens Blur application, which is used to generate Bokeh effect in smartphone 

images. 

Based on Table  2.1 the proposed approach has the advantage of generating depth without 

using active illumination. The method can perform accurately on high resolution images 

(2864×1924 pixels) as shown in Appendix A. The depth accuracy is high compared to the 

top state of the art algorithms. However, it has some disadvantages such as high computing 

load, poor performance while encountering with reflective surfaces and texture-less regions. 

3.2 Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture, 

First Application on Depth from Monocular Camera 

The copy of the paper published based on this section is presented in Appendix B. This 

section was published in: 

Bazrafkan S, Javidnia H*, Lemley J, Corcoran P. Depth from Monocular Images using a 

Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture. arXiv preprint 

arXiv:1703.03867. 2017 Mar 10.    Under Review 

The first two authors have contributed equally to this paper.  
*Contributions include: Data preparation including the stereo depth using the method 

presented in the previous section, experiments and evaluation, manuscript preparation and 

literature review. 

3.2.1 Overview 

Generally, stereo matching methods as mentioned in the previous section are 

computationally intensive. Although stereo images can provide valuable depth information, 

they require a significant amount of memory and an accurate calibration. Also, in the 

consumer industry, most of the devices are already equipped with a single camera which is 

more convenient for users. To address this issue, we present a Semi Parallel Deep Neural 

Network (SPDNN) to estimate depth from monocular images. A semi-parallel network 

topology is developed using a graph theory optimisation of a set of independently optimised 

Convolutional Neural Networks (CNN.) In this study, four SPDNN models are trained and 

have been evaluated at two stages on the KITTI dataset [162]. To evaluate the performance 
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of the post-processing method presented in the previous section, we trained two of the 

networks using the post-processed depth maps. 

Based on Table  2.1 the proposed approach is capable of estimating depth from monocular 

images. It does not require active illumination. It can be optimised for real-time applications. 

However, the resolution of the output image is low (80×264 pixels), and working on high 

resolution images introduces a high memory load. Also, this approach is highly dependent 

on a Graphics Processing Unit (GPU) which requires optimisation to be applicable for 

embedded platforms. 

3.3 Accurate Depth Map Estimation from Small Motions 

The copy of the paper published based on this section is presented in Appendix C. This 

section was published in: 

H. Javidnia and P. Corcoran, “Accurate Depth Map Estimation From Small Motions,” in 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (ICCV), 

2017, pp. 2453–2461. doi: 10.1109/ICCVW.2017.289. 

3.3.1 Overview 

As described in the previous section, using DNNs can significantly decrease the 

computational time of the depth estimation task. However, it requires images to be down-

sampled which results in information loss. Also, due to the high memory requirements of 

these models, they have to be optimised to be applicable for lightweight devices such as 

smartphones. This section investigates the use of random and small motions captured by a 

smartphone camera for depth sensing applications. By small motion, we refer to the pre-

initialization of the camera before capturing the image or consumers’ natural handshake. Our 

evaluation shows that the developed method is capable of producing semi-dense 3D point 

cloud and dense depth map with a higher structural accuracy in comparison to the state of 

the art. Due to the lack of ground truth, in this case, a separate evaluation is done against the 

Middlebury benchmark [124], [137] where we proved that the proposed method is also 

capable of processing images with baselines as large as 400 mm where the state of the art 

methods fail to provide a depth map. 

This approach is in the category of SfM. The advantages and disadvantages of the method 

can be expressed based on the stereoscopic vision category in Table  2.1. The proposed 

approach is capable of producing a dense/semi-dense point cloud. It does not require active 

illumination. It can be used to process high resolution images and it can outperform the state 

of the art in terms of depth accuracy. However, the method requires an optimisation to be 
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able to perform on real-time applications. There is a high chance of failure with texture-less 

and reflective surfaces. The scanning range is short, as it is designed for small motions. 

3.4 Application of Preconditioned Alternating Direction Method of 

Multipliers in Depth from Focal Stack 

The copy of the paper published based on this section is presented in Appendix D. This 

section was published in: 

Hossein Javidnia, Peter Corcoran, "Application of preconditioned alternating direction 

method of multipliers in depth from focal stack," Journal of Electronic Imaging 27(2), 

023019 (6 April 2018). doi: 10.1117/1.JEI.27.2.023019. 

3.4.1 Overview 

This section focuses on the sequence of frames captured with small baselines in different 

focal planes known as a focal stack. This optical feature of smartphone cameras can be used 

to estimate depth information. Initially, the images in the stack are aligned using Epipolar 

homography alignment. The initial depth is estimated using 3-point Gaussian distribution 

[163] and it is later refined by employing Preconditioned Alternating Direction Method of 

Multipliers (PADMM) [164], [165]. The performance of the proposed method is compared 

against a state of the art method and two commercial softwares. Preliminary results indicate 

that the proposed method has a better performance in terms of structural accuracy and 

optimisation in comparison to the current state of the art methods. 

The proposed approach does not require active illumination and it is capable of generating a 

dense depth map. It covers short to mid scanning range. High resolution images can be 

processed in a fast computational time (~28 seconds). The method has a potential to be used 

for smartphone applications and it uses only one camera to capture the input sequence. The 

limitation of this approach is that it requires the image frames to be captured with a small 

motion (within 2cm) or translation.  

3.5 Total Variation-Based Dense Depth from Multi-Camera Array 

The copy of the paper published based on this section is presented in Appendix E. This 

section was published in: 

Javidnia H, Corcoran P. Total Variation-Based Dense Depth from Multi-Camera Array. 

arXiv preprint arXiv:1711.07719. 2017 Nov 21.   Accepted for publication in Optical 

Engineering. 
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3.5.1 Overview 

This section studies the concept of depth estimation from a new type of multi-view camera 

known as a multi-camera array. These camera arrays contain a set of cameras arranged in a 

grid with a very small baseline. Recently this technology is being used as a replacement for 

smartphones’ conventional camera. Similar to stereo matching methods, the existing 

algorithms which provide an accurate depth from the multi-camera array are 

computationally expensive. To address this issue, a framework is presented which utilises 

analysis of the local Epipolar Plane Image (EPI) to estimate depth from a multi-camera 

array. Later, the depth map is refined using Total Variation (TV) minimisation based on the 

Fenchel-Rockafellar duality [53]. Compared to the state of the art algorithms, the proposed 

method can estimate a dense depth map within a short computational time (~38 seconds). 

This method does not require active illumination and it has a low computational overload. 

All the images are captured in one shot. It can be used to process high resolution images.  

The disadvantages of these cameras are the production cost and the short scanning range due 

to the small baseline between the cameras. 
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Chapter 4.  

Overview of Methodologies 
 

This section provides an overview to the technical details of the primary contributions of this 

research. First, a brief introduction to Adaptive Random Walk with Restart (ARWR) stereo 

matching method is provided. This method is used as the baseline for the proposed post-

processing framework. Later the overview to the technical details of each research 

contribution is provided. More technical details for each method are provided in Appendices 

A-E.  

4.1 A Depth Map Post-Processing Approach based on Adaptive 

Random Walk with Restart 

4.1.1 A Brief Introduction to Adaptive Random Walk with Restart Stereo Matching 

Random walk with restart is defined in [51] as Equation ( 4.1): Consider a random particle 

starting from node 𝑖𝑖. The particle iteratively moves to its neighborhood with the probability 

that is proportional to their edge weights which is calculated from Equation ( 4.3).  

𝑟𝑟𝑖𝑖 = 𝑐𝑐𝑊𝑊� 𝑟𝑟𝑖𝑖 + (1 − 𝑐𝑐)𝑒𝑒𝑖𝑖 ( 4.1) 

where 𝑊𝑊�  is the normalised weighted matrix and 𝑒𝑒𝑖𝑖 is 𝑛𝑛 × 1 starting vector with the 𝑖𝑖-th 

element 1 and 0 for others. Also at each step, it has some probability 𝑐𝑐 to return to the node 

𝑖𝑖. The relevance score of node 𝑗𝑗 wrt node 𝑖𝑖 is defined as the steady-state probability 𝑟𝑟𝑖𝑖,𝑗𝑗  that 

the particle will finally stay at node 𝑗𝑗. 

In [51] this equation has been defined as: 

𝑋𝑋𝑡𝑡+1𝑑𝑑 = 𝑐𝑐𝑊𝑊� 𝑋𝑋𝑡𝑡𝑑𝑑 + (1− 𝑐𝑐)𝑋𝑋0𝑑𝑑 ( 4.2) 

where 𝑋𝑋0𝑑𝑑 = [𝐹𝐹(𝑠𝑠,𝑑𝑑)]𝑘𝑘×1 represents the initial matching cost. 𝑋𝑋𝑡𝑡𝑑𝑑 denotes the updated 

matching cost with 𝑡𝑡 as the number of the iteration, 𝑘𝑘 is the number of  super-pixels and 

(1 − 𝑐𝑐) is the restart probability. Note that 𝐹𝐹(𝑠𝑠,𝑑𝑑) is the super-pixeling cost function. 

𝑊𝑊� = [𝑤𝑤𝑖𝑖𝑖𝑖]𝑘𝑘×𝑘𝑘 which is the weighted matrix, contains the edge weights. These weights are 

influenced by the intensity similarity between neighboring super-pixels. So we can write: 

𝑤𝑤𝑖𝑖𝑖𝑖 = exp�−
�𝐼𝐼(𝑠𝑠𝑖𝑖) − 𝐼𝐼�𝑠𝑠𝑗𝑗��

2

𝜎𝜎𝑒𝑒
� 

( 4.3) 
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where 𝐼𝐼(𝑠𝑠𝑖𝑖) and 𝐼𝐼(𝑠𝑠𝑗𝑗) are the intensities of the 𝑖𝑖-th and 𝑗𝑗-th super-pixels and 𝜎𝜎𝑒𝑒 is a 

parameter that controls the shape of the function. Note that the intensity of super-pixels is 

computed by averaging the intensity of the corresponding pixels. 

One of the most common ways to solve the random walk is the iterative method, which is 

iterating the Equation ( 4.1) until convergence. In [51] this iteration has been applied to 

Equation ( 4.2). 

This convergence happens when the 𝐿𝐿2 norm of successive estimates of 𝑋𝑋𝑡𝑡+1𝑑𝑑  is below a 

threshold 𝜉𝜉, or a maximum iteration step 𝑚𝑚 is reached. Note that 𝐿𝐿2 norm of a vector is the 

square root of the sum of the absolute values squared. 

The main contribution of [51] was to integrate the visibility term and fidelity term into the 

cost function, Equation ( 4.2). So the new cost function looks like: 

𝑋𝑋𝑡𝑡+1𝑑𝑑 = 𝑐𝑐𝑊𝑊� �(1− 𝜆𝜆)𝑉𝑉𝑡𝑡𝑑𝑑 + 𝜆𝜆Ψ𝑡𝑡𝑑𝑑� + (1 − 𝑐𝑐)𝑋𝑋0𝑑𝑑 ( 4.4) 

where Ψ𝑡𝑡𝑑𝑑  is the fidelity term, 𝑉𝑉𝑡𝑡𝑑𝑑 represents the visibility term and 𝜆𝜆 leverages the visibility 

and fidelity term. The final disparity map is computed by combining the super-pixel and 

pixel-wise matching costs: 

𝑑̂𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑 min �𝑋𝑋𝑡𝑡𝑑𝑑(𝑠𝑠) + 𝛾𝛾𝛾𝛾(𝑢𝑢, 𝑣𝑣,𝑑𝑑)� ( 4.5) 

where 𝑠𝑠 is the super-pixel corresponding to the pixel (𝑢𝑢, 𝑣𝑣) and 𝛾𝛾 represents the weighting of 

the super-pixels and pixel-wise matching cost. 

In the present research, the visibility term is eliminated from the cost function. So the 

modified cost function looks like: 

𝑋𝑋𝑡𝑡+1𝑑𝑑 = 𝑐𝑐𝑊𝑊� �𝜆𝜆Ψ𝑡𝑡𝑑𝑑� + (1 − 𝑐𝑐)𝑋𝑋0𝑑𝑑 ( 4.6) 

4.1.2 Process of the Proposed Post-Processing Method 

The proposed post-processing method is implemented on top of the stereo matching 

algorithm presented in [51]. The algorithm starts by calculating the local matching cost by 

combining the Census transform and gradient image matching. Each pixel of a gradient 

image measures the change in intensity of that same point in the original image, in a given 

direction. The local cost is aggregated using Simple Linear Iterative Clustering (SLIC) 

superpixelling [166]. The aggregated depth map is later optimised by integrating the 

visibility term and fidelity term into the cost function of the random walk with restart. At the 

next step, the mutual information is calculated, which goes through the joint filtering block. 

The joint filtering block is based on the weighted median filter. Two new features are added 

to this filter to make it more robust to noise and respectful to a reference image’s structure: 
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1- The window size of the median filter is adaptive 

2- The weights are being allocated dynamically based on joint histogram 

The similarity map is obtained from the mutual structure block. Based on the similarity map, 

a certain window size can be assigned to a specific block of pixels in the image. The filtered 

image from this stage is mathematically transformed from a 2-dimensional array of pixels 

into another domain Ψ𝜔𝜔 such as spatial frequency to facilitate removal of blocky artifacts 

within the disparity map where we applied normalised convolution followed by interpolated 

convolution. In normalised convolution, the box filter in the transformed domain is 

computed using a Summed Area Table (SAT). SAT is basically calculated by computing the 

cumulative sum along the specified dimension of the input data. The box filter is computed 

two times: once on a horizontal domain, and then the result is filtered on the vertical domain. 

This will give us the result of normalised convolution. In interpolated convolution, the box 

filter in transformed domain is computed using a SAT, but in this case the SAT is built using 

the area under the graph (in the transformed domain) of the interpolated signal. Again the 

same process, similar to normalised convolution, happens here to compute the box filter. 

Figure  4.1 presents the results of the proposed post-processing method on sample stereo sets 

from Middlebury database. The initial depth map is computed by ARWR which is later 

modified using the proposed post-processing framework. 

RGB Image Ground Truth Post-processed ARWR 

 

  

  

RGB Image Ground Truth Post-processed ARWR 

 

  

  

Figure  4.1: The result of the sample images from Middlebury database. Each set of figures 

denotes the left image, the ground truth and the proposed post-processed depth map 
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Figure  4.2 illustrates the general overview of ARWR along with the post-processing method. 

The ARWR depth estimation block can be replaced with any other state of the art depth 

estimation algorithm. The entire process can be described briefly as follows: 

1. Extract the initial depth using the ARWR algorithm. 

2. A. Apply mutual joint weighted median filter to fill the regions of occlusion or depth 

discontinuity in the initial depth map. 

B. Overwrite the structure of the RGB image on the depth map. 

3. Transfer the depth map to a signal and perform normalised interpolated convolution 

on the domain of the signal to obtain an edges preserved depth map. 

More details about the proposed post-processing method can be found in Appendix A. The 

code for the post-processing method and the stereo matching algorithm [51] is available at: 

https://github.com/hosseinjavidnia/Post-Processing-ARWR 

 
Figure  4.2: Overview of ARWR and the proposed post-processing method 

4.2 Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture, 

First Application on Depth from Monocular Camera 

The concept of SPDNN is inspired by graph optimisation techniques. In this method, several 

deep neural networks are parallelized and merged in a novel way that facilitates the 

advantages of each. The merging of multiple networks using SPDNN is described in detail 

in the context of the current depth mapping problem in Appendix B. The process of 

estimating depth from monocular images using SPDNN starts by down-sampling the images 

to 80×264 pixels resolution. The initial depth is estimated using the trained models and is 

later upsampled to the original size using Joint Bilateral Upsampling [167]. Figure  4.3 

represent the colour-coded depth maps computed by the trained models using the proposed 

DNN, where the dark red and dark blue parts represent closest and furthest points to the 

camera respectively. On the top right of each figure, the ground truth given by the 
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benchmark is illustrated. For visualization purposes, all of the images presented in this 

section are upsampled using Joint Bilateral Upsampling [167]. The results show that using 

semantic segmentation along with the visible image as input will improve the model 

marginally. Using the post-processed target in the training stage helps the model to converge 

to more realistic results. 

 
Figure  4.3: Estimated depth maps from the trained models 

Figure  4.4 presents the overview of the proposed framework where the depth map is 

estimated from a stereo set using the proposed post-processing method. Afterwards, the left 

RGB image from the stereo set is used as the input and the estimated depth map as the 

target. The network tries to formulate this problem and provide a model to estimate depth 

from one image. 

In general four models are trained in this project: 

1. First Model: Input: Left RGB Image + Pixel-wise Segmented Image.  Target: Post-

Processed Disparity. 

2. Second Model: Input: Left RGB Image. Target: Post-Processed Disparity. 

3. Third Model: Input: Left RGB Image + Pixel-wise Segmented Image. Target: 

Disparity. 

4. Fourth Model: Input: Left RGB Image. Target: Disparity. 

The contributions of this research are as follows: 

1- A method to mix and merge several deep neural networks called “Semi Parallel 

Deep Neural Network (SPDNN)”, described in detail in Appendix B. 

2- The application of deep neural networks and SPDNN on estimating depth from a 

monocular camera. 
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More details about the application of SPDNN in monocular depth estimation can be can be 

found in Appendix B. The code for this method is available at:  

https://github.com/hosseinjavidnia/SPDNN-Depth 

 
Figure  4.4: Overview of the proposed solution 

4.3 Accurate Depth Map Estimation from Small Motions 

The algorithm starts by computing the relative pose, 3D points of the scene based on ORB 

features [168] and camera calibration details. Note that the features are tracked using the 

Kanade-Lukas-Tomashi (KLT) algorithm [169]. After computing the intrinsic and extrinsic 

details of the camera, the intensity profile is generated using the Plane Sweeping method 

[170] as presented in Section 3.1 in Appendix B. The pixel-wise matching cost is aggregated 

to volume cost, based on the colour and similarity of features. The matching cost from the 

image is weighted by a similarity feature. Once the cost volume is computed, the initial 

disparity map is obtained by parameterising the plane equation at pixel level with local 

disparity values. Later the disparity map is refined by defining a smoothness term and a data 

term as presented in Section 3.2 of Appendix C.  

Figure  4.5 shows the depth map computed by Hyowon Ha et al. [171], Kevin Karsch et al. 

[172] and our method. These images show the performance of the proposed method in terms 

of accuracy of the depth along edges and the depth values on the surface of objects in the 

case of small motions and small baseline. 

The results by Hyowon Ha et al. [171] and Kevin Karsch et al. [172] have inaccurate depth 

values along the edges and corners of the objects as seen in Figure  4.5.a and Figure  4.5.b. 

Note that due to the very small baseline between the frames these methods distinguish 

foreground information better than background information. 

https://github.com/hosseinjavidnia/SPDNN-Depth
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In some cases as shown in Figure  4.5.b, the depth map estimated by these methods are 

suffering from inaccurate depth values on an object’s surface or the depth values of the 

background and foreground objects are mixed together which cause inaccurate performance 

in segmentation and 3D reconstruction applications. 

    

    
a. A frame from 

the sequence 
Depth map computed by 
Kevin Karsch et al. [172] 

Depth map computed by 
Hyowon Ha et al. [171] 

Depth map computed by 
the proposed method. 

    

    
b. A frame from 

the sequence 
Depth map computed by 
Kevin Karsch et al. [172] 

Depth map computed by 
Hyowon Ha et al [171] 

Depth map computed by 
the proposed method. 

Figure  4.5: Comparison of the depth from small motion with state-of-the-art methods 

Figure  4.6 shows the overview of the entire framework. Six important contributions have 

been proposed in this work as follows: 

General Contributions: 

1. Generally in small motions, the feature tracker can obtain more inliers due to the 

small difference between the frames. However the number of inliers reduces when 

the baseline becomes wider and as the result the generated depth map becomes 

inaccurate. The modified cost function in the proposed method makes it capable of 

processing sequence of frames with the baseline up to 400 mm while most of the 

methods in this field fail for the baselines wider than ~12 mm.  

2. Performance for 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≥ 2. 

3. Occlusion handling by respecting the structure of the reference frame. 

Technical Contributions: 
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1. New data and smoothness terms are defined to recondition cost volume and cost 

aggregation function. 

2. Proposed cost propagation is formulated as energy minimiser function for depth on 

each pixel point. 

The proposed method can approximate non-planar surfaces, while being robust against depth 

outliers and occlusion. The code for this method is available online at: 

https://github.com/hosseinjavidnia/Depth-Small-Motion  

 
Figure  4.6: Overview of the proposed solution 

4.4 Application of Preconditioned Alternating Direction Method of 

Multipliers in Depth from Focal Stack 

The pipeline of estimating depth from focal stack initiates by aligning the images in the 

stack. The reason to apply this alignment is to compensate the misalignment of the input 

focal stack and minimise the effect of the motion in the sequence. The alignment is done 

using Epipolar homography alignment as presented in Section 3.1 in Appendix D. The value 

of the focus factor for each pixel at every frame of the aligned focal stack is later calculated 

using Modified Laplacian as described in Section 3.2 in Appendix D. The value of the focus 

factor for a pixel over all the frames in the stack is referred to as focus function. The initial 

depth map is computed by modeling the focus function using the 3-point Gaussian 

distribution [163]. That means the initial depth map suffers from uncertain depth values. 

This condition becomes severe in case of small motions of the camera. This problem is 

reformulated to a convex minimisation problem to be solved using Preconditioned 

Alternating Direction Method of Multipliers (PADMM) [164], [165]. Figure  4.7 present the 

sample visual results of the proposed framework, depth map captured using Lytro camera 

and the state of the art methods. This figure shows how the proposed framework is capable 

of generating a depth map with high structural accuracy in images captured under bright 

lighting condition. By looking at this figure, one might argue that the depth map generated 
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by Moeller, et al. [173] looks more pleasant. However, the main concern is the smoothness 

of the depth map and respecting the structural geometry of the scene with minimum artifacts. 

By having these two features, the post-capturing functions such as Bokeh can be applied 

with a much higher quality. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure  4.7: Sample depth estimation-Bright lighting condition. (a) All in focus image. (b) 

Ground Truth (Lytro Camera). (c) Proposed framework. (d) Moeller, et al. [173]. (e) 

Helicon Focus [174]. (f) Zerene Stacker [175]  

Figure  4.8 shows the overview of the entire framework. The contributions of this research 

are as follows: 

1- The problem of depth refinement is formulated to a convex minimisation problem 

by employing the vectorial ℓ1 norm fidelity term. 

2- Defining two new proximal terms to precondition ADMM. 

3- An alignment framework by utilising Epipolar homography. 

The whole framework is presented in detail in Section 3 of Appendix D and the code is 

available online at: https://github.com/hosseinjavidnia/Depth-Focal-Stack 

 
Figure  4.8: Overview of the proposed solution 
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4.5 Total Variation-Based Dense Depth from Multi-Camera Array 

In this framework, the initial depth is estimated by analysis of the local Epipolar Plane 

Image (EPI). To do this, we employed the initial part of the depth estimation algorithm of 

[176] as presented in Section 3.1 of the Appendix E. The implementation is based on the 

Cocolib light field suite [177], [178]. This method analyses the orientations of patterns on 

the EPIs. It takes an analytic approach to compute the orientation of Epipolar lines using the 

structure tensor. The estimated depth map is then refined using Total Variation (TV) 

minimisation based on the Fenchel-Rockafellar duality [53] as described in Section 3.2 of 

Appendix E. Figure  4.9 illustrates the disparity maps, ground truth error map and the median 

error map of the studied algorithms. Each row in these figures represents an algorithm. For 

each algorithm per individual image set, there are three columns illustrating the disparity 

maps, ground truth error map and the median error map. To generate the median error map, 

the median of the absolute disparity differences of all algorithms with the ground truth is 

computed for each pixel. Further, the absolute disparity difference of each algorithm is 

subtracted from the median error. The median error map gives a conceptual understanding of 

the parts of the image where algorithms perform below or above average performance of all 

algorithms. Yellow parts in this map represent the average, green above-average and red 

below-average performance. 

The median error maps of the proposed method in Fig. 10 show how competitive the 

proposed method performs compared to the other algorithms while dealing with slanted 

planar surfaces and complex scene structure. However, there are still highly textured areas 

with fine patterns such as box frames in the “Boxes” image set which introduces many 

challenges to depth estimation algorithms. 
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Figure  4.9: Visualization of disparity maps and their differences with ground truth. Each 

row represents an algorithm. The first column for each training scenes illustrates the 

disparity maps of the proposed method and the studied algorithms. The second column 

illustrates the disparity difference to the ground truth. Highly accurate parts are shown in 

white, too close in blue and too far in red areas. The third column illustrates how algorithms 

perform relative to the median algorithm performance. Yellow parts show average, green 

above-average and red below-average performance. The last row of the figure illustrates the 

ground truth disparity maps and the median absolute disparity difference to the ground truth 

at each individual pixel among all algorithms. 

Figure  4.10 shows the overview of the entire framework. The main contributions of this 

work are: 

1- Introducing a lightweight computational framework to estimate depth from the 4D 

light field on the EPI. The proposed framework is less sensitive to occlusion, noise, 

spatial aliasing, angular resolution and more importantly it is 2-100 times 

faster/more computationally efficient than the studied state of the art methods. 

2- Proposing a new computational cost function derived from the Fenchel-Rockafellar 

duality. 
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The code for this method is available online at: https://github.com/hosseinjavidnia/Depth-

MultiCamera 

 
Figure  4.10: Overview of the proposed solution 
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Chapter 5.  

Discussion and Future Work 

The need for computer vision systems that can perceive and understand 3D scenes is 

growing rapidly, motivated by the need for machines to interact with the 3D world in real-

time. In this dissertation, the methods of estimating depth and 3D information from 

consumer cameras such as smartphones were investigated. The goal was to propose methods 

and frameworks which can provide depth information on lightweight computational devices 

such as smartphones. 

Having access to such information enables consumers to interact with the digital 

photographs by applying post-capture modification such as objected segmentation, 3D 

holography and refocusing etc. 

The existing methods that perform accurately in this task are computationally intensive; they 

require an additional sensor such as dot projector or NIR, which is usually expensive, and 

they can be interfered with different factors such as light sources. The performance of these 

sensors significantly decreases while being exposed to very bright environment.  For these 

reasons, the existing methods are not efficient enough for lightweight devices with limited 

computational power. 

As the use of stereo cameras became popular in the smartphone industry since 15 years ago, 

this research is initiated by studying stereo matching methods. Instead of proposing a new 

stereo matching technique, a generic post-processing algorithm is presented which can be 

employed along with any depth estimation algorithm to increase its structural accuracy. The 

proposed post-processing method takes advantage of the mutual information between the 

reference RGB image and the disparity image. The aim of this process is to respect the 

structure of the original scene, including object boundaries and corners in the disparity map. 

The method was implemented along with a state of the art algorithm and was evaluated 

based on the Middlebury stereo benchmark. The preliminary results indicated that the state 

of the art stereo matching algorithm with our post-processing technique can be ranked 

among the top 8 methods in the Middlebury benchmark. Considering the performance of this 

method in providing highly accurate disparity maps, it still requires some optimisation to 

perform faster in real-time mode on high-resolution images.  

To reduce the computational time of the depth estimation using stereo matching methods, a 

CNN architecture is proposed which is known as Semi Parallel Deep Neural Network 

(SPDNN). The goal of this network was to learn to provide depth information from 

monocular images. Four models were trained using this architecture based on the KITTI 

benchmark while the target for two of the models was generated using the post-processing 
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algorithm which helped the network to generate more precise models. The semantic 

segmentation of the input frame is also added to the models, which resulted in preserving the 

structural information in the output depth map. Our extensive evaluation indicated that the 

proposed CNN can estimate depth maps from monocular images in ~1.23 sec/MP with very 

close accuracy to the stereo matching method. 

Despite the fast performance of the CNN models, they require input images to be down-

sampled for memory purposes. These models are often too large for consumer devices, 

computational power. However, it is still possible to use a single camera to estimate depth 

information by utilising its motion. To do this, the present research analysed random and 

small motions captured by a smartphone camera for depth sensing applications. The term 

small motion refers to the pre-initialization of the camera before capturing the image or 

consumers’ natural handshake. A framework is proposed to generate semi-dense 3D point 

cloud and dense depth map from the motions with the baseline less than ~8 mm. A modified 

bundle adjustment with a new cost function was used for optimisation purposes. The 

evaluation showed that the proposed framework has a superior performance to the state of 

the art methods. The second part of the evaluation indicated that the proposed method can be 

applied on the motions with the baseline up to ~400 mm which makes it comparable with the 

stereo matching methods.  

In another attempt, quite similar to the concept of small motions, we took advantage of the 

optical properties of the cameras by capturing a short sequence of frames with varying focal 

points which are known as focal stacks. Initially, the focal stacks were aligned using 

Epipolar homography alignment. Afterwards, Modified Laplacian was used to calculate the 

focus function, followed by a 3-point Gaussian distribution method to estimate the initial 

depth map. Later, Preconditioned Alternating Direction Method of Multipliers (PADMM) 

was modified by adding two new proximity terms for refinement purposes. The performance 

of the proposed method was compared against a state of the art algorithm and two 

commercial software packages. Both quantitative and qualitative evaluations noted the 

superior performance of the proposed method. 

The concept of small motions can be defined in multi-view images where the baseline 

between different viewpoints is relatively small. This is similar to the newly introduced 

cameras for smartphones known as a multi-camera array. These camera arrays contain a set 

of cameras arranged in a grid with a very small baseline. Using Epipolar geometry, it is 

possible to estimate depth information from the images captured by these cameras. To do so, 

a method is proposed to estimate depth from the multi-camera array by analysing Epipolar 

Plane Images (EPI). The image sequences are initially aligned using the Epipolar 

homography alignment. The initial depth map is estimated using local EPI analysis which is 
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later regularized using Total Variation (TV) minimisation. The proposed minimisation 

problem takes advantage of the Fenchel-Rockafellar duality to optimise the cost function. 

The evaluation is done based on HCI, the Heidelberg 4D Light Field Benchmark. The results 

demonstrate the competitive performance of the proposed framework among the top state of 

the art methods in terms of accuracy of depth estimation. The fast convergence of the 

proposed cost function and the method’s fast computational time make it a potential method 

for consumer electronics applications and devices with the aid of parallel technology and 

GPUs. 

In general, the accuracy of the depth and 3D data is not identical to the real world 

measurements. That strongly depends on the geometrical design of the imaging system, 

geometrical features of the real world scene, the presence of the depth cues, occlusion, 

shadow, lighting condition etc. Because of all the limitations, the existing depth estimation 

methods fail in generating real-world depth and 3D information. Most of the algorithms 

consist of multiple elements and terms which make it difficult to establish one best 

algorithm that outperforms in all aspects and metrics. 

Similarly, choosing a perfect solution for an application of depth is another challenge. If an 

application requires a third dimension, then a suitable technology has to be chosen according 

to the requirements of the application and the limitation of the technology. There are main 

criteria to be assessed while choosing a suitable technology. These conditions include: 

1- How much accuracy does the depth application require? 

2- What are the surface conditions of the objects that the technology has to deal with? 

3- What are the required scanning range and speed? 

4- Is real-time performance essential? 

5- Does the depth technology have a complex setup and maintenance?  

6- How expensive is the depth technology? 

7- What is the cost of 3D reconstruction based on the depth technology? 

8- What are the environmental challenges for the depth technology? 

Considering all these assessments, there is still no single perfect solution which can satisfy 

all the requirements for a depth application. All the requirements have to be prioritised based 

on the use of the application and then the right technology can be chosen. Certainly, the 

disadvantages of these technologies can be compensated by employing a complementary 

method with an additional cost.  

Another main challenge in this field is quality assessment and lack of ground truth data. 

Having access to real-world image sequences and the corresponding ground truth data 

enables us to validate all the methodologies. The existing datasets and benchmarks are 
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mostly synthetic which are not representative of the real world scene. For the real world 

data, the ground truth information is generated using a sparse LIDAR scanner which 

requires an extra computational process for densification purposes. The main metrics 

introduced in the state of the art to evaluate depth estimation methods are pixel-wise. An 

evaluation based on these metrics cannot clarify the performance of an algorithm in terms of 

structural accuracy. 

One of the most significant future works will be optimising all these methods for 

implementation on low power computational platforms. There is a good potential for these 

methods, especially the algorithms presented in Section  4.4 and  Section  4.5 to be 

implemented on consumer devices. Another important aspect to note is that some of the 

proposed algorithms perform on high-resolution images without any down-sampling which 

is already one step ahead of the state of the art. As already mentioned, this field of research 

suffers from a lack of real-world data and proper evaluation metrics. This can be another 

potential gap to be focused on. Proposing a unified assessment system and global metrics 

can definitely improve the way that the existing methods are evaluated. 

Nowadays, the promises of 3D capabilities in Augmented Reality (AR) are opening up many 

opportunities. Engineers can bring up 3D models of parts and rotate them in space, getting a 

view that is more encompassing than what is possible on a computer monitor. Retail 

customers could see themselves wearing clothing or accessories, turning to view all angles 

in a mirror, without physically donning the objects. Field service personnel could see how an 

equipment casing opened and then have the virtual version guide them through a series of 

repair actions. 

Advances in 3D perception are integrating into AR devices over time. The 3D modeling 

capabilities can combine models generated ahead of time with real-time modeling and 

mapping. The infrastructure for indoor positioning, both in coverage and precision, is yet to 

develop. But AR devices will provide operating-system-level support to surface the location 

and orientation information and make that available to applications and developers. Already, 

3D displays are very good and are expected to get even better. However, the evolution of 

AR/VR without artificially intelligent systems in place would remain incredibly basic. 

Nowadays, Deep learning is playing a key role in developing AR/VR technologies and will 

continue to improve their levels of functionality. When all of these capabilities come 

together in a seamless manner, the technology will indeed merge the 2D digital world with 

the 3D physical world of work and play. 
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ABSTRACT Accurate depth estimation is still an important challenge after a decade, particularly from stereo
images. The accuracy comes from a good depth level and preserved structure. For this purpose, a depth post-
processing framework is proposed in this paper. The framework starts with the ‘‘Adaptive Random Walk
with Restart (2015)’’ algorithm. To refine the depth map generated by this method, we introduced a form of
median solver/filter based on the concept of the mutual structure, which refers to the structural information
in both images. This filter is further enhanced by a joint filter. Next, a transformation in image domain is
introduced to remove the artifacts that cause distortion in the image. The proposed post-processing method is
then compared with the top eight algorithms in the Middlebury benchmark. To explore how well this method
is able to compete with more widely known techniques, a comparison is performed with Google’s new depth
map estimation method. The experimental results demonstrate the accuracy and efficiency of the proposed
post-processing method.

INDEX TERMS Stereo matching, depth map, accuracy, edge preserving.

I. INTRODUCTION
A. STEREO DEPTH MAPS
In 3D computer graphics a depth map is an image or image
channel that contains information relating to the distance
to the surfaces of scene objects from a viewpoint [1]. The
depth information corresponds to luminance in proportion to
the distance from the camera. Near surfaces are depicted as
lighter while far surfaces are shown as darker. Estimating the
depth can be considered an important component of under-
standing geometric relations within a scene. In turn, such
relations help to provide a richer representation of objects and
their environment, often leading to improvements in existing
recognition tasks, as well as enabling further applications
such as robotics. In recent years, many new economical
facilities, including time-of-flight [2], [3], structured light [4],
and the Kinect were introduced for depth determination from
stereo images. Kinect captures pairs of synchronized depth-
color images for a scene within a range of several meters.
However, the depth map cannot be used directly in scene
reconstruction because it has some deficiencies such as gaps
due to occlusion, reflection and other optical factors.

In general stereo algorithms or stereo matching algorithms
are categorized into two groups based on the taxonomy

scheme of Scharstein and Szeliski [5]: i.e. local and global
algorithms.

In the local algorithms, the depth value at pixel P is depen-
dent on the intensity and color values of the window W in
which P is located. The initial matching cost is pixel-wise
which is often noisy with minimum information in parts of
the image with smoother texture. Therefore using the cost of
the neighboring regions will assign the best depth value to
pixel P.

On the other hand global methods consider the overall
structure of the scene and smoothen the image and then try
to solve the cost optimization problem.

B. STEREO MATCHING ALGORITHMS
In the last decade stereo matching has attracted a lot of
attention from researchers and many matching algorithms
have been developed. Some of the most well-known and
studied algorithms are LIBELAS [6], iSGM [7], DBP [8]
and CostFilter [9], LIBELAS [6] has been used since 2010
in different research studies. It is inspired from the obser-
vation that despite the fact that many stereo correspon-
dences are highly ambiguous, some of them can be robustly
matched.
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While the processing speed of the LIBELAS is quite fast,
the accuracy of the estimated depth map is poor.

iSGM [7] is an iterative scheme of Semi-global matching
(SGM) technique with refined concept of the cost integration
of semi-global matching. The gathered buffer is evaluated to
a prior disparity map after horizontal and vertical integration.

DBP [8] is a global matching algorithm based on energy-
minimization which as all other global methods contains
data and smoothness term. The main contribution in data
term in this algorithm is that, it is being approximated by a
color weighted correlation. Afterwards, the data term is being
refined in occluded regions by employing the hierarchical
loopy belief propagation algorithm.

CostFilter [9] is a framework for multiple applications
such as computing the disparity maps in real-time. It is the
technique which aims to be fast and edge-aware. It consists
of three steps: constructing a cost volume, fast cost volume
filtering and winner-take-all label selection. The estimated
depth by this method suffers from blocky artifacts along the
edges and corners, especially in the regions with illumination
transition. This causes a broken synthetic view along the
edges.

There are other methods which tried to obtain better accu-
racy of depth map based on the combination of Markov
Random Field (MRF) and sophisticated global optimization
techniques in different researches [10]–[13], but still obtain-
ing a good accuracy in depth estimation remains a chal-
lenge, especially in images with sophisticated or very simple
texture.

Another approach which has been considered to improve
the accuracy of the depth map by mostly preserving the edges
was using the Mutual Information (MI) and SIFT features.
A multisensor synthetic aperture radar (SAR) image registra-
tion method was proposed based on MI [14] and SIFT [15].
In this application, MI was used to estimate the registration
parameters which were being used later by conjugate feature
selection during the SIFT matching phase to decrease the
number of false matches. Following the same idea, a stereo
matching method was introduced in [16], based on the com-
bination ofMI, SIFT, plane-fitting and log-chromaticity color
space.

Generally finding a local matchingmethodwhich performs
well in terms of both speed and accuracy is not easy and
straightforward. But recently employing the random walk
with restart along with optimizing the matching cost proved
that it is possible to have fast matching with pretty accurate
estimation. ARWR is a local matching algorithm based on
random walk with restart method [17] which is used as the
fundamental algorithm in this paper.

At this point it is timely to introduce the field of applica-
tion, which establishes requirements for a high performance
stereo disparity map. This work derives from research on
automotive street-scene analysis where it is important to
determine small objects in order to evaluate risks in the path
of a vehicle – e.g. distant pedestrians, animals, vehicles.
As most automotive imaging systems employ relatively small

sensors (2-4 MP) compared to consumer devices it is impor-
tant to be able to run disparity mapping algorithms at full
native sensor resolution – in our case 2864 ∗ 1924 pixels.

All current methods, as outlined above, suffer from non-
accurate depth around edges and corners, depth discontinuity
especially in texture-less areas, depth conflict around the area
with similar colors and missing depth in one depth level.
By solving these challenges a depth map can present correct
and accurate depth information while respecting the structure
of the reference image.

C. FEATURES OF THE PROPOSED METHOD
In this paper is presented a method to refine the depth
map generated by the Adaptive Random Walk with Restart
(ARWR) algorithm in order to obtain significant improve-
ments in accuracy. The main features of the proposed method
are:

1- A guided joint filter based on the mutual information
was designed by diffusing the image domain.

2- Weights are allocated dynamically to the windows as
part of the joint filter. The weights are being regen-
erated every time the window is moving to the other
patch of pixels. The pixels count in different bins of a
histogram instead of storing the weights directly.

3- The important point about the proposed filter is that it is
rotation invariant because of the joint mutual informa-
tion. Also the filter can be applied repeatedly to remove
more noise but the edges and corners will be preserved
because of the mutual joint feature.

4- When using this filter, the algorithm works better on
high resolution images in comparison with low resolu-
tion.

5- This filter can be used for upsampling/downsampling
purposes.

6- This method has the advantage of filling the depth map
in regions with missing depth values.

The rest of this paper is organized as follows:
In the next section the chosen method, ARWR is presented

in detail. Section 3 provides the details of the proposed post-
processing filter. The results of the evaluation as well as
experimental results are presented in section 4, while con-
clusions are drawn in section 5. There are also 2 appendices
linked to this paper presenting extended numerical and visual
results.

II. INTRODUCTION TO ADAPTIVE RANDOM
WALK WITH RESTART
In this section we describe the fundamental and tech-
nical details of the chosen stereo matching method,
ARWR.

ARWR has an acceptable and comparable performance
in terms of estimation and speed against other algorithm,
but it is still far from the top stereo matching algorithm on
Middlebury benchmark in terms of accuracy.

This algorithm has several important advantages which
make it a suitable method for a variety of applications. It is
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FIGURE 1. Overview of the adaptive random walk with restart.

not affected by illumination variation because of gradient and
census transform, the processing time is quite fast in compar-
ison with recently studied methods, has good performance in
both outside and inside environment and gives us the option
to have a estimation of the depth in low texture scenes.

One important advantage of this algorithm which con-
vinced us to employ it as a part of our approach, is the good
performance on high resolution images. A traditional way
to speed up stereo computation is to use image pyramids or
downsized images which also reduce the disparity range. This
down-sampling in disparity computation will cause some
small objects to be missed. The full disparity resolution for
large distance is vital for long range object detection. The
point about the chosen algorithm is that the image doesn’t
need to be down-sampled to speed up the method.

The comparison of this method with several others meth-
ods done in this paper showed that it has acceptable depth
estimation in high resolution images, 2864 ∗ 1924 pixels.
Acceptable depth estimation refers to the fact that the

algorithm doesn’t have the problem of estimating different
layers of depth in one object. It respects the depth layers
without conflict. This feature along with the fast process-
ing time makes this algorithm suitable for high resolution
real-time applications. Also it gives us the ability of mak-
ing a more accurate filter, which is described later in the
paper.

A. ALGORITHM DESIGN
The initial matching cost in ARWR is pixel-wise calculated
by employing census transform and gradient imagematching.
Census-based matching technique or census transform was
initially introduced by Zabi in 1994 [18]. It is a form of
non-parametric local transform to map the intensity values
of the pixels within a square window to a bit string, thereby
capturing the image structure. In other words, it computes for
every pixel a binary string (census signature) by comparing
its grey value with the grey values in its neighborhood.

The census transform is robust to radiometric variations
but the noise in the local image structure is being encoded
based on the intensity of the pixels. The encoded noise brings
some matching doubts especially in the area with repetitive
or similar texture patterns.

To overcome this problem gradient image matching is
employed as part of the local matching block in ARWR.
At this stage gradient images are computed using 5 × 5
Sobel filters. The whole process of the ARWR is shown
in Fig. 1.

The green block in Fig. 1 shows the local matching block
including the transformation and matching parts.

The usual similarity criteria in stereo matching are
only strictly valid for surfaces with Lambertian (diffuse)
reflectance characteristics. Specular reflections are viewpoint
dependent and may cause large intensity difference at corre-
sponding image points. In the presence of specular reflection,
traditional stereo methods are often unable to establish any
correspondence, or the calculated disparity values tend to be
inaccurate.

In this case using the gradient image matching makes
the local matching method more robust on non-Lambertian
surfaces.

The noise variation in the local pixel-wise matching meth-
ods can be vital in term of the performance. That is why SLIC
(Simple Linear Iterative Clustering) algorithm is employed in
ARWR, the blue block in Fig. 1. SLIC is one of the common
super-pixeling methods [19].

The local measurements in the matching block are more
robust to noise variation when the super-pixels are considered
as the smallest parts of the image to be matched to the target
image. Super-pixeling is considered as an alternative to pixels
in pixel-wise matching which leads to a reduction in memory
requirements in the whole algorithm.

At the last step of the ARWR which is shown as pink
block in Fig. 1, the calculated matching cost is updated using
the RWR algorithm to determine the optimum disparity with
respect to occluded and discontinuity regions. The standard
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FIGURE 2. Broken edges and corners in the computed depth map by ARWR.

FIGURE 3. Missing patches in the computed depth map by ARWR.

cost update algorithm in RWR is modified in ARWR where
the matching cost is updated adaptively by considering the
position of the super-pixels in the regions of occlusion or
depth discontinuity.

To recover the smoothness failure at occlusion or depth
discontinuity regions in ARWR, a visibility constraint is
formulated within the RWR algorithm which requires an
occluded pixel to have no match on the target image, and a
non-occluded pixel to have at least one match.

B. ALGORITHM TRADE OFF
There are some issues with the generated depth map based on
ARWR which need to be solved to obtain a clearer and more
accurate depth map.

The depth map produced by the ARWR is suffering from
speckle noise and inaccurate object edges especially for
objects with a detailed geometry. Basically the generated map
is not preserving the edges and corners. At some parts of the
computed depth map the edges are broken or they are faded
into other objects which makes it unsuitable for segmentation
purposes and classification. Fig. 2 shows examples of the
broken edges and corners in the computed depth and the
corresponding patches in the ground truth.

The other issue is the missing parts in the generated map.
We demonstrate that each patch of pixels in a depth map can
provide us valuable information like the scaling factor and
distance to the objects. Fig. 3 represents some samples of the
missing parts in the depth map and the corresponding patches
in the ground truth.

The samples show that some parts of the depth map were
not estimated by ARWR and it brings a false depth level
which is not suitable for 3D reconstruction applications.

These issues are generally some of the most challenging
problems in the current depth computation and enhancement
methods. Having a map which is preserving the right edges
and corners while all pixel patches are contributing in the
depth level allows us to reconstruct an accurate 3D scene from
the camera view point. It also provides an accurate funda-
mental platform for variety of applications such as classifi-
cation, segmentation, distance estimation, obstacle detection
and autonomous navigation.

In the next section of this paper our approach is presented
and shown to provide a suitable solution to the issues men-
tioned above.

III. PROPOSED POST-PROCESSING FILTER
To solve the issues mentioned in the previous section, mutual
information of the reference image and the depth map is used
as the input of the joint weighted median filter. By employing
the mutual joint filter the problem of the regions of occlusion
or depth discontinuity in the initial depth map is solved.
To resolve the blocky artifacts from object edges, the depth
map is transferred to another domain by convolving it.

The whole process of the ARWR + proposed post-
processing method is as follows:

1- Extract the initial depth by using the ARWR algorithm.
2- A. Apply mutual joint weighted median filter to fill the

regions of occlusion or depth discontinuity in the initial
depth map
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B. Overwrite the structure of the RGB image on the
depth map.

3- Transfer the depth map to a signal and perform nor-
malized interpolated convolution on the domain of the
signal to obtain an accurate, edges preserved depth
map.

Fig. 4 presents the general overview of the whole process
and Fig. 5 shows the detailed view of the ARWR+ proposed
post-processing method.

FIGURE 4. Overview of the proposed post-processing method.

A. MUTUAL-STRUCTURE
Mutual information has developed into an accurate mea-
sure for rigid and affine mono- and multimodality image
registration or for two images, it is a combination of the
entropy values of the images, both separately and jointly [20].
By measuring the structure similarity of two images, we can
let the mutual-structure to guide the joint filtering process.
Let’s denote D and I as the initial depth map and the refer-
ence RGB image respectively. Also Dp and Ip are the pixel
intensities in initial depth map and the reference RGB image
respectively. To compute the structure similarity between two
images, we consider a variety of patches in the images. One
common and well-studied method to measure the structure
similarity is to use normalized cross covariance (1). If we
consider the images as two time series signals, then we can
delayD byW samples and then calculate the cross-covariance
between the pair of signals,

CC (W ) =
1

M − 1

M∑
k=1

(Dk−W − µD)(Ik−µI ), (1)

Where µD and µI are the means of each time series
and there are M samples in each. CC (W ) is the cross-
covariance function. Normalized cross-covariance is called
cross-correlation,

N (W ) =
CC (W )√
σ (Dp)σ (Ip)

, (2)

N
(
Dp, Ip

)
=

cov(Dp, Ip)√
σ (Dp)σ (Ip)

, (3)

Where cov(Dp, Ip) is the covariance of patch intensity.
σ
(
Dp
)
and σ (Ip) denote the variances of pixel intensities

in the initial depth map and RGB image respectively. The
maximum value of N

(
Dp, Ip

)
is 1 when two patches are

with the same edges, otherwise
∣∣N (Dp, Ip)∣∣ < 1. Nonlin-

ear computation makes it hard to use the normalized cross-
correlation directly in the process. To solve this problem,
making a connection between normalized cross-correlation

and least-square regression would be helpful. If we consider
H (p) as a patch centered at pixel p, then the least-squared
regression function would be:

f
(
D, I , α1p, α

0
p

)
=

∑
q∈H(p)

(α1pDq + α
0
p − Iq)

2
, (4)

Where α1p and α0p are the regression coefficients. This
function linearly represent one patch inD corresponding with
the one in I . Minimum error with the optimal α1p and α

0
p can

be defined as:

e(Dp, Ip)2 =
min
α1p, α

0
p

1
|H |

f
(
D, I , α1p, α

0
p

)
, (5)

By considering the (1) and (5), we can say the mean square
error is:

e
(
Dp, Ip

)
= σ

(
Ip
) (

1− N
(
Dp, Ip

)2)
, (6)

The relation between the mean square error and normal-
ized cross-correlation is previously proved in [19]. When∣∣N (Dp, Ip)∣∣ = 1, it means that two patches only contain
mutual structure and e

(
Dp, Ip

)
= 0. So:

e(Ip,Dp)2 =
min
b1p, b0p

1
|H |

f
(
I ,D, b1p, b

0
p

)
, (7)

Therefore e
(
Ip,Dp

)
= 0 when

∣∣N (Dp, Ip)∣∣ = 1. Accord-
ing to the above analysis, the structure similarity can be
defined as:

Ss (D, I , α, b) =
∑
p

(f
(
D, I , α1p, α

0
p

)
+ f (I ,D,b1p, b

0
p)),

(8)

where α and b are the coefficient sets of
{
α1p, α

0
p

}
and b1p, b

0
p

respectively.
Algorithm 1 computes the mutual information of D and I .

Algorithm 1Mutual Information
Input: Image D and I
Output: Mutual Information of D and I

1 InitializeW ,M to 0;
2 Initialize α = β(αp);
3 Initialize b = β(bp);
4 µD← mean(D);
5 µI ← mean(I );
6 σW = M

/∑
(DM−W − µD) (IM − µI );

7 foreach H in D do
8

∑
(αpDN (p) + αp − IN (p))2;

9 end
10 return S (D, I , α, b);

B. JOINT WEIGHTED MEDIAN FILTER
Median filter [21] is a nonlinear operation which runs through
an image I and replaces each pixel value V by the median
value of neighboring pixels within a (2j+ 1)2 windowWp:

Imedian (p) = median
{
V : pi ∈ Wp

}
, (9)
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FIGURE 5. Overview of the ARWR + Proposed post-processing method.

Median filter processes all the neighbors equally and may
lead to some artifacts like changing the shape of the sharp
corners and make them circular or removing thin structures.
Weighted median filter [22] was introduced to solve this
issue. Considering ω(p, p

′

) the weight on image I , then:

h(p, i) =
∑
p′∈Wp

ω(p, p
′

)δ(V (p
′

)− i), (10)

where Wp is a local windows near p, i is the discrete bin
index and δ (.) is the Kronecker delta function which is 1
when the argument is 0, otherwise it is 0. h (p, .) is the local
histogram with the weighted pixel in it. By accumulating
h (p, i) the weighted median value is obtained.
Joint median filter on a depth map D with a group S of

segments as masks is defined as:

DJmedian (p) = median
{
D(pi) : pi ∈ Wp ∩ Sp

}
, (11)

where Sp ∈ S is the segment containing pixel p. So the new
local histogram for depth map would be:

hD (p, i) =
∑

p′∈Wp∩Sp

δ(D(p
′

)− i), (12)

Based on the (10) and (12), the local histogram of the joint
weighted median filter on the depth map D would be:

hDf (p, i) =
∑

p′∈Wp∩Sp

ω(p, p
′

)δ(D(p
′

)− i), (13)

Using the mutual structure and joint weighted median filter
gives us the capability to transfer the structural information of
the reference image to the depth map, instead of transferring
the whole pattern. And in addition it contributes greatly to a
preservation of the edges in the depth map.

C. NORMALIZED INTERPOLATED CONVOLUTION
Joint weighted median filter based on the mutual structure
provides an edge preserved and smooth depth image, but still
the depth map is suffering from blocky artifact, especially on
the edges. To decrease the blocky effects on the depth map,
converting the image to another domain would be helpful.
Let’s consider a signal:

f (t) = [x1; 0; 0; x4; x5; 0; x7; 0], (14)

where xi are known samples of signals and the missing
samples are replaced by 0.

A simple smoothing filter is:

g (t) =
[
1
3
;
1
3
;
1
3

]
, (15)

Filling the missing part of the f (t) by applying the g(t) will
provide:

f (t)× g(t)

=

[
x1
3
;
x1
3
;
x4
3
;
x4 + x5

3
;
x4 + x5

3
;
x5 + x7

3
;
x7
3
;
x7 + x1

3

]
,

(16)

At this level using the Normalized Convolution appends a
component to each signal which expresses the confidence of a
signal. This component is equal to 0 for each missed sample.
If we consider the map of the component on signal f (t) as
g(t), then:

c (t) = [1; 0; 0; 1; 1; 0; 1; 0] , (17)

By considering the convolution of c(t), it is possible to
approximate the original signal with the filled gaps. So:

f (t)O =
f (t)× g(t)
c(t)× g(t)

, (18)
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where the f (t)O is the original signal without
gaps.

This scenario previously has been studied to filter the non-
uniform sampled signals [23]. If Tω(ct (x)) is a uniformly
sampled signal in9w, then for a uniform discretizationU (9)
of the original domain 9, normalized convolution generates
the smoothed value of a sample q ∈ U (9) as:

Fi (q) =
(
1
Jq

) ∑
l∈U (9)

T (l)R
(
t
(
q̂
)
, t
(
l̂
))
, (19)

Where Jq =
∑

l∈U (9)
R(t

(
q̂
)
, t(l̂)) is a normalized factor

for q and R is an arbitrary kernel. Generally interpolated
surfaces in an image are smoother than the corresponding
ones generated by normalized convolution. To obtain this,
Fi(q) can be filtered by continuous convolution as below:

CCF (q) =
∫
U9

Fi (x)R
(
t
(
q̂
)
, x
)
dx, (20)

FIGURE 6. Missing samples recovery. (a) Samples of a signal with missing
parts. (b) Recovered samples in domain 9.

Where R is a normalized kernel. Fig. 6.b shows how the
missing samples of signal T are recovered in domain 9.
Applying the same process on a depth map generates

a smooth and artifact free map by transferring it into the
domain 9.

IV. EVALUATION
A. MIDDLEBURY BENCHMARK
The Middlebury benchmark has been widely used over the
last decade to evaluate the performance of stereo matching
algorithms [24]. The ARWR was applied with and with-
out the proposed post processing on 15 standard images
from the Middlebury ‘dense’ training dataset. Based on the
average weight on metric ‘bad 2.0’, the first 8 algorithms
from Middlebury were chosen for comparison, including

GCSVR [25], INTS [26], MCCNN_Layout [25], MC-
CNN+FBS [25], MC-CNN-acrt [27], MC-CNN-fst [27],
MeshStereo [28], SOU4P-net [25] and the original ARWR
without post-processing. As evaluation metrics we consider
the ones presented in Table 1.

TABLE 1. Metrics used in this paper to evaluate the algorithms.

All the evaluation process in this paper is based on the high
quality version of the images and all experiments were done
under the same conditions.

All the images were normalized before evaluation and
maximum disparity setup was defined for all algorithms. The
average value of the 15 images in each metric was considered
as the representing value of the corresponding algorithm.
Table 2 shows the average value of metric/algorithm. To find
the extended tables for each metric/image (color coded to
better present relative performance of each algorithm for each
evaluation metric) please refer to Appendix 1.

The best algorithm’s value in each metric is emboldened.
Based on the MSE, PSNR, SNR, SSIM and DSSIM metrics
the proposed post-processing method has the best perfor-
mance. Table 3 represents the ranking within the 10 tested
algorithms of the ARWR without post-processing and with
post processing applied for each of the evaluated metrics.

Fig.7 presents the results of the proposed post-processing
method on three Middlebury database images.

The initial depth map is computed by ARWR. Beside the
parametric evaluation, the visual comparison of the generated
results and the ground truth clarify the fact that the proposed
post-processing method can preserve edges and the structure.
For more results of the post-processed ARWR and visual
comparison with other methods please refer to Appendix 2.

While the performance of the proposed post-processing
method in term of accuracy is good, the processing time is
a trade-off. Fig.8 shows the processing time required by each
step of the proposed post-processing method on an image
with 962×1414 pixels resolution ran on Matlab R2013a.
The initial disparity is estimated with a maximum disparity
of 256.
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TABLE 2. Average values of metric/algorithm.

FIGURE 7. The result of the sample images from Middlebury database.
Each set of figures denotes the left image, the ground truth and the
proposed postprocessed depth map.

Table 4 represents the average performing time of the all
algorithms applied on the same high resolution image set as
per Middlebury.

The processing time of the studied method is poor, but
can be readily improved as much of this work was not opti-
mized for fast computation. The improvement of algorithm
efficiency and computational speed is currently the subject

TABLE 3. Ranking of ARWR without and with post-processing out
of 10 algorithms.

TABLE 4. The processing time of the studied algorithms on same high
resolution image set.

FIGURE 8. Processing time required by each step of the algorithm.

of a follow-on research project to optimize for an embedded
DSP or GPU implementation.

B. COMPARISON WITH GOOGLE’S DEPTH
ESTIMATION TECHNIQUE
In the second part of the evaluation we referred to the recent
technology which is used by the Google Camera ‘‘Lens Blur’’
feature in Android OS. The basic idea in this technology is to
match the stereo images in the bilateral space by avoiding
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FIGURE 9. The result of the images from Google’s method [29]. Each set of figures denotes the left image, Google’s result and the proposed
post-processed depth map.

per-pixel inference using leveraging techniques for fast bilat-
eral filter [29]. This idea is presented in the other form to
compute the depth from focus in the handheld devices by
using focal stack.

A global approach is employed to generate the depth map
by minimizing a cost function related to the pixel disparities.
The data matching cost in their method is based on the
Birchfield-Tomasi technique [30].

To satisfy the smoothness term of the cost function, the
bilateral filter is used which causes a smoother image while
the edges are preserved. For each pixel i of an image, one
would typically consider a square (kernel) centered at i and
perform a convolution.

Minimizing the cost function is extremely slow for higher
resolution pictures. This problem is solved by splatting the
value of each pixel into a higher dimensional bilateral space.
The general idea is to; instead of applying the bilateral filter
in pixel space, splat the pixels according to their location and
color into a five-dimensional bilateral grid. Then blur the grid
using a short range isotropic blur filter, and slice the grid in
order to recover the filtered image.

According to the authors of [29], the most instinctive way
to evaluate the performance of a stereo algorithm for defocus
is to visually inspect the renderings produced using that
algorithm. The kind of error that they cared about was related
to failing to follow image edges at occlusion boundaries
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TABLE 5. Structural similarity and dissimilarity of Google’s method and
post-processed ARWR.

where errors in disparity can cause rendering errors. The
Middlebury error metrics are not considering this type of
error. Middlebury error metrics are pixel-wise and Google’s
method has a poor performance on this benchmark, because
their algorithm over- or under-estimate the disparity of flat
texture-less regions, has disparity confusion in close shots
with different level of brightness, has disparity confusion at
the regions with specific pattern and sharp opposite colors.

Unfortunately there is no ground truth and benchmark
based on this method. We only had access to a number of
images and generated disparities which are published in [29].

To find out the structural similarity of the Google’s result
and the proposed post-processing method, we employed
SSIM and DSSIM metrics. For two identical images the
values of SSIM and DSSIM are 1 and 0 respectively. Table 5
shows how close are our results to Google’s for each image
and with the same disparity level setup. The visual com-
parison of the Google’s technique and the post-processed
ARWR is shown in Fig. 9. The visual comparison shows
different patches of the estimated disparity by Google’s and
our method. This visual and numerical comparison show
how close the proposed method is to Google’s in terms of
preserving the structure of the estimated disparity, edges and
corners.

V. CONCLUSION
In this paper we proposed and evaluated a post-processing
technique to increase the accuracy of the depthmap computed
by Adaptive RandomWalk with Restart method. We demon-
strated that keeping the sharp edges and corners along with
main structure of the reference image in the depth map is
an important factor to increase the accuracy. The proposed
method uses the combination of the mutual structure of the
RGB image to keep the structure and joint weighted filter
to make the depth planes smooth and fill the regions of
discontinuity. Transferring the depth map to another domain
gave us the option to implement normalized interpolated
convolution to remove the blocky artifacts of around the
edges and corners. The comparison with the top 8 methods
of the Middlebury benchmark and the ARWR without post-
processing proved the performance quality of the proposed
method. The value of the average structural similarity index
which is about 0.9935 with Google’s stereo matching method
is another confirmation on the performance of the discussed
method.

With respect to the performance of the studied method
in this paper, there are still a number of open challenges
such as reducing the processing time, while maintaining the
same accuracy in real-time applications with low processing
power. This challenge motivates our future research activ-
ity. In follow-on work it is planned to filter each image
in 8-16 dimensional bilateral space instead of employing a
normalized interpolation. Preliminary experiments indicate
this could improve the speed of the enhanced ARWR by
as much as an order of magnitude. This refinement would
make the post-processed ARWR algorithm competitive in
terms of computation time with the top 2-3 algorithms form
Middlebury.
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Appendix 2: This section presents extended visual results of the comparison of post-
processed ARWR and other methods. These results are based on the standard images of 
Middlebury training dense set. 
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Abstract. Deep neural networks are applied to a wide range of problems in recent years. In this work, Convolutional 
Neural Network (CNN) is applied to the problem of determining the depth from a single camera image (monocular 
depth). Eight different networks are designed to perform depth estimation, each of them suitable for a feature level. 
Networks with different pooling sizes determine different feature levels. After designing a set of networks, these 
models may be combined into a single network topology using graph optimization techniques. This “Semi Parallel 
Deep Neural Network (SPDNN)” eliminates duplicated common network layers, and can be further optimized by 
retraining to achieve an improved model compared to the individual topologies. In this study, four SPDNN models 
are trained and have been evaluated at 2 stages on the KITTI dataset. The ground truth images in the first part of the 
experiment are provided by the benchmark, and for the second part, the ground truth images are the depth map 
results from applying a state-of-the-art stereo matching method. The results of this evaluation demonstrate that using 
post-processing techniques to refine the target of the network increases the accuracy of depth estimation on 
individual mono images. The second evaluation shows that using segmentation data alongside the original data as 
the input can improve the depth estimation results to a point where performance is comparable with stereo depth 
estimation. The computational time is also discussed in this study.  
 
Keywords: Deep Neural Networks, Depth Estimation, Monocular Camera, Machine Learning. 
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1  Introduction 

Computing pixel depth values provides a basis for understanding the 3D geometrical structure 

of images. As it has been presented in recent research 1, using stereo images provides an accurate 

depth due to the advantage of having local correspondences; however, the processing times of 

these methods is still an open issue. 

To solve this problem, it has been suggested to use single images to compute the depth values, 

but extracting depth from monocular images requires extracting a large number of cues from the 

global and local information in the image. Using a single camera is more convenient in industrial 

applications. Stereo cameras require detailed calibration and many industrial use cases already 

mailto:h.javidnia1@nuigalway.ie
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employ single cameras – e.g. security monitoring, automotive & consumer vision systems, and 

camera infrastructure for traffic and pedestrian management in smart cities. These and other 

smart-vision applications can greatly benefit from accurate monocular depth analysis. This 

challenge has been studied for a decade and is still an open research problem.  

Recently the idea of using neural networks to solve this problem has attracted attention. In this 

paper, we tackle this problem by employing a Deep Neural Network (DNN) equipped with 

semantic pixel-wise segmentation utilizing our recently published disparity post-processing 

method. 

This paper also introduces the use of Semi Parallel Deep Neural Networks (SPDNN). A 

SPDNN is a semi-parallel network topology developed using a graph theory optimization of a set 

of independently optimized CNNs, each targeted at a specific aspect of the more general 

classification problem. In 2 3 the effect of SPDNN approach on increasing convergence and 

improving model generalization is discussed. For the depth from monocular vision problem a 

fully-connected topology, optimized for fine features, is combined with a series of max-pooled 

topologies (2×2, 4×4 and 8×8) each optimised for coarser image features. The optimized 

SPDNN topology is re-trained on the full training dataset and converges to an improved set of 

network weights.  

It is worth mentioning that this network design strategy is not limited to the ‘depth from 

monocular vision’ problem, and further application examples and refinements will be developed 

in a series of future publications, currently in press. 

1.1 Depth Map 

Deriving the 3D structure of an object from a set of 2D points is a fundamental problem in 

computer vision. Most of these conversions from 2D to 3D space are based on the depth values 



3 

computed for each 2D point. In a depth map, each pixel is defined not by color, but by the 

distance between an object and the camera. In general, depth computation methods are divided 

into two categories: 

1- Active methods 

2- Passive methods 

Active methods involve computing the depth in the scene by interacting with the objects and 

the environment. There are different types of active methods, such as light-based depth 

estimation, which uses the active light illumination to estimate the distance to different objects 4. 

Ultrasound and time-of-flight (ToF) are other examples of active methods. These methods use 

the known speed of the wave to measure the time an emitted pulse takes to arrive at an image 

sensor 5. 

Passive methods utilize the optical features of captured images. These methods involve 

extracting the depth information by computational image processing. In the category of passive 

methods, there are two primary approaches a) Multi-view depth estimation, such as depth from 

stereo, and b) Monocular depth estimation. 

1.2 Stereo Vision Depth 

Stereo matching algorithms can be used to compute depth information from multiple images. 

By using the calibration information of the cameras, the depth images can be generated. This 

depth information provides useful data to identify and detect objects in the scene 6. 

In recent years, many applications, including time-of-flight 7,8, structured light 9, and Kinect 

were introduced to calculate depth from stereo images. Stereo vision algorithms are generally 

divided into two categories: Local and Global. Local algorithms were introduced as statistical 

methods that use the local information around a pixel to determine the depth value of the given 
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pixel. These kinds of methods can be used for real-time applications if they are implemented 

efficiently. Global algorithms try to optimize an energy function to satisfy the depth estimation 

problem through various optimization techniques 10.  

In terms of computation, global methods are more complex than local methods, and they are 

usually impractical for real-time applications. Despite these drawbacks, they have the advantage 

in being more accurate than local methods. This advantage recently attracted considerable 

attention in the academic literature 11,12. 

For example, the global stereo model proposed in 11 works by converting the image into a set 

of 2D triangles with adjacent vertices. Later, the 2D vertices are converted to a 3D mesh by 

computing the disparity values. To solve the problem of depth discontinuities, a two-layer 

Markov Random Field (MRF) is employed. The layers are fused with an energy function 

allowing the method to handle the depth discontinuities. The method has been evaluated on the 

new Middlebury 3.0 benchmark 12 and it was ranked the most accurate at the time of the paper's 

publication based on the average weight on the bad 2.0 index. 

Another global stereo matching algorithm, proposed in 13, makes use of the texture and edge 

information of the image. The problem of large disparity differences in small patches of non-

textured regions is addressed by utilizing the color intensity. In addition, the main matching cost 

function produced by a CNN is augmented using the same color-based cost. The final results are 

post-processed using a 5×5 median filter and a bilateral filter. This adaptive smoothness filtering 

technique is the primary reason for the algorithm’s excellent performance and placement in the 

top of the Middlebury 3.0 benchmark 12. 

Many other methods have been proposed for stereo depth, such as PMSC 12, GCSVR 12, INTS 

14, MDP 15, ICSG 16, which all aimed to improve the accuracy of the depth estimated from stereo 
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vision, or to introduce a new method to estimate the depth from a stereo pair. However, there is 

always a trade-off between accuracy and speed for stereo vision algorithms. 

Table 1 Comparison of the performance time between the most accurate stereo matching algorithms 

Algorithm Time/MP (s) W × H (ndisp) Programming Platform Hardware 

PMSC 12 453 1500 × 1000 (<= 400) C++ i7-6700K, 4GHz-GTX TITAN X 

MeshStereoExt 11 121 1500 × 1000 (<= 400) C, C++ 8 Cores-NVIDIA TITAN X 

APAP-Stereo 12 97.2 1500 × 1000 (<= 400) Matlab+Mex i7 Core 3.5GHz, 4 Cores 

NTDE 13 114 1500 × 1000 (<= 400) n/a i7 Core, 2.2 GHz-Geforce GTX TITAN X 

MC-CNN-acrt 17 112 1500 × 1000 (<= 400) n/a NVIDIA GTX TITAN Black 

MC-CNN+RBS 18 140 1500 × 1000 (<= 400) C++ 
Intel(R) Xeon(R) CPU E5-1650 0, 

3.20GHz, 6 Cores- 32 GB RAM-NVIDIA 
GTX TITAN X 

SNP-RSM 12 258 1500 × 1000 (<= 400) Matlab i5, 4590 CPU, 3.3 GHz 

MCCNN_Layout 12 262 1500 × 1000 (<= 400) Matlab i7 Core, 3.5GHz 

MC-CNN-fst 17 1.26 1500 × 1000 (<= 400) n/a NVIDIA GTX TITAN X 

LPU 12 3523 1500 × 1000 (<= 400) Matlab Core i5, 4 Cores- 2xGTX 970 

MDP 15 58.5 1500 × 1000 (<= 400) n/a 4 i7 Cores, 3.4 GHz 

MeshStereo 11 54 1500 × 1000 (<= 400) C++ i7-2600, 3.40GHz, 8 Cores 

SOU4P-net 12 678 1500 × 1000 (<= 400) n/a i7 Core, 3.2GHz-GTX 980 

INTS 14 127 1500 × 1000 (<= 400) C, C++ i7 Core, 3.2 GHz 

GCSVR 12 4731 1500 × 1000 (<= 400) C++ i7 Core, 2.8GHz-Nvidia GTX 660Ti 

JMR 12 11.1 1500 × 1000 (<= 400) C++ Core i7, 3.6 GHz-GTX 980 

LCU 12 9572 750 × 500 (<= 200) Matlab, C++ 1 Core Xeon CPU, E5-2690, 3.00 GHz 

TMAP 19 1796 1500 × 1000 (<= 400) Matlab i7 Core, 2.7GHz 

SPS 12 49.4 3000 × 2000 (<= 800) C, C++ 1 i7 Core, 2.8GHz 

IDR 20 0.36 1500 × 1000 (<= 400) CUDA C++ NVIDIA GeForce TITAN Black 

Table 1 shows an overview of the average normalized time by the number of pixels 

(sec/megapixels) of the most accurate stereo matching algorithms as they are ranked by the 

Middlebury 3.0 benchmark, based on the “bad 2.0” metric. The ranking is on the test dense set. 

This comparison illustrates that obtaining an accurate depth from a stereo pair requires 

significant processing power. These results demonstrate that today, these methods are too 

resource intensive for real-time applications like street sensing or autonomous navigation due to 

their demand for processing resources. 
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To decrease the processing power of stereo matching algorithms, researchers recently began to 

work on depth from monocular images. Such algorithms estimate depth from a single camera 

while keeping the processing power low. 

1.3 Deep Learning 

DNN (Deep Neural Networks) are among the most recent approaches in pattern recognition 

science that are able to handle highly non-linear problems in classification and regression. These 

models use consecutive non-linear signal processing units in order to mix and re-orient their 

input data to give the most representative results. The DNN structure learns from the input and 

then it generalizes what it learns into data samples it has never seen before 21. The typical deep 

neural network model is composed of one or more convolutional, pooling, and fully connected 

layers accompanied by different regularization tasks. Each of these units is as follows: 

Convolutional Layer: This layer typically convolves the 3D image 𝐼𝐼 with the 4D kernel 𝑊𝑊 

and adds a 3D bias term 𝑏𝑏 to it. The output is given by: 

𝑃𝑃 = 𝐼𝐼 ∗ 𝑊𝑊 + 𝑏𝑏 (1) 

where * operator is nD convolution and 𝑃𝑃 is the output of the convolution. During the training 

process, the kernel and bias parameters are updated in a way that optimizes the error function of 

the network output. 

Pooling Layer: The pooling layer applies a (usually) non-linear transform (Note that the 

average pooling is a linear transform, but the more popular max-pooling operation is non-linear) 

on the input image which reduces the spatial size of the data representation after the operation.  
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It is common to put a pooling layer after each convolutional layer. Reducing the spatial size 

leads to less computational load and also prevents over-fitting. The reduced spatial size also 

provides a certain amount of translation invariance. 

Fully Connected Layer: Fully connected layers are the same as classical Neural Network 

(NN) layers, where all the neurons in a layer are connected to all the neurons in their subsequent 

layer. The neurons give the summation of their input, multiplied by their weights, passed through 

their activation functions. 

Regularization: Regularization is often used to prevent overfitting of a neural network. One 

can train a more complex network (more parameters) with regularization and prevent over-

fitting. Different kinds of regularization methods have been proposed. The most important ones 

are weight regularization, drop-out 22, and batch normalization 23. Each regularization technique 

is suitable for specific applications, and no single technique works for every task. 

1.4 Monocular Vision Depth 

Depth estimation from a single image is a fundamental problem in computer vision and has 

potential applications in robotics, scene understanding, and 3D reconstruction. This problem 

remains challenging because there are no reliable cues for inferring depth from a single image. 

For example, temporal information and stereo correspondences are missing from such images.   

As the result of the recent research, deep Convolutional Neural Networks (CNN) are setting 

new records for various vision applications. A deep convolutional neural field model for 

estimating depths from a single image has been presented in 24 by reformulating the depth 

estimation into a continuous conditional random field (CRF) learning problem. The CNN 

employed in this research was composed of 5 convolutional and 4 fully-connected layers. At the 

first stage of the algorithm, the input image was over-segmented into superpixels. The cropped 
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image patch centered on its centroid was used as input to the CNN. For a pair of neighboring 

superpixels, a number of similarities were considered and were used as the input to the fully 

connected layer. The output of these 2 parts was then used as input to the CRF loss layer. As a 

result, the time required for estimating the depth from a single image using the trained model 

decreased to 1.1 seconds on a desktop PC equipped with NVIDIA GTX 780 GPU with 6GB 

memory.  

It has been found that the superpixelling technique of 24 is not a good choice to initialize the 

disparity estimation from mono images because of the lack of the monocular visual cues such as 

texture variations and gradients, defocus or color/haze in some parts of the image. To solve this 

issue an MRF learning algorithm has been implemented to capture some of these monocular cues 

25. The captured cues were integrated with a stereo system to obtain better depth estimation than 

the stereo system alone. This method uses a fusion of stereo + mono depth estimation. 

At small distances, the algorithm relies more on stereo vision, which is more accurate than 

monocular vision. However, at further distances, the performance of stereo degrades; and the 

algorithm relies more on monocular vision. 

The problem of depth estimation from monocular images has been also studied in 26 where a 

network is designed with two components. First, the global structure of the scene is estimated 

and later refined using local information. Although this approach enables the early idea of 

estimating monocular depth using CNNs, the output depth maps do not clearly represent the 

geometrical structure of the scene. 

In another approach 27, an unsupervised convolutional encoder is trained to estimate the depth 

from monocular images. The depth is estimated considering the small motion between two 

images (stereo set as input and target). Later, the inverse warp of the target image is generated 



9 

using the predicted depth and the known displacement between cameras which results in 

reconstructing the source image. In a similar research 28, an unsupervised CNN is trained by 

exploiting Epipolar geometry constraints to estimate disparity from single images. The idea is to 

learn a function that is able to reconstruct one image from the other, by utilizing a calibrated pair 

of binocular cameras. A left-right disparity consistency loss is also introduced which combines 

smoothness, reconstruction, and left-right disparity consistency terms and keeps the consistency 

between the disparities produced relative to both the left and right images. 

1.5 Paper Overview 

In this paper, a DNN is presented to estimate depth from monocular cameras. The depth map 

from the stereo sets are estimated using the same approach as 29 and they are used as the target to 

train the network while using information from a single image (the left image in the stereo set) as 

input. Four models are trained and evaluated to estimate the depth from single camera images. 

The network structure for all the models is same. In the first case, the input is simply the original 

image. In the second case, the first channel is the original image and the second channel is its 

segmentation map. For each of these two cases, one of two different targets are used; 

specifically, these targets were the stereo depth maps with or without post-processing explained 

in 29. Fig. 1 shows the overview of the general approach used in this paper. 

 

 

Fig. 1 The overview of the trained models in this paper. The semantic segmentation is just used in two experiments 
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1.6 Contributions 

In this paper two major contributions are presented: 

1- A method to mix and merge several deep neural networks called “Semi Parallel Deep 

Neural Network (SPDNN)”, described in detail in Appendix A. 

2- The application of deep neural networks and SPDNN on estimating depth from a 

monocular camera.  

The rest of the paper is organized as follows: In the next section the network structure, 

database preparation, and the training process are presented. Sec 3 discusses the results and 

evaluation of the proposed method. The conclusion and discussions are presented in the last 

section. 

2 Methodology 

2.1 Network Structure 

2.1.1 Semi-Parallel Deep Neural Network (SPDNN) 

This paper introduces the SPDNN concept, inspired by graph optimization techniques. In this 

method, several deep neural networks are parallelized and merged in a novel way that facilitates 

the advantages of each. The final model is trained for the problem. 2 3 show that using this 

method increases the convergence and generalization of the model compared to alternatives.  

The merging of multiple networks using SPDNN is described in the context of the current 

depth mapping problem. In this particular problem, eight different networks were designed for 

the depth estimation task. These are described in detail in Appendix A. None of these networks 
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on their own gave useful results on the depth analysis problem. However, it was noticed that 

each network tended to perform well on certain aspects of this task while failing at others. This 

led to the idea that it would be advantageous to combine multiple individual networks and train 

them in a parallelized architecture. Our experiments showed that better output could be achieved 

by merging the networks and then training them concurrently. 

2.1.1.1 The Combined Model/Architecture 

The process of the network design is discussed in detail in Appendix A. In the final model 

presented in Fig. 2, the input image is first processed in four, parallel fully convolutional sub-

networks with different pooling sizes. This provides the advantages of different networks with 

different pooling sizes at the same time. The outputs of these four sub-networks are concatenated 

in two different forms; one to pool the larger images to be the same size as the smallest image in 

the previous part, and the other one is to un-pool the smaller images of the previous part to be the 

same size as the largest image.  

 

Fig. 2 The model designed for the depth estimation from monocular images. 
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After merging these outputs, the data is led to 2 different networks. One is the fully 

convolutional network to deepen the learning and release more abstract features of the input, and 

the other network is an auto-encoder network with different architecture for encoder and 

decoder.  

It is mentioned in the network design section in Appendix A that, having a fully connected 

layer in the network is crucial for the reasonable estimation of the image’s depth which is 

provided in the bottleneck of the autoencoder. The results from the autoencoder and the fully 

convolutional sub-network are again merged in order to give a single output after applying a one 

channel convolutional layer. 

In order to regularize the network, prevent overfitting and increase the convergence, batch 

normalization 23 is applied after every convolutional layer, and the drop-out technique 22 is used 

in fully connected layers. The experiments in this paper show that using weight regularization in 

the fully connected layers gives slower convergence; therefore, this regularization was 

eliminated from the final design. All the nonlinearities in the network are the ReLU nonlinearity, 

which is widely used in deep neural networks, except the output layer, which took advantage of 

the sigmoid nonlinearity. The value repeating technique was used in the un-pooling layer due to 

non-specificity of the corresponding pooled layer in the decoder part of the auto-encoder sub-

network. 

 

Fig. 3 The repeating technique used in un-pooling layers. 
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The value repeating technique, illustrated in Fig. 3, involves repeating the value from the 

previous layer in order to obtain the un-pooled image. The figure shows the 2×2 un-pooling, and 

the process is the same for other un-pooling sizes. 

2.2 Database 

In this paper, the KITTI Stereo 2012, 2015 datasets 30 are used for training and evaluation of 

the network. The database is augmented by vertical and horizontal flipping to expand the total 

size to 33,096 images. 70% of this dataset is used for training, 20% for validation and 10% for 

testing. Each model is trained for two sets of input samples and two sets of output targets. The 

input and target preparation are explained in the following sections. 

2.2.1 Data Preparation 

2.2.1.1 Input Preparation 

Two different sets have been used as the input of the network. The first set includes the visible 

images given by the left camera. The second set is the visible image + the semantic segmentation 

of the corresponding input. This gives the opportunity of investigating the segmentation 

influence on the depth estimation problem. The segmentation map for each image is calculated 

by employing the well-known model “SegNet” 31,32. This model is one of the most successful 

recent implementations of DNN for semantic pixel-wise image segmentation and has surpassed 

other configurations of Fully Convolutional Networks (FCN) both in accuracy and simplicity of 

implementation. A short description on SegNet is given in Appendix B.  

In our experiments, SegNet was trained using Stochastic Gradient Descent (SGD) with 

learning rate 0.1 and momentum 0.9. In this paper, the Caffe implementation of SegNet has been 
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employed for training purposes 33. The gray-scale CamVid road scene database (360×480) 34 has 

been used in the training step. 

2.2.1.2 Target Preparation 

The targets for training the network are generated from the stereo information using the 

Adaptive Random Walk with Restart algorithm 35. The output of the stereo matching algorithm 

suffers from several artifacts which are addressed and solved by a post-processing method in 29. 

In the present experiments, both depth maps (before post-processing and after post-processing) 

are used independently as targets. The post-processing procedure is based on the mutual 

information of the RGB image (used as a reference image) and the initial estimated depth image. 

This approach has been used to increase the accuracy of the depth estimation in stereo vision by 

preserving the edges and corners in the depth map and filling in the missing parts. The method 

was compared with the top 8 depth estimation methods in the Middlebury benchmark 12 at the 

time the paper was authored. Seven metrics, including Mean Square Error (MSE), Root Mean 

Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR), Mean 

Absolute Error (MAE), Structural Similarity Index (SSIM) and Structural Dissimilarity Index 

(DSSIM) were used to evaluate the performance of each method. The evaluation ranked the 

method as 1st in 5 metrics and 2nd and 3rd in other metrics 

2.3 Training 

As described in Sec 2.2.1.1 and 2.2.1.2 there are two separate sets as input and two separate 

sets as targets for the training process. This will give four experiments in total as follows: 

 

1- Experiment 1: Input: Left Visible Image + Pixel-wise Segmented Image.  Target: Post-

Processed Depth map 
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2- Experiment 2: Input: Left Visible Image. Target: Post-Processed Depth map. 

3- Experiment 3: Input: Left Visible Image + Pixel-wise Segmented Image. Target: Depth 

map. 

4- Experiment 4: Input: Left Visible Image. Target: Depth map. 

The images are resized to 80×264 pixels during the whole process. Training is done on a 

standard desktop with an NVIDIA GTX 1080 GPU with 8GB memory.  

In the presented experiments, the mean square error value between the output of the network 

and the target values have been used as the loss function, and the Nestrov momentum technique 

36 with learning rate 0.01 and momentum 0.9 has been used to train the network. The Training 

and Validation Loss for each of these experiments are shown in Fig. 4 and Fig. 5 respectively.   

 

Fig. 4 Train loss for each experiment 

 

Fig. 5 Validation loss for each experiment 

These figures show that using the Post-Processed Depth map as the target results in lower loss 

values, which means that the network was able to learn better features in those experiments, 

while semantic segmentation decreases the error only marginally 
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3 Results and Evaluations 

The evaluation in this paper has been done in 4 parts. In the first two parts, the four 

experiments given in Sec 2.3 are compared to each other, given different ground truths. The third 

part compares the proposed method to a stereo matching method and the last part shows the 

comparison against the state of the art monocular depth estimation method. For evaluation 

purposes, 8 metrics including PSNR, MSE (between 0 and 1), RMSE (between 0 and 1), SNR, 

MAE (between 0 and 1), Structural Similarity Index (SSIM)(between 0 and 1) 37, Universal 

Quality Index (UQI) (between 0 and 1) 38 and Pearson Correlation Coefficient (PCC) (between -

1 and 1) 39 are used. For the metrics PSNR, SNR, SSIM, UQI, and PCC the larger value indicates 

better performance, and for MSE, RMSE, and MAE, the lower value indicates better 

performance. PSNR, MSE, RMSE, MAE, and SNR represent the general similarities between 

two objects. UQI and SSIM are structural similarity indicators and PCC represents the 

correlation between two samples. To the best of our knowledge, there have been no other 

attempts at estimating depth from a mono camera on the KITTI benchmark. 

3.1 Comparing Experiments Given Benchmark Ground Truth 

The KITTI database came with a depth map ground truth generated by a LIDAR scanner.  

Table 2 Numerical comparison of the models given the benchmark’s ground truth 

 Exp. 1 Exp. 2 Exp. 3 Exp. 4 
PSNR 14.3424 13.7677 13.8333 13.8179 
MSE 0.0382 0.0436 0.0435 0.0439 

RMSE 0.1937 0.2069 0.206 0.2066 
SNR 4.4026 3.8279 6.1952 6.1798 
MAE 0.1107 0.1212 0.1236 0.1234 
SSIM 0.9959 0.9955 0.9955 0.9955 
UQI 0.9234 0.9252 0.9053 0.9064 
PCC 0.7687 0.8485 0.7702 0.7729 
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The test set has been forward propagated through the four different models trained in the four 

experiments, and the output of the networks has been compared to the benchmark ground truth. 

The results are shown in Table 2. The best value for each metric is presented in bold. 

Figs. 6-8 represent the color-coded depth maps computed by the trained models using the 

proposed DNN, where the dark red and dark blue parts represent closest and furthest points to 

the camera respectively. On the top right of each figure, the ground truth given by the benchmark 

is illustrated. For visualization purposes, all of the images presented in this section are 

upsampled using Joint Bilateral Upsampling 40. The results show that using semantic 

segmentation along with the visible image as input will improve the model marginally. Using the 

post-processed target in the training stage helps the model to converge to more realistic results. 

 

Fig. 6 Estimated depth maps from the trained models – example 1 
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Fig. 7 Estimated depth maps from the trained models – example 2 

 
Fig. 8 Estimated depth maps from the trained models – example 3 

As it is illustrated in Figs. 6–8, the depth map generated in experiment 1 contains more 

structural details, and more precise, less faulty depth levels compared with the other experiments. 
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In general, the presented models in this paper are able to handle occlusions and discontinuities at 

different depth levels. 

3.2 Comparing Experiments Given the Ground Truth from Stereo Matching 

In this section, proposed models are compared to see which one produces closer results to the 

target value. This gives an idea whether using deep learning techniques on the mono camera can 

produce reasonable results or not. 

Table 3 Numerical comparison of the models given the ground truth from stereo matching 

 Exp. 1 Exp. 2 Exp. 3 Exp. 4 
PSNR 15.0418 14.1895 13.3819 14.0491 
MSE 0.0378 0.0447 0.0535 0.0441 

RMSE 0.1854 0.203 0.2223 0.2039 
SNR 8.822 7.9696 5.4271 6.0943 
MAE 0.1442 0.1581 0.1673 0.153 
SSIM 0.9952 0.9943 0.994 0.9951 
UQI 0.8401 0.8369 0.7951 0.8178 
PCC 0.8082 0.795 0.704 0.6919 

Images in the test set have been forward propagated through the models trained in Sec 2.3, and 

the outputs are compared with the depth map generated by 29. The numerical results are shown in 

Table 3. 

The best value for each metric is presented in bold. Figs. 9-11 represent the color-coded depth 

maps computed by the trained models using the proposed DNN, where the dark red and dark 

blue parts represent closest and furthest points to the camera respectively. On the top right of 

each figure, the ground truth calculated by 29 is illustrated. For visualization purposes, all of the 

images presented in this section are upsampled using Joint Bilateral Upsampling 40. The results 

show that using semantic segmentation along with the visible image as input will improve the 

model marginally. Using the post-processed target in the training stage helps the model to 

converge to more realistic results.  



20 

 

Fig. 9 Estimated depth maps from the trained models – example 1 

 

Fig. 10 Estimated depth maps from the trained models – example 2 
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Fig. 11 Estimated depth maps from the trained models – example 3 

Figs. 9-11 indicate that the trained models in this paper are able to estimate depth maps 

comparable to state-of-the-art stereo matching with structural accuracy and precise depth levels. 

This is also a result of using the semantic segmentation data and injecting the structural 

information into the network. 

3.3 Comparing Mono Camera Results with Stereo Matching 

In this section, the results from the mono camera depth estimation given by the proposed 

method are compared with one of the top-ranked stereo matching methods given in 29. The 

ground truth for this comparison is the set of depth maps provided by the KITTI benchmark. 

The test images have been forward propagated through the models trained in Sec 2.3 and the 

best results are compared with the stereo matching technique. The results are shown in Table 4. 

The results indicate that using mono camera images and deep learning techniques can provide 

results which are comparable to stereo matching techniques. As shown in Table 4, the mono 
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camera DNN method was able to provide depth maps similar to the stereo matching methods, 

represented by PSNR, MSE, MAE, RMSE, and SNR. 

Table 4 Numerical comparison between stereo matching and the proposed mono camera model 

 Stereo Matching 29 Mono Camera DNN 
PSNR 14.8234 14.3424 
MSE 0.0351 0.0382 

RMSE 0.1845 0.1937 
SNR 4.8836 4.4026 
MAE 0.1017 0.1107 
SSIM 0.9966 0.9959 
UQI 0.9353 0.9234 
PCC 0.823 0.7687 

Having close values for SSIM (0.9966 and 0.9959 in the range [0,1])  and UQI (0.9353 and 

0.9234 in the range [0,1]) shows how the mono camera DNN method is able to preserve the 

structural information, as compared to the Stereo Matching method. 

3.4 Comparison against Other Monocular Depth Estimation Methods 

In this section, the proposed network is compared again the method presented in 24,26-28. Table 

5 represents the performance of the proposed network compared to the state of the art methods 

based on seven metrics including Absolute Relative difference, Squared Relative difference, and 

RMSE/RMSE log. These numbers indicate that the unsupervised CNN proposed by Godard et al. 

28 outperforms the others because of the left-right disparity consistency term which allows the 

network to optimize the disparity values based on both left and right images. However, we 

believe that the proposed network has a competitive performance compared to the studied 

methods considering the fact that our models are trained using only left image without taking 

into account the influence of the right disparity values. 
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Table 5 Results on the KITTI 2015 stereo 200 training set disparity images. 

Method Supervised Dataset Abs Rel Sq Rel RMSE RMSE 
log 𝛿𝛿 < 1.25 𝛿𝛿 < 1.252  𝛿𝛿 < 1.253  

Eigen et al. 26 Coarse Yes KITTI 0.361 4.826 8.102 0.377 0.638 0.804 0.894 
Eigen et al. 26 Fine Yes KITTI 0.203 1.548 6.307 0.282 0.702 0.890 0.958 
Liu et al. 24 DCNF-

FCSP FT Yes KITTI 0.201 1.584 6.471 0.273 0.68 0.898 0.967 

Garg et al. 27 L12 Aug 
8× cap 50m No KITTI 0.169 1.080 5.104 0.273 0.740 0.904 0.962 

Godard et al. 28 No KITTI 0.148 1.344 5.927 0.247 0.803 0.922 0.964 
Ours Yes KITTI 0.288 1.065 4.071 0.401 0.51 0.77 0.893 

 

Lower is better Higher is better 

3.5 Comparing Running Times 

In this section, the computational time of the proposed method is compared against the stereo 

matching methods provided in Table 1. The evaluations indicate that the proposed method is able 

to perform at a rate of ~1.23 sec/MP on a desktop computer equipped with i7 2600 CPU @ 3.4 

GHz and 16GB of RAM. 

 

Fig. 12 Comparison of computational time in logarithmic scale 
 

Fig. 12 shows the comparison of the computational times. The comparison is done in a 

logarithmic scale due to the large range of computational times between different methods. 

Calculation Time Comparison (logarithmic scale)

PMSC[12
]

Mes
hSter

eo
Ext[

11
]

APAP-S
ter

eo
[12

]

NTDE[13
]

MC-C
NN-ac

rt[
17

]

MC-C
NN+R

BS[18
]

SNP-R
SM[12

]

MCCNN_L
ay

out[1
2]

MC-C
NN-fs

t[1
7]

LPU[12
]

MDP[15
]

Mes
hSter

eo
[11

]

SOU4P
-net[

12
]

IN
TS[14

]

GCSVR[12
]

JM
R[12

]

LCU[12
]

TMAP[19
]

SPS[12
]

ID
R[20

]

Pro
pose

d M
eth

od

Methods

0

0.5

1

1.5

2

2.5

3

3.5

lo
g1

0(
Ti

m
e/

M
P 

(s
))



24 

4 Conclusion and Discussion 

In this paper, we have introduced the use of the Semi Parallel Deep Neural Networks 

(SPDNN) method. An SPDNN is a network topology developed using a graph theory 

optimization of a set of independently optimized CNNs, each targeted at a specific aspect of the 

more general classification problem. For depth estimation from a monocular set up, a model 

including fully-connected topology optimized for fine features is combined with a series of max-

pooled topologies. The optimized SPDNN topology is re-trained on the full training dataset and 

converges to an improved set of network weights. Here we used this design strategy to train an 

accurate model for estimating depth from monocular images.  

In this work, 8 different deep neural networks have been mixed and merged using the SPDNN 

method in order to take advantage of each network’s qualities. The mixed network architecture 

was then trained in four separate scenarios wherein each scenario uses a different set of inputs 

and targets during training. Four distinct models have been trained. The pixel-wise segmentation 

and depth estimations given in 29 were used to provide samples for use in the training stage. The 

KITTI benchmark was used for training and experimental purposes.  

Each model was evaluated in two sections, first against the ground truth provided by the 

benchmark, and secondly against the disparity maps computed by the stereo matching method 

(Sec 3.1 and 3.2). The results show that using the post-processed depth map presented in 29 for 

training the network results in more precise models and adding the semantic segmentation of the 

input frame to the input helps the network preserve the structural information in the output depth 

map. The results in Sec 3.2 show how close the proposed depth estimation using mono camera 

can be to the stereo matching method. The semantic segmentation information helps the network 

converge to the stereo matching results, although the improvement is marginal in this case. The 
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results of the third comparisons in Sec 3.3 show a slightly higher accuracy obtained by 

employing the stereo matching technique, but our results demonstrate that there is not a big 

difference between the depths from the models trained by proposed DNN and the values 

computed by stereo matching. The numerical results of this evaluation show the similarity 

between the mono camera using DNN method and the stereo matching method, and also the 

power of the presented method in preserving the structural information in the output depth map.  

An important advantage of these models is the processing time of ~1.23 sec/MP. This is equal 

to 38 fps for an input image of size (80×264) on an i7 2600 CPU @ 3.4 GHz and 16GB of 

RAM. This makes the model suitable for providing depth estimation in real time. This 

performance is comparable to the stereo methods MC-CNN-fst 17 and JMR 12, which are 37 fps 

and 4 fps respectively for the same size of the image, taking advantage of GPU computation 

power (NVIDIA GTX TITAN X and GTX 980 respectively). The IDR method 20 can give up to 

131 fps for the same image size by using an NVIDIA GeForce TITAN Black GPU and CUDA 

C++ implementation, but the performance on CPU is not given by the authors, so any 

comparisons with this method would be unfair. 

Using pixel-wise segmentation as one of the inputs of the network slightly increased the 

accuracy of the models, and also helped the model preserve the structural details of the input 

image. However, it also brought some artifacts, such as wrong depth patches on the surfaces. The 

evaluation results also illustrate the higher accuracy of the models where a post-processed depth 

map was used as the target in the training procedure. 

4.1 Future Works and Improvements 

The model presented in this work is still a big model to implement in low power consumer 

electronic devices (e.g., handheld devices). Future work will include a smaller design which is 
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able to perform as well as the presented model. The other consideration for the current method is 

the training data size (which is always the biggest consideration with deep learning approaches). 

The amount of stereo data available in the databases is usually not big enough to train a deep 

neural network. The augmentation techniques can help to expand databases, but the amount of 

extra information they provide is limited. Providing a larger set with accurate depth maps will 

improve the results significantly. 

The SPDNN approach is currently being to other problems and is giving promising results on 

both classification and regression problems. Those results will be presented in future 

publications. 
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Appendix A: Network Design 

A.1: Individual Networks for Depth Analysis 

The network shown in Fig. 13 is a deep fully convolutional neural network (A fully 

convolutional neural network is a network wherein all the layers are convolutional layers) with 

no pooling and no padding. Therefore, no information loss occurs inside the network, as there is 

no bottleneck or data compression; this network is able to preserve the details of the input 

samples. But the main problem is that this model is unable to find big objects and coarse features 

in the image. In order to solve this problem, three other networks have been designed as shown 

in Figs. 14-16. These three networks take advantage of the max-pooling layers to gain transition 

invariance and also to recognize bigger objects and coarser features inside the image. These 

networks use 2×2, 4×4, and 8×8 max-pooling operators, respectively. Larger pooling kernels 

allow coarser features to be detected by the network. The main problem with these networks was 

that the spatial details vanished as a result of data compression in pooling layers.  

After several attempts of designing different networks, the observations showed that in order to 

estimate the depth from an image, the network needed to see the whole image as one object. To 

do that it requires the kernel to be the same size as the image in at least one layer that is 

equivalent to a fully connected layer inside the network.  

In fully connected layers each neuron is connected to all neurons in the previous/next layer. 

Due to the computationally prohibitive nature of training fully connected layers, and their 

tendency to cause overfitting, it is desirable to reduce the number of these connections. Adding 

fully connected layers results in a very tight bottleneck, which seems to be crucial for the depth 

estimation task, but also causes the majority of the details in the image to be lost. In Figs. 17-20 

the networks with fully connected layers are shown. These networks correspond to networks in 
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Figs. 13-16 but with convolutional layers replaced with fully connected layers on the right-hand 

side of the network. Using different pooling sizes before the fully connected layer will cause the 

network to extract different levels of features, but all these configurations introduce loss of 

detail. 

Each of these eight configurations has its own advantages and shortcomings, from missing the 

coarse features to missing the details. None of these designs converged to a reasonable depth 

estimation model. 

The main idea of the SPDNN method is to mix and merge these networks and generate a single 

model which includes all the layers of the original models in order to be able to preserve the 

details and also detect the bigger objects in the scene for the depth estimation task. 

A.2: The SPDNN Parallelization Methodology 

A.2.1: Graph Contraction 

A consideration while parallelizing neural networks is that having the same structure of layers 

with the same distance from the input, might lead all the layers to converge to similar values. For 

example, the first layer in all of the networks shown in Figs. 13-20 is a 2D convolutional layer 

with a 3×3 kernel.  

The SPDNN idea uses graph contraction to merge several neural networks. The first step is to 

turn each network into a graph in which it is necessary to consider each layer of the network as a 

node in the graph. Each graph starts with the input node and ends with output node. The nodes in 

the graph are connected based on the connections in the corresponding layer of the network. 

Note that the pooling and un-pooling layers are not represented as nodes in the graph, but their 

properties will stay with the graph labels, which will be explained later. 
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Figs. 13-20 presents the networks and their corresponding compressed graphs. Two properties 

are assigned to each node in the graph. The first property is the layer structure, and the second 

one is the distance of the current node to the input node. To convert the network into a graph, a 

labeling scheme is required. The proposed labelling scheme uses different signs for different 

layer structures, C for convolutional layer (for example 3C mean a convolutional layer with 3×3 

kernel), F for fully connected layer (for example 30F means a fully connected layer with 30 

neurons) and P for pooling property (for example 4P means that the data has been pooled by the 

factor of 4 in this layer). 

Some properties, like convolutional and fully connected layers, occur in a specific node, but 

pooling and un-pooling operations will stick with the data to the next layers. The pooling 

property stays with the data except when an un-pooling or a fully connected layer is reached. For 

example, a node with the label (3C8P, 4) corresponds to a convolutional layer with a 3×3 kernel, 

the 8P portion of this label indicates that the data has undergone 8×8 pooling and the 4 at the end 

indicates that this label is at a distance of 4 from the input layer. The corresponding graphs, with 

assigned labels for each network, are illustrated in Figs. 13-20. 

The next step is to put all these graphs in a parallel format sharing a single input and single 

output node. Fig. 21 shows the graph in this step. 

In order to merge layers with the same structure and the same distance from the input node, 

nodes with the exact same properties are labeled with the same letters. For example, all the nodes 

with properties (3C, 1) are labeled with letter A, and all the nodes with the properties (3C2P, 4) 

are labeled K, and so on.  

The next step is to apply graph contraction on the parallelized graph. In the graph contraction 

procedure, the nodes with the same label are merged to a single node while saving their 
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connections to the previous/next nodes. For instance, all the nodes with label A are merged into 

one node, but its connection to the input node and also nodes B, C, D, and E are preserved. The 

contracted version of the graph in Fig. 21 is shown in Fig. 22. 

Afterwards, the graph has to be converted back to the neural network structure. In order to do 

this process, the preserved structural properties of each node are used. For example node C is a 

3×3 convolutional layer which has experienced a pooling operation. Note that the pooling 

quality will be recalled from the original network. 

 

Fig. 13 Top row: network 1, Bottom row: graph corresponds to network1. 

 

Fig. 14 Top row: network 2, Bottom row: graph corresponds to network2. 

 



35 

 

Fig. 15 Top row: network 3, Bottom row: graph corresponds to network3. 

 

Fig. 16 Top row: network 4, Bottom row: graph corresponds to network4. 

 

Fig. 17 Top row: network 5, Bottom row: graph corresponds to network5. 

 

 

Fig. 18 Top row: network 5, Bottom row: graph corresponds to network6. 
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Fig. 19 Top row: network 7, Bottom row: graph corresponds to network7. 

 

Fig. 20 Top row: network 8, Bottom row: graph corresponds to network8. 

 

 

Fig. 21 Parallelized version of the graphs shown in Figs. 13-20 sharing a single input node and single output node 
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Fig. 22 Contracted version of the big graph shown in Fig. 21 

The concatenation layer is used in the neural network in order to implement the nodes wherein 

several other nodes lead to one node. For example, in nodes N and O the outputs of nodes J, K, 

L, and M are concatenated with the pooling qualities taken from their original networks. 

The graph is translated back to a deep neural network. The network correspond to the graph in 

Fig. 22 is shown in Fig. 2. 

A.3: SPDNN: How it Works and why it is Effective? 

One might ask why the SPDNN approach is effective and what the difference is between this 

approach and other mixing approaches. Here the model designed by the SPDNN scheme is 

investigated in the forward and back propagation steps. The key component is in the back-

propagation step where the parameters in parallel layers influence each other. These two steps 

are described below: 

Forward propagation: Consider the network designed by the SPDNN approach shown in Fig. 

23. This exemplary network is made of five sub-networks. Just the general view of the network 

is shown in this figure and the layers’ details are ignored since the main goal is to show the 

information flow within the whole network. 
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When the input samples are fed into the network, the data travels through the network along 

three different paths shown in Fig. 24. 

At this stage the parallel networks are blind to each other, i.e., the networks placed in parallel 

do not share any information with each other. As shown in Fig. 24 the data traveling in Sub-Net 

1 and Sub-Net 2 are not influenced by each other since they do not share any path together, as in 

Sub-Net 3 and Sub-Net 4. 

 

Fig. 23 A network designed using the SPDNN approach. It contains 5 sub-networks placed in parallel and semi-

parallel form. 

 

Fig. 24 Forward propagation inside the SPDNN. There are three different paths on which the information can flow 

inside the network 

Backpropagation: while training the network, the loss function calculated based on the error 

value at the output of the neural network is a mixed and merged function of the error value 

corresponding to every data path in the network. In the backpropagation step the parameters 

inside the network update based on this mixed loss values. i.e., this value back-propagates 
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throughout the whole network as it is shown in Fig. 25. Therefore, at this stage of training, each 

subnetwork is influenced by the error value from every data path shown in Fig. 25. This 

illustrates the way each subnetwork is trained to reduce the error of its own path and also the 

error from the mixture of all paths. 

 

Fig. 25 Backpropagation for SPDNN. The mixed error is back propagated throughout the network while updating 

parameters. 

The main difference between the SPDNN approach and other mixing approaches, like the 

voting approach, lies in the back propagation step where different sub-nets are influenced by the 

error of each other and try to compensate for each other’s shortcomings by reducing the final 

mixed error value. In the voting approach, different classifiers are trained independently of each 

other and they do not communicate to reduce their total error value. 

A.3.1: SPDNN vs. Inception 

One of the approaches that has superficial similarities to SPDNN is the Inception technique 41. 

For clarity, and to aid the reader in understanding, the authors list four significant points of 

difference between SPDNN and Inception with regard to mixing networks.   

1. The main idea in SPDNN is to maintain the overall structure of the networks, but to mix 

them in a reasonable way. For example, if there is a big kernel such as 13×13 in one of 

the configurations, the SPDNN method always preserves the structure (13×13 kernel) 
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inside the final network. This contrasts with inception 41, which reduces larger kernels 

into smaller ones.  

2. In the inception method, all the layers are merged into one final layer, which does not 

happen with the SPDNN approach.  

3. The number of the layers in the SPDNN architecture is less than or equal to the number 

of the layers in the original networks. In contrast, the inception idea aims to increase the 

number of layers in the network by (it breaks down each layer into several layers with 

smaller kernels). 

The SPDNN idea is to design a new network from existing networks that perform well at some 

task or subtask while the idea in inception is to design a network from scratch. 

Appendix B: SegNet 

SegNet is fully convolutional semantic image segmentation framework presented in  31,32. This 

model uses the convolutional layers of the VGG16 network as the encoder of the network and 

eliminates the fully connected layers, thus reducing the number of trainable parameters from 

134M to 14.7M, which represents a reduction of 90% in the number of parameters to be trained. 

The encoder portion of SegNet consists of 13 convolutional layers with ReLU nonlinearity 

followed by max-pooling (2×2 window) and stride 2 in order to implement a non-overlapping 

sliding window. This consecutive max-pooling and striding results in a network configuration 

that is highly robust to translation in the input image but, has the drawback of losing spatial 

resolution of the data. 
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This loss of spatial resolution is not beneficial in segmentation tasks where it is necessary to 

preserve the boundaries of the input image in the segmented output. To overcome this problem, 

the following solution is given in 31. As most of the spatial resolution information is lost in the 

max-pooling operation, saving the information of the max-pooling indices and using this 

information in the decoder part of the network preserves the high-frequency information.  

Note that for each layer in the encoder portion of the network there is a corresponding decoder 

layer. The idea of SegNet is that wherever max-pooling is applied to the input data, the index of 

the feature with the maximum value is preserved. Later these indices will be employed to make a 

sparse feature space before the de-convolution step, applying the un-pooling step in the decoder 

part. A batch normalization layer 23 is placed after each convolutional layer to avoid overfitting 

and to promote faster convergence. Decoder filter banks are not tied to corresponding encoder 

filters and are trained independently in the SegNet architecture. 
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Abstract 

 

With the growing use of digital lightweight cameras, 
generating 3D information has become an important 

challenge in computer vision. Despite several attempts 

presented in the literature to solve this challenge, it 

remains an open problem when it comes to the structural 

accuracy of the depth map and the required baseline 

(distance between the first and the last frames) to capture 
a sequence of images. In this paper, a novel approach is 

proposed to compute a high quality dense depth map 

together with a semi-dense/dense 3D structure from a 

sequence of images captured on a narrow baseline. 

Computing the depth information from small motions has 

been a challenge for decades because of the uncertain 

calculation of depth values when using a small baseline – 

up to 12mm. The proposed method can, in fact, perform on 

a much wider range of baselines from 8 mm up to 400 mm 

while respecting the structure of the reference frame. The 

evaluation has been done on more than 10 sets of 

recorded small motion clips and for the wider baseline, on 
7 sets of stereo images from Middlebury benchmark. 

Preliminary results indicate that the proposed method has 

a better performance in terms of structural accuracy in 

comparison with the current state of the art methods. Also, 

the performance of the proposed method remains stable 

even when only a low number of frames are available for 

processing. 

 

1. Introduction 

The use of consumer cameras, specifically smart-

phones is growing continuously nowadays and the level of 

expectation around what these cameras can do is 

increasing year by year. Consumers and photographers 

generally prefer to have advance features such as shallow 
depth of field in their images. This effect requires a large 

aperture like the ones used in DSLR cameras. Lightweight 

cameras like those in smartphones are equipped with small 

apertures which are not capable of reproducing this effect.  

Because these types of cameras are equipped with only 

one lens, this feature is commonly implemented by using a 

focal stack to compute the depth map [1, 2, 3, 4]. An 

alternative approach is to compute the 3D structure of the 

scene and the corresponding depth map. 

The 3D structure can be computed using the frame-to-

frame movements of the handheld camera. Movements of 

the camera can occur for several reasons, such as natural 

hand-shake, or when the user moves the camera slightly to 

capture a better scene. Generally, this effect is considered 

as an issue to be solved with image stabilization methods 

or stabilization gear such as tripods. However these types 

of movements can be used advantageously in a variety of 
applications for instance synthetic defocus [5, 6]. 

The baseline between sequences of frames captured as 

a sudden motion is considered to be small if it’s less than 

~8 mm. This restricts the viewing angle of a 3D point to 

less than 0.2° [7]. Due to this limitation the general 
Structure from Motion (SfM) methods fails [8, 9, 10] and 

the computed depth map will be highly penalized. 

Several works addressed the challenges of the 

Structure from Small Motion (SfSM) [5, 7, 11, 12] and 

proposed a number of algorithms. But there are still a 

couple of open challenges remaining for these methods 

such as: 

1- These methods fail for baselines wider than ~12 

mm. In wide-baseline motions, local image 

deformations cannot be realistically 

approximated by translation or translation with 
rotation and a full affine model is required. Also 

larger baselines increase the observed disparities, 

but increase the difficulty of finding 

corresponding points due to a larger change in 

viewpoint. This statement is specifically targeting 

the close scenes with shorter depth ranges. 

2- These methods return false results when the 

number of the input frames is less than 15 frames. 

3- The structure of the depth map is not respected 

properly based on the reference frames. More 

specifically the depth maps generated by these 
methods suffer from the lack of accuracy along 

the edges and corners of structures within the 

imaged scene. 

4- Some of these methods suffer from 

missing/undefined patches in the depth map, 

especially along the boundaries of the image. 
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In this paper, we propose an approach to estimate the 

depth from small motion clips that addresses each of the 

challenges mentioned above. In addition to its ability to 

provide high structural accuracy and occlusion handling, 

the proposed method has 2 important additional 

advantages: 

1- It is able to process a sequence of image frames 

with baselines as large as 400 mm. 

2- There is no restriction on the minimum number 

of frames in the proposed method. The evaluation 
shows that it can perform accurately 

for ������ ≥ 2. 

In the next section, we review the previous works done 

in this area. Section 3 presents the details of the proposed 

approach and the evaluation and comparison results are 

presented in section 4. 

2. Related Works 

The first step in the process of the SfSM is to build a 

dense 3D model from the sequence of images. This step is 

widely studied in several SfM research works [13, 14, 15].  

In SfM, bundle adjustment [16] is used to find the 

optimal estimation of the sparse 3D structure of the scene 

and positions of camera poses. Nonlinear least square is 

used as the basic cost function to evaluate the reprojection 
error from undistorted to distorted image domain. There 

are several issues that must be solved for this method to be 

successful: 

1. The accuracy of the estimated 3D structure is 

highly dependent on proper initialization of the 

cost function. To solve this problem factorization 

methods have been widely adopted in SfM 

literature as a means for initializing the bundle 

adjustment [17, 18, 19]. 

2. When encountering continues texture-less 

surface, the method is not capable of producing 
3D points due to the lack of features and the 

failure of the feature tracking. 

3. The feature tracking is also an issue in case of 

rapid movements. 

4. Complex computation of the reprojection error 

for inverse depth representation because of 

mapping the projected 3D points from the 

undistorted image domain to the distorted image 

domain [20]. This issue makes the normal bundle 

adjustment improper for small motions. 

 

To overcome the problems of the common bundle 
adjustments with small baseline motions, a modified 

bundle adjustment is presented in [11]. In this case the 

reprojection error is calculated from distorted to 

undistorted image domain [21]. This solves the inverse 

depth representation problem. The method presented in 

[11] also employs the idea that in small motion clips the 

cost function can be initialized better as long as the camera 

poses or the distance between frames are closer to each 

other. The idea used in [11] was initially introduced in [7] 

to find the trajectory of the camera from small motion. 

The density profile in [7] is created by random depth 

initialization and plane sweeping based image matching 

[22, 23]. It employs Markov Random Field [24] to 
regularize the estimated depth effectively. 

The method presented in this paper appears to be the 

first to deal successfully with wider baselines and low 

frame-rate motion clips. This work presents evaluation and 

comparisons with other methods in both small and large 

baseline motions. The results demonstrate that the method 

proposed here performs better in terms of accuracy of the 

depth estimation and respecting the structure of the 

reference image frame.  

Fig. 1 illustrates the general overview of the proposed 

SfSM approach. 

3. Proposed Method 

The main steps of the proposed SfSM approach are 

detailed and explained in this section.  

The feature detection of the 3D reconstruction block in 
the proposed method is equipped with ORB features [25]. 

The correspondence features location to the initial features 

is found by Kanade-Lukas-Tomashi (KLT) method [26]. 

The bundle adjustment presented in [11] is used for 3D 

structure optimization based on the Huber loss function 

[27]. The reason for employing this bundle adjustment is 

the different way of measuring the reprojection error than 

the usual SfM methods.  

The reprojection error is computed by mapping the 

points in the distorted domain to the points in the 

undistorted domain. The point of this change is to make 
the reprojection error computation less complex for 

inverse depth estimation. Using this technique enables the 

proposed method to perform on uncalibrated motion clips.  

Fig. 2 shows the 3D reconstruction by our method and 

Hyowon Ha et al. [11]. 

3.1. Dense Matching Profile 

The basic idea of the dense matching in the current 

paper is based on the Plane Sweeping method [22]. 

Different from plane sweeping based stereo matching 

methods, we estimate the �-th plane directly from the set 

of ORB matches. If (��,��) and (�� − �,��) represents 

the pixel � in the left image and the correspondence match 

in the right image respectively, then the set of � =

{��,��,�} denotes the match of the two pixels.  
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Figure 1. General overview of the proposed SfSM 

At the pixel (��,��), the disparity is �(�,�) =  � ∔
(��,��,�), where  � = (��,��,��) represents the plane.  

To compute the sequence of disparity planes, a 

segmentation tree [28] is used. The overall objective 
function in the proposed method which is being minimized 

by the segmentation tree is: ∑ �(��,�� ���)   (1) 

where �� ∈ � and �� is part of the plane �� . The goal of 

this function is to measures the error between the true 

disparity at � and the disparity generated by the plane. �-
th disparity plane is computed by minimizing this function 

using a graph �. The graph � is constructed by connecting 

each node � to its ten nearest neighbours computed by 

Euclidean distance. 

3.2. Matching Cost and Plane Sweeps 

At the first step, the frame � is resampled into an [�,�] 

area from frame �+ � using B-Spline interpolation. The 

correlation score of �(�,�,�) is obtained over  5 × 5 

patches. The score is turned into the pixel-wise matching 

cost as: �(�,�,�) = � −�(�,�,�)   (2) 

where � refers to Normalized Cross Correlation and � 

refers to the matching cost. 

The raw cost is converted from pixel cost to the 

aggregated volume cost using adaptive cost aggregation 

[29]. 

As it is common in most of the stereo algorithms, the 

cost volume is computed as: �(�,�,�) = ∑ �(�,�,�)(�,�)    (3) 

But this assumption has a requirement that the surface 

has to be facing the camera and this makes the pixels 

surrounding a patch to have almost the same disparity 

value. The restriction for this assumption arises from the 

common and important challenge of handling the 

occlusions along the boundaries in stereo matching 

methods. To resolve this issue, the cost volume is 

computed by aggregating the cost based on the color and 

similarity features. The matching cost from the resampled 
image is weighted by a similarity feature, in this paper the �� and the color difference between  � =  (�,�) and � =  [�,�] as �ℂ. 

The weighting function � can be defined as: �(�,�) = ��� (
−�ℂ−��� )   (4) 

where � is the weighting constant. The basic idea in Eq. 4 

is to aggregate the matching cost based on color and 

feature similarity (geometric proximity). Considering a 

pixel � and pixel �, the matching cost from � is weighted 

by the color difference between  � and �, and the 

Euclidian distance between � and � on the image plane. 

The computed aggregated cost from the pixel-wise cost is: 

�(�,�) =  
∑ �(�,�)�′(�,�′)�(�,�)�,�′∑ �(�,�)�′(�,�′)�,�′     (5) 

 

 

  

a. A frame of the sequence 
b. Our reconstructed 3D point cloud and the 

estimated camera trajectory – Side view 

c. Reconstructed 3D point cloud by Hyowon 

Ha et al.[11] – Side view 

Figure 2. Comparison of our 3D reconstruction with Hyowon Ha et al. [11] 
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Depth 
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Output: 
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where � and � are the matching pixels and �′ is the 

support region of �. Eq. 5 represents the weighted sum 

of per pixel which is used as cost aggregation. 

Once the cost volume is computed, the initial 

disparity map � is obtained by parametrizing the plane 

equation in pixel level with local disparity values. The 

condition for choosing the local disparity is minimizing 

the total aggregation cost.  

Although  � has a quite reasonable depth values but 

it still can be noisy and the structure of the depth map 

can suffer from inaccurate edges and corners. To solve 

this issue and handle the probable occlusions, we define 

2 terms as the smoothness term and the data term. 

The smoothness term for pixels � and � and the 

displacement vector � is defined as: ����,��� = ���������� −�����, ��   (6) 

where ��� is the weighting variable computed by the 

color similarity of the patch surrounding � and pixel �. � 
is the reduction threshold. 

This term has the most influence on occlusion 

handling by propagating the cost from the non-occluded 
pixels to occluded pixels based on their similarity. 

Following the smoothness term, the data term is 

defined as: 

������ = ���� −��∗���         � �� ��� − ���������,          ���������  

  (7) 

where ��∗  is the initial displacement vector. 

Defining these 2 terms handle more than 96% of the 

occlusions but still, there are some missing parts, 

specifically around the boundaries of the objects which 

cause an inaccurate edge structure in the depth map. 

Considering a pixel � located in the occluded area. We 
try to estimate its disparity value by using a small patch �(�) with known disparity values, centered at �.The 

disparity value of � can be estimated by the following 

equation: �� = �� + 〈���,� − �〉   (8) 

where ∈ �(�) , �� and ��� are the disparity value and 

gradient respectively. 〈, 〉 represents the inner product 

operation. 

This estimation is done for all the pixels in �(�) and 

at the end the final disparity map of � is obtained by: 

�� =
∑ �������+〈���,�−�〉�∈�(�) ∑ ����∈�(�) 

    (9) 

where ��� = ��� is the weighting function and it is 

defined as: ��� = ���(��)���(��)   (10) 

where ���(��) denotes the distance term and ���(��) 

color similarity term. ���(��) = ��� (− ‖�−�‖���� )   (11) ���(��) = ��� (− ���−������� )   (12) 

where �� and �� are the color values of the pixels � and � respectively. � and � are constant values specified 
experimentally. 

When corresponding matching pixels have dissimilar 

colors because of illumination variations, the inaccurate 

disparity map is generated. Adding the color similarity 

term to the weighting function helps to handle this issue. 

To treat the probable artifacts caused by plane 

sweeping algorithm due to the over/under sampling, the 

inter frame motion estimation problem is reformulated to 

be optimized over image intensity function for sequence 

of frames. The formulation computes the cost over all 

pixels of the reference frame. Through this formulation a 
geometrical fidelity is checked for patch of pixels. The 

fidelity check is based on consistency of the normal 

directions between neighboring pixels to make sure they 

have similar surface normal vector. The correlation 

between the normal vectors of the center pixel and 

neighboring pixels can lead optimization to refine the 

depth map. 

3.3. Final Depth Refinement 

After computing the final depth map from the 
previous step, it is refined by the guided joint filter 

presented in [30]. The filter in [30] is based on the 

mutual information. The mutual information guides the 

weighted median filter to follow the structure of the 

RGB image while filtering the correspondence depth 

map. To keep the valid depth values and just filtering the 

false ones, window selection step of the median filter is 

designed to be adaptive using the joint histogram. The 

probable remaining artifacts after the adaptive weighted 

median filter are being eliminated by normalized 

interpolated convolution in diffused image domain. 

Beside the performance of this filter in occlusion 
handling, it helps the depth map to follow the image 

structure more precisely. Without defining any 

limitations, for small parallax including slow-enough 

motion, or far-enough objects, or fast-enough temporal 

sampling, occluded areas are small. Our experiments 
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show that the mentioned filter guarantees intra-object 

occlusion handling accurately even in wide baseline 

motions. The failure of the filter might occur in the case 

of large inter-object occlusion. Generally in small 

motions the main occlusion to deal with is intra-object. 

Although it is worth pointing out that the filter is able to 

handle relatively good amount of inter-object occlusions 

unless there is a considerable displacement or off axis 

parallax. 

4. Experiments and Evaluation 

In this paper, the experiment and evaluation is done 

in 2 parts. First, the proposed method is evaluated for 

small motions and in the second part, it is evaluated for 

stereo image sets. The first comparison is done against 

Hyowon Ha et al. [11] and Kevin Karsch et al. [31] and 

the second comparison is done against 3DMST [32] and 

APAP-Stereo [33] stereo matching algorithms ranked in 
Middlebury stereo benchmark [34], training dense 

section. 

For the first part, the dataset from [11] is used and we 

also provided 10 other small motion clips using the 

devices shown in Table 1. The motion clips are available 

to download at (goo.gl/m5QohE). 

There is no ground truth in this form of evaluation, but 

the performance of the proposed method makes it 

possible to show the visual comparison with 2 other 

methods. 

Fig. 3 shows the depth map computed by Hyowon Ha 

et al. [11], Kevin Karsch et al. [31] and our method. 

These images show the performance of the proposed 

method in terms of accuracy of the depth along edges 

and the depth values on the surface of objects in the case 

of small motions and small baseline. 

The results by Hyowon Ha et al. [11] and Kevin 

Karsch et al. [31] have inaccurate depth values along the 
edges and corners of the objects as seen in Fig.3.a and 

Fig.3.b. Note that due to the very small baseline between 

the frames these methods distinguish foreground 

information better than background information. 

In some cases as shown in Fig.3.b, the depth map 

estimated by these methods are suffering from inaccurate 

depth values on an object’s surface or the depth values of 

the background and foreground objects are mixed 

together which cause inaccurate performance in 

segmentation and 3D reconstruction applications. 

Fig. 4 shows how the inaccurate depth values along 

the edges can generate a faulty 3D structure. The 
highlighted patches show a part of the 3D textured mesh 

generated based on the reference frame and the 

corresponding depth map.  

 

    

    
a. A frame from the 

sequence 

Depth map computed by Kevin 

Karsch et al.[31] 

Depth map computed by 

Hyowon Ha et al.[11] 

Depth map computed by the 

proposed method. 

    
b. A frame from the 

sequence 
Depth map computed by Kevin 

Karsch et al.[31] 

Depth map computed by 

Hyowon Ha et al.[11] 

Depth map computed by the 

proposed method. 

Figure 3. Comparison of the depth from small motion with state-of-the-art methods 

2457



   

 

 

 
 

Table 1. Devices used for making our own dataset 

 Device Resolution fps 

1 iPhone6 Plus 1080p 60 

2 iPhone6 Plus 1080p 30 

3 iPhone7 1080p 30 

4 iPhone7 720p 30 

5 iPhone7 Plus 1080p 30 

6 iPhone7 Plus 4K 30 

The 3D mesh generated based on the depth map by 

Hyowon Ha et al. [11] is suffering from missing parts on 
objects’ surfaces which is caused by inaccurate depth 

values on reference patches. 

For the second part of the comparison, we evaluated 

the performance of the proposed method for a set of 

stereo images. In this case, we considered the left and 

right images as a sequence of frames, 2 frames instead of 

processing 30 frames by considering the fact that the 

method is designed to perform on small baseline motions 

while the higher number of frames provides the higher 

number of inliers at the feature matching step. Note that 

more experiments are done on ordinal camera motions 

recorded by authors [11]. The depth map in Fig.1.d and 

Fig.1.c in the Appendix_1 (goo.gl/fqqUxk) is 

generated using only 2 frames of the real camera motion 

which is captured by users. That’s why the result of the 

method [11] in Fig.1.d and Fig.1.c in Appendix_1 is 

different from what is published in the main paper [11]. 

The depth map in [11] is computed using 30 frames, but 

in this paper only 2 frames are used. That shows the 
superior performance of the proposed method. 

To have an accurate evaluation at this part, we used 7 

pairs of stereo images from Middlebury stereo 

benchmark with the corresponding ground truth depth 

maps. Fig. 5 represents the visual comparison of this 

evaluation. Fig.5.a and Fig.5.b show how the proposed 

method is capable of keeping the structure of the 

reference image in the depth map, especially important 

features like edges and corners in comparison with top 

stereo matching algorithms.  

The accuracy of the estimated depth by each method 

has been evaluated against the ground truth which is 

provided by the benchmark and the numerical results are 

presented in Table 2. These results illustrate the 

competitive performance of the proposed method in 

terms of accuracy of the depth along edges and the depth 

values on the surface of the objects against top 

algorithms in Middlebury benchmark. Although there is 
still the potential for this method to be improved as it is 

not performing perfectly in some cases. 

To find more visual/extended numerical results and 

the higher resolution version of the images presented in 

Fig. 3 and Fig. 5 please refer to Appendix_1. 

For evaluation purposes, 4 metrics including PSNR, 

RMSE, Universal Quality Index (UQI) [35] and 

Structural Similarity Index (SSIM) [36] are used. Table 2 

presents the average numerical comparison of the 

methods per metric on the chosen stereo sets from the 

benchmark. The extended numerical results are 

presented in Appendix_1. 
Fig. 6 represents the SSIM and UQI maps of the 

depth map generated by each method from the images in 

Fig. 5. The SSIM map show how similar is the structure 

of the computed depth map to the ground truth. The 

lighter and darker pixel values show more and less 

structural similarity to the ground truth respectively. 

The general quality of the generated depth maps in 

comparison with the ground truth is shown as UQI map. 

The lighter and darker pixel values show more and less 

similarity to the ground truth respectively. 

As it is illustrated in Fig. 6, the proposed method is 
estimating depth maps relatively close to the ground 

truth in both structural and quality indices as there are 

larger areas covered with lighter values. The areas 

presented in dark show how far the depth values are 

from ground truth based on SSIM and UQI maps.

 

   

   

Reference frame 
3D textured mesh – Ground 

truth 

3D textured mesh – Our 

method 

3D textured mesh – Hyowon 

Ha et al.[11] 

Figure 4. Comparison of the 3D textured mesh based on the depth maps generated by the proposed method and Hyowon Ha et al. [11] 
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a. Reference frame 3DMST [32] APAP-Stereo [33] Our method Ground truth 

     

     
b. Reference frame 3DMST [32] APAP-Stereo [33] Our method Ground truth 

Figure 5. Comparison with 3DMST [32] and APAP-Stereo [33] based on Middlebury benchmark 

 

There are still considerable parts in the depth maps 

generated by the proposed technique which look far from 

ground truth but the results are reasonably close to the 

top stereo matching algorithms. 
SSIM maps in Fig. 6 show that the structure of the 

reference frames including the sharp edges and corners, 

is respected in the estimated depth map and this is one of 

the advantages of the proposed method. 

Occluded regions are important features in depth 

extraction methods [37][38]. Unlike most of the current 

algorithms that are not able to handle this issue, the 

proposed method can estimate the information on 

invisible scene components. Fig. 6 illustrates another 

important advantage of the proposed technique which is 

the acceptable performance on lower fps motions such as 

2 frame stereo images. The presented cost function 
makes the algorithm capable of processing motions with 

wider baseline.  

The robustness of the proposed method is also 

evaluated by considering the magnitude of the baseline 

and number of the frames. The result illustrates that the 

algorithm can generate depth with the similarity of ~75% 

to the ground truth as long as the magnitude of the 

baseline is greater than ~6% of the nearest scene depth 

and the number of frames captured exceeds 2 frames. 

Table 2. Numerical comparison of the methods/average per 
metric for seven stereo set 

 PSNR RMSE UQI SSIM 

Ours 17.281 35.491 0.87 0.70 

3DMST [32] 18.315 29.975 0.89 0.82 

APAP-Stereo [33] 18.734 28.672 0.95 0.85 

5. Conclusion 

This paper has presented an accurate approach for 

computing the depth map from narrow baseline motion 

clips.  

Six important contributions have been proposed in this 

work as follows: 

General Contributions: 

1. Generally in small motions, the feature tracker 

can obtain more inliers due to the small 

difference between the frames. However the 

number of inliers reduces when the baseline 

becomes wider and as the result the generated 

depth map becomes inaccurate. The modified 
cost function in the proposed method makes it 

capable of processing sequence of frames with 

the baseline up to 400 mm while most of the 

methods in this field fail for the baselines wider 

than ~12 mm.  

2. Accurate performance for ����� ≥ 2  
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3. Occlusion handling by respecting the structure 

of the reference frame. 

Technical Contributions: 

1. New data and smoothness terms are defined to 

recondition cost volume and cost aggregation 

function. 

2. Proposed cost propagation is formulated as 

energy minimizer function for depth on each 

pixel point. 

3. The proposed method can approximate non-
planar surfaces, while being robust against 

depth outliers and occlusion. 

This practical application has the potential to be used 

in smartphone cameras. These cameras are designed to 

gather image frames before and after a user initiate a 

capture sequence. The 3D information obtained by this 

method can be used for synthetic defocus applications, 

object detection and segmentation purposes and scene 

analyses and understanding. 

Unlike other techniques, the 3D points generated by 

the proposed method at the background of a scene don’t 

have high uncertainty. This gives a uniform and 
continuous shape to the point cloud from the closest to 

the furthest point visible to the camera. 

A range of different experiments on both wide and 

narrow baselines have been conducted which proved that 

the proposed method exhibits improved performance 

over state of the art methods. In addition this method is 

sufficiently robust to perform adequately at low frame 

rates and with a small number of input images. 

With respect to the performance and accuracy of the 

studied method, there is still the computational time of 

this technique which has to be considered as a trade-off. 
The method has been tested on a device equipped with 

Intel i7-5600U @ 2.60GHz CPU and 16 GB RAM. The 

whole process of computing the 3D structure and depth 

map take about 6-8 minutes. The most expensive part of 

the method is the bundle adjustment optimization which 

is takes around 4-5 minutes on high resolution images 

and motivates our future research activities to make this 

method suitable for real-time applications. The full 

evaluation of this method requires a dataset of video 

sequences with valid ground truths which at the moment 

is not publicly available. As part of our future work on 

this topic we would like to provide a dataset of video 
sequences with the ground truths for close-range scenes 

using ToF cameras. 
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1 Introduction
The compact design of mobile cameras does not allow users
access to lens properties such as the aperture. By having
the control over the aperture in a camera, one can control
the camera’s depth of field (and the light flux entering the
camera). This means the user can decide how much of
an image remains in focus around an object. Figure 1(a)
shows schematically the relation between the depth of focus
(in image space) and depth of field (in object space).
As shown in Fig. 1(c), small depth of field will make the
main object in focus while the rest of the image will
be less sharp. A large depth of field will keep the entire
image sharp throughout its depth; this concept is shown in
Fig. 1(d). When light rays from an out of focus point source
enter a lens, the point on the object is focused into a circle on
the image plane. This circle is called the circle of confusion
(CoC), which is shown as C in Fig. 1(a).

The size of the CoC is used to measure the sharpness of
an image. The bigger CoC shows that the point on the object
is more out of focus. The diameter of CoC depends on
focal length f, object distance ln (near point), the distance
between the object point and the lens l, and aperture diam-
eter d. Therefore, the diameter of the CoC can be calculated
using

EQ-TARGET;temp:intralink-;e001;63;172C ¼ dfjl − lnj
lðln − fÞ : (1)

Figure 1(b) shows the relationship between the CoC and
the object distance for an aperture f∕2.8 mm for a specific

camera model. The X axis in Fig. 1(b) represents the distance
of the object points in focus and the Y axis shows how far the
object would be in focus. For instance, if an object is located
at the distance 1000 mm the value of CoC is 0, this means the
object is fully in focus. If an object is located at the distance
beyond 1200 mm then the 1.5 m setting of the camera should
be used. If an object is located at the distance beyond
2000 mm then the 3 m setting of the camera should be used,
and for the objects that are located at the distance beyond
6000 mm, the infinite setting of the camera should be used.

The adjustable aperture feature is available in DSLR cam-
eras but smartphone cameras have a fixed aperture as they are
designed for ease of portability, robustness, and low cost.

To overcome this shortcoming, postcapture image refo-
cusing can be employed by using depth from focus (DfD)1,2

and focal stack. The focal stack is a collection of images with
different focus points, which correspond to different depth
layers. The focal setting presenting the maximum sharpness
of pixel p corresponds to the depth of the pixel or its distance
to the camera. The combination of these images can generate
the extended depth of field similar to the range being gen-
erated by optical properties of the camera. The accuracy of
this effect is highly dependent on the accuracy of the corre-
sponding depth map.

In handheld devices such as smartphones, a focal stack is
generated by automatic focal plane sweeping to find the cam-
era’s best autofocus setting while taking photos. However,
in dynamic scenes, the slight translation of the camera by
users and their handshake can introduce motion parallax.
The experiments indicate that it takes about 1∕2 to 1∕3 s
for a camera to capture the full extent of its focus setting.
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This means that the local parallax met within this short time
frame can be dismissed but yet an alignment procedure is
required to compensate the parallax between the first and
last frame of the focal stack. Generally, an aligned focal
stack should be similar to a stack captured by a telecentric
camera.

In this paper, we present a framework to compute and
optimize the dense depth map from the high-resolution
focal stack, which can be used to produce an accurate syn-
thetic defocus. (The code is available in a Github repository:
https://github.com/hosseinjavidnia/Depth-Focal-Stack). The
framework initiates by taking a focal stack from a moving
camera as the input and generating a stabilized image
sequence. At the second step, the initial depth map is esti-
mated from the stabilized focal stack. At the end, precondi-
tioned alternating direction method of multipliers (PADMM)
with a new cost function is applied to refine depth disconti-
nuities and generate a noise-free depth map.

The proposed framework has several advantages in com-
parison to the state-of-the-art methods, such as

1. Fast and better convergence of the optimization
function

2. High structural accuracy of the depth map
3. High performance in texture-less scenes
4. Accurate depth information along objects’ boundaries

and surface

The rest of this paper is organized as follows: Sec. 2
outlines the previous research. The proposed framework is
explained in detail in Sec. 3. The evaluation results are
presented in Secs. 4 and 5, which include conclusion and
feature work.

2 Previous Work
A considerable amount of research focused on DfD control
for decades.3–8 Most of these methods concentrated on DfD/
defocus or depth recovery from the focal stack on light
field cameras.5,8–10 Using light field cameras has an advan-
tage of capturing simultaneous multiple views with variable
focal points, which provide more accurate information about
the depth of the scene; however, the images are captured in
low resolution and in small aperture the value of signal-to-
noise ratio (SNR) is significantly low.8 The size of these
cameras along with the mentioned challenges makes them
inapplicable for handheld devices such as smartphones.
Another disadvantage of light field cameras is the disability
in handling occlusion due to the lack of lateral variation
being captured in different viewpoints.9

A framework to recover depth from the focal stack is pre-
sented in Ref. 7 to handle images captured on smartphones.
The focal stack is being aligned to make it as similar as
a focal stack captured by a telecentric camera. Multilabel
Markov random field optimization is used to generate all in
focus image from the aligned stack. This method works quite
well for the Lambertian scenes; however, the optimization
problem during the calibration process is highly nonconvex,
which makes this process considerably slow. The other prob-
lem with this method is the processing time of the nonlinear
least squares minimization to jointly optimize the initially
estimated aperture size, focal depths, focal length, and the
depth map. The whole processing time of this method is
∼20 min for 25 frames with 640 × 360 pixels resolution,
which make this algorithm almost inapplicable as a smart-
phone application. The depth maps generated by this method
suffer from inaccurate depth values on objects surface,
especially on reflective surfaces. In some cases, the depth
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Fig. 1 Demonstration of the relation between F -number and depth of field, CoC, and object distance.
(a) Depth of field and CoC for a lens representing light collection optics in an imaging system.
(b) The relation between CoC and the object distance/focus position. (c) Small depth of field with
F -number 0.4. (d) Large depth of field with F -number 32.
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information along the boundaries of the foreground object is
mixed with the values on the background and that might
result in an inaccurate synthetic defocus.

The complexity of the nonconvex optimization is refor-
mulated in Ref. 6 where DfD is presented as a variational
problem by introducing a nonconvex data fidelity term
and a convex nonsmooth regularization. The nonconvex
minimization problem in Ref. 6 is aimed to be solved by
a linearized alternating directions method of multipliers.
This method has a superior performance in comparison to
state-of-the-art methods, but the convergence of the optimi-
zation function happens very slowly and in a high number of
iterations. Also, the depth map generated by this method
suffers from inaccurate depth values on objects surface and
missing edges and corners. The present research falls into the
similar category where the problem of a noisy depth map is
reformulated to a convex minimization problem to be solved
by PADMM.

Some other approaches in this field have been proposed to
facilitate the DfD applications by introducing coded focal
stack photography11 or coded aperture photography.12,13

These methods require physical changes in the structure of
the camera, and yet the generated depth maps suffer from
lack of structural quality.

Persch et al.14 proposed a variational approach for the
problem of depth from defocus based on modeling of the
image formation by featuring the thin lens model and pre-
serving the crucial physical properties such as maximum-
minimum principle for the intensity values. Later, the varia-
tional model is minimized using the multiplicative Euler–
Lagrange. The proposed solution in Ref. 14 appears to
generate false depth levels in relatively close scenes and in
general, the depth profiles are likely to be affected by the
color information as the robustification method employed
in Ref. 14 uses the full-color information of the focal stack.

Pérez et al.15 proposed a focal stack frequency decompo-
sition algorithm from light field images based on the trigo-
nometric interpolation principle as the discrete focal stack
transform. The proposed method in Ref. 15 utilizes fast
discrete Fourier transform to generate refocus planes in
a reasonably fast computational time. The reverse of this
transformation in studied in Ref. 16 where a focal stack is
used to obtain a four-dimensional (4-D) light field image
set using discrete focal stack transform.

Differently,15 Mousnier et al.17 presented an approach to
reconstruct 4-D light field image sets from a stack of images
taken by a fixed camera at different focal points. The algo-
rithm initiates by calculating the focus map by utilizing
region expansion with graph cut. Later, the depth map is esti-
mated based on the calibration details of the camera, and it is
used to reconstruct the epipolar images. The reconstructed
epipolar images are used for refocusing purposes.

Bailey et al.18 proposed a method to calculate depth from
the focal stack by estimating the blur level for each pixel.
The method initiates by applying a focus measure to each
pixel in the stack. A normalized convolution is proposed to
extrapolate the invalid blur estimates. Afterward, the per-
pixel depth is calculated based on the blur estimations.

Jeong et al.19 presented a postprocessing approach to
refine the estimated depth map from two images captured
with different focal points. The initial depth map is calcu-
lated using a depth from defocus algorithm. To improve

the quality of the depth map, mean-shift clustering is applied
to the first input image to obtain the segmented image.
A single depth value is assigned to each segment of the
image by averaging all depth values in the corresponding
segment.

Surh et al.20 presented a focus measure to determine how
in focus a point is on an image. The shape of the focus
measure introduced in Ref. 20 contains a disk that focuses
on the pixel of interest and the ring that surrounds the disk.
To estimate the depth map, the initial calculated cost volume
is aggregated by employing tree-based cost aggregation
method. Afterward, the depth discontinuity and unreliable
depth labels are filtered based on the median of absolute
deviation map and using tree-based cost aggregation method.

Focal stacks are also used to handle some of the optical
features such as postcapture perspective shift and aperture
reshaping. Alonso21 developed a method in the Fourier
domain for postcapture aperture reshaping in focal stacks.
This allows users to change the blur shape for the out of
focus points. This study came to the conclusion that by
utilizing domain transformation methods such as Fourier
it is possible to manipulate the optical setting of the camera.
In another study, Alonso et al.22 proposed a method for post-
capture perspective shift reconstruction of a 3D scene from
a focal stack. Unlike the computational approaches that esti-
mate the depth map, the method in Ref. 22 takes advantage
of depth-variant point-spread function to introduce the lateral
[ðx; yÞ plane) and axial (z plane] shifts.

3 Proposed Framework

3.1 Focal Stack Alignment
To compensate the misalignment of the input focal stack,
we refer to epipolar homography alignment. To do that,
we merge all the homographies into epipolar geometry.
Considering there are j plane patches in an image and their
corresponding maps in the second image are characterized as

EQ-TARGET;temp:intralink-;e002;326;343

H1 ¼ s1RðI − T NT
1 Þ;

H2 ¼ s2RðI − T NT
2 Þ;

: : :
Hj ¼ sjRðI − T NT

j Þ;
(2)

where s is a scale factor,R is a 3 × 3 rotation matrix, I is the
identity matrix, T is the second camera’s translation from
first camera’s point of view, and Nðn1;n2;n3Þ is the normal
vector of the plane surface. Therefore, we can write
EQ-TARGET;temp:intralink-;e003;326;224 s1
si
Hi −H1 ¼ s1RT NT

1 − s1RT NT
i ¼ KΔNT

i ;

K ¼ ðκ1κ2κ3ÞT ¼ RT ; (3)

where ΔNi¼ðΔn1Δn2Δn3ÞT ¼ s1ðN1−NiÞ. Consequently,
it can be concluded that

EQ-TARGET;temp:intralink-;e004;326;144diHi ¼ H1 þKΔNT
i i ¼ 2;3; : : : ; j; (4)

where d ¼ 1
kNk is the distance of the plane from the origin and

H1 represents the correlation between the basis homography
and all the other homographies. The important feature of
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Eq. (4) is that it reduces the number of independent param-
eters of a homography and makes them equal to the degree of
freedom (dof) of a system with j planar surface. Generally,
a homography includes 5 dof indicating the camera motion
and 3 dof representing the plane surface normal. Assuming
more than one plane between two images, then j homogra-
phies will have 8j parameters. Equation (4) decreases the
number of the parameters to 5þ 3j, which is equivalent
of the total dof in a system with j planar surface.

Using Eq. (4) the motion estimation can break down into
two parts:

First, considering thatH1 and K are fixed, it is possible to
characterize ΔNi and Hi by utilizing least square algorithm
for each plane patches. To estimate ΔNi we define two
vectors as
EQ-TARGET;temp:intralink-;e005;63;587

V1 ¼ ðκ1x − κ3xx 0 κ1y − κ3yx 0 κ1 − κ3x 0Þ;
V2 ¼ ðκ2x − κ3xy 0 κ2y − κ3yy 0 κ2 − κ3y 0Þ: (5)

So ΔNi can be estimated using least squares method as
EQ-TARGET;temp:intralink-;e006;63;526

V1ΔNi ¼ x 0ðh7xþ h8yþ 1Þ − ðh1xþ h2yþ h3Þ;
V2ΔNi ¼ y 0ðh7xþ h8yþ 1Þ − ðh4xþ h5yþ h6Þ; (6)

where h1−8 are the parameters of the homography matrix.
ðx; y; zÞ and ðx 0; y 0; z 0Þ are the coordinates of the point
P ¼ ðX; Y; ZÞ in two camera frames as

EQ-TARGET;temp:intralink-;e007;63;443x ¼ X∕Z y ¼ Y∕Z z ¼ 1; x 0 ¼ X 0∕Z 0 y 0 ¼ Y 0∕Z 0 z 0 ¼ 1:

(7)

The second part is somehow the inverse process of the
first part. Assuming ΔNi is fixed, H1 and K can be updated
by utilizing another least squares process. To estimate H1

and K, we define three vectors as
EQ-TARGET;temp:intralink-;e008;63;355

Ei ¼ ðx y 1 0 0 0 − xx 0 − yx 0 ΔNiP 0 − x 0ΔNiPÞ;
Fi ¼ ð0 0 0 x y 1 − xy 0 − yy 0 0 ΔNiP − y 0ΔNiPÞ;
G ¼ ðh1 h2 h3 h4 h5 h6 h7 h8 k1 k2 k3Þ; (8)

where P ¼ ðx; y; zÞ is a point on the plane surface and
ΔNiP ¼ ðΔni1xþ Δni2yþ Δni3zÞ. Therefore, it can be
concluded that EiGT ¼ x 0 and FiGT ¼ y 0. Then, G can be
estimated using least square process as

EQ-TARGET;temp:intralink-;e009;63;244GT ¼ ðQTQÞ−1QTB; (9)

where B ¼

0
BBBBB@

x 0
11

y 0
11

..

.

x 0
jn
y 0
jn

1
CCCCCA and Q ¼

0
BBBBB@

E11

F11

..

.

Ejn
Fjn

1
CCCCCA are obtained by

stacking n feature matches to give an overdetermined linear
system. j refers to the index of the plane patch in the image.
ðx; y; zÞ and ðx 0; y 0; z 0Þ are the coordinates of the point P
in two camera frames. Each point correspondence gives
two independent equations as EiGT ¼ x 0 and FiGT ¼ y 0.
Given that H is defined by 11 unknown entries, a set of two
point correspondences allows to determine the homography

up to a scale factor by solving a linear system. By estimating
ΔNi from Eq. (6) and H1 and K using Eq. (9), one can con-
struct the global homography from Eq. (4). The alignment
process will be over when the average reprojection error
is smaller than a threshold. Figure 2 shows the flowchart
of the algorithm with required steps for alignment.

Generally, it only takes a few iterations for the algorithm
to converge. The purpose of block #7 and #8 in the flowchart
is to unify the final homographies precisely into a single
epipolar geometry. Two sets of solutions can be obtained
as Longuet–Higgins’ algorithm23 is used in block #2. In
most cases, the real solution can be picked out by checking
the relationship between the camera points and the surface
normal vectors. The best solution can be also picked by
running the alignment method using each solution and
choose the one with smaller reprojection error.

3.1.1 Alignment evaluation

The performance of the alignment method is compared
against MATLAB® R2017a “estimateGeometricTransform”
function.24–26 Eight focal stack sets from Ref. 7 are used for
evaluation purposes and peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM)27 metrics are employed to
quantitatively evaluate the performance. Figure 3 shows
the visual performance of the proposed alignment method
compared to MATLAB.24 Figure 3(b) shows the image
which has to be aligned with the reference image in Fig. 3(a).
The initial difference of the images and the SSIM map before
alignment is shown in Figs. 3(c) and 3(d), respectively. The
brighter SSIM map means a better alignment in terms of
SSIM.

As it is shown in Figs. 3(g) and 3(h), the proposed align-
ment method has a superior performance to MATLAB’s geo-
metric transformation function.24 The numerical evaluation
of the proposed framework is shown in Fig. 4 based on

Select the base patch (largest 
plane patch in the scene) and 

calculate 

Estimate the vectors 
and rotation matrix of 

the base patch and calculate 

Estimate Δ for each 
patch from Eq. (6)

Estimate the global and 
from Eq. (9) 

Calculate each homography 
from Eq. (4) threshold

Compute , and for 
the base patch and calculate 

=

Update Δ for each patch
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Fig. 2 Flowchart of the alignment algorithm. The parameter e refers to
the average reprojection error.
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PSNR and SSIM values of eight image sets. The values are
calculated between the images before and after alignment.
Clearly, the proposed framework has a superior performance
to MATLAB’s function24 based on PSNR and in terms of
SSIM.

3.2 Depth Estimation and Regularization
The depth estimation process starts with calculating the value
of the focus factor for each pixel at every frame of the aligned
focal stack. The value of the focus factor for a pixel ði; jÞ
over all the frames in the stack is referred as focus function.

Fig. 3 Performance of the proposed alignment compared to MATLAB24 geometric transformation
function. (a) Image #1 (reference image). (b) Image #2. (c) Differences before alignment. (d) SSIM map
before alignment. (e) Differences after alignment by MATLAB.24 (f) SSIM map after alignment by
MATLAB.24 (g) Differences after alignment by proposed framework. (h) SSIM map after alignment by
proposed framework.
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The modified Laplacian is used in this case to compute
the focus function of I as

EQ-TARGET;temp:intralink-;e010;63;509F ¼ ðjI � Cx j þ jI � Cy jÞ � αr; (10)

where the convolution masks on x and y domains are Cx ¼
½−1;2;−1� and Cy ¼ CT

x , respectively. Iði; jÞ represents the
image intensity at the pixel ði; jÞ. Equation (10) is the con-
volution between the mask and images in X axis and Y axis.
The mean filter mask is used as α by the radius r. The initial
depth map is computed by modeling the focus function using
the three-point Gaussian distribution.28 The algorithm relies
on three focus factorsFm−1,Fm, andFmþ1 wherem denotes
the index of the focus measure based on the number of the
images in the stack. In theory, the algorithm requires at least
three images to estimate the depth map. This will result in
the following focus function:

EQ-TARGET;temp:intralink-;e011;63;339F ¼ Fm exp

�
−
ðM − SÞ2

2σ2F

�
; (11)

where S and σF are the mean standard deviation of the
Gaussian distribution andM is the displacement of the object
plane. The values Fm−1 and Fmþ1, as well as the maximum
focus factor Fm, are used to interpolate a Gaussian function.
The estimated depth values correspond to the location of
Fm which is the maximum value of the Gaussian function.
This process can be described briefly, as for every pixel,
the image with the highest focus measure is identified and
the depth corresponding to that pixel is estimated by inter-
polating a Gaussian function around its position.

As long as there is a good correlation between the
Gaussian model and the focus function, the depth values
get more authentic. But this situation is not constant and
it can be interrupted by a variety of reasons such as noise.
The presence of noise in the image domain can cause
the focus function not to fit on the Gaussian model. That
means the initial depth map is suffering from uncertain
depth values. This condition becomes severe in case of
small motions of the camera. Figures 5(b), 5(e), and 5(h)
show the initial estimated depth map.

This problem is reformulated to a convex minimization
problem to be solved by PADMM.29,30 To define the formu-
lation of the convex problem we refer to regularization
method proposed by Rudin, Osher, and Fatemi (ROF),31

which introduces a minimization problem to generate the
restored image t for a noisy image I (which is an element
of L2ðFÞ) as
EQ-TARGET;temp:intralink-;e012;326;453mint∈BVðFÞfjtjBV þ λkt − Ik2L2g; (12)

where λ > 0 is the regularization parameter and F → R is
bounded open subset of R2 and denotes the image domains.
jtjBV is the bounded variation (BV)-seminorm defined as

EQ-TARGET;temp:intralink-;e013;326;386jtjBV ¼ sup
jgj∞≤1;g∈C1

cðFÞ2

Z
F

tðxÞ div gðxÞdx; (13)

where jgj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
and C1

cðFÞ presents the class of con-
tinuously differentiable functions of compact support in F.

The ROF model Eq. (12) has certain limitations such as
loss of contrast, which happens due to the use of l2 fidelity
and is vulnerable in presence of impulse noise.

To overcome this issue, the ROF function is changed to
a unique global minimizer by employing the vectorial l1

norm fidelity term32 as a measure of fidelity between the
observed and denoised images.

EQ-TARGET;temp:intralink-;e014;326;238 min
t∈BVðFÞ

fjtjBV þ λkt − IkL1g; (14)

where I is equal to F in Eq. (11). The model in Eq. (14) is
more effective than the ROF model in removing impulse
noise. This model is contrast invariant and has a strong
geometrical meaning.

Using the l1 norm also allows solving nonconvex opti-
mization problems using convex optimization methods. The
important advantage of using the convex optimization is that
the global optimum is achievable with a high precision in
a shorter computational time. It is also independent from
the initialization.

Since the problem can be solved using convex optimiza-
tion, we attempt to solve Eq. (14) by utilizing PADMM
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Fig. 4 Numerical evaluation of the proposed framework using PSNR and SSIM compared to MATLAB.24

(a) PSNR values for each method/image set. (b) SSIM values for each method/image set.
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constrained convex minimization method. Consider a
generic constrained minimization problem as

EQ-TARGET;temp:intralink-;e015;63;312minðp;qÞfRðpÞ þ SðqÞ subject to Tðp; qÞ ¼ lg; (15)

where R and S are proper, closed convex functions, T
denotes a nonlinear operator, and l is the specified function.
This constraint could be a data constraint based on the local
depth confidence values or a smoothness constraint to keep
the propagation of the data with high local confidence. In this
application, we prefer to use the shading constraint to pre-
serve the fine-scale shape information. To define this, we
refer to the model of the Lambertian shading as a quadratical
function of the surface normal33,34

EQ-TARGET;temp:intralink-;e016;63;180SðaÞ ¼ aTEa ; (16)

where aT ¼ ðnx; ny; nz; 1Þ for surface normal n and E is a
symmetric 4 × 4matrix that depends on the lighting environ-
ment, which is measured using a sphere placed in the scene
as showed in Ref. 33. This model is solved for each pixel.
Three-dimensional (3-D) coordinates of each point is calcu-
lated by reprojecting each pixel into the scene based on its
image coordinates and the initial depth value d. Each pair of
pixels i, j has the depth values di, dj, 3-D positions υi, υj,

and normals ni, nj. The vector υiυj
��! has to be perpendicular

to the normal direction ni þ nj. Therefore, the shading
constraint can be formulated as

EQ-TARGET;temp:intralink-;e017;326;301

X
i;j

�
ðυj − υiÞT

ni þ nj
kni þ njk

�
2

: (17)

To put the problem of Eq. (14) in the form of Eq. (15), we
take RðpÞ ¼ λkp − IkL1 where p ¼ t and SðqÞ ¼ jqj. The
auxiliary variable q ¼ Rp is discarded after optimization.
Assume Rp is sparse for some sparsifying transform R.
Often R is a “tall” matrix, such as finite differences along
horizontal and vertical directions. The only difference of
ADMM from the general linear equality-constrained prob-
lem is that the initial variable, p here, has been split into
two parts, called p and q, with the objective function sepa-
rable across this splitting.

In general, the advantage of the ADMM lies in the split-
ting scheme of two subproblems, which are relatively easy to
solve.35,36 Most of the variants of ADMM, including the
classic ones, only focus on linear constraints,37–43 in reality
many practical problems require nonlinear constraints. The
conditions for the convergence of the linear ADMM are
presented in Ref. 44. In the present research, the splitting is

Fig. 5 The performance of the PADMM on filtering the initial depth map. (a), (d), (g) A frame from
the focus stack. (b), (e), (h) Initial depth map. (c), (f), (i) Filtered depth map using PADMM.
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performed on the nonlinear operator T in Eq. (15). The
behavior of ADMM on these types of problems has been
unpredictable as the convergence of the function does not
hold anymore, especially when the nonlinear operator results
in a nonconvex optimization function and when there are
nonsmooth functions and nonconvex sets in the problems.
However, it has been shown that ADMM works in some
applications and in fact in practice it often exhibits great
performance.45–53 In this paper, the effect of the nonlinear
constraint is eliminated due to the use of Taylor linearization
as presented in Eqs. (22) and (23). This allows solving
convex optimization problems with nonlinear operator
constraints (by simultaneous linearization of the nonlinear
operator constraint).

Equation (15) is solved by alternating minimization of
the augmented Lagrange function

EQ-TARGET;temp:intralink-;e018;63;576Lℸ ¼ RðpÞ þ SðqÞ þ hρ; Tðp; qÞ − li þ ℸkTðp; qÞ − lk22
2

;

(18)

where ðp; qÞ are the solution vectors, ρ is a sequence of
estimates of the Lagrange multipliers of the constraints
Tðp; qÞ ¼ l, and ℸ > 0 is a predefined penalty parameter.
k · k and h·; ·i denote the Euclidean norm and standard
inner product, respectively.

Given the residuals as r ¼ Tðp; qÞ − l, we can express
the ADMM problem as

EQ-TARGET;temp:intralink-;e019;63;443pkþ1∈arg minp

�
RðpÞþhρk;Tðp;qkÞiþℸkTðp;qkÞ−lk22

2

�
;

(19)

EQ-TARGET;temp:intralink-;e020;63;384qkþ1 ∈ arg minq

�
SðqÞ þ hρk; Tðpkþ1; qÞi

þ ℸkTðpkþ1; qÞ − lk22
2

�
; (20)

EQ-TARGET;temp:intralink-;e021;63;313ρkþ1 ¼ ℸ½Tðpkþ1; qkþ1Þ − l� þ ρk; (21)

where k is the iteration number. Equations (19) and (20)
iteratively minimize p and q, respectively. By finding
the linear approximation of Tðpkþ1; qkÞ and Tðpkþ1; qkþ1Þ
around pk and qk using the Taylor linearization, we can
reduce the nonlinearity computation overhead of Eqs. (19)
and (20). So

EQ-TARGET;temp:intralink-;e022;63;218Tðp; qkÞ ≅ Tðpk; qkÞ þ ϑpTðpk; qkÞðp − pkÞ; (22)

EQ-TARGET;temp:intralink-;e023;63;185Tðpkþ1; qÞ ≅ Tðpkþ1; qkÞ þ ϑqTðpkþ1; qkÞðq − qkÞ: (23)

Given the function T, ϑpTðpÞ denotes its subdifferential
at p and ϑ is a subgradient operator.

To convert ADMM to a preconditioned solver, Eqs. (19)
and (20) are modified by adding the following proximal
terms:

EQ-TARGET;temp:intralink-;e024;63;102

kpkþ1 − pkk2Zk
1

2
; (24)

EQ-TARGET;temp:intralink-;e025;326;752

kpkþ1 − pkk2
Zk
1

2
; (25)

EQ-TARGET;temp:intralink-;e026;326;714kϖkZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hZϖ;ϖi

p
; (26)

where Z is the positive definite matrix. (A positive definite
matrix is a symmetric matrix A for which all eigenvalues are
positive.54) Therefore, the modified Eqs. (19) and (20) are

EQ-TARGET;temp:intralink-;e027;326;653pkþ1 ∈ arg minp

�
λkp − pkk22

2
þ RðpÞ þ hρk;Wkpi

þ ℸkWkp − lþWkpk − Tðpk; qkÞk22
2

�
; (27)

EQ-TARGET;temp:intralink-;e028;326;576qkþ1 ∈ arg minq

�
λkq − qkk22

2
þ SðqÞ þ hρk;Tkqi

þ ℸkTkq − lþ Tkqk − Tðpkþ1; qkÞk22
2

�
; (28)

where Wk ¼ ϑpTðpk; qkÞ, Tk ¼ ϑqTðpkþ1; qkÞ, and ϑp ¼
ϑT∕ϑp ¼ dT∕dp.

The general idea underlying any preconditioning process
for iterative solvers is to modify the (ill-conditioned) system
in such a way that we obtain an equivalent system for which
the iterative method converges faster. Such a preconditioner
is necessary in order to enable practical computation at
all of large-scale problems within reasonable time on any
given computational platform. When Z is a diagonal matrix
with positive diagonal entries, each element of the split
variable may be penalized differently, which means the algo-
rithm can take larger steps for those entries that are still far
from the solution by increasing the corresponding penalty
element. However, such diagonal matrices have often been
used for other inverse problems because the diagonal weight-
ing matrix can impede the use of fast computation methods.
There are many viable choices for the matrix Z. The choice
of Z affects only the convergence rate.

As shown in Ref. 55, one could benefit from efficient pre-
conditioners for solving the implicit problems approximately
with only one, two, or three cheap preconditioned iterations
without controlling the errors, to guarantee the (weak) con-
vergence of the ADMM iterations.

To obtain the proximity, Han et al.56 defined the following
matrices and proved that the global linear rate convergence
of PADMM can be established using the positive definite
matrix Z in a convex problem

EQ-TARGET;temp:intralink-;e029;326;208Zk
1 ¼ ζk1I − ℸW�

kWk

�
ζk1 <

1

ℸkWkk2
	
; (29)

EQ-TARGET;temp:intralink-;e030;326;163Zk
2 ¼ ζk2I − ℸT�

kTk

�
ζk2 <

1

ℸkTkk2
	
; (30)

where I is a self-adjoint and positive definite operator, and
pkþ1 and qkþ1 are updated as

EQ-TARGET;temp:intralink-;e031;326;101pkþ1 ¼ ðI þ ζk1ϑRÞ−1½pk − ζk1W
�
kð2ρk − ρk−1Þ�; (31)
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EQ-TARGET;temp:intralink-;e032;63;741qkþ1 ¼ ðI þ ζk2ϑSÞ−1ðqk − ζk2T
�
kfρk þ ℸ½Tðpkþ1; qkÞ − l�gÞ:

(32)

This approach ensures the linear convergence rate of the
solver. We set the parameters ζ and ℸ fixed to 1∕3, which
experimentally appears to guarantee convergence. Based on
Eqs. (30) and (31), the proximity is defined as57

EQ-TARGET;temp:intralink-;e033;63;671ðIþαϑRÞ−1ðϖÞ¼ arg minp

�
αRðpÞþ1

2
kp−ϖ





2
2

�
: (33)

Figures 5(c), 5(f), and 5(i) shows the filtered depth map
by using the PADMM.

4 Experiments and Evaluation

4.1 Qualitative Evaluation
For qualitative evaluation purposes, 21 sets of focal stack
images by Ref. 58 are used. The focal stacks are captured
using a Lytro camera, which is equipped with an array
of 360 × 360 microlenses (upsampled to 1080 × 1080)
mounted on an 11 MP sensor.

The depth maps generated by the proposed framework are
compared against the method presented by Moeller et al.,6

Helicon Focus,59 and Zerene Stacker.60 Numerical compari-
son of these results is a challenging task as there is no ground
truth and publicly available dataset, so the depth maps are
compared visually. Figure 6 shows the generated depth
maps by the proposed framework, Moeller et al.,6 Helicon
Focus,59 and Zerene Stacker.60 Figure 6(a) shows the case
that the depth maps computed by Moeller et al.,6 Helicon
Focus,59 and Zerene Stacker60 are missing a corner of an
object and some parts of the background depth information
are mixed with foreground depth values. Figure 6(b) shows
the scenario where the depth maps by Moeller et al.,6 Helicon
Focus,59 and Zerene Stacker60 are suffering from inaccurate
depth values on an object’s surface.

Also similar to the previous example, the background
depth information is mixed with foreground depth values.
Figure 6(c) shows the case where the depth maps by
Moeller et al.,6 Helicon Focus,59 and Zerene Stacker60 are
not following the edges on the object’s boundary. This might
cause a problem in segmentation and synthetic defocus
applications. To determine the performance of the generated

Fig. 6 The comparison of the depth maps computed by the proposed framework and Moeller et al,6

Helicon Focus,59 and Zerene Stacker.60 Columns left to right: all in focus image, proposed framework,
Moeller et al.,6 Helicon Focus,59 and Zerene Stacker.60 (a) Test image #1. (b) Test image #2. (c) Test
image #3.
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depth maps for synthetic defocus applications, we applied
hexagon-shaped uniform distributed blur to the all in
focus images based on the depth layers.

Figure 7 shows the synthetic defocus generated based on
the depth maps presented in Fig. 6(b). Frontal object and
the background are chosen as two focal points for each
sample. As it is shown in Fig. 7, faulty depth values can
cause artifacts in applications such as synthetic defocus and
postcapture refocusing.

Figure 8 shows the analysis of the 3-D model generated
based on the depth map from the proposed framework.
Figures 8(a)–8(c) show the all in focus image, the depth
map estimated from the corresponding focal stack and the
3-D color mesh generated based on the depth map, respec-
tively. Figure 8(d) represents the rasterized color-coded
3-D model from the proposed framework. The color-coded
model indicates how accurate the proposed framework is in
terms of establishing depth levels. The transition from red to
blue presents the areas, which are closer and far from the
camera.

Figure 8(e) shows the 3-D normal of the reconstructed
surface calculated using the method presented in Ref. 61.
By looking at 3-D normal one can determine the smoothness
of the depth values estimated by the proposed framework.

4.2 Evaluation on the Performance of the
Optimization Function

At the second part of the experiment, the performance of
the proposed PADMM is compared against five other

optimization methods including fast iterative shrinkage-
thresholding algorithm,62 classical forward-backward,63

forward-backward splitting (FBS),64 accelerated FBS +
restart,65–67 and adaptive stepsize selection FBS.67,68 The
mean and standard deviation of the residual norm for
each optimization method are shown in Fig. 9. The maxi-
mum number of iterations and the regularization parameter
are set to 300 and 0.7 for all the methods, respectively.
Note that all these methods are already proven to work
for the same type of optimization problem as we are dealing
with the convex minimization with linearized constraints.
Although the application of ADMM has received a lot of
attention in different fields, there is a lack of theoretical
support for how to set the algorithm parameters, and its step
size is typically tuned experimentally. We have found that
it is not particularly difficult to choose adequate values for
penalty parameters since the algorithm is not overly sensitive
to such values as long as they fall into some appropriate but
reasonably wide range. A few trial-and-error attempts are
usually needed to find good penalty parameter values, judged
by observed convergence speed. There have been some
studies where different formulations were proposed to set
the step size in ADMM, but they are all focused on linear
constraints69 or quadratic problems.70,71

As shown in Fig. 9, the presented PADMM optimization
method results in lower convergence error in comparison to
other methods.

The numerical information related to the convergence of
the PADMM and Moeller et al.6 is presented as the decay of
energy in a logarithmic form in Figs. 10(a) and 10(b),

Fig. 7 Refocusing using the recovered depth map and all in focus image. (a) Left to right: proposed
framework: front in focus, Moeller et al.6: front in focus, Helicon Focus:59 front in focus, and Zerene
Stacker:60 front in focus. (b) Left to right: proposed framework: background in focus, Moeller et al.:6 back-
ground in focus, Helicon Focus:59 background in focus, and Zerene Stacker:60 background in focus.
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respectively. As it is shown in Fig. 10(a), the convergence of
PADMM happens around the iteration 226 and it reaches
0.01 as the decay of energy, whereas the function presented
by Moeller et al.6 around the same iteration reaches to the
decay of 3.6, and it is still not converged. The better value
of the decay of energy within the low number of iterations
shows the superior performance of the proposed PADMM.

4.3 Comparison with Suwajanakorn et al.
The third part of the evaluation is done against the method
proposed by Suwajanakorn et al.7 The reason that we

performed a separate comparison against this method is not
having access to the code of the algorithm. The authors of
Ref. 7 kindly provided the focal stacks and the depth results
published in their paper. Figure 11 shows the comparison of
the depth maps computed by the proposed framework and
Suwajanakorn et al.7 Figure 11(a) represents the case where
the depth map computed by Suwajanakorn et al.7 is suffering
from inaccurate depth values on a reflective surface and
some other objects’ surface while the depth map by the
proposed framework covered these issues. The depth map
by Suwajanakorn et al.7 in Fig. 11(b) shows a similar
issue to the previous example, uncertain depth values along
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Fig. 9 Mean and standard deviation of the residual norm for PADMM and other five optimization
methods.

Fig. 8 3-D visualizations of the depth map estimated by the proposed framework. (a) All in focus frame of
a focal stack containing 12 images. (b) Estimated depth map. Dark pixels represent closer regions to the
camera. (c) Proposed framework, 3-D color mesh. (d) Proposed framework, rasterized 3-D color-coded
depth. (e) Proposed framework, 3-D normals.
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an object’s edges and surface. Figure 11(c) shows the similar
issues of the reflective surfaces and inaccurate edges which
have been solved by the proposed framework. However,
the blue highlighted part in Fig. 11(c) shows the case where
the proposed framework computed a patch of uncertain
depth values on the background level.

It is also worth pointing out the advantage of the method
by Suwajanakorn et al.7 in computing longer depth range
than the proposed framework.

4.4 Quantitative Evaluation
To numerically evaluate the performance of the proposed
framework, it is required to have focal stack sets with
their corresponding depth maps. As there is no available
dataset that provides the ground truth, we refer to the
light field dataset provided by Rerabek and Ebrahimi.72 This
dataset provides images in light field raw format with their
corresponding depth maps, which are captured using Lytro
Illum camera.73 The images are captured in a variety of
categories and settings such as close range scenes, lighting
conditions, mirrors, transparency, etc. We randomly selected
10 light field image sets from this dataset for the evaluation
purposes. Table 1 presents the optical properties at which
each light field set was captured. These details are extracted
using Lytro Desktop Software.74

The advantage of using light field images is that the post-
capture refocusing can be done digitally.75 Furthermore,
4-D light field sets can be transformed into focal stacks as
proposed in Ref. 5. In this research, we used Lytro Desktop
Software74 animation module to generate focal stacks. Using
this module, one can generate a sequence of motion from the
light field set by decreasing the depth of field to isolate
the objects in focus. As the result, we generated 61 frames
per light field set with different focal points. In other words,
the light field image sets are converted to focal stacks with
61 frames with 1080 × 720 pixels resolution. All the images
are processed in their original resolution without any
downsampling. The evaluation of the proposed framework
is done based on four metrics including PSNR, root mean
square error (RMSE), SSIM,27 and universal quality index
(UQI).76 Similar to Sec. 4.1, the depth maps generated by
the proposed framework are compared against the method

presented by Moeller et al.,6 Helicon Focus,59 and Zerene
Stacker.60 However, in this part, we assume the depth map
captured by the Lytro camera to be the ground truth.

Figure 12 shows the performance of the proposed frame-
work compared to Moeller et al.,6 Helicon Focus,59 and
Zerene Stacker60 for 10 focal stack sets. As shown in
Fig. 12, the proposed framework has a superior performance
to the state of the art in all metrics. The SSIM plot in
Fig. 12(c) indicates the SSIM of the computed depth map
to the ground truth, and the general quality of the depth
maps in comparison to the ground truth is shown as UQI
plot in Fig. 12(d).

Figures 13–16 show the sample visual results of the pro-
posed framework, depth map captured using Lytro camera,
and the studied methods. These figures show how the pro-
posed framework is capable of generating a depth map with
high structural accuracy in highly detailed scenes, images
captured under different lighting condition and in presence
of the transparent and reflective surface. By looking at these
figures, one might argue that the depth map generated by
Moeller et al.6 looks more pleasant. However, what we are
concerned about is the smoothness of the depth map and
respecting the structural geometry of the scene with the
minimum artifacts. By having these two features, the post-
capturing functions such as Bokeh can be applied with
a much higher quality. As clearly shown in Figs. 6 and
13–16, the depth maps estimate by Moeller et al.6 suffer
from artifacts, broken edges and boundaries, missing cor-
ners, and mixed depth planes at some parts. Due to all
these problems, we cannot consider Moeller et al.6 depth
map as a pleasant one, and it is certainly not suitable for
a consumer application.

The analysis of source of the error influencing the other
methods is not possible as the information about the methods
used in Helicon Focus59 and Zerene Stacker60 softwares is
not available. Moeller et al.6 utilized ADMM for the refine-
ment purposes; as it is already mentioned in the paper, there
is a lack of theoretical support for how to set the ADMM
parameters, and its step size is typically tuned experimen-
tally. It is difficult to particularly mention the source of
the error; however, one potential source of error could be
the weak performance of the initial alignment, which applies

(a) (b)

Fig. 10 Numerical comparison: convergence of PADMM against Moeller et al.6 (a) Convergence of
PADMM as the decay of energy. (b) Convergence of Moeller et al.6 as decay of energy.
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Table 1 Optical properties of the light field image sets used for evaluation purposes.

LF #1 LF #2 LF #3 LF #4 LF #5 LF #6 LF #7 LF #8 LF #9 LF #10

Shutter 1/640 1/2000 1/250 1/320 1/1000 1/2500 1/2000 1/800 1/1000 1/1600

ISO 80 80 80 80 80 80 80 80 80 80

F-stop f/2 f/2 f/2 f/2 f/2 f/2 f/2 f/2 f/2 f/2

Focal length (mm) 66 89 34 51 83 40 40 82 47 60

Fig. 11 The comparison of the depth maps computed by the proposed framework and Suwajanakorn
et al.7 Columns left to right: all in focus image, proposed framework, and Suwajanakorn et al.7 (a) Test
image #1. (b) Test image #2. (c) Test image #3.
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to the images in the stack. The presence of vectorial l1 norm
fidelity term also helps the proposed framework to be more
effective than others in removing impulse noises.

Table 2 shows the comparison of the proposed frame-
work’s average computational time with the other methods.
All the methods are tested on the sequences of 61 images

with 1080 × 720 pixels resolution. In general, the higher
number of the images provides a better result. Calculating
the focus function and the initial depth map is not a very
time consuming process. For example, Fig. 6(b) has only five
frames (1080 × 1080 resolution) in the stack. The time to
calculate the focus function and the initial depth map for
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Fig. 12 Performance of the proposed framework based on PSNR, RMSE, SSIM, and UQI. (a) PSNR
values for each method/image set. (b) RMSE values for each method/image set. (c) SSIM values for
each method/image set. (d) UQI values for each method/image set.

Fig. 13 Sample depth estimation: highly detailed scene. (a) All in focus image. (b) Ground truth (Lytro
camera). (c) Proposed framework. (d) Moeller et al.6 (e) Helicon Focus.59 (f) Zerene Stacker.60
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this stack is ∼1.8 s. For a stack with 61 frames (1080 × 720
resolution), this time increases to ∼7 s. The expensive part is
the PADMM optimization, which is independent from the
number of the images in the focal stack. PADMM only
deals with the initial depth map.

In a camera that captures sequences at 30 fps, it takes 2 s
to capture 60 frames. In real world mobile application, it
requires more than 2 s to utilize the focal sweep feature
of the camera. By employing the evolving GPU and paral-
lelism technology, the proposed framework can process
the focal stacks in a considerably faster time, which makes
it a potential method for consumer devices.

5 Conclusion
In this paper, a PADMM optimization method is employed to
perform on depth from the focal stack and synthetic defocus

application. The proposed framework is tested on a sequence
of images captured by a camera with hypothetical focus and
aperture values to generate the depth map. The proposed
technique satisfies the constraint of the state-of-the-art method
such as uncertain depth values on objects’ surface, mixed
depth values on different layers of background and fore-
ground, missed depth information on an object’s boundaries,
which cause faulty edges, and corners in the depth map.

The proposed framework is evaluated in three parts. First,
the generated depth maps with the corresponding defocused
images are qualitatively compared against a recent studied
method and two commercial softwares. Twenty-one sets
of focal stack images are used in this comparison and all
the parameters are set equally in both methods.

The second part of the evaluation is done to determine
the performance of the proposed optimization technique in

Fig. 14 Sample depth estimation: bright lighting condition. (a) All in focus image. (b) Ground truth (Lytro
camera). (c) Proposed framework. (d) Moeller et al.6 (e) Helicon Focus.59 (f) Zerene Stacker.60

Fig. 15 Sample depth estimation: Dark lighting condition. (a) All in focus image. (b) Ground truth (Lytro
camera). (c) Proposed framework. (d) Moeller et al.6 (e) Helicon Focus.59 (f) Zerene Stacker.60
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comparison to five other algorithms. In the third part, a light
field dataset is used to generate focal stacks and then the
results of the proposed framework are compared against
the depth maps from the Lytro camera.

The results of the evaluation show that the proposed
framework and PADMM has a superior performance to the
studied depth from the focal stack and optimization methods.

The high structural accuracy of the depth map generated
by the proposed framework gives the smartphone users
the ability to refocus postcapture images accurately without
the need to change the aperture size. The method has been
implemented in MATLAB® R2017a on a device equipped
with Intel i7-5600U at 2.60 GHz CPU and 16 GB RAM.
The computational time of the whole framework from initial-
izing the focal stack to final refined depth map takes ∼28.2 s
on a focal stack with 61 images with 1080 × 720 pixels
resolution. In our future work, we plan to implement the
proposed algorithm as a smartphone application. However,
despite the performance and accuracy of the studied method,
there is still the computational time of this technique that
has to be considered as the trade-off.
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Abstract. Multi-Camera arrays are increasingly employed in both consumer and industrial applications, and various 
passive techniques are documented to estimate depth from such camera arrays. Current depth estimation methods 
provide useful estimations of depth in an imaged scene but are often impractical due to significant computational 
requirements. This paper presents a novel framework that generates a high-quality continuous depth map from 
multi-camera array/light field cameras. The proposed framework utilizes analysis of the local Epipolar Plane Image 
(EPI) to initiate the depth estimation process. The estimated depth map is then refined using Total Variation (TV) 
minimization based on the Fenchel-Rockafellar duality. Evaluation of this method based on a well-known 
benchmark indicates that the proposed framework performs well in terms of accuracy when compared to the top-
ranked depth estimation methods and a baseline algorithm. The test dataset includes both photorealistic and non-
photorealistic scenes. Notably, the computational requirements required to achieve an equivalent accuracy are 
significantly reduced when compared to the top algorithms. As a consequence, the proposed framework is suitable 
for deployment in consumer and industrial applications.  
 
Keywords: Multi-Camera; Depth; Regularization; Light Field. 
 
*First Author, E-mail: h.javidnia1@nuigalway.ie  

 

1 Introduction 

The use of consumer light field cameras such as Lytro 1, Raytrix 2 and multi-camera array in 

smart-phones 3-5 has received much attention in the past decade. A light field camera contains 

multiple viewpoints and captures the intensity of each light ray and sufficient angular 

information which can reveal important information about the structure of the scene. 

These types of cameras have been adapted in a wide range of applications such as saliency 

detection 6, depth estimation 7-11, digital refocusing 12,13, super-resolution 14 and scene 

reconstruction 15. Recent advances in light field imaging technology enable reconstruction of 

scene depth in a more effective way than with conventional cameras; however, acquiring an 

accurate and dense depth map from these cameras has presented a new challenge for researchers 

mailto:h.javidnia1@nuigalway.ie
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in recent years. One of the important features of light field cameras is the ability to differentiate 

the rays passing through the lens which makes it easy to provide both monocular and stereo 

depth cues. A light field camera can extract stereo cues by capturing both magnitude and angular 

direction of each ray passing through the microlens while recording a scene 16. However, in such 

a camera, the maximum stereo baseline is equal to the lens diameter, meaning it is often rather 

small. 

One of the most common techniques for estimating depth from light field data is to exploit the 

Epipolar Plane Image (EPI) 17. This has the advantage of being both simple to execute and fast to 

compute, but the accuracy is limited by the small camera baseline that is typical of these array 

cameras and most importantly by the illumination variation while capturing Lambertian scenes. 

An EPI based approach is employed in this paper to initiate the depth estimation framework. In 

the same way that depth estimation is performed in simple stereo image pairs, the depth from a 

light field set is computed from a set of rectified* images. In EPI, every pixel can be projected 

into a slope line which represents the depth of the corresponding scene point. The performance 

of applications that employ light field imaging technology is influenced by the precision of the 

estimated depth map. However, using only EPI to estimate depth from light field cameras 

introduces many challenges arising from noise in the depth map, statistical uncertainties in depth 

values and structural inaccuracies. We tackle these challenges by taking advantage of the 

Fenchel-Rockafellar duality 18 and Total Variation (TV) minimization. 

Fig. 1 illustrates the schematic of a “type 1” light field camera 12 where the object is located in 

position (A), the camera aperture is shown in position (B) and the camera array (D) is aligned on 

a regular 2D grid between the main lens (C) and the image sensor (E). Each microlens located on 

                                                
* By applying rectification, all the images from the light field set are projected onto a common image plane. 
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the camera array (D), diverges the incoming light ray based on its direction. This enables the 

pixels underneath it to record the original rays coming from different areas of the main lens (C). 

 
Fig 1 The schematic of a light field camera. (A): Object. (B): Camera aperture. (C): Main lens. (D): Camera array. 
(E): Image sensor. 
Generally, a conventional pinhole camera generates an image by creating a 2D projection of a 

3D scene inside a polyhedral shape as presented in Fig.2.a.  

 
 

(a) (b) 

Fig 2 (a) A conventional pinhole camera model with image plane 𝑰𝑰 projecting the 3D world inside a polyhedronal 
shape. (b) Two-plane parameterization of the 4D light field. 

The intensity of the pixel 𝑖𝑖 in the image plane 𝐼𝐼 is the intensity of the unique ray 𝑅𝑅 passing 

through the image plane and the plane containing the viewing points or the corresponding point 

𝑜𝑜 in the object plane 𝑂𝑂. Whilst a pinhole camera defines a unique ray direction 𝑅𝑅, it is 

impractical because of light flux and resolution limitations. A camera with a finite lens diameter 

collects more light and has higher angular resolution but the intensity at any point in the image 

(A) (B)(C) (D)(E)
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plane is now the incoherent sum of intensities from many ray directions.  This drawback has 

been tackled by employing light field imaging techniques. 

Light field rendering theory explains the 4D light field data as a collection of pinhole views 

parallel to an image plane 19. Commonly the position of the 2D image plane is considered as 

(𝑥𝑥,𝑦𝑦) and the position of each viewing point as (𝑢𝑢, 𝑣𝑣). Fig.2.b illustrates the two-plane 

parameterization of the light field, proposed in 19 to simplify the plenoptic function to a 4D 

function. In multi-camera arrays the image sensor plane of each camera indicates (𝑥𝑥,𝑦𝑦) and the 

position of the lens indicates (𝑢𝑢, 𝑣𝑣). In other words (𝑥𝑥, 𝑦𝑦) can be referred to as a pixel in the 

image and (𝑢𝑢, 𝑣𝑣) as the position of the camera in the array. Each pixel of the 4D light field data 

represents the intensity of the ray passing through image plane and the plane containing the 

viewing points. The light field data is stored as a 4D object as 𝐿𝐿 = (𝑈𝑈,𝑉𝑉,𝑋𝑋,𝑌𝑌). Any point in the 

𝐿𝐿 can be identified by its coordinates [𝑢𝑢, 𝑣𝑣,𝑥𝑥, 𝑦𝑦]. 

In this paper, a depth estimation framework is proposed based on local EPI analysis and Total 

Variation (TV) minimization. The proposed minimization problem takes advantage of the 

Fenchel-Rockafellar duality 18. The point in using Fenchel-Rockafellar duality 18 is that the lower 

bound of the minimum value will be obtained by solving the dual problem 20. The solution of the 

primal one can be found much faster by taking advantage of the information on lower bound of 

the minimum value. Rockafellar has proved that in convex minimization problems, a dual 

problem can be allied to the primal problem by enclosing the problem in a set of perturbed 

problems and using the theory of conjugate convex functions 18,21. More specifically, assume that 

𝒮𝒮 and 𝒵𝒵 are convex, proper, and lower semi-continuous functions. 𝓈𝓈∗ and 𝓏𝓏∗ represent the 

infimum of the functions which are minimized in the primal and dual problems, respectively. In 

this case, the solution to the primal (minimization) problem is always greater than or equal to the 
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solution to the associated dual problem. In other words 𝓈𝓈∗ ≥ −𝓏𝓏∗. In the case where 𝓈𝓈∗is finite, 

𝓈𝓈∗ + 𝓏𝓏∗ is considered as the duality gap which the difference between the primal and dual 

solutions. 𝒮𝒮 and 𝒵𝒵 are considered to be convex, proper, and lower semi-continuous functions. 

Therefore, under a proper condition, there is always a solution for the dual problem and the 

difference between the primal and dual solutions vanishes. When this difference is equal to zero, 

the primal optimal objective and the dual optimal objective are equal. 

The main contributions of this work are: 

1- Introducing a lightweight computational framework to estimate depth from the 4D light 

field on the EPI. The proposed framework is less sensitive to occlusion, noise, spatial 

aliasing, angular resolution and more importantly it is 2-100 times faster/more 

computationally efficient than the studied state of the art methods. 

2- Proposing a new computational cost function derived from the Fenchel-Rockafellar 

duality 18. 

The rest of this paper is organized as follows. Section 2 summarizes the state of the art 

technology for light field depth estimation. The proposed framework is presented in detail in 

Section 3. The evaluation and benchmarking details are outlined in Section 4 and finally, the 

analyses are discussed in Section 5 

2 Previous Work 

A lot of efforts have been made in the context of depth estimation from light field cameras 

including multi-view stereo matching methods 7,22 or tensor-based methods 23,24. The following 

categories summarize different approaches on depth estimation from light field. 
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2.1 Depth from Light Field using EPI Analysis 

Zhang et al. 25 proposed an algorithm for light field depth estimation by utilizing the linear 

structure of EPI 17. The optimal slope of each line in EPI is selected from a set of candidate 

angles. The intensity pixel value, gradient pixel value and spatial smoothness consistency are 

used to aggregate the cost volume. Reliability of each pixel's disparity is identified by analyzing 

the matching cost curve and locally linear embedding method is used to estimate the disparity of 

unreliable pixels. Ma et al. 26 obtain the sparse depth information of the edges by exploiting local 

EPI analysis which is used to generate the global depth map by using regional interpolation.  

Yang et al. 27 estimate the disparity map by analyzing the EPI and detecting the slopes using the 

multi-label technique. Later a linear calibration method is proposed to compensate the error 

between the disparity values and the actual distances. Zhang et al. 28 proposed a spinning 

parallelogram operator to calculate the orientation of the EPI lines for local depth estimation. 

The depth estimation is based on the measurement of the slopes in EPI by maximizing the 

distribution distances of two parts of the parallelogram window. Further, a confidence metric is 

defined to reduce the effect of the occlusions. From the approaches taken by these researchers, it 

is evident that the objects reflectance properties are not considered by these methods. Generally, 

in real scenes, the illumination is not constant over time and that introduces many challenges to 

depth estimation methods. 

The initial step of the depth estimation framework presented in this paper falls into this category. 

The state of the art depth estimation methods which take advantage of EPI analysis are 

computationally expensive due to the cost aggregation, densification of sparse depth map or 

depth confidence measurement. However, the presented method utilizes a regularizer to refine 

the initial depth map which computationally outperforms the state of the art methods. 
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2.2 Occlusion-Aware Depth Estimation from Light Field 

Wang et al. 29 proposed an occlusion aware light field depth estimation algorithm by modifying 

the photo-consistency condition on angular pixels. This modification along with the means or 

variances in the angular domain and spatial domain are used to estimate the occlusion-aware 

depth. In a similar approach 30 a novel data cost volume is introduced based on the 

correspondence and defocus cues followed by graph cut optimization to handle the occlusion in 

depth from the 4D light field. However, these methods struggle in handling heavy occlusions. 

They are mainly focused on the points which are visible in the reference view and invisible in 

other views. The present research does not fall into this category as handling occlusion is not the 

main goal of the proposed framework. 

2.3 Light Field Depth Estimation and Optimization 

Liu et al. 31 tackled the light field depth estimation challenge by approaching it as an 

optimization problem. The objective function includes three terms as fidelity, gradient and 

classification. The mismatching pixels are corrected iteratively by minimizing the objective 

function which results in a more accurate depth map. In a similar attempt, Monteiro et al. 32 

employed Alternating Direction Method of Multipliers to regularize the 2D EPIs and generate a 

dense disparity map. Unfortunately the computational time of these methods are not reported, 

however, their objective function contains different pixel-wise terms which introduce high 

computational demands and a high number of iterations to minimize. 

The second part of the depth estimation framework presented in this paper falls into this 

category. The proposed framework has three main advantages compared to the studied methods 

in this category:  
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1- Faster computational time. 

2- Better convergence rate of optimization function. 

3- Lower residual norm.  

2.4 Light Field Depth Estimation and Stereo Framework 

Kim et al. 33 proposed a framework to generate stereo images from a set of light field data. Their 

framework is based on 3D light field and its corresponding 3D disparity volume and defines each 

stereo image as continues cuts through that. Graph cut optimization is also used to calculate the 

multi-perspective cuts. Basha et al. 34 used the multi-camera array for 3D reconstruction 

purposes by capturing a scene at two different time intervals. A 3D volume is reconstructed for 

each image set and the corresponding scalar volume is calculated using a nonlinear filter. The 

final 3D structure and motion are estimated by matching the two scalar volumes. Navarro et al. 35 

used multi-scale and multi-window stereo method 36 to estimate disparity from two views of the 

light field image array. The disparity is estimated from the central view and the views in the 

same row and column. Later, an interpolation method is introduced based on the optical flow 

approach in 37 to combine the estimated disparity maps and generate the final depth map. These 

methods have complex disparity constraints and they require a high number of viewpoints. In 

graph-based methods, the size of the constructed graph increases significantly by adding more 

viewpoints to the light field set and that is a computationally intense process. On the other hand, 

reducing the number of viewpoints introduces notable artifacts to the depth map. In interpolation 

based methods, depth refinement based on optical flow formulation requires significant 

computational time which goes up to 1 hour and 30 minutes to process one light field image set. 
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The present research does not fall into this category. The efficient optimization of the proposed 

framework does not contain complex disparity constraints. Therefore, the proposed framework is 

significantly more efficient than the methods presented in this category.  

2.5 Light Field Depth Estimation and Focal Stack Framework 

Pérez et al. 38 proposed a focal stack frequency decomposition algorithm from light field images 

based on the trigonometric interpolation principle as the discrete focal stack transform.  The 

proposed method in 38 utilizes fast discrete Fourier transform to generate refocus planes in a 

reasonably fast computational time. The reverse of this transformation in studied in 39 where a 

focal stack is used to obtain a 4D light field image set using discrete focal stack transform. 

Unlike 38, Mousnier et al. 40 presented an approach to reconstruct 4D light field image sets from 

a stack of images taken by a fixed camera at different focal points. The algorithm initiates by 

calculating the focus map by utilizing region expansion with graph cut. Later, the depth map is 

estimated based on the calibration details of the camera and it is used to reconstruct the Epipolar 

images. The reconstructed Epipolar images are used for refocusing purposes. Lee et al. 41,42 

proposed a depth estimation method by separating foreground and background of the focus 

plane. The separated parts are converted to a binary map using the Lambertian assumption and 

gradient constraint. The final disparity map is estimated by accumulating the binary maps. Using 

the focal stack symmetry for the application of depth estimation from the 4D light field has the 

advantage of fast computational time, however, the final estimated depth maps suffer from sever 

puzzling artifact, false depth values on objects’ surface, and false depth values on the non-

Lambertian region. Generally, the methods which are based on focal stack symmetry are highly 

affected by the lack of angular resolution which mostly causes false depth values on regions with 

a repeated pattern. Unlike these methods, the proposed framework is not affected by the lack of 
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angular resolution and it’s capable of estimating wider depth planes with much less faulty depth 

values. 

2.6 Physical Changes in Light Field Depth Estimation 

Besides all the state of the art computational approaches for depth estimation from light field, 

Diebold et al. 43 studied the effect of light field imaging system's setup and design on the 

accuracy of the depth estimation. They concluded that variation in focal length and baseline of 

the micro cameras in an array can result in depth precision loss. It was recommended to use a 

precise translation stage as a good alternative for light field cameras. The goal of the present 

study is to propose a computationally efficient and accurate depth estimation framework for light 

field image sets. We do not consider any physical changes in the imaging system. 

3 Method 

3.1  Initial Depth Estimation 

Capturing a sequence of images using a multi-camera array is similar to capturing the same 

sequence by linearly translating one camera. Changing the camera position causes the positional 

changes in the image plane. Drawing out a horizontal line of constant 𝑦𝑦∗ in the image plane and 

a constant 𝑡𝑡∗ as the camera coordinate results in a map called EPI which can be used to visualize 

the positional changes in image plane. Fig.3.b shows a sample of horizontal and vertical Epipolar 

slices. An important feature of EPI is representing a point which is visible to all sub-aperture 

images by mapping it to a straight line. This feature has been used in variety of applications such 

as segmentation 44 and depth estimation 23. The approach here takes advantage of this feature.  
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To estimate the depth map, we employed the initial part of the depth estimation algorithm of 23; 

the local depth estimation on EPIs where the initial depth is constructed by using a structure 

tensor on each EPI 𝐸𝐸𝑦𝑦,𝑣𝑣∗ (𝑦𝑦 = 1, … ,𝑌𝑌) and 𝐸𝐸𝑥𝑥,𝑢𝑢∗ (𝑥𝑥 = 1, … ,𝑋𝑋) to estimate the slope of the EPI 

lines. Two slopes are estimated for each pixel in a sub-aperture image 𝐼𝐼𝑢𝑢∗,𝑣𝑣∗, one for each EPI.  

 

 

 
 
 

(a) (b) 

Fig 3 The concept of depth calculation from the light field using EPI analysis. (a) The depth of point 𝑷𝑷 can be 
estimated by calculating either the vertical or horizontal slope from the light field 2D slices. (b) Visualization of 
Epipolar image. The central view of a 9×9 camera array with horizontal and vertical 2D light field slices. 

As illustrated in Fig.3.a the light rays 𝐿𝐿1 and 𝐿𝐿2 converge at point P so, the following 

geometrical relations can be defined with regards to the depth of the point: 

⎩
⎨

⎧𝑥𝑥1 +
𝑢𝑢1 − 𝑥𝑥1
𝐴𝐴 𝑍𝑍 = 𝑥𝑥2 +

𝑢𝑢2 − 𝑥𝑥2
𝐴𝐴 𝑍𝑍 ⟹

∆𝑢𝑢
∆𝑥𝑥 =

𝑍𝑍 − 𝐴𝐴
𝑍𝑍

𝑦𝑦1 +
𝑣𝑣1 − 𝑦𝑦1
𝐴𝐴 𝑍𝑍 = 𝑦𝑦2 +

𝑣𝑣2 − 𝑦𝑦2
𝐴𝐴 𝑍𝑍 ⟹

∆𝑣𝑣
∆𝑦𝑦 =

𝑍𝑍 − 𝐴𝐴
𝑍𝑍

          (1) 

where 𝐴𝐴 indicates the distance between two planes. 𝑍𝑍 represents the depth of the point 𝑃𝑃 from 

the plane 𝑋𝑋𝑋𝑋. The disparity of angular (𝑥𝑥, 𝑦𝑦) and spatial (𝑢𝑢, 𝑣𝑣) coordinates are ∆𝑥𝑥 = 𝑥𝑥2 − 𝑥𝑥1 and 

∆𝑢𝑢 = 𝑢𝑢2 − 𝑢𝑢1, respectively. Either vertical slope ∆𝑢𝑢 ∆𝑥𝑥⁄  or horizontal slope ∆𝑣𝑣 ∆𝑦𝑦⁄  can be used 

XY Plane

UV Plane 𝑷𝑷

(𝒙𝟏,𝒚𝟏)
(𝒙𝟐,𝒚𝟐)

(𝒖𝟏,𝒗𝟏)
(𝒖𝟐,𝒗𝟐)

𝑳𝟏
𝑳𝟐

𝑨

𝒚∗

𝒈𝒈∗

𝒁

Horizontal 2D light field slice 

Vertical 2D
 light field slice 
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to estimate the depth 𝑍𝑍. The value of the slope is defined as the maximum pixel disparity of an 

object point (in pixel) among all views divided by the number of views. 

The estimated slopes are combined by minimizing the following global energy function 23: 

𝒜𝒜(𝑒𝑒) = 𝐻𝐻(𝑒𝑒) +  �� 𝑐𝑐𝑖𝑖𝑒𝑒𝑖𝑖𝑑𝑑(𝑢𝑢,𝑥𝑥)
 

∑  𝑦𝑦∗,𝑡𝑡∗

𝑁𝑁

𝑖𝑖=1

          (2) 

where 𝑒𝑒 = (𝑒𝑒1, … , 𝑒𝑒𝑁𝑁) is a vector of indicator functions, 𝑁𝑁 is the number of discrete depth 

labels, 𝑐𝑐𝑖𝑖 is the local cost function and 𝐻𝐻 is the regularizer. 𝑦𝑦∗, 𝑡𝑡∗ are the fixed horizontal lines in 

the image and camera planes, respectively which helps to consider the structure of the light field 

as a set of 2D slices ∑  𝑦𝑦∗,𝑡𝑡∗ .  

Despite the fast performance of this method, it results in a noisy and unreliable depth values 

especially at smoother regions 45. To tackle this issue we propose a regularization framework 

based on TV minimization. In the rest of this paper, the initial depth map is denoted by 𝐷𝐷. 

3.2  Regularization Framework 

The proposed approach can be formulated within a discrete framework. Consider a weighted 

graph ℊ = (𝑉𝑉,𝐸𝐸) with vertices 𝑣𝑣 ∈ 𝑉𝑉 and edges 𝑒𝑒 ∈ 𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉, with cardinalities 𝑛𝑛 =  |𝑉𝑉| and 

𝑚𝑚 =  |𝐸𝐸|.  

An edge passing over two vertices 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 is declared as 𝑒𝑒𝑖𝑖,𝑗𝑗. The present paper focuses on 

weighted graphs which imply weights on both edges and nodes. A value assigned to each edge 

and node is known as edge weight 𝑤𝑤𝑖𝑖,𝑗𝑗 and node weight 𝓃𝓃𝑖𝑖, respectively. 

The goal is to deduce a restored vector 𝐽𝐽 in close proximity to the rough vector 𝐷𝐷 considering 

smooth variations of intensities inside the object.  

Let’s consider 𝜆𝜆 as a positive regularization parameter. In a continuous framework, considering a 

planar domain Ω  and its two arbitrary points 𝑢𝑢, 𝑢𝑢′, the weighted TV 46 can be defined as: 
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min
𝐽𝐽
� ��𝜔𝜔(𝑢𝑢, 𝑢𝑢′)�𝐽𝐽(𝑢𝑢′) − 𝐽𝐽(𝑢𝑢)� 2 𝑑𝑑𝑢𝑢′

 

Ω
�
1 2⁄

𝑑𝑑𝑑𝑑 +
1

2𝜆𝜆
� �𝐽𝐽(𝑢𝑢)− 𝐷𝐷(𝑢𝑢)�2 𝑑𝑑𝑑𝑑

 

Ω

 

Ω
          (3) 

where 𝜔𝜔 is a non-negative valued function on Ω2. Based on 47 the weighted TV minimization 

problem in Eq. (3) can be redefined as a min-max problem: 

min
𝐽𝐽
� max
‖Ρ‖∞≤1

� 𝜔𝜔(𝑢𝑢,𝑢𝑢′)1 2⁄ �𝐽𝐽(𝑢𝑢′) − 𝐽𝐽(𝑢𝑢)�Ρ(𝑢𝑢,𝑢𝑢′)𝑑𝑑𝑑𝑑 𝑑𝑑𝑢𝑢′
 

Ω2

+
1

2𝜆𝜆
��𝐽𝐽(𝑢𝑢)− 𝐷𝐷(𝑢𝑢)�2 𝑑𝑑𝑑𝑑

 

Ω
�           (4) 

where Ρ is a two variable vector field ‖Ρ‖∞ = sup𝑢𝑢∈Ω�∫ Ρ(𝑢𝑢, 𝑢𝑢′)2 𝑑𝑑𝑢𝑢′ 
Ω �1 2⁄

. 

To establish the discrete framework we define 𝑊𝑊 as the weighted incidence matrix of ℊ which is 

used to characterize the discretized gradient and is a fundamental operator for defining 

combinatorial formulations of variational problems. 𝑊𝑊 is defined for each vertex 𝑣𝑣𝑘𝑘 and edge 

𝑒𝑒𝑖𝑖,𝑗𝑗 as: 

𝑊𝑊𝑒𝑒𝑖𝑖,𝑗𝑗𝑣𝑣𝑘𝑘 = �
−1                    𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑘𝑘,
+1                    𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑘𝑘,
0                  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

          (5) 

For any arbitrary matrix Α, |Α| represents the matrix constructed from the absolute value of each 

entry individually, · denotes the Hadamard product while Α2 shows the product Α .Α . 

The discrete version of Eq. (3) and its dual Eq. (4) tend to approximate the continuous version 

the step size of the graph ℊ moves towards 0. The discrete weighted TV model defined in 46,48,49 

is: 

min
𝐽𝐽
��� 𝜔𝜔𝑖𝑖,𝑗𝑗�𝐽𝐽𝑗𝑗 − 𝐽𝐽𝑖𝑖�

2

𝑗𝑗∈𝑁𝑁𝑖𝑖

�

1 2⁄

+
1

2𝜆𝜆�
(𝐽𝐽𝑖𝑖 − 𝐷𝐷𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

          (6) 
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where 𝑁𝑁𝑖𝑖 = {𝑗𝑗 ∈ {1, … ,𝑛𝑛}|𝑒𝑒𝑖𝑖,𝑗𝑗 ∈ 𝐸𝐸}. The dual formulation of the problem which is optimized by 

46 is defined as: 

min
𝐽𝐽

max
‖Ρ‖∞≤1

Ρ𝑇𝑇((𝑊𝑊𝑊𝑊).√𝜔𝜔) +
1

2𝜆𝜆
‖𝐽𝐽 − 𝐷𝐷‖2            (7) 

where ‖Ρ‖∞ = max𝑖𝑖∈{1…𝑛𝑛}�∑ Ρ𝑖𝑖 ,𝑗𝑗2𝑗𝑗∈𝑁𝑁𝑖𝑖 �1 2⁄
. Eq. (7) is the combinatorial primal-dual formulation 

of Eq. (6). If we define the vector 𝐹𝐹 = (𝐹𝐹𝑖𝑖,𝑗𝑗)𝑖𝑖,𝑗𝑗 given that for every 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖 and 

𝐹𝐹𝑖𝑖,𝑗𝑗 = Ρ𝑖𝑖,𝑗𝑗�𝜔𝜔𝑖𝑖,𝑗𝑗 then the problem can be reformulated as: 

min
𝐽𝐽

max
𝐹𝐹∈𝐵𝐵

𝐹𝐹T𝑊𝑊𝑊𝑊 +
1

2𝜆𝜆
‖𝐽𝐽 − 𝐷𝐷‖2           (8) 

𝐵𝐵 = ��𝐹𝐹𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗|(∀𝑖𝑖 ∈ {1, … ,𝑛𝑛}) �
𝐹𝐹𝑖𝑖,𝑗𝑗2

𝜔𝜔𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑁𝑁𝑖𝑖

≤ 1�          (9) 

The following minimization problem is proposed to extend the discrete weighted TV formulation 

in Eq. (8). 

𝑚𝑚𝑚𝑚𝑚𝑚𝐽𝐽∈ℝ𝑛𝑛 �𝑠𝑠𝑠𝑠𝑠𝑠𝐹𝐹∈𝐵𝐵𝐹𝐹T𝑊𝑊𝑊𝑊 +
1
2

(𝑀𝑀𝑀𝑀 − 𝐷𝐷)T(𝑀𝑀𝑀𝑀 − 𝐷𝐷)𝒱𝒱−1�           (10) 

𝑀𝑀 ∈ ℝ𝑏𝑏×𝑛𝑛 and 𝒱𝒱 is a symmetric positive-definite weighting matrix. The vector 𝐹𝐹 is a vector 

representing the edges of ℊ. 𝐵𝐵 is the intersection of closed convex defined with weighted semi-

norms as: 

𝐵𝐵 = �𝐹𝐹 ∈ ℝ𝑚𝑚�(∀𝑖𝑖 ∈ {1, … , 𝑛𝑛})�𝜃𝜃𝑖𝑖 .𝐹𝐹�𝛼𝛼 ≤ 𝓃𝓃𝑖𝑖�          (11) 

where ‖ .‖𝛼𝛼 is the ℓ𝛼𝛼 norm of ℝ𝑚𝑚 with 𝛼𝛼 ∈ [1, +∞]. 𝓃𝓃 = (𝓃𝓃𝑖𝑖)1≤𝑖𝑖≤𝑛𝑛 is a vector of [0, +∞[𝑛𝑛. 𝜃𝜃𝑖𝑖 

is a vector of multiplicative constants. 

Any solution for Eq. (10) is parametrized as the optimal value corresponds to each node of the 

weighted graph ℊ. 
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To solve the minimization problem expressed in Eq. (10) we define the support function of 𝐵𝐵 as 

𝜚𝜚𝐵𝐵 assuming 𝐵𝐵 is a nonempty closed convex subset of ℝ𝑛𝑛 as: 

𝜚𝜚𝐵𝐵: ℝ𝑛𝑛 ⟶]−∞, +∞]:𝑎𝑎 ↦ 𝑠𝑠𝑠𝑠𝑠𝑠𝐹𝐹∈𝐵𝐵𝐹𝐹𝑇𝑇𝑎𝑎         (12) 

This lower semi-continuous convex function is the conjugate of the indicator function 𝜄𝜄𝐵𝐵: 

𝜄𝜄𝐵𝐵 = 𝐹𝐹 ↦ � 0, 𝑖𝑖𝑖𝑖 𝐹𝐹 ∈ 𝐵𝐵,
+∞, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.           (13) 

which leads to the modified version of the optimization function in Eq. (10): 

𝑚𝑚𝑚𝑚𝑚𝑚𝐽𝐽∈ℝ𝑛𝑛 �𝜚𝜚𝐵𝐵(𝑊𝑊𝑊𝑊) +
1
2

(𝑀𝑀𝑀𝑀 − 𝐷𝐷)𝑇𝑇(𝑀𝑀𝑀𝑀 − 𝐷𝐷)𝒱𝒱−1 +
ℸ‖𝑍𝑍𝑍𝑍‖2

2 �           (14) 

where ℸ ∈]0, +∞[ and 𝑍𝑍 ∈ ℝ𝑛𝑛×𝑛𝑛 is the projection matrix onto the nullspace of the 𝑀𝑀.  

Eq. (14) can become equivalent to Eq. (10) where 𝑀𝑀 is injective. The term 𝐽𝐽 ↦ ℸ‖𝑍𝑍𝑍𝑍‖2

2
 vanishes 

when 𝑀𝑀 is injective. However, it helps the objective function to stay convex by bringing an 

additional regularization term when 𝑀𝑀 is not injective. Assuming 𝐵𝐵 is a nonempty closed convex 

then Eq. (14) acknowledges a distinctive solution. In this case, Eq. (14) can be redefined based 

on Fenchel-Rockafellar duality theorem 18 as: 

𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝜙𝜙(𝐹𝐹) + 𝜄𝜄𝐵𝐵(𝐹𝐹)          (15) 

where 𝜙𝜙:𝐹𝐹 ↦ 𝐹𝐹𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇𝐹𝐹
2

− 𝐹𝐹𝑇𝑇𝑊𝑊𝑊𝑊𝑀𝑀𝑇𝑇𝐷𝐷𝒱𝒱−1 and 𝛾𝛾 = (𝒱𝒱−1𝑀𝑀𝑇𝑇𝑀𝑀 + ℸ𝑍𝑍)−1 . The optimum solution 

𝐽𝐽 of Eq. (14) is concluded from each optimum solution 𝐹𝐹� of the duality problem in Eq. (15) by 

the following relation: 

𝐽𝐽 = 𝛾𝛾�𝒱𝒱−1𝑀𝑀𝑇𝑇𝐷𝐷 −𝑊𝑊𝑇𝑇𝐹𝐹��          (16) 

The indicator function 𝜄𝜄𝐵𝐵 can be broken down into the sum of indicator functions of the convex 

subsets. Consequently, the Fenchel-Rockafellar duality 18 in Eq. (15) can be re-written as: 
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 𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹∈ℝ𝑚𝑚 � 𝜄𝜄𝐵𝐵𝑞𝑞(𝐹𝐹) +  𝜙𝜙(𝐹𝐹)
𝑒𝑒

𝑞𝑞=1

          (17) 

where for each set 𝐵𝐵𝑞𝑞,  𝑞𝑞 ∈ {1, … , 𝑒𝑒}. The above convex function is optimized by employing 

Parallel Proximal algorithm 50 as shown in Algorithm 1. 

Algorithm 1: General form of Parallel proximal algorithm 
Set 𝜆𝜆 ∈ [0, +∞], 𝜆𝜆ℓ ∈ [0,2] 
For 𝑞𝑞 ∈ {1, … , 𝑒𝑒} set (𝓌𝓌𝑞𝑞)1≤𝑞𝑞≤𝑒𝑒 ∈ [0,1] 
Set (𝑦𝑦𝑞𝑞,0)1≤𝑞𝑞≤𝑒𝑒 ∈ (ℝ𝑚𝑚)𝑒𝑒 
For 𝑖𝑖 =  0: … 
   For 𝑞𝑞 = 1: 𝑒𝑒 
       𝓅𝓅𝑞𝑞,𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜆𝜆𝐷𝐷𝑞𝑞/𝓌𝓌𝑞𝑞𝑦𝑦𝑞𝑞,𝑖𝑖 + 𝛼𝛼𝑞𝑞,𝑖𝑖 
   𝓅𝓅𝑖𝑖 = ∑ 𝓌𝓌𝑞𝑞𝓅𝓅𝑞𝑞,𝑖𝑖

𝑒𝑒
𝑞𝑞=1  

   For 𝑞𝑞 = 1: 𝑒𝑒 
       𝑦𝑦𝑞𝑞,𝑖𝑖+1 = 𝑦𝑦𝑞𝑞,𝑖𝑖 + 𝜆𝜆ℓ(𝓅𝓅𝑖𝑖 − 𝐹𝐹𝑖𝑖 − 𝓅𝓅𝑞𝑞,𝑖𝑖) 
   𝐹𝐹𝑖𝑖+1 = 𝐹𝐹𝑖𝑖 + 𝜆𝜆ℓ(𝓅𝓅𝑖𝑖−𝐹𝐹𝑖𝑖)

2
 

𝜆𝜆 and 𝓌𝓌𝑞𝑞 are the positive regularization parameter and a positive constant, respectively. Beside 

the possible error term 𝛼𝛼, a relaxation parameter 𝜆𝜆ℓ is defined in each iteration. 

4 Evaluation 

The evaluation of the technique proposed in this paper is performed in two parts and is based on 

HCI, the Heidelberg 4D Light Field Benchmark 51. The first part presents the evaluation of the 

optimization function and the second part compares the accuracy of the estimated depth map 

against the state of the art methods which are ranked in HCI, Heidelberg benchmark. The 

evaluation is performed using the standard “evaluation package/toolkit” provided by the 

benchmark to assess the performance of the proposed framework. 

This benchmark is the first in the state of the art which provides light field image sets with 

ground truth data and standardized the evaluation framework. The light field image sets are 

designed to challenge accuracy and reliability of different algorithms in different aspects such as 
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occlusion handling, performance on convex versus concave geometry, keeping fine structure and 

etc. 

The current version of the benchmark provides 9 × 9 × 512 × 512 × 3 light field images along 

with corresponding camera configuration files. The benchmark contains 3 sets including 

Stratified, Test and Training. These categories are pre-defined in the benchmark. The Stratified 

set contains 4 light field image sets as shown in Fig.4.a-Fig.4.d. The goal of the Stratified set is 

to introduce challenges which can lead to fine-tuning algorithm parameters and performance 

metrics for real-world images. The Training set contains 4 light field photorealistic image sets as 

illustrated in Fig.4.e-Fig.4.h. The goal of this set is to evaluate the performance of algorithms on 

respecting scene structures, handling complex occlusions, slanted planar surfaces, and 

continuous non-planar surfaces.  

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig 4 4D Light field image sets used for evaluation. First row shows the four stratified scenes and the second row 
shows the four photorealistic training scenes. (a) Stratified–Backgammon. (b) Stratified–Dots. (c) Stratified–
Pyramids. (d) Stratified–Stripes. (e) Training–Boxes. (f) Training–Cotton. (g) Training–Dino. (h) Training–
Sideboard. 

In this paper, Stratified and Training sets are used for comparison purposes which include 8 

different light field image sets with different configurations. The ground truth data for all these 

image sets is provided by the HCI benchmark. 
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4.1  Residual Norm Evaluation 

This section presents the convergence analysis of the optimization function. The maximum 

number of iterations 𝑖𝑖, the regularization parameter 𝜆𝜆 and ℸ are set to 300, 0.5 and 0 respectively 

for light field sets used in this paper. These values are chosen experimentally and for the 

evaluated image sets, they provide the average best results. Note that, the regularization 

parameter varies based on the type of the data. Similar to TV minimization, the bigger value of 𝜆𝜆 

generates a smoother result with lower convergence error (in close range scenes and small 

number of depth planes). However, based on the experiments it is not recommend to set 𝜆𝜆 >

0.8 . 

Fig. 5 illustrates the residual norms of the optimization function for each light field image set in 

Stratified and Training sets.  

 
Fig 5 Residual norm analyses of the minimization function for stratified and training sets. The maximum iteration 
number is set to 300 for all scenes. 
As shown in this figure, the presented optimization method, results in a considerably low 

convergence error after ~50 iterations. The average convergence error of 0.01 at iteration 50 

outlines the fast performance of the optimization function. Residual norms are used to verify a 
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solution to the optimization function by substituting it into the function. The residual vanishes 

when the optimal solution is found 52,53. 

4.2  Disparity Estimation Evaluation 

In this section, the accuracy of the estimated disparity maps are compared against the provided 

ground truth, 6 top algorithms ranked by the benchmark and one baseline algorithm. The best 

estimated disparity maps from all these algorithms are provided by their authors and the 

benchmark. The top algorithms are chosen based on the average value of the BadPix(0.03) 

metric and include OBER-cross+ANP 54, SPO-MO 54, OBER-cross 54, OFSY_330/DNR 55, 

PS_RF 54 and SPO 28. The baseline algorithm is EPI2 23 (the local depth estimation on EPIs) 

which is used to provide the initial depth map in this paper. As this research is more focused on 

generating accurate depth map and increasing its accuracy, three metrics including BadPix(0.07), 

MSE and Q25 are chosen for comparison purposes. These metrics are categorized as “High 

accuracy metrics” 56 in this benchmark. The BadPix(0.07) is quantified as: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑀𝑀(0.07) =
|{𝑥𝑥 ∈ 𝑀𝑀: |𝑑𝑑(𝑥𝑥)− 𝑔𝑔𝑔𝑔(𝑥𝑥)| > 0.07}|

|𝑀𝑀|           (18) 

where 𝑑𝑑 is the estimated disparity map, 𝑔𝑔𝑔𝑔 is the ground truth disparity map and 𝑀𝑀 is the 

evaluation mask. BadPix(0.07) shows the percentage of pixels at the given mask with |𝑑𝑑 − 𝑔𝑔𝑔𝑔| >

0.07. The error threshold “0.07” is the default value defined by the benchmark. 

MSE shows the mean squared error over all pixels at the given mask, multiplied with 100: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝑑𝑑(𝑥𝑥)− 𝑔𝑔𝑔𝑔(𝑥𝑥))2𝑥𝑥∈𝑀𝑀

|𝑀𝑀| × 100          (19) 

Q25 represents the maximum absolute disparity error of the best 25% of pixels for each 

algorithm, multiplied by 100. 



20 
 

Fig. 6 and Fig. 7 visualize the distribution of the accurate pixels and mean square error of the 

proposed method and the top state of the art algorithms for Stratified and Training sets, 

respectively. Each column in these figures shows the result of an algorithm and each row 

visualizes a metric. For all the metrics the lower values show a better result. These figures 

illustrate the performance of the proposed method based on the high accuracy metrics while 

dealing with different noise level, complex occlusions, slanted planar surfaces and complex 

scene structure. 

In BadPix(0.07) metric, the good pixels are shown in green and the faulty ones are presented in 

red. In MSE, the correct pixel values are shown in white, the pixels with too close values are 

illustrated in blue and the pixels with too far values are shown in red. In Q25, the white/yellow 

parts indicate the good and the red parts indicate relatively bad pixels. 

The fluctuation in the ranking of the algorithms based on each metric raise from their differences 

in terms of data and final optimization term. Some of these algorithms such as EPI2, SPO and 

OBER-cross estimate the disparity based on EPI analysis. OFSY_330/DNR utilizes the focal 

stack symmetry for disparity estimation and PS_RF uses the multi-view stereo approach by 

building individual cost volumes for its data terms. 

According to the evaluations and as shown in Fig. 6 and Fig. 7 there is no single best algorithm 

to be considered as the superior one. As it is challenging from Fig. 6 and Fig. 7 to understand the 

relative merits of each technique we provide Table 1 and Table 2 which outline the average 

numerical values per metric per algorithm for the images in each set in both stratified and 

photorealistic scenes, respectively. 
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Fig 6 Stratified Scenes-Visualizations of BadPix(0.07), MSE and Q25 error metrics per algorithm are shown for the 
proposed method, a baseline and six most accurate algorithms on the Stratified set. Each column represents an 
algorithm. The rows with BadPix(0.07) show the percentage of pixels at the given mask with |𝒅𝒅 − 𝒈𝒈𝒈𝒈| > 𝟎𝟎.𝟎𝟎𝟎𝟎. The 
row with MSE label show the mean square error map and the row with Q25 label shows the absolute error of the 
25% of the best pixels for each algorithm 
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Fig 7 Training Scenes-Visualizations of BadPix(0.07), MSE and Q25 error metrics per algorithm are shown for the 
proposed method, a baseline and six most accurate algorithms on the Training set. Each column represents an 
algorithm. The rows with BadPix(0.07) show the percentage of pixels at the given mask with |𝒅𝒅 − 𝒈𝒈𝒈𝒈| > 𝟎𝟎.𝟎𝟎𝟎𝟎. The 
row with MSE label show the mean square error map and the row with Q25 label shows the absolute error of the 
25% of the best pixels for each algorithm 
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The values presented in these tables outline the close performance of the proposed method in 

comparison to the top state of the art algorithms. The cells are color encoded in each row based 

on the ranking of each method per metric. The green represents the best performing method and 

red shows the poorest performing one. These values indicate that the method proposed in this 

work can estimate depth maps with accuracy very close to the most accurate methods in the 

benchmark. The proposed method provides a reduction of ~56.5% averaged across all the error 

metrics when compared to the baseline algorithm EPI2. 

Table 1 Average values of metric per algorithm for the images in Stratified set 

 Proposed Method EPI2 OBER-cross+ANP SPO-MO OBER-cross OFSY_330/DNR PS_RF SPO 
BadPix(0.07) 5.29 23.12 1.38 2.02 16.56 15.01 3.92 8.47 

MSE 0.84 8.18 1.47 1.89 5.78 7.19 3.67 3.7 
Q25 0.707 0.69 0.42 0.31 0.39 0.46 1.09 0.702 

Table 2 Average values of metric per algorithm for the images in Training set 

 Proposed Method EPI2 OBER-cross+ANP SPO-MO OBER-cross OFSY_330/DNR PS_RF SPO 
BadPix(0.07) 8.04 20.27 4.88 6.78 5.57 9.017 9.37 7.49 

MSE 2.94 5.49 1.64 3.22 1.48 3.86 3.22 2.93 
Q25 0.44 0.69 0.27 0.37 0.33 0.32 1.04 0.89 

Fig. 8 represents the difficulty of each scene type as a heatmap.  Each pixel in the heatmap 

represents the percentage of pixels with the disparity error > 0.07 pixels averaged across all of 

the algorithms. Thus more than 90% of these algorithms struggle in detecting the correct 

disparity value for the pixels inside the box in the “Boxes” image set as shown in the first image 

in Fig. 8.  

Another example is the “Sideboard” image set where 80-95% of the algorithms struggle with 

estimating the correct disparity on the surface of the shoes. The brighter parts in this figure 

indicate challenging areas. The "Backgammon" scene challenges the algorithms in occlusions 

and keeping fine structure and the "Stripes" set evaluates the methods for handling textured 

occlusion boundaries. 
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Using "Dots" image set, the robustness of each algorithm is evaluated against camera noise. The 

heatmap for the “Dots” image set shows that almost all the algorithms are sensitive to noise. The 

bottom row of this image set indicates that about 40-50% of the algorithms have problems in 

detecting the correct disparity for the background objects while 70-80% of the algorithms 

struggle in detecting correct disparity values for the foreground objects in presence of noise.  The 

performance of these algorithms is challenged in terms of processing convex, concave, rounded 

and planar geometry in the "Pyramids" image set. 

 
Fig 8 Scene difficulties visualized as heatmaps. 

Fig. 9 and Fig. 10 illustrate the disparity maps, ground truth error map and the median error map 

of the studied algorithms for Stratified and Training sets, respectively. Each row in these figures 

represents an algorithm. For each algorithm per individual image set, there are three columns 

illustrating the disparity maps, ground truth error map and the median error map. To generate the 

median error map, the median of the absolute disparity differences of all algorithms with the 

ground truth is computed for each pixel. Further, the absolute disparity difference of each 

algorithm is subtracted from the median error. The median error map gives a conceptual 

understanding of the parts of the image where algorithms perform below or above average 

performance of all algorithms. Yellow parts in this map represent the average, green above-

average and red below-average performance. 
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Fig 9 Stratified Scenes-Visualizations for disparity maps and their differences with ground truth. Each row 
represents an algorithm. The first column for each stratified scenes illustrates the disparity maps of the proposed 
method and the studied algorithms. The second column illustrates the disparity difference to the ground truth. 
Highly accurate parts are shown in white, too close in blue and too far in red areas. The third column illustrates how 
algorithms perform relative to the median algorithm performance. Yellow parts show average, green above-average 
and red below-average performance. The last row of the figure illustrates the ground truth disparity maps and the 
median absolute disparity difference to the ground truth at each individual pixel among all algorithms. 

The median error maps of the proposed method in Fig. 9 indicate its close performance to the 

average performance of all algorithms in well-structured scenes, complex occlusions and 

different noise levels. The same maps in Fig. 10 show how competitive the proposed method 

performs compared to the other algorithms while dealing with slanted planar surfaces and 

complex scene structure. However, there are still highly textured areas with fine patterns such as 

box frames in the “Boxes” image set which introduces many challenges to depth estimation 

algorithms. For instance, OBER-cross+ANP and OBER-cross algorithms estimated the disparity 



26 
 

of the pixels beyond the box frames in “Boxes” image set above-average of the median 

algorithm. On the other side, EPI2 estimated the disparity level for the same area highly below-

average of the median algorithm. 

 
Fig 10 Training scenes-Visualizations for disparity maps and their differences with ground truth. Each row 
represents an algorithm. The first column for each training scenes illustrates the disparity maps of the proposed 
method and the studied algorithms. The second column illustrates the disparity difference to the ground truth. 
Highly accurate parts are shown in white, too close in blue and too far in red areas. The third column illustrates how 
algorithms perform relative to the median algorithm performance. Yellow parts show average, green above-average 
and red below-average performance. The last row of the figure illustrates the ground truth disparity maps and the 
median absolute disparity difference to the ground truth at each individual pixel among all algorithms. 
 

Table 3 and Fig. 11 present the average performance time of the proposed method compared to 

the studied algorithms in non-logarithmic and logarithmic scale mode, respectively. The 

computational times for each of these algorithms have been reported by their authors. 
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A faster performance time and the competitive accuracy of the proposed method make it 

applicable for deployment in practical embedded systems and Internet-of-Things (IoT) 

appliances. Using the method proposed in this paper, one could transmit a compressed depth map 

in an IoT device, rather than the full image stream or analyze the depth map at the edge level and 

use it to trigger corresponding actions 57. Table 4 shows how much faster/slower and more/less 

accurate the proposed method is compared to the other algorithms. For example, the proposed 

method is ~4.5 times slower than the baseline algorithm EPI2; however, the accuracy of the 

estimated depth maps has increased ~21% or the proposed method is ~111.8 times faster than 

SPO-MO but its accuracy decreased ~2.3%. 

The estimations in Table 4 are based on the percentage of the pixels with correct disparity values 

above 0.07 error threshold. Note that, the same metric is initially used to choose these algorithms 

for comparison purposes. 

Table 3 Computational time of the proposed framework and the state of the art in seconds. 

Algorithms EPI2 Proposed Method OBER-cross+ANP SPO-MO OBER-cross OFSY_330/DNR PS_RF SPO 
Time (s) 8.4 38.5 182.9 4304.3 96.4 200.2 1412.6 2115.4 

Table 4 Comparison of the proposed method and the state of the art. Factors of computational time improvement 
and percentage of disparity accuracy variation. 

 EPI2 OBER-
cross+ANP 

SPO-MO OBER-cross OFSY_330/
DNR 

PS_RF SPO 

Proposed 
Method vs. 

~4.5× slower 
~21% inc. 

~4.7× faster 
~3.5% dec. 

~111.8× faster 
~2.3% dec. 

~2.5× faster 
~4.95% inc. 

~5.2× faster 
~6% inc. 

~36.7× faster 
~0.01% dec. 

~54.9× faster 
~1.43% inc. 

* inc: Increased accuracy    dec: Decreased accuracy 
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Fig 11 Computational time of the proposed framework and the state of the art in logarithmic scale. 

5 Conclusion and Discussion 

In this paper, a new framework is proposed based on EPI analysis and TV minimization to 

estimate depth from the multi-camera array. A new cost function is proposed and analyzed based 

on Fenchel-Rockafellar duality 18. Our approach consists of two steps. First, a rough initialization 

of the depth map is computed using local depth estimation on EPIs. Later, this initialization is 

refined by applying a TV minimization based on Fenchel-Rockafellar duality 18. 

We demonstrate the benefits of the proposed framework on a synthetic dataset including 

Stratified and photorealistic light field image sets. The method has been implemented in Matlab 

R2017a on a device equipped with Intel i7-5600U @ 2.60GHz CPU and 16 GB RAM. 

The evaluation reveals that most algorithms consist of multiple elements and terms which make 

it difficult to establish one best algorithm that outperforms in all categories. Also, the high 

computational time of the studied methods makes almost inapplicable for consumer devices. The 

results demonstrate the competitive performance of the proposed framework among the top state 

of the art methods in terms of accuracy of depth estimation. Even though the accuracy of the 

estimated depth maps using proposed framework varies based on each metric, it still remains in 
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the list of high accuracy methods and the fast convergence of the proposed cost function and its 

fast computational time make it a potential method for consumer electronics applications and 

devices with the aid of parallel technology and GPUs. The new generation of GPUs contains a 

high number of programmable parallel cores (up to 4k). This evolution makes this technology an 

efficient choice for computationally intensive processes in machine vision applications such as 

depth estimation. We aim to explore the effect of parallelism on depth estimation from the multi-

camera array in the future works 
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Appendix 1: 

Fig. A1 presents the percentage of pixels with correct disparity on the Stratified and Training 

scenes for the increasing error thresholds. The PerPixBest 56 in Fig. A1 is an artificial algorithm 

made for evaluation purposes. “The lowest absolute disparity difference to the ground truth at 

each individual pixel among all algorithms” 56 is used to create the PerPixBest metric.  

The algorithms ranking change by varying the thresholds for absolute disparity error. The 

difference in performance of the algorithms for high error thresholds is relatively small. The 

lower thresholds show a more apparent difference in the performances and the ranking of the 

algorithms change significantly for the thresholds between 0.010 and 0.032. Despite the weak 

tolerance in the performance of the proposed method in lower thresholds between 0 and 0.035, it 

is ranked among the top three methods from the threshold 0.048 onwards. OFSY_330/DNR has 

the best performance in lower error thresholds between 0 and 0.012 and its performance reduces 

for the thresholds higher than 0.012. OBER-cross+ANP has the second best performance up to 

the threshold 0.022 and it achieves the best performance from the error threshold 0.034 onward 

while competing very closely with SPO-MO. 

 

Fig A1 The percentage of pixels with correct disparity on the photorealistic and non- photorealistic scenes with 
increasing error thresholds. 
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Fig. A2 illustrate the analysis of the 3D models for the “Cotton” image set in Fig.4.f, generated 

based on the depth maps from the proposed framework, the ground truth and OBER-cross+ANP 

which is the best algorithm ranked in the benchmark.  

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

     
(k) (l) (m) (n) (o) 

Fig A2 3D visualizations of the “Cotton” image set for proposed method, ground truth and OBER-cross+ANP 
algorithm. First row shows the 3D models based on the ground truth, the second row presents the model generated 
based on the proposed method and the third row illustrates the 3D models generated based on OBER-cross+ANP 
algorithm. First column shows the 3D color mesh, second column shows the rasterized 3D color-coded depth, third 
column shows the 3D normals, fourth column shows the Poisson surface reconstruction and last column shows the 
wireframe model of the reconstructed surface for the area around the face. (a) GT–3D color mesh. (b) GT–
Rasterized 3D color-coded depth. (c) GT–3D Normals. (d) GT–Poisson surface reconstruction. (e) GT–wireframe 
model of the reconstructed surface for the face area. (f) Proposed method–3D color mesh. (g) Proposed method–
Rasterized 3D color-coded depth. (h) Proposed method–3D Normals. (i) Proposed method–Poisson surface 
reconstruction. (j) Proposed method–wireframe model of the reconstructed surface for the face area. (k) OBER-
cross+ANP–3D color mesh. (l) OBER-cross+ANP–Rasterized 3D color-coded depth. (m) OBER-cross+ANP–3D 
Normals. (n) OBER-cross+ANP–Poisson surface reconstruction. (o) OBER-cross+ANP–wireframe model of the 
reconstructed surface for the face area. 

The purpose of this comparison is to find out how accurate and close the 3D reconstructed data 

from the estimated depth map is to the ground truth and the most accurate method in the state of 
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the art. Fig.A2.b, Fig.A2.g and Fig.A2.l represent the rasterized color-coded 3D model from the 

ground truth, proposed method and OBER-cross+ANP, respectively. The color-coded model 

indicates how close the proposed method is in terms of establishing depth levels to ground truth 

and OBER-cross+ANP. The transition from red to blue present the area which are closer and far 

from the camera.  By looking at 3D normals in Fig.A2.c, Fig.A2.h and Fig.A2.m one can 

determine the smoothness of the disparity values estimated by the proposed framework in 

comparison to the ground truth and OBER-cross+ANP. Note that the visible line artifacts in 

Fig.A2.h are the boundaries of each individual depth plane which is the result of the discrete 

calculation. This issue can be simply solved by applying 3D inpainting methods 58 to make the 

surface continuous. The Poisson surface reconstruction 59 and the wireframe model which are 

shown in Fig.A2.i and Fig.A2.j, outline the capability of the proposed framework in dealing with 

non-uniform surfaces and following fine structures. 
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