<table>
<thead>
<tr>
<th>Title</th>
<th>Modeling the influence of potassium content and heating rate on biomass pyrolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Trubetskaya, Anna; Surup, Gerrit; Shapiro, Alexander; Bates, Richard B.</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2017-03-14</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>https://doi.org/10.1016/j.apenergy.2017.03.009</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/7360</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/10.1016/j.apenergy.2017.03.009</td>
</tr>
</tbody>
</table>
Modeling the influence of potassium content and heating rate on biomass pyrolysis

Anna Trubetskayaa,*, Gerrit Surupb, Alexander Shapiroc, Richard B. Batesd

aEnergy Engineering Department, Luleå University of Technology, 97187, Luleå, Sweden
bDepartment of Engineering Sciences, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway
cDepartment of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Bygning 229, Kgs. Lyngby 2800, Denmark
dMIT, Department of Mechanical Engineering, 02139, Cambridge, MA, USA

Abstract

This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing. The shrinking particle model considers internal and external heat transfer limitations and incorporates catalytic effects of potassium on the product yields. Modeling parameters were tuned with experimentally determined char yields at high heating rates (> 200 K s$^{-1}$) using a wire mesh reactor, a single particle burner, and a drop tube reactor. The experimental data demonstrated that heating rate and potassium content have significant effects on the char yield. The importance of shrinkage on the devolatilization time becomes greater with increasing particle size, but showed little influence on the char yields.

*Corresponding author. anna.trubetskaya@ltu.se
Keywords: fast pyrolysis, kinetics, metaplast, potassium, heating rate

Nomenclature

\(AR \) Aspect ratio

\(A_i \) Pre-exponential factor (s\(^{-1}\))

\(A_p \) Particle area (m\(^2\))

\(c_p \) Specific heat capacity (J (kg K\(^{-1}\))

\(d_p \) Particle diameter (m)

\(d_{pore} \) Particle pore diameter (m)

\(D_r \) Reactor diameter (m)

\(E_i \) Activation energy (J mol\(^{-1}\))

\(f_{sh} \) Shrinkage factor

\(g \) Gravity (m s\(^{-2}\))

\(h \) Convective heat transfer coefficient (W (m\(^{-2}\)K\(^{-1}\))

\(\Delta H_{\text{vap}} \) Heat of vaporization (J kg\(^{-1}\))

\(k_i \) Reaction rate constant (s\(^{-1}\))

\(L \) Reactor’s length (m)

\(m \) Reaction order

\(n \) Dimensionality factor

\(R \) Gas constant (J (K mol\(^{-1}\))

\(r \) Reaction rate (kg (kg s\(^{-1}\))

\(R_p \) Particle radius at specified interior location (m)

\(r_p \) Particle radius (m)

\(T \) Temperature (°C)

\(t \) Time (s)

\(V_p \) Particle volume (m\(^3\))
\(v_p \) Slip velocity between gas and particle (m s\(^{-1}\))
\(\Omega \) Correction factor for influence of potassium content on activation energy (\(E_{a,3} \))

\(X \) Conversion
\(x_{Fe,\text{max}} \) Feret maximum diameter (m)
\(\omega \) K\(^+\) concentration (mg kg\(^{-1}\))

\(x_{Ma,\text{min}} \) Martin minimum diameter (m)
\(\psi \) Biomass fraction of solid phase

\(\rho \) Density (kg m\(^{-3}\))

Dimensionless numbers

\(Bi \) Biot number
\(Nu \) Nusselt number
\(Pr \) Prandlt number
\(Re \) Reynolds number

\(\tau \) Holding time (s)
\(\varepsilon \) Emissivity

Greek symbols

\(\alpha \) Particle thermal diffusivity (m\(^2\) s\(^{-1}\))
\(\kappa \) Heating rate (K s\(^{-1}\))
\(\lambda \) Thermal conductivity (W (m K\(^{-1}\)))
\(\mu \) Viscosity (Pa s)

\(\sigma \) Stefan-Boltzmann constant (J (s m\(^2\) K\(^4\))\(^{-1}\))

\(\xi \) Void fraction occupied by the gas phase

Subscripts

0 initial
\(b \) biomass
\(c \) char
\(g \) gas
\(H_2O \) water
\(K \) potassium
1. Introduction

Suspension firing of biomass is widely used for power generation. Danish pulverized fuel fired power plants are undergoing a transition to 100% biomass firing in order to reduce greenhouse gas emissions. Straw, wood pellets and wood chips are the most abundant biofuels in Denmark [1]. The annual consumption of biomass at Danish power stations is 1.2 million tones of straw and 0.2 millions of wood chips per year [2]. The advantage of utilizing wheat straw as a renewable energy source is that it is one of the most readily available Danish agricultural residues, while the wood pellet production depends on the supply of imported wood residues [3, 4]. The drawback, however, is that the quality of agricultural wastes is lower than that of wood due to a higher ash content leading to deposition and corrosion of the boiler units. In pulverized biomass combustion, short residence times are required for biomass devolatilization, which makes it difficult to examine the dynamics of the process. In addition, the lignocellulosic material reactivity is affected by the biomass composition, namely organic
matter and minerals [5–7]. The differences in char properties generated under various pyrolysis conditions can lead to a range of challenges in a modeling of biomass conversion.

Fast pyrolysis at high temperatures and high heating rates is the initial step in suspension biomass firing. Fuel particles first undergo rapid drying, heating and devolatization with the formation of char and volatiles. Despite of numerous previous studies on biomass devolatilization mechanisms and particle models, there is no generally accepted model that can estimate the conversion rate and final char yield over a wide range of operating conditions. Existing kinetic models [8–14] were developed with experimental data using specific biomass samples and a narrow set of low temperature reaction conditions. The application of lower temperatures makes extrapolation to higher temperatures in combustion/gasification processes.

Most of the existing biomass pyrolysis models [10, 15–17] which describe both the devolatilization product composition and yields (light gases, tar and char) are mainly valid for low-ash fuels (hardwood, softwood); whereas considerably less work has been carried out with herbaceous lignocellulosic materials. In addition, these mathematical models are valid for biomass pyrolysis under slow heating rates (1-50 K min\(^{-1}\)) and long residence time (1-4 h). Many kinetic models for wood pyrolysis have been reported in the literature [18]. The simplest models are based on a single first order decomposition reaction, and are not able to estimate the influence of heating conditions on the product yields [19].
Fuel particle \rightarrow Volatiles $\cdot (1 - \gamma) + \gamma \cdot$ Char

Figure 1: One-step global model [20].

Other models assume competing parallel reactions to predict the production kinetics of gas, tar and char, which is often valid only over a narrow temperature range [10, 21].

![Competing step global model](image)

Figure 2: Competing step global model with k_g - rate constant of gas release, k_c - rate constant of char formation, k_t - rate constant of tar formation, k_{g2} - rate constant for the formation of gas from tar and k_{c2} - rate constant for the formation of char from tar [10].

Thurner and Mann [10] assumed that the activation energy for the char formation reaction is similar to the activation energy for mass loss reactions to gas and tar, and therefore, that the final residual weight (e.g. the char yield) is independent of the heating rate and heat treatment temperature. More complex models involve additional steps for tar decomposition in the gas phase [22] or an intermediate product derived from primary decomposition of biomass [15, 23, 24]. These models can be generally applied only for a specific type of biomass. Ranzi et al. [25, 26] included the effect of holocelluloses, lignin and extractives on the product yields and composition. Previous models have not included the catalytic effect of alkali metals on biomass devolatilization, which has been shown to influence yields and product release rates sig-
nificantly [7, 27–29]. Extrapolation kinetics fitted under low heating rate conditions to the pulverized fuel firing conditions is difficult due to the changes in devolatilization kinetics with heating rate [20]. Previous pyrolysis kinetic models have failed to extrapolate to higher temperatures because the actual particle heating rate depends on parameters which are difficult to define quantitatively [20, 30, 31].

In this study a model was developed to estimate the char yield from biomass pyrolysis at conditions relevant to suspension firing, which includes the effects of high heating rates, high heat treatment temperatures, particle size and biomass alkali content. Simulations were combined with experiments in a wire mesh reactor (WMR), a single particle burner (SPR) and a drop tube reactor (DTF) to identify the most influential fuel characteristics that explain the differences between woody and herbaceous biomass pyrolysis. The accurate knowledge of reaction rate and solid residue yields is essential for the boiler optimal operation and design.

2. Model development

The devolatilization model assumes non-isothermal and cylindrical biomass particles, and includes both chemical kinetics, and external and internal heat transfer. A single biomass particle enters a pre-heated gas flow and is heated up by convection and radiation from its surroundings (single particle reactor and drop tube reactor), or by conduction from the mesh (wire mesh reactor). The model assumes:
1. The fuel particle is a one-dimensional, cylindrical geometry.

2. Thermal gradients within the particle are only in the radial direction.

3. Particle shrinkage occurs during pyrolysis.

4. Moisture content of all fuels are low (<5 wt. %) and drying occurs.

5. Internal and external mass transfer are fast [32], and therefore, are not considered.

6. Only the reactor walls contribute to the radiative external heat transfer; radiation from the flame around the particle due to ignition of volatiles is neglected.

7. Heat transfer to the particle surface occurs through convection and radiation.

8. Heat transfer within a biomass particle occurs through conduction.

9. Potassium has a dominant influence on the char yield compared to other ash elements.

10. Variations in plant cell wall composition (cellulose, hemicellulose, lignin, extractives) are relatively small and have less influence on the biomass char yield than variations in the potassium content.

The last two assumptions are based on previous experimental results obtained in a wire mesh reactor and a drop tube reactor [33, 34]. The proposed model includes only primary pyrolysis reactions,
i.e. not cracking of tar [35]. The schematic view of the proposed kinetic model is shown in Figure 3.

\[
\text{Original biomass} \xrightarrow{k_1} \text{Metaplast} \xrightarrow{k_3} \text{Volatiles} \quad \text{Char}
\]

Figure 3: Three reaction model of biomass pyrolysis [12, 15, 36].

The shrinking particle is converted into an intermediate liquid compound (so called metaplast) which reacts further to form volatiles and char. Evidence of metaplast formation has been reported in the literature [23, 30, 37–40]. The thermogravimetric results showed a change in the mass loss that was attributed to a high activation energy process during which cellulose passed from an inactive to an active form without sample mass loss [23]. High speed photography of hardwood lignin and cellulose exhibited decomposition of lignocellulosic material through an intermediate liquid with bursting bubbles [39]. Only the formation of metaplast is assumed to influence devolatilization whereas the fractional split between volatiles and char is determined by the heating rate and alkali content. The pyrolysis reactions are assumed to be irreversible and first order with an Arrhenius type of rate expression. One fixed set of kinetic parameters (activation energy and pre-exponential factor) for each of the three reactions for a generic biomass was obtained by fitting the
model to the char yields obtained in the wire mesh and entrained flow reactors. The catalytic effect of potassium on the char yield was accounted for by decreasing the activation energy required for the reaction from metaplast to char (E_3), thereby leading to higher char yields. The particle model was solved with the initial conditions:

$$\rho_b(r_p, 0) = 1$$
$$\rho_M(r_p, 0) = 0$$
$$\rho_c(r_p, 0) = 0$$

The radial concentrations of biomass, metaplast and char are calculated from:

$$\frac{d\rho_b}{dt} = -k_1 \cdot \rho_b$$ \hspace{1cm} (1)
$$\frac{d\rho_M}{dt} = k_1 \cdot \rho_b - (k_2 \cdot \rho_M + k_3(\omega_K) \cdot \rho_M)$$ \hspace{1cm} (2)
$$\frac{d\rho_c}{dt} = k_3(\omega_K) \cdot \rho_M$$ \hspace{1cm} (3)

$$k_i = A_i \cdot \exp\left(-\frac{E_{a,i}}{R \cdot T}\right)$$ \hspace{1cm} (4)

$$E_{a,3,\text{max}} = \Omega_K(\omega_K) \cdot E_{a,i}$$ \hspace{1cm} (5)

$$\Omega_K(\omega_K) = 1 - K_1 \cdot \left(1 - \exp\left(-\frac{\omega_K}{K_2}\right)\right)^2$$ \hspace{1cm} (6)

The correction factor for the potassium content (Ω_K) becomes $\Omega_K(\omega_K = 0) = 1$ and the activation energy $E_{a,3}$ is equal to the maximum activation energy $E_{a,3,\text{max}}$ when there is no potassium in the sample. Ω_K approaches the minimum value and the activation energy $E_{a,3}$ is equal to the minimum activation energy $E_{a,3,\text{min}}$ when
the biomass contains high amounts of potassium. The K_1 parameter is a constant and describes a range of activation energy; the K_2 parameter is a constant for the exponential adjustment of the potassium content (ω_K in mg kg$^{-1}$). Various expressions of Ω_K to describe the influence of potassium content were tested, and equation 6 was found to fit the char yield data best.

The results of the fitting showed that the kinetic parameters (A_i and $E_{a,i}$) for the metaplast formation and volatiles release are similar. The char yields were calculated in the model by keeping the kinetic parameters (k_1 and k_2) of other reactions constant, whereas the activation energy $E_{a,3}$ required for the reaction from metaplast to char was calculated according to equation 5. The modeling parameters were fitted by minimizing the sum of squares of the residuals using fmincon in Matlab (version 8.6, MathWorks Inc.).

2.1. Shrinking

The model calculates the radial shrinkage of the particle at radius r_p, which is divided into R_p grid points numbered from $i=0$ to $i=R_p$, where 0 is the center of the particle, generating a number of discrete volumes. The density distribution along the particle radius is calculated using a linear approximation between two neighboring points which form a discrete volume as shown in Figure 4.
The size of the control volume at a given time is calculated according to equation 7:

\[dV_i = 2 \cdot \pi \cdot R_p \cdot AR \cdot (r_{p(i)}^2 - r_{p(i-1)}^2) \] \hspace{1cm} (7)

The initial size of control volume is given by equation 8:

\[dV_{i,0} = 2 \cdot \pi \cdot R_p \cdot AR \cdot (r_{p(i,0)}^2 - r_{p(i-1,0)}^2) \] \hspace{1cm} (8)

In the shrinking particle model, the volume occupied by the solid structure of the particle is assumed to decrease proportionally with the conversion. The current size of the control volume is related to the initial size of the control volume through a shrinkage factor in equation 9, and further implemented in heat transfer equation 11:

\[f_{Sh} = \frac{dV_i}{dV_{i,0}} = \frac{r_{p(i)}^2 - r_{p(i-1)}^2}{r_{p(i,0)}^2 - r_{p(i-1,0)}^2} \] \hspace{1cm} (9)

The shrinkage factor is calculated from the density change of a fuel particle which is affected by the original biomass, metaplast and char fractions in...
The shrinkage factor varies from 1 for the untreated biomass particle, to a minimum value $f_{sh,min}$, when a particle is converted to volatiles and char. Here, the minimum shrinkage factor was varied from 0 to 0.5 according to previous experimental observations from fast pyrolysis of smaller wood particles (0.2-0.4 mm) [34], larger wood particles (3-5 mm) [41], and modeling results from Anca-Couce et al. [42].

2.2. Conservation of energy

The unsteady energy equation for the particle describes internal heat transfer using Fourier’s Law in cylindrical coordinates:

$$\frac{d}{dt} \left(c_{ps} \cdot T_p \right) = \frac{1}{\rho_s \cdot f_{sh}} \cdot \frac{1}{r_p^n} \cdot \frac{\partial}{\partial r_p} \left(r_p^n \lambda_{eff} \frac{\partial T_p}{\partial r_p} \right) + \sum_{j=1}^{3} r_{pyr,j} \cdot (-\Delta H_{reac,j})$$

$$+ r_{H_2O} \cdot (-\Delta H_{vap})$$

(11)

$$r_{pyr,j} = -A_{pyr,j} \cdot \exp \left(-\frac{E_{pyr,j}}{RT} \right) \cdot \left(\frac{\rho_b}{\rho_{b,0}} \right)^m$$

(12)

$$r_{H_2O} = -A_{H_2O} \cdot T_p^{1/2} \cdot \exp \left(-\frac{E_{H_2O}}{RT} \right) \cdot \left(\frac{\rho_w}{\rho_{b,0}} \right)^m$$

(13)

The overall reaction enthalpy includes the heat of reaction ($\Delta H_{reac,j}$) multiplied by the pyrolysis reaction rate ($r_{pyr,j}$) for each reaction product: metaplast ($j=1$), char ($j=2$), and volatiles ($j=3$). The reactions from metaplast to gas or to char are competitive. The metaplast formation was assumed to be as thermally neutral [43, 44], gas formation as endothermic, and char formation as exothermic [45, 46]. This approach resulted in the dependence of overall heat of reaction depending on the char yield [47],
which is consistent with experimental results [48, 49]. Thus the overall reaction enthalpy changes with the char yield, similar to the modeling approach of Haseli et al. [47]. The presence of potassium in fuels catalyzes pyrolysis reactions favoring the formation of char. Therefore, the endothermic heat of pyrolysis decreases with increasing char yield, and eventually shifts to an exothermic process, similar to results of Rath et al. [49] and Mack et al. [48].

Exothermic and endothermic heat of reaction ($\Delta H_{\text{reac},2} = -255000 \text{ J kg}^{-1}$; $\Delta H_{\text{reac},3} = 20000 \text{ J kg}^{-1}$) were proposed by Koufopanos et al. [45].

The rates of mass loss during drying and devolatilization were described by equations 1-3 [50]. A first order reaction model ($m=1$) was chosen to describe the experimental results [51]. The heat of vaporization was assumed to be $\Delta H_{\text{vap}} = 2440000 \text{ J kg}^{-1}$ [52, 53]. The initial condition is given by the ambient temperature:

$$T_p(r_p, 0) = T_{amb} \quad (14)$$

The boundary conditions specify that the particle center line is adiabatic due to symmetry shown in equation 15 and that convection and radiation entering at the particle surface is conducted into the particle as shown the equation 16 or given by the temperature of the mesh in equation 17:

$$\lambda_{\text{eff}} \frac{dT_p}{dr_p} \bigg|_{r_p=0} = 0 \quad (15)$$

$$\lambda_{\text{eff}} \frac{dT_p}{dr_p} \bigg|_{r_p=R_p} = h \cdot (T_g - T_p|_{r_p=R_p}) + \epsilon \cdot \sigma \cdot (T_w^4 - T_p^4|_{r_p=R_p}) \quad \text{drop tube reactor} \quad (16)$$

$$T_p|_{r_p=R_p} = T_{\text{mesh}}(t) \quad \text{wire mesh reactor} \quad (17)$$
When the biomass sample is heated up in the wire mesh reactor, it is assumed that the particle surface temperature is equivalent to that of the mesh. The effective thermal conductivity \(\lambda_{eff} \) inside the particle is approximated by equation 18 [16, 17]:

\[
\lambda_{eff} = \xi \cdot \lambda_g + \lambda_b \cdot \psi \cdot (1 - \xi) + \lambda_c \cdot (1 - \psi) \cdot (1 - \xi) + \lambda_r \cdot (1 - \xi) \quad (18)
\]

\[
\lambda_r = \frac{4 \cdot \xi}{(1 - \xi)} \cdot \epsilon \cdot \sigma \cdot d_{pore} \cdot T_p^3 \quad (19)
\]

\[
\rho_{c,0} = \frac{\rho_{b,0} \cdot Y_c}{f_{sh,min}} \quad (20)
\]

\[
\psi = \frac{\rho_b + \rho_M}{\rho_b + \rho_M + \rho_{c,0}} \quad (21)
\]

where \(\lambda_r \) is the thermal conductivity induced by radiation through pores, correlated from previous investigations [16, 17], \(\lambda_g, \lambda_b \) and \(\lambda_c \) are the thermal conductivities of gas, unconverted biomass and char, respectvely, \(\xi \) is the void fraction occupied by the gas phase and \(\psi \) is the biomass fraction of the solid phase which varies 0 to 1. \(\rho_b \) and \(\rho_{b,0} \) are the original (reacting) biomass particle density and initial (unreacted) biomass particle density. The thermal conductivity of metaplast is assumed to be equal to the thermal conductivity of original biomass. The convection coefficient of the gas in the drop tube reactor is described in equation 22 [54]:

\[
h = \frac{N u \cdot \lambda_g}{d_p} \quad (22)
\]

The particle Reynolds, Prandtl and Nusselt numbers are defined in equa-
\begin{align*}
\text{Re} &= \frac{d_p \cdot (v_p - v_g) \cdot \rho_g}{\mu_g} \quad (23) \\
Pr &= \frac{c_{p,g} \cdot \mu_g}{\lambda_g} \quad (24) \\
Nu &= 0.3 + 0.62 \cdot \frac{Re^{1/2} \cdot Pr^{1/3}}{(1 + (0.4 \cdot \frac{Pr}{Re})^{2/3})^{1/4}} \cdot \left(1 + \left(\frac{Re}{282000}\right)^{5/8}\right)^{4/5} \quad (25)
\end{align*}

The terminal velocity of the biomass particle is calculated from correlations for Stokes regime, steady separated and unsteady separated flows in equations 26-28 [55]:

\begin{align*}
v_p &= \frac{d_p^2 \cdot g \cdot (\rho_s - \rho_g)}{18 \cdot \mu_g} \quad \text{Re} < 2 \quad (26) \\
v_p &= 0.153 \left[\frac{(\rho_s - \rho_g) \cdot d_p^{1.6} \cdot g}{\mu_g^{0.6} \cdot \rho_g^{0.4}}\right]^{0.714} \quad 2 < \text{Re} < 400 \quad (27) \\
v_p &= 1.74 \cdot \sqrt{\frac{d_p \cdot (\rho_s - \rho_g) \cdot g}{\rho_g}} \quad 400 < \text{Re} < 200000 \quad (28)
\end{align*}

Stokes Law was used for small fuel particles, steady separated flow was used for intermediate fuel particles, and turbulent flow was used for large fuel particles.

2.3. Method of lines

Most of the pyrolysis models [15, 17, 56-59] involve solution schemes based on the method of lines (finite difference method) to solve the heat transfer equations. The heat transfer equation is discretized using a central difference scheme:

\begin{equation}
\frac{c_{p,s,i}}{\rho_{s,i}} \cdot \frac{dT_i}{dt} = \left(\frac{\lambda_{eff,i} \cdot f_{sh}}{r_{p,i}} \cdot \frac{(T_{i-1} - 2 \cdot T_i + T_{i+1})}{\Delta r_p^2} + \frac{n}{r_{p,i}} \cdot \frac{T_{i+1} - T_{i-1}}{2 \cdot \Delta r_p} \right) + \sum_{j=1}^{3} r_{pgr,i,j} \cdot (-\Delta H_{reac,i,j}) + r_{H_2O,i} \cdot (-\Delta H_{vap,i})
\end{equation}

16
In the present model, the ode15s method in MatLab was chosen as an ODE solver. The ode15s function based on the Backward Differentiation Formula (BDF) is recommended for the solution of stiff problems [60]. Calculations were performed to verify the convergence of the adopted numerical procedure with grids having 51, 101 and 201 mesh points. Since the results showed that sufficient accuracy is attained using a grid with 101 mesh points for different biomass particle sizes, the number of mesh points was set to 101 with an error tolerance of 10^{-10} in time integration.

2.4. Fuel characterization

Pinewood, beechwood, Danish wheat straw, leached Danish wheat straw, alfalfa straw and rice husk were used in this work to represent softwood, hardwood and agricultural residues. The low-ash containing wood (pinewood, beechwood) and grass samples (wheat straw, alfalfa straw), which are rich in potassium, were selected to investigate the effect of differences in potassium composition on the char yields. The fuels were milled on a Retsch rotor mill ZM200 and sieved to particle size fractions of 0.02-0.4 mm and 0.85-1 mm.
Table 1: Proximate and ultimate analysis of fuels (on % dry basis) and ash analysis (on mg/kg dry basis).

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pine-wood</th>
<th>Beech-wood</th>
<th>Wheat straw</th>
<th>Leached wheat straw</th>
<th>Alfalfa straw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>5.1</td>
<td>4.5</td>
<td>5.5</td>
<td>4.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Ash (550 °C)</td>
<td>0.3</td>
<td>1.4</td>
<td>4.1</td>
<td>2</td>
<td>7.4</td>
</tr>
<tr>
<td>Volatiles</td>
<td>86.6</td>
<td>79.4</td>
<td>77.5</td>
<td>84.2</td>
<td>75.9</td>
</tr>
<tr>
<td>HHVb</td>
<td>21.6</td>
<td>20.2</td>
<td>18.8</td>
<td>18.7</td>
<td>19.7</td>
</tr>
<tr>
<td>LHVb</td>
<td>20.2</td>
<td>19</td>
<td>17.5</td>
<td>17.4</td>
<td>16.9</td>
</tr>
<tr>
<td>C</td>
<td>50.5</td>
<td>46.7</td>
<td>42.4</td>
<td>45.7</td>
<td>42.5</td>
</tr>
<tr>
<td>H</td>
<td>6.8</td>
<td>6.3</td>
<td>6.3</td>
<td>6.6</td>
<td>6.1</td>
</tr>
<tr>
<td>N</td>
<td>0.1</td>
<td>0.3</td>
<td>1</td>
<td>0.3</td>
<td>3.3</td>
</tr>
<tr>
<td>S</td>
<td><0.01</td>
<td>0.02</td>
<td>0.1</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Cl</td>
<td>0.01</td>
<td>0.02</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ash compositional analysis (mg/kg db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
</tr>
<tr>
<td>Ca</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Mg</td>
</tr>
<tr>
<td>Na</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>Si</td>
</tr>
<tr>
<td>Ti</td>
</tr>
</tbody>
</table>

a wt. % (ar) b in MJ/kg

2.5. Biomass particle properties

Biomass samples were analyzed with a 2D dynamic imaging instrument by using different size measures (width and length). The diameters \(x_{Ma,\text{min}} \) and \(x_{Fe,\text{max}} \) were chosen to represent the biomass particle’s width and length. Diameter \(x_{Fe,\text{max}} \) is the largest diameter to fulfill the assumption that the
length of a particle is larger than its width. Diameter $x_{Ma,min}$ is an area bisector representing the shortest distance to the particle’s opposite edges. A biomass particle was represented as a plate, a cylinder and a sphere in planar ($n=0$), cylindrical ($n=1$), and spherical ($n=2$) coordinates under the assumption of similar volume to surface ratios using a different characteristic length:

$$d_p = x_{Ma,min} \quad (cylinder) \quad (30)$$
$$d_p = \frac{1}{2} \cdot x_{Ma,min} \quad (plate) \quad (31)$$
$$d_p = \frac{3}{2} \cdot x_{Ma,min} \quad (sphere) \quad (32)$$

Biomass particles were described as infinite cylinders, corresponding to $n=1$ in equation 11 with a particle size equal to $R_p/2$, where R_p is represented by $x_{Ma,min}$. The thermo-physical parameters used in the devolatilization model are listed in Table 2.
Table 2: Thermophysical properties used in the devolatilization model and geometrical parameters of the drop tube reactor.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>-</td>
<td>Emissivity</td>
<td>0.85 [61]</td>
</tr>
<tr>
<td>σ</td>
<td>J·(s·m$^{-2}$·K)</td>
<td>Stefan-Boltzmann</td>
<td>$5.67 \cdot 10^{-8}$ [61]</td>
</tr>
<tr>
<td>ξ</td>
<td>-</td>
<td>Void fraction</td>
<td>$1 - \frac{(\rho_b + \rho_m + \rho_{c,b})}{1500}$ [58]</td>
</tr>
<tr>
<td>$\rho_{b,0}$</td>
<td>kg·m$^{-3}$</td>
<td>Raw biomass density</td>
<td>650 (wood) and 700 (straw) [62, 63]</td>
</tr>
<tr>
<td>ρ_g</td>
<td>kg·m$^{-3}$</td>
<td>Gas density (N$_2$)</td>
<td>362.65·T_g^{-1} [64]</td>
</tr>
<tr>
<td>d_{pore}</td>
<td>m</td>
<td>Pore diameter</td>
<td>$3.2 \cdot 10^{-6}$ [61]</td>
</tr>
<tr>
<td>$d_{pore,c}$</td>
<td>m</td>
<td>Char pore diameter</td>
<td>$2 \cdot 10^{-4}$ [65]</td>
</tr>
<tr>
<td>$c_{p,b}$</td>
<td>J·(kg·K)$^{-1}$</td>
<td>Raw biomass specific heat capacity</td>
<td>$1500 + T_p$ [16]</td>
</tr>
<tr>
<td>$c_{p,c}$</td>
<td>J·(kg·K)$^{-1}$</td>
<td>Char specific heat capacity</td>
<td>$420 + 2.99 \cdot T_p + 6.85 \cdot T_p^2$ [16]</td>
</tr>
<tr>
<td>$c_{p,g}$</td>
<td>J·(kg·K)$^{-1}$</td>
<td>Gas specific heat capacity</td>
<td>$770 + 0.629 \cdot T_g + 1.91 \cdot 10^{-4} \cdot T_g^2$ [16]</td>
</tr>
<tr>
<td>λ_g</td>
<td>W·(m·K)$^{-1}$</td>
<td>Gas thermal conductivity</td>
<td>0.026 [66]</td>
</tr>
<tr>
<td>λ_b</td>
<td>W·(m·K)$^{-1}$</td>
<td>Raw biomass thermal conductivity</td>
<td>0.35 [16]</td>
</tr>
<tr>
<td>λ_c</td>
<td>W·(m·K)$^{-1}$</td>
<td>Char thermal conductivity</td>
<td>0.1 [16]</td>
</tr>
<tr>
<td>μ_g</td>
<td>Pa·s</td>
<td>Gas phase dynamic viscosity</td>
<td>$4.847 \cdot 10^{-7} \cdot T_g^{0.6487}$ [58]</td>
</tr>
<tr>
<td>$\Delta H_{reac,1}$</td>
<td>J·kg$^{-1}$</td>
<td>Heat of reaction from biomass to metaplast</td>
<td>0 [43, 44]</td>
</tr>
<tr>
<td>$-\Delta H_{reac,2}$</td>
<td>J·kg$^{-1}$</td>
<td>Heat of reaction from metaplast to char</td>
<td>-255000 [45]</td>
</tr>
<tr>
<td>$\Delta H_{reac,3}$</td>
<td>J·kg$^{-1}$</td>
<td>Heat of reaction from metaplast to gas</td>
<td>20000 [45]</td>
</tr>
<tr>
<td>ΔH_{vap}</td>
<td>J·kg$^{-1}$</td>
<td>Heat of vaporization</td>
<td>2440000 [53]</td>
</tr>
<tr>
<td>A_{H_2O}</td>
<td>s$^{-1}$·K$^{-0.5}$</td>
<td>Pre-exponential factor</td>
<td>$5.1 \cdot 10^{10}$ [58]</td>
</tr>
<tr>
<td>E_{H_2O}</td>
<td>J·mol$^{-1}$</td>
<td>Activation energy</td>
<td>88000 [58]</td>
</tr>
<tr>
<td>L</td>
<td>m</td>
<td>Drop tube reactor’s length</td>
<td>2.3</td>
</tr>
<tr>
<td>D_r</td>
<td>m</td>
<td>Drop tube reactor’s diameter</td>
<td>0.054</td>
</tr>
</tbody>
</table>

2.6. Experimental

2.6.1. Small and intermediate size particles (0.2 and 1 mm)

The model was validated against data from three high-temperature reactors. The char yields of 0.2 and 1 mm pinewood particles were determined
in separate pyrolysis experiments performed at an intermediate heating rate
(10-10\(^3\) K s\(^{-1}\)) in the wire mesh reactor and at a high heating rate of (10\(^4\) K
 s\(^{-1}\)) in the drop tube reactor.

The wire mesh reactor at TU Munich was previously described by Tru-
betskaya et al. [33]. Tests on the wire mesh reactor were conducted at 350-
1400\(^\circ\)C, with 1 s holding time on the mesh at atmospheric pressure. The
DTF setup was described in detail by Trubetskaya et al. [34]. The experi-
ments were conducted by feeding \(\approx\) 5 g of biomass at a rate for 0.2 g min\(^{-1}\).
The residence time for 0.2 mm and 1 mm pinewood particles was estimated
to be about 1 s, taking into account density changes during pyrolysis [29].
Biomass was rapidly heated and reacted as it fell through the reactor at
temperatures of 1000-1400\(^\circ\)C. Reaction products were separated into coarse
particles (mainly char and fly ashes), fine particles (mainly soot and ash
aerosols), and permanent gases.

The heating rate in the wire mesh reactor was set to 1000 K s\(^{-1}\).
In the drop tube reactor, the heating rate was calculated by the
model using dimensions and operating parameters of the reactor
shown in Table 2. Char yields of wood and herbaceous biomass in
the wire mesh reactor and drop tube reactor are shown on dry ash
free basis (daf) excluding ash content of original biomass and char.

2.6.2. Large size particles (3-5 mm)

The devolatilization time and char yield of 3, 4 and 5 mm pinewood
particles in a temperature range of 1350-1450\(^\circ\)C were determined by Jepsen
in a single particle reactor (SPR) located at the DTU Chemical Engineering
Department [41]. The SPR was designed for oxidation and pyrolysis studies on fuel particles > 2 mm at temperatures up to 1500°C at high heating rates. The setup consists of the reactor, a flat flame burner with 94 injection nozzles, a gas supply system and gas analyzers as shown in Figure 5.

Figure 5: Schematic view of a single particle reactor at DTU: 1. Reactor corpus; 2. insertion ports with a water-cooled chamber; 3. particle holder; 4. sample particle; 5. 94 injection nozzles; 6. High-speed camera; 7. Computer; 8. Gas analyzers.

The formation of a soot cloud in the single particle reactor is associated with pyrolysis initiation. Soot formation occurs under reducing conditions. The oxygen level was kept very low (< 0.2 vol.%) during the experiments to eliminate char and soot oxidation. Devolatilization time is defined as the time from the soot cloud is seen until it extinguishes and char conversion begins due to gasification with steam and the remaining oxygen. The char yield is defined as the solid fraction of the reacted biomass, remaining on the platinum wire after an experiment.
3. Results

3.1. Kinetic parameters

The results of fitting of the rate constants, including the influence of potassium are shown in Table 3.

Table 3: The best fit values of the kinetic parameters. In the model, the constants $K_1 = 0.068$ and $K_2 = 4500$ (mg kg$^{-1}$) were fitted.

<table>
<thead>
<tr>
<th></th>
<th>Metaplast</th>
<th>Volatiles</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{a,1}$</td>
<td>A_1</td>
<td>$E_{a,2}$</td>
<td>A_2</td>
</tr>
<tr>
<td>J mol$^{-1}$</td>
<td>s$^{-1}$</td>
<td>J mol$^{-1}$</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>228000</td>
<td>3.2·1014</td>
<td>174100</td>
<td>3.6·1012</td>
</tr>
<tr>
<td>$E_{a,3}$</td>
<td>A_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J mol$^{-1}$</td>
<td>s$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132500·Ω_K</td>
<td>5.6·108</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6 illustrates that the char yield increases with increasing potassium content in the lignocellulosic material and decreases with the higher heating rate. The activation energy of the char forming reaction decreases with increasing potassium content, and thus, the influence of potassium becomes smaller at higher heating rates. In Figure 6(b), the model estimates that char yield increases from 2.6 % to 32.5 % when the heating rates decrease from 10^4 to 2 K s$^{-1}$.
6(a): Heating rate effect on the char yield

6(b): Char yields versus potassium content in the fuel

Figure 6: (a) Comparison of simulated and experimental data for the influence of heating rate on the char yield of pinewood, beechwood, wheat straw, leached wheat straw and alfalfa straw in the wire mesh reactor, and (b) Simulated char yields versus potassium content in the original fuel (heat treatment temperature: 1400°C, holding time: 1 s, particle size: 0.2 mm).

Estimated biomass particle mass as a function of mean particle temperature is shown in Figure 7.
Figure 7: Simulated mass loss over the mean particle temperature (% af) of pinewood, beechwood, wheat straw, alfalfa straw, leached wheat straw at 1000, 1250 and 1400°C in the DTF and at 1400°C in the WMR, and comparison with the char yields determined experimentally in the wire mesh reactor at (heat treatment temperature: 350, 800, 1000, 1250 and 1400°C; heating rate: 1000 K s$^{-1}$; holding time: 1 s) and drop tube reactor at 1000, 1250 and 1400°C as determined by Trubetskaya et al. [33, 34].
The mass loss of smaller particles is shown only at 1400°C in the wire-mesh reactor, since pyrolysis is complete at temperatures below 800°C. The simulation results show that char yields from pyrolysis of wood and leached wheat straw in the drop tube reactor were similar over a temperature range of 1000-1400°C, whereas the char yield of wheat and alfalfa straw decreased slightly from 10.3% to 7.6% by weight. The present results show that the model accurately estimates the char yield for smaller (0.2 mm) biomass particles. The char yield from pyrolysis of 1 mm pinewood particles is also estimated well and is about 3% lower relative to the experimentally determined char yields in the drop tube reactor. The experimental data obtained in the wire mesh reactor agree with the mass loss estimated by the model. The lower WMR heating rate caused the reaction to take place at lower temperatures for an extended period compared to fast pyrolysis conditions in the drop tube reactor.

Figure 8 illustrates the mass fraction of metaplast formed at the surface, middle and center of the particle as a function of time. The simulation results show that both heating rate and particle size influence metaplast formation. In general, high heating rates promote the formation of metaplast. Due to negligible temperature gradients, high heating rates cause small particles first to become fluid and form a molten sphere, then solidify into char [6, 7, 33]. For large particles, significant formation of metaplast at high heating rates is only observed at the surface.
8(a): 0.2 mm, heated by 10^4K s^{-1} gas flow
8(b): 0.2 mm, heated by 10^3K s^{-1} gas flow
8(c): 3 mm, heated by 10^4K s^{-1} gas flow
8(d): 3 mm, heated by 10K min^{-1} gas flow
8(e): 10 mm, heated by 10^4K s^{-1} gas flow
8(f): 10 mm, heated by 10^3K s^{-1} gas flow

Figure 8: Simulated metaplast formation (% af) from pyrolysis of 0.2, 3 and 10 mm pinewood particles at slow heating rate in the thermogravimetric instrument (10K min^{-1}), at intermediate heating rate (10^3K s^{-1}) in the wire mesh reactor and at high heating rates in the drop tube reactor. The metaplast formation ($kg_M kg_{IB}^{-1}$) is showed over the pyrolysis time.
This means that the particle surface melts during pyrolysis, whereas the interior retains the original biomass structure [33]. The rate of metaplast formation was slower than formation of volatiles and char at lower temperatures. Thus, metaplast was formed faster than it was consumed at higher temperatures. At low heating rates, the particle was nearly isothermal, indicating only small differences in metaplast formation as function of position within the particle. Thus, the relatively low heating rate for the particle core increased the time for the three reactions, leading to lower metaplast yields.

3.2. **Influence of assumed particle geometry**

Figure 9 illustrates the mass loss of 0.2, 1 and 5 mm pinewood particles. Devolatilization time decreased with the higher heating rate in the drop tube reactor compared to the wire mesh reactor. The representation of the 0.2 mm particles using different characteristics lengths does not give large deviations with respect to char yield and devolatilization time among the three particle geometries as shown in Figure 9(a).
Figure 9: Mass loss histories of pinewood particles (0.2 and 1 mm) with the similar volume to surface ratio and different characteristic lengths which were calculated in plate-like (n=0), cylindrical (n=1) and spherical (n=2) geometries at the final temperature of 1400°C during pyrolysis in the wire mesh and drop tube reactors.

The influence of particle shape becomes more important with the in-
creasing particle size due to the larger internal temperature gradients as shown in Figure 9(b). The relative influence of heating rate on devolatilization time of 1 mm pinewood was less compared to smaller particles. This is because of the predominance of internal heat transfer control within the large particles.

3.3. Influence of volumetric shrinkage on devolatilization time

In the model, the shrinkage front moves from the surface towards the center. At high heating rates, the outer layers initially shrink while the inner layers remain unaffected. Later, the fuel particle shrinks due to devolatilization. During slow pyrolysis, internal thermal gradients are small, and therefore, drying followed by devolatilization takes place over throughout the particle. Particle shrinkage takes place after the original biomass is converted into metaplast. The rate of volatiles formation determines the rate at which the particle shrinks.

Figure 10(a) shows that the particle size of 5 mm particle was reduced by 27% during pyrolysis at high heating rates. A 26% reduction in a particle size was measured during devolatilization of 3 mm pinewood particle in a temperature range of 1180-1440°C in the single particle reactor [41].

Figure 10(c) shows that shrinkage has a negligible influence on the devolatilization time of smaller particles, which are practically isothermal. For the large particles, the inclusion of shrinkage increases the devolatilization rate and thereby decreases the devolatilization time. Internal temperature gradients in larger particles becomes smaller as the particle shrinks which enhances the devolatilization rate. The shrinkage of 5 mm pine particle leads to the decrease of devolatilization time by 19% during pyrolysis in the WMR.
Figure 10: (a)-(b) Simulated pinewood particle shrinking (0.2 and 5 mm) and (c)-(d) Simulated mass loss of shrinking pinewood particles in the wire mesh and drop tube reactors.

3.4. Influence of particle size on devolatilization time

Figure 11 compares the times required for complete devolatilization of 3, 4 and 5 mm pinewood particles in the single particle reactor to those estimated by the model for particles from 0.01 to 10 mm. In the model, the complete devolatilization time is defined as the time when 95 %
of the volatile matter in the original pinewood particle has been released [67].

Figure 11 shows that under fast heating particles with mean diameters < 0.25 mm may be considered as thermally thin based on the modeling results with 0.1 s deviation, while the intra-particle heat conduction in larger particles plays a key role in biomass devolatilization. The diameter of 3, 4 and 5 mm pinewood cubes was recalculated for corresponding cylinders under the assumption of a similar volume to surface ratio (3, 4 and 5 mm). A comparison of experimental and estimated devolatilization times showed that the model estimates the devolatilization time of pinewood particles well. In addition, the results showed that the 1 mm pinewood particles require more than 1 s in the WMR and DTF for complete conversion. The estimated devolatilization time by the model showed a similar trend for the experiments in the drop tube reactor.
Figure 11: Simulated devolatilization time of shrinking pinewood particles (from 0.01 mm to 10 mm) at 1000, 1250 and 1400°C, and compared with the experimental results obtained in the SPR for 3, 4 and 5 mm particles at 1350 and 1450°C. Experimental data was taken from the investigations of Jepsen [41]. The black dashed line separates the thermally thin regime ($Bi < 0.1$) from the thermally thick ($Bi > 0.1$).

4. Discussion

The present pyrolysis model describes the char yield at high temperatures (up to 1500°C) and high heating rates > 200 K s$^{-1}$. In the model, an intermediate liquid (so called metaplast) is formed from the decomposition of biomass which reacts further to char and gas. It was assumed that the kinetics for metaplast formation does not depend on the biomass type and that
reaction of metaplast to char and gas is influenced by the biomass potassium content.

The impact of heating rate on the maximum metaplast formation and subsequent reaction to char and gas shown in Figure 12.

![Figure 12: Simulated reaction rates (wt.% s\(^{-1}\)) of metaplast, char and volatile formation during fast pyrolysis of 0.2 mm pinewood (\(\omega_K = 200 \text{ mg/kg}\), dry basis) and wheat straw (\(\omega_K = 11000 \text{ mg/kg}\), dry basis) particles in the wire mesh reactor (1000K s\(^{-1}\)).](image)

Figure 12 demonstrates that the rate of metaplast formation is slower than formation of volatiles and char at temperatures below 350°C. Thus, lower concentrations of metaplast are formed at lower heating rates. The particle temperature was nearly uniform over
the particle diameter, and therefore, only small differences in meta-
plast formation were observed. At higher temperatures, the rate
of char formation was lower than the rate of metaplast formation,
in agreement with experimental results from Koufopanos [15, 45].
Higher temperatures result in greater metaplast accumulation be-
cause its formation rate is faster than its rate of consumption. At
high heating rates, such as in the wire mesh and drop tube reac-
tors, lower mass fractions of metaplast were formed in the particle
core compared to the particle surface. This could be due to the
lower heating rates at the core compared to at the surface. At
high heating rates, formation of metaplast is initially fast relative
to reaction from metaplast to char and gas, so a high concentra-
tion of metaplast is obtained. With a high fraction of metaplast,
the particle may become molten (locally or throughout the whole
particle), thereby leading to structural changes of the particle [33].

Particle size demonstrates a greater influence on metaplast,
volatile and char formation in the drop tube reactor (10^{-4} K s^{-1})
than in the wire mesh reactor (10 K s^{-1}). The larger internal tem-
perature gradients led to slower pyrolysis of 3 and 10 mm pinewood
particles compared to 0.2 mm particles. For large particles the for-
mation of metaplast mainly takes place at the particle surface at
high heating rates, whereas the lower heating rates result in high
metaplast concentrations in the interior. At low heating rates, both
small and large particles were nearly isothermal, leading to smaller
local differences in metaplast formation. Differences in local mass
fractions of metaplast became larger with increasing particle size and increasing heating rates because of the predominance of internal heat transfer control within the large particles.

Char yield has been experimentally shown to increase with potassium content in the original biomass [33, 34]. This effect was accounted for in the model by modifying the activation energy for the char formation reaction as a function of the potassium content. The influence of potassium on char formation became stronger with decreasing heating rate, which corresponds to the experimental observations from the wire mesh and drop tube reactors. Calculations suggested that pyrolysis was completed at temperatures below 800°C, and thus, the char yields for woody and herbaceous biomass remain unchanged. The experimental data showed that the biomass char yields decreased with the increasing temperature due to the dehydrogenation and cross-linking reactions [68], which are not considered in the present simulation. The simulated char yield from wheat straw pyrolysis was slightly lower than the char yield from the wire mesh and drop tube reactor experiments. The ash compositional analysis of char from the pyrolysis in the drop tube reactor showed that close to 70% potassium in the wheat straw has been released in a temperature range of 1000-1500°C [69]. The remaining potassium in herbaceous biomass samples is still present in a larger amount than in woody chars. The large differences in herbaceous char yields between the model and experimental data might be attributed to the interactions between
potassium, other remaining alkali metals and carbonaceous char matrix which were not considered during the model development.

Moreover, the char yield of larger particles is underestimated by the model. It was hypothesized that tar inside larger particles may undergo secondary reactions, leading to higher char yields [36]. At high heat treatment temperatures of 750-1100°C, secondary reactions occurring in larger particles strongly decrease tar release and increase char formation during pyrolysis. Tar decomposition occurs by secondary reactions (i.e. cracking and polymerization), and tar release to ambient by mass transfer [35]. The evolutionary profiles of the temperatures at the pinewood particle surface and the particle center as a function of time are shown in the supplemental material. Due to the fast heat transfer in 0.2 mm particles, the differences between surface and core temperatures are small and thus, tar release remains unchanged at 1100°C. The differences between surface and core temperatures become more pronounced with the increasing particle size. Tar formation from pyrolysis of larger pinewood particles was stronger, whereas the soot yield was half lower compared to smaller particles [70]. The lower soot yields were related to the less formed PAH precursors. Tar inside larger particles underwent secondary reactions due to the lower heat flux, leading to a slower pyrolysis and thereby higher char yields and less soot, corresponding to investigations of Miller and Bellan [36]. This effect was not included in the model and could be the reason why the model slightly underpredicts the char yield for large particles.
5. Conclusion

The novelty of this work relies on the description of both low and high temperature kinetics for wood and herbaceous biomass using one set of kinetic parameters. The actual particle heating rate of biomass particles was quantitatively defined in wire mesh and drop tube reactors. The results presented in this work emphasize a stronger catalytic effect of potassium on char yield at low and intermediate heating rates compared to high heating rates. The potassium content and heating rate affected the char yield more than other operational parameters.

An innovative approach was used to implement the influence of potassium on the char yield in the model by reduction in the activation energy of char formation with increasing potassium content, and fitted to the experimental results. The simulation results showed that particle size has a more significant influence on meta-plast formation and reaction to char and gas at high heating rates (10^4K s^{-1}) compared to pyrolysis at low heating rates (10K s^{-1}).

In addition, the model showed that the impact of shrinkage on devolatilization time increases with increasing particle size, but it has negligible influence on char yields. Results from the 1D model are in agreement with experimental data, and emphasize a key role of intra-particle heat conduction in biomass particle $> 0.25 \text{mm}$.
Acknowledgements

The authors would like to acknowledge the financial support that they received for this project from Kempestiftelserna. We also acknowledge Professor Anker Degn Jensen (DTU CHEC) for fruitful discussions. Assistant Professor Catherine Brewer is acknowledged for the article proof reading.

References

Clement KH, Fangel P, Jensen AD, Thomsen K, Kemiske enhedsoper-

Modeling the influence of potassium content and heating rate on biomass pyrolysis

Anna Trubetskayaa,,∗ Gerrit Surupb, Alexander Shapiroc, Richard B. Batesd

aEnergy Engineering Department, Luleå University of Technology, 97187, Luleå, Sweden
bDepartment of Engineering Sciences, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway
cDepartment of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Bygning 229, Kgs. Lyngby 2800, Denmark
dMIT, Department of Mechanical Engineering, 02139, Cambridge, MA, USA

Abstract

This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing. The shrinking particle model considers internal and external heat transfer limitations and incorporates catalytic effects of potassium on the product yields. Modeling parameters were tuned with experimentally determined char yields at high heating rates (> 200 K s-1) using a wire mesh reactor, a single particle burner, and a drop tube reactor. The experimental data demonstrated that heating rate and potassium content have significant effects on the char yield. The importance of shrinkage on the devolatilization time becomes greater with increasing particle size, but showed little influence on the char yields.

Keywords: fast pyrolysis, kinetics, metaplast, potassium, heating rate

*Corresponding author. anna.trubetskaya@ltu.se
Nomenclature

\(AR \) \hspace{1cm} \text{Aspect ratio} \hspace{1cm} \text{formation reaction as a function of biomass potassium content}

\(A_i \) \hspace{1cm} \text{Pre-exponential factor \((s^{-1}) \)}

\(A_p \) \hspace{1cm} \text{Particle area \((m^2) \)} \hspace{1cm} \(k_i \) \hspace{1cm} \text{Reaction rate constant \((s^{-1}) \)}

\(A_p \) \hspace{1cm} \text{Particle area \((m^2) \)} \hspace{1cm} \(L \) \hspace{1cm} \text{Reactor’s length \((m) \)}

\(c_p \) \hspace{1cm} \text{Specific heat capacity \((J \, kg^{-1} K^{-1}) \)}

\(d_p \) \hspace{1cm} \text{Particle diameter \((m) \)} \hspace{1cm} \(m \) \hspace{1cm} \text{Reaction order}

\(d_{pore} \) \hspace{1cm} \text{Particle pore diameter \((m) \)}

\(D_r \) \hspace{1cm} \text{Reactor diameter \((m) \)} \hspace{1cm} \(r \) \hspace{1cm} \text{Reaction rate \((kg \, kg^{-1} s^{-1}) \)}

\(E_i \) \hspace{1cm} \text{Activation energy \((J \, mol^{-1}) \)} \hspace{1cm} \(R_p \) \hspace{1cm} \text{Particle radius at specified interior location \((m) \)}

\(f_{sh} \) \hspace{1cm} \text{Shrinkage factor}

\(g \) \hspace{1cm} \text{Gravity \((m \, s^{-2}) \)} \hspace{1cm} \(r_p \) \hspace{1cm} \text{Particle radius \((m) \)}

\(h \) \hspace{1cm} \text{Convective heat transfer coefficient \((W \, m^{-2}K^{-1}) \)} \hspace{1cm} \(T \) \hspace{1cm} \text{Temperature \((^{\circ}C) \)}

\(\Delta H_{vap} \) \hspace{1cm} \text{Heat of vaporization \((J/kg^{-1}) \)} \hspace{1cm} \(V_p \) \hspace{1cm} \text{Particle volume \((m^3) \)}

\(K_1, K_2 \) \hspace{1cm} \text{Constants for the activation energy of the char forma-} \hspace{1cm} v_p \hspace{1cm} \text{Slip velocity between gas and particle \((m \, s^{-1}) \)}
X Conversion \omega K+ concentration (mg kg-1)

\(x_{Fe,\text{max}}\) Feret maximum diameter \(\psi\) Biomass fraction of solid phase (m)

\(x_{Ma,\text{min}}\) Martin minimum diameter \(\rho\) Density (kg m-3) (m)

Dimensionless numbers

\(\tau\) Holding time (s)

\(Bi\) Biot number \(\varepsilon\) Emissivity

\(Nu\) Nusselt number \(\xi\) Void fraction occupied by the

\(Pr\) Prandlt number gas phase

\(Re\) Reynolds number

Subscripts

0 initial

\(\alpha\) Particle thermal diffusivity \(b\) biomass

\(\kappa\) Heating rate (K s-1) \(c\) char

\(\lambda\) Thermal conductivity (W (m K-1)) \(g\) gas

\(H_{2}O\) water

\(K\) potassium

\(M\) metaplast

\(\mu\) Viscosity (Pa s)

\(\Omega\) Correction factor for influence

of potassium content on activation energy (\(E_{a,3}\)) \(max\) maximum

\(mesh\) wire mesh
1. Introduction

Suspension firing of biomass is widely used for power generation. Danish pulverized fuel fired power plants are undergoing a transition to 100% biomass firing in order to reduce greenhouse gas emissions. Straw, wood pellets and wood chips are the most abundant biofuels in Denmark [1]. The annual consumption of biomass at Danish power stations is 1.2 million tones of straw and 0.2 millions of wood chips per year [2]. The advantage of utilizing wheat straw as a renewable energy source is that it is one of the most readily available Danish agricultural residues, while the wood pellet production depends on the supply of imported wood residues [3, 4]. The drawback, however, is that the quality of agricultural wastes is lower than that of wood due to a higher ash content leading to deposition and corrosion of the boiler units. In pulverized biomass combustion, short residence times are required for biomass devolatilization, which makes it difficult to examine the dynamics of the process. In addition, the lignocellulosic material reactivity is affected by the biomass composition, namely organic matter and minerals [5–7]. The differences in char properties generated under various pyrolysis conditions can lead to a range of challenges in a modeling of biomass conversion.

Fast pyrolysis at high temperatures and high heating rates is the initial
step in suspension biomass firing. Fuel particles first undergo rapid drying, heating and devolatization with the formation of char and volatiles. Despite of numerous previous studies on biomass devolatilization mechanisms and particle models, there is no generally accepted model that can estimate the conversion rate and final char yield over a wide range of operating conditions. Existing kinetic models [8–14] were developed with experimental data using specific biomass samples and a narrow set of low temperature reaction conditions. The application of lower temperatures makes extrapolation to higher temperatures in combustion/gasification processes.

Most of the existing biomass pyrolysis models [10, 15–17] which describe both the devolatilization product composition and yields (light gases, tar and char) are mainly valid for low-ash fuels (hardwood, softwood); whereas considerably less work has been carried out with herbaceous lignocellulosic materials. In addition, these mathematical models are valid for biomass pyrolysis under slow heating rates (1-50 K min$^{-1}$) and long residence time (1-4 h). Many kinetic models for wood pyrolysis have been reported in the literature [18]. The simplest models are based on a single first order decomposition reaction, and are not able to estimate the influence of heating conditions on the product yields [19].

$$\text{Fuel particle} \rightarrow \text{Volatiles} \cdot (1 - \gamma) + \gamma \cdot \text{Char}$$

Figure 1: One-step global model [20].

Other models assume competing parallel reactions to predict the production kinetics of gas, tar and char, which is often valid only over a narrow temperature range [10, 21].
Thurner and Mann [10] assumed that the activation energy for the char formation reaction is similar to the activation energy for mass loss reactions to gas and tar, and therefore, that the final residual weight (e.g. the char yield) is independent of the heating rate and heat treatment temperature. More complex models involve additional steps for tar decomposition in the gas phase [22] or an intermediate product derived from primary decomposition of biomass [15, 23, 24]. These models can be generally applied only for a specific type of biomass. Ranzi et al. [25, 26] included the effect of holocelluloses, lignin and extractives on the product yields and composition. Previous models have not included the catalytic effect of alkali metals on biomass devolatilization, which has been shown to influence yields and product release rates significantly [7, 27–29]. Extrapolation kinetics fitted under low heating rate conditions to the pulverized fuel firing conditions is difficult due to the changes in devolatilization kinetics with heating rate [20]. Previous pyrolysis kinetic models have failed to extrapolate to higher temperatures because the actual particle heating rate depends on parameters which are difficult to define quantitatively [20, 30, 31].

In this study a model was developed to estimate the char yield from
biomass pyrolysis at conditions relevant to suspension firing, which includes the effects of high heating rates, high heat treatment temperatures, particle size and biomass alkali content. Simulations were combined with experiments in a wire mesh reactor (WMR), a single particle burner (SPR) and a drop tube reactor (DTF) to identify the most influential fuel characteristics that explain the differences between woody and herbaceous biomass pyrolysis. The accurate knowledge of reaction rate and solid residue yields is essential for the boiler optimal operation and design.

2. Model development

The devolatilization model assumes non-isothermal and cylindrical biomass particles, and includes both chemical kinetics, and external and internal heat transfer. A single biomass particle enters a pre-heated gas flow and is heated up by convection and radiation from its surroundings (single particle reactor and drop tube reactor), or by conduction from the mesh (wire mesh reactor). The model assumes:

1. The fuel particle is a one-dimensional, cylindrical geometry.
2. Thermal gradients within the particle are only in the radial direction.
3. Particle shrinkage occurs during pyrolysis.
4. Moisture content of all fuels are low (< 5 wt.%) and drying occurs.
5. Internal and external mass transfer are fast [32], and therefore, are not considered.
6. Only the reactor walls contribute to the radiative external heat transfer; radiation from the flame around the particle due to ignition of volatiles is neglected.
7. Heat transfer to the particle surface occurs through convection and radiation.

8. Heat transfer within a biomass particle occurs through conduction.

9. Potassium has a dominant influence on the char yield compared to other ash elements.

10. Variations in plant cell wall composition (cellulose, hemicellulose, lignin, extractives) are relatively small and have less influence on the biomass char yield than variations in the potassium content.

The last two assumptions are based on previous experimental results obtained in a wire mesh reactor and a drop tube reactor [33, 34]. The proposed model includes only primary pyrolysis reactions, i.e. not cracking of tar [35]. The schematic view of the proposed kinetic model is shown in Figure 3.

Figure 3: Three reaction model of biomass pyrolysis [12, 15, 36].

The shrinking particle is converted into an intermediate liquid compound (so called metaplast) which reacts further to form volatiles and char. Evidence of metaplast formation has been reported in the literature [23, 30, 37–40]. The thermogravimetric results showed a change in the mass loss that was attributed to a high activation energy process during which cellulose
passed from an inactive to an active form without sample mass loss [23]. High speed photography of hardwood lignin and cellulose exhibited decomposition of lignocellulosic material through an intermediate liquid with bursting bubbles [39]. Only the formation of metaplast is assumed to influence devolatilization whereas the fractional split between volatiles and char is determined by the heating rate and alkali content. The pyrolysis reactions are assumed to be irreversible and first order with an Arrhenius type of rate expression. One fixed set of kinetic parameters (activation energy and pre-exponential factor) for each of the three reactions for a generic biomass was obtained by fitting the model to the char yields obtained in the wire mesh and entrained flow reactors. The catalytic effect of potassium on the char yield was accounted for by decreasing the activation energy required for the reaction from metaplast to char (E3), thereby leading to higher char yields. The particle model was solved with the initial conditions:

\[\rho_b(r_p, 0) = 1 \]
\[\rho_M(r_p, 0) = 0 \]
\[\rho_c(r_p, 0) = 0 \]
The radial concentrations of biomass, metaplast and char are calculated from:

\[\frac{d\rho_b}{dt} = -k_1 \cdot \rho_b \] (1)

\[\frac{d\rho_M}{dt} = k_1 \cdot \rho_b - (k_2 \cdot \rho_M + k_3(\omega_K) \cdot \rho_M) \] (2)

\[\frac{d\rho_c}{dt} = k_3(\omega_K) \cdot \rho_M \] (3)

\[k_i = A_i \cdot \exp\left(-\frac{E_{a,i}}{R \cdot T}\right) \] (4)

\[E_{a,3,max} = \Omega_K(\omega_K) \cdot E_{a,i} \] (5)

\[\Omega_K(\omega_K) = 1 - K_1 \cdot \left(1 - \exp\left(-\frac{\omega_K}{K_2}\right)^2\right) \] (6)

The correction factor for the potassium content \((\Omega_K)\) becomes \(\Omega_K(\omega_K = 0) = 1\) and the activation energy \(E_{a,3}\) is equal to the maximum activation energy \(E_{a,3,\text{max}}\) when there is no potassium in the sample. \(\Omega_K\) approaches the minimum value and the activation energy \(E_{a,3}\) is equal to the minimum activation energy \(E_{a,3,\text{min}}\) when the biomass contains high amounts of potassium.

The \(K_1\) parameter is a constant and describes a range of activation energy; the \(K_2\) parameter is a constant for the exponential adjustment of the potassium content \((\omega_K\text{ in mg kg}^{-1})\). Various expressions of \(\Omega_K\) to describe the influence of potassium content were tested, and equation 6 was found to fit the char yield data best.

The results of the fitting showed that the kinetic parameters \((A_i \text{ and } E_{a,i})\) for the metaplast formation and volatiles release are similar. The char yields were calculated in the model by keeping the kinetic parameters \((k_1 \text{ and } k_2)\) of other reactions constant, whereas the activation energy \(E_{a,3}\) required for the reaction from metaplast to char was calculated according to equation 5.

The modeling parameters were fitted by minimizing the sum of squares of
the residuals using fmincon in Matlab (version 8.6, MathWorks Inc.).

2.1. Shrinking

The model calculates the radial shrinkage of the particle at radius \(r_p \), which is divided into \(R_p \) grid points numbered from \(i=0 \) to \(i=R_p \), where \(0 \) is the center of the particle, generating a number of discrete volumes. The density distribution along the particle radius is calculated using a linear approximation between two neighboring points which form a discrete volume as shown in Figure 4.

![Figure 4: Representation of a shrinking cylindrical biomass particle.](image)

The size of the control volume at a given time is calculated according to equation 7:

\[
dV_i = 2 \cdot \pi \cdot R_p \cdot AR \cdot (r_{p(i)}^2 - r_{p(i-1)}^2)
\]

The initial size of control volume is given by equation 8:

\[
dV_{i,0} = 2 \cdot \pi \cdot R_p \cdot AR \cdot (r_{p(i,0)}^2 - r_{p(i-1,0)}^2)
\]
In the shrinking particle model, the volume occupied by the solid structure of the particle is assumed to decrease proportionally with the conversion. The current size of the control volume is related to the initial size of the control volume through a shrinkage factor in equation 9, and further implemented in heat transfer equation 11:

$$f_{sh} = \frac{dV_i}{dV_{i,0}} = \frac{r_{p(i)}^2 - r_{p(i-1)}^2}{r_{p(i,0)}^2 - r_{p(i-1,0)}^2} \quad (9)$$

The shrinkage factor is calculated from the density change of a fuel particle which is affected by the original biomass, metaplast and char fractions in equation 10:

$$f_{sh} = 1 - f_{sh,min} \cdot \left(1 - \frac{\rho_b + \rho_M + \rho_c}{\rho_{b,0}}\right) \quad (10)$$

The shrinkage factor varies from 1 for the untreated biomass particle, to a minimum value $f_{sh,min}$, when a particle is converted to volatiles and char. Here, the minimum shrinkage factor was varied from 0 to 0.5 according to previous experimental observations from fast pyrolysis of smaller wood particles (0.2-0.4 mm) [34], larger wood particles (3-5 mm) [41], and modeling results from Anca-Couce et al. [42].
2.2. Conservation of energy

The unsteady energy equation for the particle describes internal heat transfer using Fourier’s Law in cylindrical coordinates:

\[
c_{p,s} \cdot \frac{dT_p}{dt} = \frac{1}{\rho_s \cdot f_{sh}} \cdot \frac{1}{r_p^n} \cdot \frac{\partial}{\partial r_p} \left(r_p^n \lambda_{eff} \frac{\partial T_p}{\partial r_p} \right) + \sum_{j=1}^{3} r_{pyr,j} \cdot (-\Delta H_{reac,j}) + r_{H_2O} \cdot (-\Delta H_{vap})
\]

(11)

\[
r_{pyr,j} = -A_{pyr,j} \cdot \exp \left(-\frac{E_{pyr,j}}{RT} \right) \cdot \left(\frac{\rho_b}{\rho_{b,0}} \right)^m
\]

(12)

\[
r_{H_2O} = -A_{H_2O} \cdot T_p^{1/2} \cdot \exp \left(-\frac{E_{H_2O}}{RT} \right) \cdot \left(\frac{\rho_w}{\rho_{b,0}} \right)^m
\]

(13)

The overall reaction enthalpy includes the heat of reaction ($\Delta H_{reac,j}$) multiplied by the pyrolysis reaction rate ($r_{pyr,j}$) for each reaction product: metaplast (j=1), char (j=2), and volatiles (j=3). The reactions from metaplast to gas or to char are competitive. The metaplast formation was assumed to be as thermally neutral [43, 44], gas formation as endothermic, and char formation as exothermic [45, 46]. This approach resulted in the dependence of overall heat of reaction depending on the char yield [47], which is consistent with experimental results [48, 49]. Thus the overall reaction enthalpy changes with the char yield, similar to the modeling approach of Haseli et al. [47]. The presence of potassium in fuels catalyzes pyrolysis reactions favoring the formation of char. Therefore, the endothermic heat of pyrolysis decreases with increasing char yield, and eventually shifts to an exothermic process, similar to results of Rath et al. [49] and Mack et al. [48]. Exothermic and endothermic heat of reaction ($\Delta H_{reac,2} = -255000 \text{ J kg}^{-1}$; $\Delta H_{reac,3} = 20000 \text{ J kg}^{-1}$) were proposed by Koufopanos et al. [45].

The rates of mass loss during drying and devolatilization were described
by equations 1-3[50]. A first order reaction model \((m=1)\) was chosen to describe the experimental results [51]. The heat of vaporization was assumed to be \(\Delta H_{\text{vap}} = 2440000 \text{ J kg}^{-1} [52, 53]\). The initial condition is given by the ambient temperature:

\[
T_p(r_p, 0) = T_{\text{amb}} \quad (14)
\]

The boundary conditions specify that the particle center line is adiabatic due to symmetry shown in equation 15 and that convection and radiation entering at the particle surface is conducted into the particle as shown the equation 16 or given by the temperature of the mesh in equation 17:

\[
\lambda_{\text{eff}} \frac{dT_p}{dr_p} \bigg|_{r_p=0} = 0 \quad (15)
\]

\[
\lambda_{\text{eff}} \frac{dT_p}{dr_p} \bigg|_{r_p=R_p} = h \cdot (T_g - T_p|_{r_p=R_p}) + \epsilon \cdot \sigma \cdot (T^4_{w} - T^4_p|_{r_p=R_p}) \quad \text{drop tube reactor} \quad (16)
\]

\[
T_p|_{r_p=R_p} = T_{\text{mesh}}(t) \quad \text{wire mesh reactor} \quad (17)
\]

When the biomass sample is heated up in the wire mesh reactor, it is assumed that the particle surface temperature is equivalent to that of the mesh. The effective thermal conductivity \((\lambda_{\text{eff}})\) inside the particle is approximated by equation 18 [16, 17]:

\[
\lambda_{\text{eff}} = \xi \cdot \lambda_g + \lambda_b \cdot \psi \cdot (1 - \xi) + \lambda_c \cdot (1 - \psi) \cdot (1 - \xi) + \lambda_r \cdot (1 - \xi) \quad (18)
\]

\[
\lambda_r = \frac{4 \cdot \xi}{(1 - \xi)} \cdot \epsilon \cdot \sigma \cdot d_{\text{pore}} \cdot T^3_p \quad (19)
\]

\[
\rho_{c,0} = \frac{\rho_{b,0} \cdot Y_c}{f_{\text{sh,min}}} \quad (20)
\]

\[
\psi = \frac{\rho_b + \rho_M}{\rho_b + \rho_M + \rho_{c,0}} \quad (21)
\]
where λ_r is the thermal conductivity induced by radiation through pores, correlated from previous investigations [16, 17], λ_g, λ_b and λ_c are the thermal conductivities of gas, unconverted biomass and char, respectively, ξ is the void fraction occupied by the gas phase and ψ is the biomass fraction of the solid phase which varies 0 to 1. ρ_b and $\rho_{b,0}$ are the original (reacting) biomass particle density and initial (unreacted) biomass particle density. The thermal conductivity of metaplast is assumed to be equal to the thermal conductivity of original biomass. The convection coefficient of the gas in the drop tube reactor is described in equation 22 [54]:

$$h = \frac{N\text{u} \cdot \lambda_g}{d_p}$$ (22)

The particle Reynolds, Prandtl and Nusselt numbers are defined in equations 23-25 [54]:

$$Re = \frac{d_p \cdot (v_p - v_g) \cdot \rho_g}{\mu_g}$$ (23)

$$Pr = \frac{c_{p,g} \cdot \mu_g}{\lambda_g}$$ (24)

$$Nu = 0.3 + \frac{0.62 \cdot Re^{1/2} \cdot Pr^{1/3}}{1 + (0.4 Pr)^{2/3}} \cdot \left(1 + \left(\frac{Re}{282000}\right)^{5/8}\right)^{4/5} \text{RePr} > 0.2$$ (25)

The terminal velocity of the biomass particle is calculated from correlations for Stokes regime, steady separated and unsteady separated flows in equations 26-28 [55]:

$$v_p = \frac{d_p^2 \cdot g \cdot (\rho_s - \rho_g)}{18 \cdot \mu_g} \quad Re < 2$$ (26)

$$v_p = 0.153 \left[\frac{(\rho_s - \rho_g) \cdot d_p^{0.6} \cdot g}{\mu_g^{0.6} \cdot \rho_g^{0.4}}\right]^0.714 \quad 2 < Re < 400$$ (27)

$$v_p = 1.74 \cdot \sqrt{\frac{d_p \cdot (\rho_s - \rho_g) \cdot g}{\rho_g}} \quad 400 < Re < 200000$$ (28)
Stokes Law was used for small fuel particles, steady separated flow was used for intermediate fuel particles, and turbulent flow was used for large fuel particles.

2.3. Method of lines

Most of the pyrolysis models [15, 17, 56–59] involve solution schemes based on the method of lines (finite difference method) to solve the heat transfer equations. The heat transfer equation is discretized using a central difference scheme:

\[
c_{p,s,i} \cdot \frac{dT_i}{dt} = \left(\frac{\lambda_{eff,i}}{\rho_{s,i} \cdot f_{sh}} \cdot \left(\frac{T_{i-1} - 2 \cdot T_i + T_{i+1}}{\Delta r_p^2} + \frac{n}{r_{p,i}} \cdot \frac{T_{i+1} - T_{i-1}}{2 \cdot \Delta r_p} \right) \right)
+ \sum_{j=1}^{3} r_{pyr,i,j} \cdot (-\Delta H_{reac,i,j}) + r_{H_2O,i} \cdot (-\Delta H_{vap,i})
\]

In the present model, the ode15s method in MatLab was chosen as an ODE solver. The ode15s function based on the Backward Differentiation Formula (BDF) is recommended for the solution of stiff problems [60]. Calculations were performed to verify the convergence of the adopted numerical procedure with grids having 51, 101 and 201 mesh points. Since the results showed that sufficient accuracy is attained using a grid with 101 mesh points for different biomass particle sizes, the number of mesh points was set to 101 with an error tolerance of 10^{-10} in time integration.

2.4. Fuel characterization

Pinewood, beechwood, Danish wheat straw, leached Danish wheat straw, alfalfa straw and rice husk were used in this work to represent softwood, hardwood and agricultural residues. The low-ash containing wood (pinewood,
beechwood) and grass samples (wheat straw, alfalfa straw), which are rich in potassium, were selected to investigate the effect of differences in potassium composition on the char yields. The fuels were milled on a Retsch rotor mill ZM200 and sieved to particle size fractions of 0.02-0.4 mm and 0.85-1 mm.

Table 1: Proximate and ultimate analysis of fuels (on % dry basis) and ash analysis (on mg/kg dry basis).

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pine-wood</th>
<th>Beechwood</th>
<th>Wheat straw</th>
<th>Leached wheat straw</th>
<th>Alfalfa straw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>5.1</td>
<td>4.5</td>
<td>5.5</td>
<td>4.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Ash (550 °C)</td>
<td>0.3</td>
<td>1.4</td>
<td>4.1</td>
<td>2</td>
<td>7.4</td>
</tr>
<tr>
<td>Volatiles</td>
<td>86.6</td>
<td>79.4</td>
<td>77.5</td>
<td>84.2</td>
<td>75.9</td>
</tr>
<tr>
<td>HHV</td>
<td>21.6</td>
<td>20.2</td>
<td>18.8</td>
<td>18.7</td>
<td>19.7</td>
</tr>
<tr>
<td>LHV</td>
<td>20.2</td>
<td>19</td>
<td>17.5</td>
<td>17.4</td>
<td>16.9</td>
</tr>
<tr>
<td>C</td>
<td>50.5</td>
<td>46.7</td>
<td>42.4</td>
<td>45.7</td>
<td>42.5</td>
</tr>
<tr>
<td>H</td>
<td>6.8</td>
<td>6.3</td>
<td>6.3</td>
<td>6.6</td>
<td>6.1</td>
</tr>
<tr>
<td>N</td>
<td>0.1</td>
<td>0.3</td>
<td>1</td>
<td>0.3</td>
<td>3.3</td>
</tr>
<tr>
<td>S</td>
<td><0.01</td>
<td>0.02</td>
<td>0.1</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Cl</td>
<td>0.01</td>
<td>0.02</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
</tr>
<tr>
<td>Al</td>
<td>10</td>
<td>10</td>
<td>150</td>
<td>100</td>
<td>600</td>
</tr>
<tr>
<td>Ca</td>
<td>600</td>
<td>2000</td>
<td>2500</td>
<td>1300</td>
<td>12900</td>
</tr>
<tr>
<td>Fe</td>
<td>20</td>
<td>10</td>
<td>200</td>
<td>350</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>200</td>
<td>3600</td>
<td>11000</td>
<td>1300</td>
<td>28000</td>
</tr>
<tr>
<td>Mg</td>
<td>100</td>
<td>600</td>
<td>750</td>
<td>350</td>
<td>1400</td>
</tr>
<tr>
<td>Na</td>
<td>30</td>
<td>100</td>
<td>150</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>P</td>
<td>6</td>
<td>150</td>
<td>550</td>
<td>80</td>
<td>1900</td>
</tr>
<tr>
<td>Si</td>
<td>50</td>
<td>200</td>
<td>8500</td>
<td>6200</td>
<td>2000</td>
</tr>
<tr>
<td>Ti</td>
<td>2</td>
<td><8</td>
<td>10</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

*a wt. % (ar)
*b in MJ/kg
2.5. **Biomass particle properties**

Biomass samples were analyzed with a 2D dynamic imaging instrument by using different size measures (width and length). The diameters $x_{Ma,min}$ and $x_{Fe,max}$ were chosen to represent the biomass particle’s width and length. Diameter $x_{Fe,max}$ is the largest diameter to fulfill the assumption that the length of a particle is larger than its width. Diameter $x_{Ma,min}$ is an area bisector representing the shortest distance to the particle’s opposite edges. A biomass particle was represented as a plate, a cylinder and a sphere in planar ($n=0$), cylindrical ($n=1$), and spherical ($n=2$) coordinates under the assumption of similar volume to surface ratios using a different characteristic length:

\[
d_p = x_{Ma,min} \quad \text{(cylinder)} \quad (30)
\]

\[
d_p = \frac{1}{2} \cdot x_{Ma,min} \quad \text{(plate)} \quad (31)
\]

\[
d_p = \frac{3}{2} \cdot x_{Ma,min} \quad \text{(sphere)} \quad (32)
\]

Biomass particles were described as infinite cylinders, corresponding to $n=1$ in equation 11 with a particle size equal to $R_p/2$, where R_p is represented by $x_{Ma,min}$. The thermo-physical parameters used in the devolatilization model are listed in Table 2.
Table 2: Thermophysical properties used in the devolatilization model and geometrical parameters of the drop tube reactor.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td></td>
<td>Emissivity</td>
<td>0.85</td>
</tr>
<tr>
<td>σ</td>
<td>J·(s·m²·K⁻¹)⁻¹</td>
<td>Stefan-Boltzmann</td>
<td>5.67·10⁻⁸</td>
</tr>
<tr>
<td>ξ</td>
<td></td>
<td>Void fraction</td>
<td>$1-\frac{(\rho_b+\rho_M+\rho_c,0)}{1500}$</td>
</tr>
<tr>
<td>$\rho_{b,0}$</td>
<td>kg·m⁻³</td>
<td>Raw biomass density</td>
<td>650 (wood) and 700 (straw)</td>
</tr>
<tr>
<td>ρ_g</td>
<td>kg·m⁻³</td>
<td>Gas density (N₂)</td>
<td>362.65·T⁻¹</td>
</tr>
<tr>
<td>d_{pore}</td>
<td>m</td>
<td>Pore diameter</td>
<td>3.2·10⁻⁶</td>
</tr>
<tr>
<td>$d_{pore,c}$</td>
<td>m</td>
<td>Char pore diameter</td>
<td>2·10⁻⁴</td>
</tr>
<tr>
<td>$c_{p,b}$</td>
<td>J·(kg·K)⁻¹</td>
<td>Raw biomass specific heat capacity</td>
<td>$1500+T_p$</td>
</tr>
<tr>
<td>$c_{p,c}$</td>
<td>J·(kg·K)⁻¹</td>
<td>Char specific heat capacity</td>
<td>$420+2.09·T_p+6.85·10^{-4}·T_p^2$</td>
</tr>
<tr>
<td>$c_{p,g}$</td>
<td>J·(kg·K)⁻¹</td>
<td>Gas specific heat capacity</td>
<td>$770+0.629·T_g+1.91·10^{-4}·T_g^2$</td>
</tr>
<tr>
<td>λ_g</td>
<td>W·(m·K)⁻¹</td>
<td>Gas thermal conductivity</td>
<td>0.026</td>
</tr>
<tr>
<td>λ_b</td>
<td>W·(m·K)⁻¹</td>
<td>Raw biomass thermal conductivity</td>
<td>0.35</td>
</tr>
<tr>
<td>λ_c</td>
<td>W·(m·K)⁻¹</td>
<td>Char thermal conductivity</td>
<td>0.1</td>
</tr>
<tr>
<td>μ_g</td>
<td>Pa·s</td>
<td>Gas phase dynamic viscosity</td>
<td>$4.847·10^{-7}·T_g^{0.64487}$</td>
</tr>
<tr>
<td>$\Delta H_{reac,1}$</td>
<td>J·kg⁻¹</td>
<td>Heat of reaction from biomass to metaplast</td>
<td>0</td>
</tr>
<tr>
<td>$\Delta H_{reac,2}$</td>
<td>J·kg⁻¹</td>
<td>Heat of reaction from metaplast to char</td>
<td>-255000</td>
</tr>
<tr>
<td>$\Delta H_{reac,3}$</td>
<td>J·kg⁻¹</td>
<td>Heat of reaction from metaplast to gas</td>
<td>20000</td>
</tr>
<tr>
<td>ΔH_{vap}</td>
<td>J·kg⁻¹</td>
<td>Heat of vaporization</td>
<td>2440000</td>
</tr>
<tr>
<td>A_{H_2O}</td>
<td>s⁻¹·K⁻⁰·⁵</td>
<td>Pre-exponential factor</td>
<td>$5.1·10^{10}$</td>
</tr>
<tr>
<td>E_{H_2O}</td>
<td>J·mol⁻¹</td>
<td>Activation energy</td>
<td>88000</td>
</tr>
<tr>
<td>L</td>
<td>m</td>
<td>Drop tube reactor’s length</td>
<td>2.3</td>
</tr>
<tr>
<td>D_r</td>
<td>m</td>
<td>Drop tube reactor’s diameter</td>
<td>0.054</td>
</tr>
</tbody>
</table>

2.6. Experimental

2.6.1. Small and intermediate size particles (0.2 and 1 mm)

The model was validated against data from three high-temperature reactors. The char yields of 0.2 and 1 mm pinewood particles were determined
in separate pyrolysis experiments performed at an intermediate heating rate
(10-10^3 K s^{-1}) in the wire mesh reactor and at a high heating rate of (10^4 K
s^{-1}) in the drop tube reactor.

The wire mesh reactor at TU Munich was previously described by Tru-
betskaya et al. [33]. Tests on the wire mesh reactor were conducted at 350-
1400°C, with 1 s holding time on the mesh at atmospheric pressure. The
DTF setup was described in detail by Trubetskaya et al. [34]. The experi-
ments were conducted by feeding \(\approx 5 \text{ g of biomass at a rate for 0.2 g min}^{-1} \).
The residence time for 0.2 mm and 1 mm pinewood particles was estimated
to be about 1 s, taking into account density changes during pyrolysis [29].
Biomass was rapidly heated and reacted as it fell through the reactor at
temperatures of 1000-1400°C. Reaction products were separated into coarse
particles (mainly char and fly ashes), fine particles (mainly soot and ash
aerosols), and permanent gases.

The heating rate in the wire mesh reactor was set to 1000 K s^{-1}. In
the drop tube reactor, the heating rate was calculated by the model using
dimensions and operating parameters of the reactor shown in Table 2. Char
yields of wood and herbaceous biomass in the wire mesh reactor and drop
tube reactor are shown on dry ash free basis (daf) excluding ash content of
original biomass and char.

2.6.2. Large size particles (3-5 mm)

The devolatilization time and char yield of 3, 4 and 5 mm pinewood
particles in a temperature range of 1350-1450°C were determined by Jepsen
in a single particle reactor (SPR) located at the DTU Chemical Engineering
Department [41]. The SPR was designed for oxidation and pyrolysis studies on fuel particles > 2 mm at temperatures up to 1500°C at high heating rates. The setup consists of the reactor, a flat flame burner with 94 injection nozzles, a gas supply system and gas analyzers as shown in Figure 5.

Figure 5: Schematic view of a single particle reactor at DTU: 1. Reactor corpus; 2. insertion ports with a water-cooled chamber; 3. particle holder; 4. sample particle; 5. 94 injection nozzles; 6. High-speed camera; 7. Computer; 8. Gas analyzers.

The formation of a soot cloud in the single particle reactor is associated with pyrolysis initiation. Soot formation occurs under reducing conditions. The oxygen level was kept very low (< 0.2 vol.%) during the experiments to eliminate char and soot oxidation. Devolatilization time is defined as the time from the soot cloud is seen until it extinguishes and char conversion begins due to gasification with steam and the remaining oxygen. The char yield is defined as the solid fraction of the reacted biomass, remaining on the platinum wire after an experiment.
3. Results

3.1. Kinetic parameters

The results of fitting of the rate constants, including the influence of potassium are shown in Table 3.

Table 3: The best fit values of the kinetic parameters. In the model, the constants $K_1 = 0.068$ and $K_2 = 4500$ (mg kg$^{-1}$) were fitted.

<table>
<thead>
<tr>
<th>Metaplast</th>
<th>Volatiles</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{a,1}$</td>
<td>A_1</td>
<td></td>
</tr>
<tr>
<td>J mol$^{-1}$</td>
<td>s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$E_{a,2}$</td>
<td>A_2</td>
<td></td>
</tr>
<tr>
<td>J mol$^{-1}$</td>
<td>s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$E_{a,3}$</td>
<td>A_3</td>
<td></td>
</tr>
<tr>
<td>J mol$^{-1}$</td>
<td>s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>228000</td>
<td>3.2×10^{14}</td>
<td>174100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.6×10^{12}</td>
</tr>
</tbody>
</table>

Figure 6 illustrates that the char yield increases with increasing potassium content in the lignocellulosic material and decreases with the higher heating rate. The activation energy of the char forming reaction decreases with increasing potassium content, and thus, the influence of potassium becomes smaller at higher heating rates. In Figure 6(b), the model estimates that char yield increases from 2.6% to 32.5% when the heating rates decrease from 10^4 to 2 K s$^{-1}$.
6(a): Heating rate effect on the char yield

6(b): Char yields versus potassium content in the fuel

Figure 6: (a) Comparison of simulated and experimental data for the influence of heating rate on the char yield of pinewood, beechwood, wheat straw, leached wheat straw and alfalfa straw in the wire mesh reactor, and (b) Simulated char yields versus potassium content in the original fuel (heat treatment temperature: 1400°C, holding time: 1 s, particle size: 0.2 mm).

Estimated biomass particle mass as a function of mean particle temperature is shown in Figure 7.
Figure 7: Simulated mass loss over the mean particle temperature (% af) of pinewood, beechwood, wheat straw, alfalfa straw and leached wheat straw at 1000, 1250 and 1400°C in the DTF and at 1400°C in the WMR, and comparison with the char yields determined experimentally in the wire mesh reactor at (heat treatment temperature: 350, 800, 1000, 1250 and 1400°C; heating rate: 1000 K s⁻¹; holding time: 1 s) and drop tube reactor at 1000, 1250 and 1400°C as determined by Trubetskaya et al. [33, 34].
The mass loss of smaller particles is shown only at 1400°C in the wire-mesh reactor, since pyrolysis is complete at temperatures below 800°C. The simulation results show that char yields from pyrolysis of wood and leached wheat straw in the drop tube reactor were similar over a temperature range of 1000-1400°C, whereas the char yield of wheat and alfalfa straw decreased slightly from 10.3% to 7.6% by weight. The present results show that the model accurately estimates the char yield for smaller (0.2 mm) biomass particles. The char yield from pyrolysis of 1 mm pinewood particles is also estimated well and is about 3% lower relative to the experimentally determined char yields in the drop tube reactor. The experimental data obtained in the wire mesh reactor agree with the mass loss estimated by the model. The lower WMR heating rate caused the reaction to take place at lower temperatures for an extended period compared to fast pyrolysis conditions in the drop tube reactor.

Figure 8 illustrates the mass fraction of metaplast formed at the surface, middle and center of the particle as a function of time. The simulation results show that both heating rate and particle size influence metaplast formation. In general, high heating rates promote the formation of metaplast. Due to negligible temperature gradients, high heating rates cause small particles first to become fluid and form a molten sphere, then solidify into char [6, 7, 33]. For large particles, significant formation of metaplast at high heating rates is only observed at the surface.
Figure 8: Simulated metaplast formation (% af) from pyrolysis of 0.2, 3 and 10 mm pinewood particles at slow heating rate in the thermogravimetric instrument (10 K min$^{-1}$), at intermediate heating rate (103 K s$^{-1}$) in the wire mesh reactor and at high heating rates in the drop tube reactor. The metaplast formation ($kg_M kg_{IB}^{-1}$) is showed over the pyrolysis time.
This means that the particle surface melts during pyrolysis, whereas the interior retains the original biomass structure [33]. The rate of metaplast formation was slower than formation of volatiles and char at lower temperatures. Thus, metaplast was formed faster than it was consumed at higher temperatures. At low heating rates, the particle was nearly isothermal, indicating only small differences in metaplast formation as function of position within the particle. Thus, the relatively low heating rate for the particle core increased the time for the three reactions, leading to lower metaplast yields.

3.2. Influence of assumed particle geometry

Figure 9 illustrates the mass loss of 0.2, 1 and 5 mm pinewood particles. Devolatilization time decreased with the higher heating rate in the drop tube reactor compared to the wire mesh reactor. The representation of the 0.2 mm particles using different characteristics lengths does not give large deviations with respect to char yield and devolatilization time among the three particle geometries as shown in Figure 9(a).
Figure 9: Mass loss histories of pinewood particles (0.2 and 1 mm) with the similar volume to surface ratio and different characteristic lengths which were calculated in plate-like (n=0), cylindrical (n=1) and spherical (n=2) geometries at the final temperature of 1400°C during pyrolysis in the wire mesh and drop tube reactors.

The influence of particle shape becomes more important with the increasing particle size due to the larger internal temperature gradients as...
shown in Figure 9(b). The relative influence of heating rate on devolatilization time of 1 mm pinewood was less compared that for smaller particles. This is because of the predominance of internal heat transfer control within the large particles.

3.3. Influence of volumetric shrinkage on devolatilization time

In the model, the shrinkage front moves from the surface towards the center. At high heating rates, the outer layers initially shrink while the inner layers remain unaffected. Later, the fuel particle shrinks due to devolatilization. During slow pyrolysis, internal thermal gradients are small, and therefore, drying followed by devolatilization takes place over throughout the particle. Particle shrinkage takes place after the original biomass is converted into metaplast. The rate of volatiles formation determines the rate at which the particle shrinks.

Figure 10(a) shows that the particle size of 5 mm particle was reduced by 27% during pyrolysis at high heating rates. A 26% reduction in a particle size was measured during devolatilization of 3 mm pinewood particle in a temperature range of 1180-1440°C in the single particle reactor [41].

Figure 10(c) shows that shrinkage has a negligible influence on the devolatilization time of smaller particles, which are practically isothermal. For the large particles, the inclusion of shrinkage increases the devolatilization rate and thereby decreases the devolatilization time. Internal temperature gradients in larger particles becomes smaller as the particle shrinks which enhances the devolatilization rate. The shrinkage of 5 mm pine particle leads to the decrease of devolatilization time by 19% during pyrolysis in the WMR and DTF.
3.4. Influence of particle size on devolatilization time

Figure 10 compares the times required for complete devolatilization of 3, 4 and 5 mm pinewood particles in the single particle reactor to those estimated by the model for particles from 0.01 to 10 mm. In the model, the complete devolatilization time is defined as the time when 95% of the volatile matter in the original pinewood particle has been released [67].
Figure 11 shows that under fast heating particles with mean diameters < 0.25 mm may be considered as thermally thin based on the modeling results with 0.1 s deviation, while the intra-particle heat conduction in larger particles plays a key role in biomass devolatilization. The diameter of 3, 4 and 5 mm pinewood cubes was recalculated for corresponding cylinders under the assumption of a similar volume to surface ratio (3, 4 and 5 mm). A comparison of experimental and estimated devolatilization times showed that the model estimates the devolatilization time of pinewood particles well. In addition, the results showed that the 1 mm pinewood particles require more than 1 s in the WMR and DTF for complete conversion. The estimated devolatilization time by the model showed a similar trend for the experiments in the drop tube reactor.
Figure 11: Simulated devolatilization time of shrinking pinewood particles (from 0.01 mm to 10 mm) at 1000, 1250 and 1400°C, and compared with the experimental results obtained in the SPR for 3, 4 and 5 mm particles at 1350 and 1450°C. Experimental data was taken from the investigations of Jepsen [41]. The black dashed line separates the thermally thin regime ($Bi < 0.1$) from the thermally thick ($Bi > 0.1$).

4. Discussion

The present pyrolysis model describes the char yield at high temperatures (up to 1500°C) and high heating rates > 200 K s$^{-1}$. In the model, an intermediate liquid (so called metaplast) is formed from the decomposition of biomass which reacts further to char and gas. It was assumed that the kinetics for metaplast formation does not depend on the biomass type and that
reaction of metaplast to char and gas is influenced by the biomass potassium content.

The impact of heating rate on the maximum metaplast formation and subsequent reaction to char and gas shown in Figure 12.

Figure 12: Simulated reaction rates (wt.% s\(^{-1}\)) of metaplast, char and volatile formation during fast pyrolysis of 0.2 mm pinewood (\(\omega_K = 200 \text{ mg kg}^{-1}\), dry basis) and wheat straw (\(\omega_K = 11000 \text{ mg kg}^{-1}\), dry basis) particles in the wire mesh reactor (1000K s\(^{-1}\)).

Figure 12 demonstrates that the rate of metaplast formation is slower than formation of volatiles and char at temperatures below 350\(^\circ\)C. Thus, lower concentrations of metaplast are formed at lower heating rates. The particle temperature was nearly uniform over the particle diameter, and therefore,
only small differences in metaplast formation were observed. At higher temperatures, the rate of char formation was lower than the rate of metaplast formation, in agreement with experimental results from Koufopanos [15, 45]. Higher temperatures result in greater metaplast accumulation because its formation rate is faster than its rate of consumption. At high heating rates, such as in the wire mesh and drop tube reactors, lower mass fractions of metaplast were formed in the particle core compared to the particle surface. This could be due to the lower heating rates at the core compared to at the surface. At high heating rates, formation of metaplast is initially fast relative to reaction from metaplast to char and gas, so a high concentration of metaplast is obtained. With a high fraction of metaplast, the particle may become molten (locally or throughout the whole particle), thereby leading to structural changes of the particle [33].

Particle size demonstrates a greater influence on metaplast, volatile and char formation in the drop tube reactor \((10^{-4} \text{ K s}^{-1})\) than in the wire mesh reactor \((10 \text{ K s}^{-1})\). The larger internal temperature gradients led to slower pyrolysis of 3 and 10 mm pinewood particles compared to 0.2 mm particles. For large particles the formation of metaplast mainly takes place at the particle surface at high heating rates, whereas the lower heating rates result in high metaplast concentrations in the interior. At low heating rates, both small and large particles were nearly isothermal, leading to smaller local differences in metaplast formation. Differences in local mass fractions of metaplast became larger with increasing particle size and increasing heating rates because of the predominance of internal heat transfer control within the large particles.
Char yield has been experimentally shown to increase with potassium content in the original biomass [33, 34]. This effect was accounted for in the model by modifying the activation energy for the char formation reaction as a function of the potassium content. The influence of potassium on char formation became stronger with decreasing heating rate, which corresponds to the experimental observations from the wire mesh and drop tube reactors. Calculations suggested that pyrolysis was completed at temperatures below 800°C, and thus, the char yields for woody and herbaceous biomass remain unchanged. The experimental data showed that the biomass char yields decreased with the increasing temperature due to the dehydrogenation and cross-linking reactions [68], which are not considered in the present simulation. The simulated char yield from wheat straw pyrolysis was slightly lower than the char yield from the wire mesh and drop tube reactor experiments. The ash compositional analysis of char from the pyrolysis in the drop tube reactor showed that close to 70% potassium in the wheat straw has been released in a temperature range of 1000-1500°C [69]. The remaining potassium in herbaceous biomass samples is still present in a larger amount than in woody chars. The large differences in herbaceous char yields between the model and experimental data might be attributed to the interactions between potassium, other remaining alkali metals and carbonaceous char matrix which were not considered during the model development.

Moreover, the char yield of larger particles is underestimated by the model. It was hypothesized that tar inside larger particles may undergo secondary reactions, leading to higher char yields [36]. At high heat treatment temperatures of 750-1100°C, secondary reactions occurring in larger
particles strongly decrease tar release and increase char formation during pyrolysis. Tar decomposition occurs by secondary reactions (i.e. cracking and polymerization), and tar release to ambient by mass transfer [35]. The evolutionary profiles of the temperatures at the pinewood particle surface and the particle center as a function of time are shown in the supplemental material. Due to the fast heat transfer in 0.2 mm particles, the differences between surface and core temperatures are small and thus, tar release remains unchanged at 1100°C. The differences between surface and core temperatures become more pronounced with the increasing particle size. Tar formation from pyrolysis of larger pinewood particles was stronger, whereas the soot yield was half lower compared to smaller particles [70]. The lower soot yields were related to the less formed PAH precursors. Tar inside larger particles underwent secondary reactions due to the lower heat flux, leading to a slower pyrolysis and thereby higher char yields and less soot, corresponding to investigations of Miller and Bellan [36]. This effect was not included in the model and could be the reason why the model slightly underpredicts the char yield for large particles.

5. Conclusion

The novelty of this work relies on the description of both low and high temperature kinetics for wood and herbaceous biomass using one set of kinetic parameters. The actual particle heating rate of biomass particles was quantitatively defined in wire mesh and drop tube reactors. The results presented in this work emphasize a stronger catalytic effect of potassium on char yield at low and intermediate heating rates compared to high heating rates.
The potassium content and heating rate affected the char yield more than other operational parameters.

An innovative approach was used to implement the influence of potassium on the char yield in the model by reduction in the activation energy of char formation with increasing potassium content, and fitted to the experimental results. The simulation results showed that particle size has a more significant influence on metaplast formation and reaction to char and gas at high heating rates (10^4K s^{-1}) compared to pyrolysis at low heating rates (10K s^{-1}).

In addition, the model showed that the impact of shrinkage on devolatilization time increases with increasing particle size, but it has negligible influence on char yields. Results from the 1D model are in agreement with experimental data, and emphasize a key role of intra-particle heat conduction in biomass particle > 0.25 mm.

Acknowledgements

The authors would like to acknowledge the financial support that they received for this project from Kempestiftelserna. We also acknowledge Professor Anker Degn Jensen (DTU CHEC) for fruitful discussions. Assistant Professor Catherine Brewer is acknowledged for the article proof reading.

References

[2] Danish Energy Agency: Energy strategy 2050 - from coal, oil and gas to

acterization of biomass fuels prepared for suspension firing in utility

process - Lignocellulosic bioethanol close to a commercial reality, Chem

sitional transformations of biomass chars during combustion, Combust

tions on the structure and gasification reactivity of biomass chars, Fuel

[7] Dall’Ora M, Jensen PA, Jensen AD, Suspension combustion of wood:
Influence of pyrolysis conditions on char yield, morphology, and reactiv-

41–9.

[9] Roberts AF, A Review of Kinetic Data for the Pyrolysis of Wood and

40

[34] Trubetskaya A, Jensen PA, Garcia Llamas AD, Umeki K, Jensen AD,

[50] Gubba SR, Ma L, Pourkashanian M, Williams A, Influence of particle shape and internal thermal gradients of biomass particles on pulverized

Supplemental material
Click here to download Supplementary Interactive Plot Data (CSV): supplemental_material_revised.pdf
LaTeX Source Files bibtex

Click here to download LaTeX Source Files: myref6.bib
LaTeX Source Files manuscript without marked changes
Click here to download LaTeX Source Files: article6_20160918_revised.tex
Model:
- Mass loss WMR
- Mass loss DTF 1000°C
- Mass loss DTF 1250°C
- Mass loss DTF 1400°C

Experimental:
- Char yield WMR
- Char yield DTF

Solid residue/ % af vs. Temperature/ °C
Model:
- Mass loss WMR
- Mass loss DTF 1000°C
- Mass loss DTF 1250°C
- Mass loss DTF 1400°C

Experimental:
- Char yield WMR
- Char yield DTF

Temperature/ °C
Solid residue/ % af

0 200 400 600 800 1000 1200 1400
Metaplast/ % kg\textsubscript{M} kg\textsubscript{IB}^{-1} af

Pyrolysis time/ s

Surface

Core

1/2 Radius

Surface

Core
Drop tube reactor:
- Infinite plate
- Infinite cylinder
- Sphere

Wire mesh reactor:
- Infinite plate
- Infinite cylinder
- Sphere
Drop tube reactor:
- Infinite plate
- Infinite cylinder
- Sphere

Wire mesh reactor:
- Infinite plate
- Infinite cylinder
- Sphere

Solid residue/ % daf vs Time/ s
Rate of formation/ wt.% s⁻¹

- Metaplast
- Volatiles
- Pinewood char \((\omega_K = 200 \text{ mg/kg}) \)
- Wheat straw char \((\omega_K = 11000 \text{ mg/kg}) \)

Temperature / °C