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Social Impact Assessment of Scientist from
Mainstream News and Weblogs.

Mohan Timilsina · Waqas Khawaja ·
Brian Davis · Mike Taylor · Conor
Hayes

Abstract Research policy makers, funding agencies, universities, and govern-
ment organizations evaluate research output or impact based on the traditional
citation count, peer review, h-index and journal impact factors. These impact
measures also known as bibliometric indicators are limited to the academic
community and cannot provide the broad perspective of research impact in
public, government or business. The understanding that scholarly impact out-
side scientific and academic sphere has given rise to an area of scientometrics
called alternative metrics or ”altmetrics”. Moreover, researchers in this area
incline to center around gauging scientific activity via social media namely
Twitter. However, these count-based measurements of impact are sensitive to
gaming as they lack concrete references to the primary source. In this work, we
expand a conventional citation graph to a heterogeneous graph of publications,
scientists, venues, organizations based on more reliable social media sources
such as mainstream news and weblogs. Our method is composed of two compo-
nents: the first one is combining the bibliometric data with social media data
like blogs and mainstream news. The second component investigates how stan-
dard graph-based metrics can be applied to a heterogeneous graph to predict
the academic impact. Our result showed moderate correlations and positive
associations between the computed graph-based metrics with academic impact
and also reasonably predict the academic impact of researchers.
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1 Introduction

This paper extends our previous work on prediction of academic impact from
mainstream news and weblogs [1]. The main distinction of the method de-
scribed in this paper from the preceding work can be found in three facets.
The first is the how we extracted the names of the scientist mentioned in
a social media and disambiguate them. The second is our experiment about
predicting absolute h-index using different graph-based influence metrics. The
third facet is how to categorize the scientist on the basis of social versus aca-
demic presence.

Traditional impact indicators such as citation counts, h-index and journal
impact factor [2,3] are restricted to the academic community and they do not
capture the wider socio-economic research impact i.e impact at the general
public, government or business levels. In recent times, some academics have
become increasingly dissatisfied with the use of traditional bibliometric indi-
cators arguing that the traditional measures of scientific impact are too slow
to accurately capture scientific output in the modern information age [4].

This aforementioned limitation of traditional metrics led to the expansion
of novel, alternative measures of scientific impact - Altmetrics [5]. Altmetrics
is the blend of (a) alternative data sources and (b) metrics derived from these
sources. The combined attributes attempt to use the web as a platform from
which to investigate and measure the extent to which scientific work finds
its way to non-academic audiences. Therefore most of these metrics involve
measuring web-based activity surrounding scientific articles, authors, and in-
stitutions.

The Impact of scientists in bibliometrics is traditionally measured using
the h-index score. The h-index score for a scientist is defined by having h
publications which have been cited at least h times. A high impact scientist is
therefore highly cited by an academic community. With the advent of the Web,
the discourse surrounding scientific work has moved from purely academic
domains to wider areas of discourse. In this scenario, there is a need to measure
the broad impact of scholarly resources outside the scientific community. The
current trend of measuring the impact of scholarly activity in social media
is based on a count of bookmarks, blog posts, views, tweets, likes, shares,
etc. A count metric is typically considered as a measure of influence by the
scientific article or scientist in social media but this is misleading because it
is difficult to prove that any publication or scientist receiving 1000 tweets or
likes implies that it is highly influential. The reason is counts can be gamed or
the publication has catchy or funny headlines. The activity in social media like
Facebook or Twitter are neutral, mere pointers to research than comments or
discussion [6,7]. In order to address this apparent weakness in social media,
we chose to use lengthier documents, for example, blogs and mainstream news
references. We suggest that when a researcher, institute or publication work is
mentioned or linked in such media, then they are more likely to be impactful
in a social context, and gaining value in their field. Similarly, a mention in
the non-scholarly literature like mainstream news and blogs will bring more
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attention to this research output than other forms of social media [8,9]. Due
to this, we propose an approach to measure the impact of scientists in the non-
scholarly literature as a means to measure their social impact and to predict
the academic impact.

The remainder of this article is framed as follows: In Section 2 we review
related work concerning graph based influence metrics of scientific literature
and scientist in citations and co-authorship networks. In Section 3 we describe
our dataset and provide details of how we construct our heterogeneous graph
of social media and scientists. We also implemented different centrality metrics
to assess the influence of scientist in a heterogeneous network and performed
the correlation significance test between the computed graph-based metrics
and h-index of the scientist. We obtain candidate measures which are the
basis for our prediction method described in Section 3. We outline and clarify
our findings and discuss their implications and future work in Section 4.

2 Related Work

The traditional measure of scientific publications is based on the citation
counts proposed by Garfield [10]. A higher number of citations of scientific
publications garners attention in the scientific community because it indi-
cates importance. In the context of citation graphs of scientific publications,
Google’s PageRank algorithm [11] deployed in a citation network brought in-
sight to measure the research impact of scientific publications. Bollen et al.
[12] implemented the PageRank algorithm to rank the scientific publications
in a temporal network. The algorithm is also applied on the co-author network
[13,14] to rank the influential scientist. Article Influence Score [15,16], a
metric inspired from PageRank to measure journals total importance to the
scientific community.

The graph theory approach provides a solid foundation for ranking scien-
tific publication and scientists in the context of a homogeneous network for
example network of citations between publications. In the case of ranking net-
work entities in a heterogeneous network, these metrics are not useful. Zhou et
al. [17] came up with the heterogeneous network approach to computing the
impact of researchers and publications using different kinds of networks, for
example, the social network of authors, citation network of publications and
authorship network connecting the publications and authors network. This
model provides a co-ranking of articles and authors. The problem with co-
ranking model was it ranked publications based on its previous popularity, so
the recent publications always receive lower scores and thus it was not useful
to predict the influence of latest publications. Sayyadi [18] proposed a Futur-
eRank algorithm which combined the information about citations, publication
time and authors to rank the scientific articles by predicting the future rank-
ing. Both Zhou and Sayyadi [18,17] did not clarify whether their method can
be extended to rank other academic entities such as institutions and scientific
venues. Their methods were limited to the only citation, co-authorship, and
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author network did not clearly mention whether such network can integrate
with other kinds of the network for example academic organizational network
and measure their impact.

Sarigol et al. [19] studied the centrality of scientific authors in a co-authorship
network and use the computed metrics to predict the citations of their publi-
cations. Their study focused solely on the computer science research domain,
hence we must take into account that a co-authorship network may vary from
discipline to discipline. Furthermore, scientific reputation plays an important
role for the scientist in his or her publication’s citation rate.

Social media has provided an instantaneous means to disseminate scien-
tific work and has enabled researchers to contribute to the building of research
communities [20,21]. Li et al. [22] explored the measure of scholars influence
in academic social media platforms, considering both the academic and social
impact. Mendeley1 data was used and network centrality metrics were ap-
plied to measure the social influence. They reported that those scholars with
high academic impact are not necessarily influential from the social point of
view. This study was only conducted in Mendeley data so it might not com-
prehensively reflect scholars influence only accounting single social media [23].

In the context of academic social media Hoffmann et al. [24] introduced
Impact Factor 2.0 to measure an impact of researchers. The social network of
Swiss management scholars on ResearchGate2 was analyzed using network
centrality measures. They reported significant correlations between computed
social network metrics such as eigenvector centrality, indegree, and closeness
centrality with h-index a traditional bibliometric measure. The caveat of their
study is the small sample size of only 45 researchers and that the data was
only sourced from the ResearchGate. The findings of their studies could be
biased because researchers use multiple social networks [25] such as Twitter,
Facebook, Mendeley, Blogs, etc.

Acuna et al. [26] attempted to predict h-index of neuroscientists from the
features extracted from their CV using regression equations. The important
finding of their approach is the academic CV, the reason for that feature ex-
tracted from CV can be used as alternative data source to predict the impact
of neuroscientists. Ringelhan et al. [27] studied unpublished scientific articles
receiving likes in Facebook as an early indicator to predict the impact of sci-
entific work. A common issue with using social networks is that the scientific
community may not consider Facebook likes, Twitter tweets/retweets as legit-
imate sources because they can be manipulated or gamed [28].

Most of the prediction analysis have been performed on the bibliometric
data sets [26,29,30] but few of the initiative were taken to predict the scientific
impact using social media data [31,27]. In this work, however, we focus on
blogs and mainstream news because these media bring attention to research
output than any other social media [32]. To the best of our knowledge, there is
no such integrated heterogeneous graph-based approach between bibliometrics

1 https://www.mendeley.com/
2 http://www.researchgate.net/
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data with social data such as blogs, mainstream news to measure and predict
the academic impacts.

3 Methodology

We investigated three research questions, aiming to measure the academic
impacts in social media like blogs and mainstream news. First, we examined
whether we can integrate bibliometric data to social media data to create
a heterogeneous network. Second, we investigated the centrality metrics of
a scientist in such network. Thirdly and finally, we explored how centrality
metrics can predict the academic impact. We start with describing the first
research question.

Can we integrate the blogs and mainstream news with Bibliometric
data?

To answer the first research question we performed the following steps:

1. Collection of Data: We began with the social media data. Our data
is Spinn3r3 data which is a crawl of the blogosphere for the time period
of 2010 November to 2011 July. The data is stored in a distributed file
system and has eight publisher types: memetracker, forum, microblog, re-
view, classified, mainstream news, weblog and social media. We extracted
only weblogs and mainstream news from this distributed file using Java
Spinn3r API4 and the collected data are stored in a MongoDb5 database
which stores the data as JSON6 documents. We indexed extracted data
using Solr7 for quick search of the topic of interest.
For the bibliometric data, we used SCOPUS8, one of the largest biblio-
graphic database which contains the citations of peer-reviewed literature:
scientific journals, books and conference proceedings. We used the Else-
vier SCOPUS API9 to extract metadata of publications such as citations,
authors, publication venue and organizations. The extracted data are in
JSON format and are indexed.

2. Search of a Candidate Topic: In order to find out the connectivity
between the two types of data sources, we restricted our focus on a topic
that has received a lot of public attention in the time window of our so-
cial media index (Nov 2010-July 2011). We used Wikipedia10 to research

3 http://spinn3r.com/
4 http://www.programmableweb.com/api/spinn3r
5 https://www.mongodb.org/
6 http://www.json.org/
7 http://lucene.apache.org/solr/
8 https://www.scopus.com/home.uri
9 http://dev.elsevier.com

10 https://www.wikipedia.org/
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prominent news events recorded in that period. This suggested one pub-
lic health topic was particularly newsworthy: The emergence of a virulent
strain of Avian Influenza. An examination of query trends in the Google
search engine suggests bursts in Web user interest in these topics in the
analysis period as shown in figure 1.

Nov 1, 2010 Jun 13, 2011 Mar 27, 2011 Jun 8, 2011

25

50

75

100

Interest over time

Fig. 1 Google Trend for the Query ’Avian Influenza’ ; from Nov 2010 - July 2011

We created a focused subset of the data by extracting from the Spinn3r
and SCOPUS data sources only the content related to our focus topic.
To do so, we issued queries over our collections and extracted the con-
tent items mentioning the synonymous phrases that all refer to avian flu:
”bird flu”, ”avian influenza”, ”H5N1”, ”avian flu”, ”fowl plague”, ”grippe
aviaire”. This dataset restriction has brought our experimental data to a
manageable size, making it ideal for preliminary analysis and experiments.
We collected 259,149 JSON documents from Spinn3r dataset and 37,081
scientific publications from SCOPUS dataset.

3. Construction of Graph Data Model: We took the same graph data
model from our previous work [1]. This model used the conceptual model
of graph data from the system architecture of Targeted Elsevier Project at
Insight Centre for Data Analytics11 which consists of seven different
types of node entities and five different types of relationships entities. The
figure 2 shows the graph data model used for storing the data and for
analysis: The definition of each node and relationship is shown in Table 1
and 2 respectively.

11 http://www.insight-centre.org/
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Fig. 2 Conceptual Graph Data Model

Relations Type Definition
hasDirectLink This relationship occurs between web entries

or between web entries and a publication.
These relation are directly extracted from
HTML content of web entries as anchors.

hasMention This relationship is not directly extracted from
the data. The relationships are extracted using
the text analysis methods like entity extrac-
tion, disambiguation, and linking.

hasSource This relationship occurs between the web en-
tries and its source.

Citation The citation relationship connects two sci-
entific publications. This relationship is ex-
tracted using SCOPUS API.

Author and Affiliation These relationships between author, publica-
tions, and authors are extracted from SCO-
PUS API.

Table 2 Description of the Relationships in the Graph Model

In order to store the information of nodes and relationships we used the
Neo4J12 graph database. Neo4J was chosen as it is a free and open
source graph database and has APIs for most of the popular program-

12 http://neo4j.com/
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Node Type Definition
Web Entry The Web Entry are the nodes correspond to

the items on the web. The items here are the
Blogs and Mainstream News which were ex-
tracted from the spinn3r data. Each of these
particular types of entries have a correspond-
ing node type as subtype for the WebResource.
Properties: url, full text, timestamp

Agent The agent nodes are the authors of the web
entries. The author is the username of the ac-
count who produced the entry.
Properties: username, email, homepage

Provider The provider nodes are the sources of the
web data, for example: www.theguardian.com
, www.twitter.com etc. The provider node has
the subtype for example NewsSource, Blog-
Source. Each web resources are linked by
hasSource link to the corresponding provider.
Properties: url

ScientificPublication The ScientificPublication type corresponds to
nodes that are as the same name as the scien-
tific publications.
Properties: url, text, abstract

Scientist Scientist types nodes are the authors of the
scientific publications.
Properties: name, email

Organization Organization type nodes are the universities or
the research institutions which are extracted
from the author’s affiliations.
Properties: name, website

Venue The venue type nodes represent journal, con-
ferences, workshops, etc.
Properties: name, website

Table 1 Description of the Nodes in the Graph Model

ming languages like Java, Python, etc. We used the Neo4j Python API
called py2neo13 to construct the graph.

4. Data Integration and Scientist Identification:
To identify the mentions of scientists within Spinn3r content data, we took
a hybrid knowledge/learning based approach by combining an existing su-
pervised approach with handcrafted extraction rules at the post-processing
stage. We then developed a pipeline using General Architecture for Text
Engineering (GATE) [33] that used a combination of ANNIE Named En-
tity Recogniser(NER) [34] and Stanford NER[35] to identify person names.
We crafted custom JAPE grammar rules to annotate mentions prioritiz-
ing certain ANNIE annotations over Stanford NER annotations for Person
Names containing punctuation (i.e Dr J. Smith) as these were problematic
for the Stanford classifier. In addition, the extract rules took advantage of
additional linguistic context such as whether the mention of the scientist

13 http://py2neo.org/2.0/
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was contained in a quotation i.e. Dr M. Knight says ”...”. These prefer-
ences were set according to the manual observation of results from these
two.
JAPE (Java Annotations Pattern Engine) is a pattern matching language
over features and annotations implemented as a cascade of finite-state
transducers [36]. We ran our pipeline [37] over the contents of Spinn3r
data and identified person names within our corpus.
We prepared a list of scientist names in parallel from SCOPUS and indexed
them using Lucene14. SCOPUS provided multiple possible variants of how
scientist names are mentioned in the literature. We then used MongeAlkan
[38] string similarity to match the person names identified from our pipeline
to scientist names indexed from SCOPUS using a threshold of 0.99 after
observing results from a few string comparison methods as shown in Table
3. We were able to identify almost 2351 scientist names.
In order to avert the disambiguation and linking the problem of differen-
tiating between multiple scientists with the same name, we inspected only
the research profiles with unique surname and name combination similar
to the study done by [39,40]. We then checked manually those names who
actually published papers related to ”Avian Influenza”. Hence, we are left
with a relatively small subsets of 320 scientists within a specific topic and
are free from the name disambiguation problem. The next step is to link
the identified name of scientists from Spinn3r to the SCOPUS graph. The
overall process is shown in the Figure 3.

14 http://lucene.apache.org/core/
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Fig. 3 Integration between Spinn3r and SCOPUS Graph Data

In Figure 3, the NewsItem is a node in a Spinn3r graph where a scientist
is mentioned shown by a dotted line. The information about the identified
scientist is in the SCOPUS graph. The Scientist is a node in a SCOPUS
graph. We linked the scientists who are identified in a Spinn3r graph to
SCOPUS Graph using hasMention relationship. In order to carry out this
procedure, we issued a Neo4J Cypher15 query which connects the Spinn3r
graph web entries nodes to a SCOPUS graph scientist node through has-
Mention relationships. Consequently, we were able to link 320 scientists
in our SCOPUS graph.

5. Graph Dataset Statistics The different types of nodes and relationship
count is shown in Table 4 and 5 in a connected Spinn3r/SCOPUS graph.

15 https://neo4j.com/developer/cypher-query-language/
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Name of the Scientist Similarity Score
MongeElkan Cosine Levenshtein

Johnson Johnson 1 1
Johnson Avery Johnson 1 0.7
Johnson Don Graham 0.6
Johnson Joe Sakic 0.6
Johnson Melanson 0.5

Wade Wade 1 1 1
Wade Bill Walton 0.5
Wade Walton 0.5
Wade Dwayne Wade 1 0.7
Wade Pat 0.5
Wade Sam Carchidi 0.5
Wade Ryan Wittman 0.5

Table 3 Comparing Scientist Names

Nodes Count

Mainstream News 10035
Weblogs 79268
News Sources 1717
Blog Sources 11699
Web Entry 828311
Scientist 320

Table 4 Node Types With their Count

Relationship Count

hasDirectLinks 5408825
hasAuthor (of web content) 89978
publishedAt 16584
hasSource 95275
author (of scientific publication) 99986
hasMention 320
affiliation 77234

Table 5 Relationship Types With their Count

Finally, we constructed a graph with integrated the bibliometrics and social
media data using hasMention relationships. In this process, we linked 320
scientists mentioned in social media. In the next section, we will address the
second research question about measuring the importance of those scientist
mentioned in social media.
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Can we measure the influence of scientists who are mentioned in
blogs and mainstream news?

In order to answer this research question, we used the following methods:

1. Mention Count: The mention count of a scientist is the number of times
the scientist was mentioned in social media. In other words, mention count
is the indegree of the scientist node in a bipartite graph between the Web
entry and the scientist node with hasMention relationship.

2. PageRank Score: We computed the PageRank [41] score of all the blogs
and mainstream news nodes in a hyperlink network. We summed all the
PageRank of those web entry where the scientist mentioned. Thus the
impact of scientist based on PageRank Score is given by:

Scientist(influencePR) =

n∑
i=1

WebEntry(PRi) (1)

PR is the PageRank score of the web entry node and n is the total number
of web entry where the scientist is mentioned.
Figure 4 shows example of the higher PageRank and the lower PageRank
impact of scientist mentioned in social media.

  

Scientist

Web Entry

Hyper Links

a. Lower PageRank
Impact

b. Higher PageRank
Impact

Mention

Fig. 4 PageRank Score of Scientist Mention in Social Media.
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3. Authority Score: We computed the Authority Score using the HITS
(hyperlink-induced topic search) authority algorithm [42] of all blogs and
mainstream news in a hyperlink network. We summed all the Authority
Score of those web entry where the scientist mentioned. Thus the impact
of scientist based on Authority Score is given by:

Scientist(influenceA) =

n∑
i=1

WebEntry(Ai) (2)

A is the Authority score of the web entry node and n is the total number
of web entry where scientist is mentioned.
Figure 5 shows an example of the higher authority and lower authority
scores impact of scientist mentioned in a social media.

  

Scientist

Web Entry

Hyper Links

a. Lower HITS  Authority b. Higher HITS Authority

Mention

Fig. 5 Authority Score of Scientist Mention in Social Media.

4. Unweighted Node Count: It is the total count of the directly and indi-
rectly linked nodes in a maximal directed ego subgraph where the root node
is the scientist and the other nodes are the web entries referred through
the hyperlink relationships. The definition of Directed Ego-Centered Graph
and Maximal Directed Ego Network is given as:

Definition 1: Directed Ego Centered Graph: For a graph G = (V,E)
where V is the set of nodes and E⊆V XV is a set of ordered pairs from
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V called the edges of the graph, the ego network of kth degree is given by
Gk

i = (si∪V k
i , Ei) where V k

i is the set of nodes that are at most k hops
away from si and Ei is the set of directed edges between si∪V k

i and si the
seed node of graph Gk

i .

Definition 2: Maximal Directed Ego Network : A maximal directed ego
network of a graph G = (V,E) is an ego network of k hop away from
the node si given by Gk

i = (si∪V k
i , Ei) such that there is no vertex in

V \V k
i whose addition in Gk

i would preserve the property of a directed ego
centered network.
Fig 6 shows the example of Unweighted Node Count in a Maximal Directed
Ego Network.

  

Web Entry 

Scientist

Mention 

HyperLink 

Unweighted Node Count = 8

Fig. 6 Unweighted Node Count in a Maximal Directed Ego Network of Scientist

5. Katz Centrality: The Katz centrality [43] is applied to a maximal di-
rected ego network of the web entry nodes in a hyperlink network where
the scientist is mentioned. The combined score based on Katz Centrality
score is given by:

Scientist(influenceK) =

n∑
i=1

WebEntry(Ki) (3)
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The K is computed as follows:

K =

∞∑
j=1

d∑
i=1

αj(Aj)ij (4)

K is the Katz Centrality of the web entry node in a maximal directed
network and n is the total number of web entries where the scientist is
mentioned. A is the adjacency matrix of the graph, α is the reciprocal of
the eigenvalues of adjacency matrix A, d is the degree between node i and
node j.

  

Web Entry 

Scientist

Mention 

HyperLink Number of hops = 3

Total Impact of Scientist at  α = 0.5, 
in this 3 hop network is given by:
s =  5.75
 

Fig. 7 Katz Centrality Score Computation based upon Scientist Mention in Social Media.

Figure 7 demonstrates the computation of the Katz Centrality score of
Scientist in a 3 hop network at attenuation parameter α = 0.5

6. Log Based Weight: This is the metric we propose to weight the nodes
in a maximal directed ego network. Log Based Weight is based on the
information spreading ability of each node. If a scientist is mentioned in a
subgraph of Hyperlink network then total influence of the scientist in that
subgraph based on Log Based Weight (lbw) is the cumulative sum of
spreading ability of each node which is given by,

Scientist(influencelbw) =

N∑
i=1

log
[ Indegree+ 1

Outdegree+ 1
+ 1

]
(5)
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The rationale to use log is that for a very high indegree of the web entry
nodes, the score will also be very high, so we dampened the score using
logarithm, and to smooth the equation for becoming unstable we added
1. Figure 8 shows the computation of Log Based Weight in three different
network configurations. With respect to the first configurations, in Figure
8(a) there is a direct mention link of scientist and for the second, Figure
8(b) indicates a mention along with indirect hyperlink. With respect to the
third and final configuration in Figure 8(c) there is a direct mention and a
hyperlink relationship together.

  

(a)  s = 0.35

(b)  s = 0.65
(c) s = 0.69

Scientist

Web entry

HyperLink 

Mention

Fig. 8 Log Based Weight for 3 network configurations. The score of Scientist grows from
(a) to (c)

Comparison of Different Metric with h-index for Scientist Men-
tioned in Social Media

We applied the metrics described above and computed the scores for 320 sci-
entists. We performed a Spearman correlation [44] test between the computed
metrics and the corresponding h-index of the scientist. The result of the cor-
relation significance test is shown in the Table 6.

The computed metrics are weakly correlated but statistically significant
with respect to its h-index. The significant correlation infers that there is also
a correlation in the population of a scientist with their social media score. This
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Metrics Correlations
p-value
α = 0.05

Mention Count 0.35*** 1.09e-10
Unweighted Node Count 0.38*** 1.38e-14
PageRank Score 0.34*** 3.85e-10
Authority Score 0.29*** 6.44e-08
Katz Centrality 0.42*** 1.4e-14
Log Based Weight 0.45*** 2.2e-16

Table 6 Correlation Significance Test of the Computed Metrics with h-index

N= 320, Spearman correlation is displayed. ***p < 0.05

concludes to the fact that correlation from the sample of 320 scientist is not
due to any random effect. Out result supports the similar kind of claim by
previous studies [45–48] that citations and altmetrics are positive but weakly
correlated. In comparison with other computed graph-based metrics in table
6, we observed Log Based Weight (ρ = 0.45, p-value = 2.2e-16) and Katz
Centrality (ρ = 0.42, p-value = 1.4e-14). Both have slightly better correla-
tion in magnitude with the h-index. We performed pairwise correlation test
between Log Based Weight and Katz Centrality to compare their significance
in correlation.

This is a case of overlapping correlation problem because we compare both
the metrics with the h-index. We observed that the Log Based Weight with
h-index (ρ = 0.45) and Katz Centrality with h-index (ρ = 0.41) have high
correlation between Log Based Weight and Katz Centrality (ρ = 0.90). We
formulate the following hypothesis:

Ho Null Hypothesis: There is no significant correlation difference be-
tween Log based Weight and Katz Centrality with h-index

H0:ρlbw=ρkc

Ha Alternative Hypothesis: The correlation measured from Log Based
Weight is greater than Katz Centrality with h-index.

Ha:ρlbw > ρkc

Where ρlbw is the correlation coefficient of Log Based Weight and ρkc correla-
tion coefficient of Katz Centrality.
We performed the test proposed by Steiger [49] called Steiger’s Z-test which
computes the statistical comparisons between correlation coefficients com-
puted of the same populations. This test is implemented in the comparing
correlation cocor16 package in the R statistical programming language.

The computed one-tailed test indicated that the p − value < 0.05, which
means the test fails to accept the null hypothesis and accept the alternative hy-
pothesis that the correlation measured from Log Based Weight is statistically
significantly greater than the correlation measured from the Katz Centrality.

In the next step, we tried to answer our third research question, which is
to evaluate computed graph-based metrics by predicting h-index.

16 http://comparingcorrelations.org/
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Sample size z-score
p-value
(α =0.05)

320 1.77 *0.03

Table 7 Correlation Significance Test between Log Based Weight and Katz Centrality

Do the computed graph-based metrics predict academic impact?

To answer this research question we started with the following steps:

3.1 Building a Prediction Model

In the previous section, we discussed how to measure the impact of a scientist
in social media using graph-based metrics. In this section, we will examine
how these metrics can be used to predict the impact of the scientist in the
academic world. In this respect, we performed two experiments, (i) one to
predict the absolute h-index of a scientist taking the graph-based metrics as
a predictor variable and (ii) and experiment to classify a scientist in different
categories such as low cited, moderately cited, highly cited and very
highly cited.

3.1.1 Regression Model with Single Predictor

We performed the correlation among all the computed graph-based metrics of
a scientist against their h-index. The result showed that Log based weight has
a high Spearman correlation of ρ = 0.45 with h-index in comparison to other
graph-based metrics 6. We used this predictor variable to predict the h-index.
The model can be viewed as:

h-index = β ∗ Log Based Weight + ε

where β is the regression coefficients and ε is the error term while predicting
the dependent variable.

The descriptive statistics are shown in Table 8:

Min Max M SD (2)

(1) Log Based Weight 0.00041 166.4 6.658 17.74 0.45***
(2) h index 0 41 5.96 5.52

Table 8 Descriptive Statistics and Correlations for Single Predictor

N= 320 ; Min = Minimum; Max = Maximum; M= Mean; SD= Standard Deviation.
Spearmans correlation is displayed; *** p < 0.05 (two-tailed).

Regression Analysis: As shown in Figure 9 for a unit change in h-index
there is a 0.12 unit change in the Log Based Weight. Log Based weight posi-
tively predicts the h-index (β = .12, p < 0.05). β is the regression co-efficient
and its value is positive and significant.
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Log Based Weight H-Index
β=.12, p<0.05

Fig. 9 Relation between Log Based Weight and h-index

3.1.2 Prediction Accuracy of Model

We performed Leave One Out Cross Validation (LOOCV) to check the
prediction error of the model [50]. This method is known as an exhaustive cross
validation method because it takes n-1 sets as a training set and performs the
prediction in a single test set. The computed Root Mean Square Error (RMSE)
of the model is 5.2. The RMSE is high so this model is not highly dependable.
In the next step, we perform the Principal Component Analysis over
all the computed graph-based metrics because these metrics are highly non-
independent.

3.1.3 Principal Component Analysis (PCA)

PCA converts the variable into linearly uncorrelated variables called principal
components. These components capture the highest variability in the data
and are known as eigenvectors which can be used to predict the outcome
variable [51]. We applied PCA in our graph-based metrics and we found 7
different components.

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7

Standard Deviation 2.3816448 0.8488957 0.60548089 0.35624607 0.27001367 0.199283595 0.0316927959
Proportion of Variance 0.8103189 0.1029463 0.05237244 0.01813018 0.01041534 0.005673422 0.0001434905
Cumulative Proportion 0.8103189 0.9132651 0.96563757 0.98376775 0.99418309 0.999856510 1.0000000000

Table 9 Summary of Principal Component Analysis

From table 9, it is shown that both Component 1 and Component 2 cap-
ture the 91 % of the variance and other component does not contribute as
much variance. Similarly, the variance contribution from Component 3 on-
wards is relatively small and capture a small proportion of variability and are
unimportant. We choose Component 1 and Component 2 and regress with the
dependent variable h-index.

We validate the model using Leave One Out Cross Validation (LOOCV).
The Root Mean Squared Error (RMSE) of the model is 4.19. The RMSE of
both models is shown in Table 10:
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Model
Root Mean Squared Error
(RMSE)

Linear Regression 5.2
Principal Component Regression 4.19

Table 10 RMSE Results of the Models

We observed from Table 10 that RMSE with the single predictor is 5.2
and with principal component predictor is 4.19. RMSE only reduced slightly
from 5.2 to 4.19 but there is not so much difference in prediction accuracy of
the model. One of the reasons for this might be the nature of the dependent
variable h-index. The higher h-index gets, the harder it is to increase [52].
This means even the graph-based influence score is higher, but the h-index
is not increasing. In our next experiment, we try to predict the label of the
scientists which are divided into different categories according to their h-index.

3.1.4 Classifying Scientists By Their Current Social Presence

There can be four different possible combinations between the social and the
academic world for any scientist. Each of the possible combinations is shown
in Table 11.

Social World Academic World

+ +
+ -
- +
- -

Table 11 Social Vs Academic World: + : Active , - : Passive

The scientists with (+,+) patterns are those who are active in the social
and academic world and (+,-) patterns are those who are active in the social
world, but passive in the academic world. Similarly (-,+) patterns are those
who are passive in the social world but active in the academic world and (-,-)
patterns are those who are passive in both social and academic worlds. In
our classification problem, we tried to predict which combinations are best
supported.

We used five different features from the maximal directed ego network
namely, depth of the graph, number of nodes, cosine similarity between citing
and cited documents, number of mentions, Log Based Weights of a scientist.
The outcome variable is the category of the scientist. We categorized h-index
into four categories using quartile distribution as shown in Table 12. This is a
supervised machine learning classification problem and we trained the model
using a Support Vector Machine (SVM).
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3.1.5 Categorization of Scientists Using h-index

The h-index of 320 scientists are divided using quartile distribution. We used
each quartile as category, as seen in Table 12

Quartile
Distribution of h-index

Category

(0-25)% Low Cited
(25-50)% Moderately Cited
(50-75)% Highly Cited
75% above Very Highly Cited

Table 12 Classification of Scientist according to Quartile Distribution of h-index

3.1.6 Data Splitting and Training the model

We split the data into training and test set. We took 75% data as training and
25 % data as the test set. SVM classification with the radial kernel is applied
on the training data because our data was not linearly separable. We tuned
the SVM parameter gamma(γ) and cost(C) using 10 fold cross validation.

3.1.7 Prediction Accuracy of the Model

We compute the Precision, Recall and F1 score for each of the four classes. The
precision of the model is higher for the class Very Highly Cited at 0.66 and
lower for the class Highly Cited as 0.22. Similarly, the precision in predicting
Low Cited and Moderately Cited class is 0.40 and 0.30 respectively.

The recall of the model is higher for predicting Moderately Cited class
ts 0.65 and lower for Very Highly Cited class as 0.10. Furthermore, recall
for Low Cited class is 0.18 and Moderately Cited class is 0.19.

The model has a high F1 score of 0.33 for predicting Highly cited class
and low of 0.17 for Very Highly Cited class. Similarly, for Low Cited
and Moderately Cited class the F1 score of the model is 0.25 and 0.23
respectively. The comparison is presented in Figure 10.
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Fig. 10 Classification Accuracy of the Model in the Test Set

Discussion

The following observations are presented in Table 13.

Social World Academic World
Possibilities Supported

By Classification Algorithm
+ + X
+ - X
- + X
- - X

Table 13 Combination Supported by Classification using Social media Features

The algorithm with 66 % precision and 10 % recall classifies the scientist
in the category of Very Highly Cited class and with 22 % precision and 65
% recall classifies the scientist in the category of Highly Cited class. Both of
these classes are above the median value of h-index in our dataset. This means
our model satisfactorily classifies the scientist who is active in both social and
academic world and supports the (+,+) combination. Similarly, for predicting
the rest of the class the algorithm has precision and recall less than 50 %. This
means algorithm cannot convincingly classify the rest of the class.
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4 Limitations

In this study, we measured the impact of the scientist who is mentioned in
social media. From the result of our predictive modeling, we noticed poor
F-score and RMSE measures. One reason for this might be the quality of
the data. In this sample, we can assume the bias towards that scientist who is
both visible in social media and academics. Not all the scientists are frequently
mentioned in social media platforms. In that case, it is difficult to predict the
academic impact of the scientist by only taking into social media features.
This may be in the case with respect to false positives (high social media
presence, low academic impact) and false negative (high academic impact, low
social media presence). In the experiment presented, we only use social media
feature, but including features related to academia such as a number of co-
authors of a scientist, number of publication in top venues or the scientist
affiliation would have improved the performance ability of the classifier which
we left as our future work.

Similarly, in our study, we presented the graph-based metric called Log
Based Weight. Currently, this metric measures the information spreading
ability of each node in the maximal directed ego network of a scientist. In the
case of the nodes that are one hop farther from scientist node, one can assume
to have a direct impact on it. While in the case of nodes which are k hops far
away from scientist node, it is hard to infer the same level of influence. In our
future work, we wanted to extend this metric to capture this effect.

Finally, we plan to extend our graph based centrality metrics to com-
pute the other academic entities such as publications, venues and organiza-
tions/institutions from the heterogeneous graph. With the computed central-
ity metrics, we want to evaluate the metrics by predicting academic impact for
other academic entities like citations for publications, impact factor for venues
and mean citations scores for an organization.

5 Conclusion

In conclusion, we addressed each of our research goals as described in Section 3,
by extending conventional citation graphs to heterogeneous graphs of different
entities such as scientists, weblogs, and mainstream news. On a graph level,
we integrate the social media data with the bibliometric data. We applied the
standard graph based centrality metrics to understand the influence of scientist
mentioned in social media and later we use the computed centrality metrics
and their maximal directed ego network to predict the impact of a scientist.
Our work extends the current trend of Altmetrics, which studies and seeks to
measure academic impact outside from nontraditional bibliometric sources of
interest, by pushing the metric boundaries beyond mere count based metrics.
We achieved this by providing standard graph-based metrics for scientists
which demonstrate comparable results to existing count based approaches and
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demonstrate positive associations and moderate correlations to the standard
bibliometric measures (h-index).
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39. S. Milojević, Journal of Informetrics 7(4), 767 (2013)
40. A.M. Petersen, O. Penner, EPJ Data Science 3(1), 1 (2014)
41. L. Page, S. Brin, R. Motwani, T. Winograd, (1999)
42. J.M. Kleinberg, Journal of the ACM (JACM) 46(5), 604 (1999)
43. L. Katz, Psychometrika 18(1), 39 (1953)
44. D.G. Bonett, T.A. Wright, Psychometrika 65(1), 23 (2000)
45. J. Priem, H.A. Piwowar, B.M. Hemminger, arXiv preprint arXiv:1203.4745 (2012)
46. L. Waltman, R. Costas, arXiv preprint arXiv:1303.3875 (2013)
47. Z. Zahedi, R. Costas, P. Wouters, Scientometrics 101(2), 1491 (2014)
48. M. Thelwall, S. Haustein, V. Larivière, C.R. Sugimoto, PloS one 8(5), e64841 (2013)
49. J.H. Steiger, Psychological bulletin 87(2), 245 (1980)
50. M. Kearns, D. Ron, Neural Computation 11(6), 1427 (1999)
51. I. Jolliffe, Principal component analysis (Wiley Online Library, 2002)
52. L. Egghe, Journal of the American Society for Information Science and Technology

58(3), 452 (2007)


