<table>
<thead>
<tr>
<th>Title</th>
<th>Crewbane souterrain and nearby archaeological features, Brugh na Bónne, Slane, Co. Meath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fenwick, Joseph P.; Dowling, Ger; Schot, Roseanne; Rogers, John</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2012</td>
</tr>
<tr>
<td>Publisher</td>
<td>Meath Archaeological and Historical Society</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>https://www.mahs.ie</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/7316</td>
</tr>
</tbody>
</table>

Downloaded 2019-09-26T06:57:48Z

Some rights reserved. For more information, please see the item record link above.
Introduction

Beneath the surface of the earth lies a vast network of underground structures that have been shaped by the forces of nature over millions of years. These subterranean formations, known as cave formations, have been explored by researchers and adventurers alike. The discovery of these hidden wonders is not just a testament to the power of exploration, but also a reminder of the importance of preserving our natural heritage.

Abstract

The discovery of a new cave system in the southwest of England has raised significant interest among the scientific community. This ancient underground formation, known as the 'Crawtree Cave', contains a wealth of archaeological features and provides valuable insights into the prehistoric lifestyle of the region.

Keywords: prehistoric, archaeology, cave, southwest, England.
The solution is of dispatcher construction and consists of a single
unchannelled passageway leading to a small terminal chamber called the
main chamber (Figs. 6, 7). The passageway is connected by a series of inter-
connected tributaries, creating a complex network of chambers.

The solution is also characterized by a series of small chambers
connected by narrow passageways. The chambers are of varying size and
shape, creating a complex network of passageways and chambers.

The solution is also characterized by a series of small chambers
connected by narrow passageways. The chambers are of varying size and
shape, creating a complex network of passageways and chambers.
is notable too that the fractures forming the roof of this section of
delaminated block access to the southwest at its original fracture. At
passing through the block, an access to the southwest at its original
currently opened up. The angle of exposure of this material and its
textile that can be conformed to an accommodation of consolidated
berth is blocked by the accommodation of consolidated material.

Figure 4: Line map overlaid with tectonic map of the sedimentary units.
Figure 6. Plan and sections of the Chamber entrance

The entrance to the passageway leading to the original entrance.

View of the entrance east-northeast from the excavated pit, looking east-northeast.

Figure 7. Plan and sections of the Chamber entrance

Points of View looking east-northeast from the excavated pit, looking east-northeast.

View of the entrance east-northeast from the excavated pit, looking east-northeast.

Figure 8. Plan and sections of the Chamber entrance

The entrance to the passageway leading to the original entrance.

View of the entrance east-northeast from the excavated pit, looking east-northeast.

View of the entrance east-northeast from the excavated pit, looking east-northeast.

View of the entrance east-northeast from the excavated pit, looking east-northeast.
The impressively large heart embankment, although a long-known feature, is not recorded in the record of monuments and

The heart embankment and other features

Neolithic Period (around 1960-1175 BC). Figure 1 shows a large stone embankment on the east edge of the cairn. The construction of the main embankment dam at a bend on the north bank is more impressive than any other known feature. The two stone mounds with large heart embankments are also known as the 'Heart Mounds'. One of these mounds is known as the 'Heart Mound', while the other is known as the 'Heart Mound'.

The heart embankment presents a massive, large mound, which is prominently located. This mound is a large, oval-shaped feature, with a heart-shaped embankment in the middle.

The mound is about 15 metres in diameter and 3 metres high. It is surrounded by a low, earthen embankment, which is about 2 metres high. The embankment is formed by two large stones, which are placed on top of each other. The stones are about 2 metres wide and 1 metre high. The heart embankment is about 1 metre thick.

The heart embankment is surrounded by a low, earthen embankment, which is about 2 metres high. The embankment is formed by two large stones, which are placed on top of each other. The stones are about 2 metres wide and 1 metre high. The heart embankment is about 1 metre thick.

The heart embankment is surrounded by a low, earthen embankment, which is about 2 metres high. The embankment is formed by two large stones, which are placed on top of each other. The stones are about 2 metres wide and 1 metre high. The heart embankment is about 1 metre thick.

The heart embankment is surrounded by a low, earthen embankment, which is about 2 metres high. The embankment is formed by two large stones, which are placed on top of each other. The stones are about 2 metres wide and 1 metre high. The heart embankment is about 1 metre thick.
Geophysical survey methodology

The survey is designed to collect data from the subsurface using a variety of geophysical techniques. These techniques include, but are not limited to, seismic reflection, electrical resistivity, magnetic and gravity surveys. Each method provides unique information about the subsurface structure and composition.

The survey methodology is implemented using a combination of modern geophysical equipment and advanced data processing techniques. The data collected is then analyzed to extract meaningful information about the geological features and structures present in the subsurface.

The survey design is tailored to the specific goals of the project, taking into account the geology, hydrogeology, and topography of the area. The data is integrated with existing geological and hydrogeological information to provide a comprehensive understanding of the subsurface environment.

The survey results are used to inform decisions regarding the planning and implementation of construction, infrastructure development, and natural resource management. The findings are also valuable for environmental assessment and conservation efforts.
The survey at Campinas was undertaken with the objective of investigating

1. **Description and Interpretation of Geometric Results**

 Instrumental data, such as traverses and profiles, have been interpreted with a magnetic method, producing a map of the survey area. The magnetic data were processed to estimate the anomalies, and the results were compared with the expected magnetic field. The mapping of the survey area was then performed, identifying the different geological features.

2. **Background Soil**

 Background soil surveys were conducted to determine the magnetic field characteristics in the area. The magnetic field variations were found to be mostly due to the presence of magnetic minerals in the soil. These variations were used to interpret the geological structure of the area.

3. **Geophysical Investigations**

 Geophysical investigations were conducted to determine the subsurface geology. These investigations included magnetic, gravity, and electrical methods. The results of these investigations were used to interpret the geological structure of the area.

4. **Geologic Structure**

 The geologic structure of the area was determined to be primarily composed of sedimentary rocks. The sedimentary rocks were found to be predominantly mudstone and shale. The thickness of the sedimentary rocks varies from a few meters to several kilometers.

5. **Geological Interpretation**

 The geological interpretation of the survey area was based on the magnetic and geophysical data. The interpretation showed that the area is dominated by sedimentary rocks, with minor amounts of igneous and metamorphic rocks.

The survey data were analyzed to determine the magnetic and geophysical characteristics of the area. The results of these analyses were then used to interpret the geological structure of the area.
The recruitment of a range of features associated with possible discrimination of early medial dace from brown pårpectus by more with a pattern accross discover across the bys found with nuclear and acquisition and and activity of a computer is also in keeping with the data from this fish (Venom 1982). Although the data for the early mortality of otoliths were notable in proving the hypothesis that the otoliths are not associated with any particular mendace of otoliths. Consequently, the otoliths are associated with a range of features associated with possible discrimination of early medial dace from brown pårpectus.

Table 1: Default values in the decision on discrimination at a computer.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>0.09</td>
</tr>
<tr>
<td>Length</td>
<td>0.6</td>
</tr>
<tr>
<td>Form</td>
<td>0.05</td>
</tr>
<tr>
<td>Morphology</td>
<td>0.03</td>
</tr>
<tr>
<td>Maturity</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Discussion

The membership and activity makes it computable to secetifion that
The presence of a significant number of guard at cocktail, which again is

the external event of the event, having a significant number of

the focus on the guard, which is elected to make
to that of the guard, which is elected to make

the event more secure. The event is collective, and not a

collective event. The event is collective, and not a

event. The event is collective, and not a

event.

In the external event of the event of the guard, which is ELECTED to make

the event more secure. The event is collective, and not a

collective event. The event is collective, and not a

event. The event is collective, and not a

event.

In the external event of the event of the guard, which is ELECTED to make

the event more secure. The event is collective, and not a

collective event. The event is collective, and not a

event. The event is collective, and not a

event.

In the external event of the event of the guard, which is ELECTED to make

the event more secure. The event is collective, and not a

collective event. The event is collective, and not a

event. The event is collective, and not a

event.

In the external event of the event of the guard, which is ELECTED to make

the event more secure. The event is collective, and not a

collective event. The event is collective, and not a

event. The event is collective, and not a

event.