The influence of collagen isolation, cross-linking and sterilisation on macrophage response

A thesis submitted to the National University of Ireland Galway for the degree of Doctor of Philosophy

By

Luis M. Delgado

Research Supervisor: Dr Dimitrios I. Zeugolis

March 2018

Regenerative, Modular & Developmental Engineering Laboratory (REMODEL)
Centre for Research in Medical Devices (CÚRAM)
National University of Ireland Galway (NUI Galway)
Table of contents

Table of contents .. I
Plagiarism statement.. IX
Table of figures... XI
Table of tables.. XXI
List of abbreviations ... XXIII
Acknowledgements... XXVII
Abstract .. XXIX
Keywords .. XXXI

Chapter 1: Introduction .. 1

1.1. Introduction ... 2
1.2. Wound healing ... 4
 1.2.1. Physiological wound healing ... 4
 1.2.2. Impaired wound healing ... 9
1.3. State of the art of collagen .. 11
 1.3.1. Collagen diversity ... 11
 1.3.2. Collagen structure and conformation .. 12
 1.3.3. Collagen-based materials in Tissue Engineering .. 13
1.4. Assessment of the inflammatory response to collagen-based devices 19
 1.4.1. Methods for assessing in vitro inflammatory response to collagen-based
devices ... 19
 1.4.2. In vitro assessment of inflammatory response to collagen-based devices 22
 1.4.3. In vivo models for assessing host response to collagen-based devices 25
 1.4.4. In vivo assessment of host response to collagen-based devices 31
1.5. Collagen source and extraction ... 42
1.6. Collagen cross-linking...45
1.6.1. Chemical cross-linking..48
1.6.2. Physical cross-linking..52
1.6.3. Biological cross-linking...53
1.7. Collagen sterilisation...55
1.7.1. Ethylene oxide ..60
1.7.2. Gamma irradiation...61
1.7.3. E-beam irradiation...64
1.7.4. Radioprotectants...65
1.7.5. Gas plasma ..67
1.7.6. Peracetic acid ...68
1.7.7. Ethanol ..68
1.8. Project rationale and hypothesis...70
1.8.1. Phase I (Chapter 2) ...73
1.8.2. Phase II (Chapter 3) ..73
1.8.3. Phase III (Chapter 4) ...74
1.9. References ..75

Chapter 2: Collagen extraction..129

2.1. Introduction ...130
2.2. Materials and methods ..132
2.2.1. Materials ..132
2.2.2. Type I collagen isolation ..132
2.2.3. Collagen purity assessment ...135
2.2.4. Free amine assessment ..135
2.2.5. Denaturation temperature assessment136
2.2.6. Enzymatic stability assessment ... 136
2.2.7. In vitro inflammatory response assessment ... 136
2.2.8. Statistical analysis .. 138
2.3. Results .. 139
 2.3.1. Collagen purity assessment ... 139
 2.3.2. Free amine, denaturation temperature and enzymatic stability assessment .. 142
 2.3.3. In vitro inflammatory response assessment ... 144
2.4. Discussion .. 149
2.5. Conclusions .. 154
2.6. Reference .. 155

Chapter 3: Collagen cross-linking .. 169
 3.1. Introduction .. 170
 3.2. Materials and methods .. 173
 3.2.1. Materials ... 173
 3.2.2. Type I collagen isolation ... 173
 3.2.3. Collagen film fabrication .. 175
 3.2.4. Structural characterisation ... 177
 3.2.5. Quantification of free amines ... 177
 3.2.6. Quantification of denaturation temperature 177
 3.2.7. Quantification of enzymatic degradation .. 178
 3.2.8. Quantification of mechanical properties .. 178
 3.2.9. Human skin fibroblast response ... 179
 3.2.10. Human macrophage response and cytokine release 179
 3.2.11. Statistical analysis ... 181
3.3. Results ... 182

3.3.1. Structural characterisation ... 182

3.3.2. Quantification of free amines ... 184

3.3.3. Quantification of denaturation temperature ... 186

3.3.4. Quantification of enzymatic degradation .. 188

3.3.5. Quantification of mechanical properties .. 190

3.3.6. Human skin fibroblast response .. 193

3.3.7. Human macrophage response and cytokine release ... 196

3.4. Discussion .. 206

3.5. Conclusions .. 216

3.6. References ... 217

Chapter 4: Collagen sterilisation .. 233

4.1. Introduction .. 234

4.2. Materials and methods .. 236

4.2.1. Materials ... 236

4.2.2. Collagen type I isolation and film fabrication ... 236

4.2.3. Collagen film sterilisation ... 237

4.2.4. Structural characterisation ... 239

4.2.5. Quantification of swelling capacity .. 239

4.2.6. Quantification of enzymatic degradation .. 239

4.2.7. Quantification of solubility ... 240

4.2.8. Quantification of denaturation temperature ... 240

4.2.9. Quantification of mechanical properties ... 241

4.2.10. Human skin fibroblast and macrophage response .. 241

4.2.11. Statistical analysis ... 242
4.3. Results ... 243
 4.3.1. Structural characterisation ... 243
 4.3.2. Swelling, enzymatic degradation, solubility and denaturation temperature characterisation ... 246
 4.3.3. Biophysical assessment ... 251
 4.3.4. Biological assessment .. 255
4.4. Discussion .. 260
4.5. Conclusion .. 263
4.6. References .. 264

Chapter 5: Summary and future studies .. 275
 5.1. Summary ... 276
 5.2. Future studies ... 279
 5.2.1. Structured collagen films to control macrophage response 279
 5.2.2. Functionalised collagen films to control macrophage response 280
 5.2.3. Controlled release of therapeutics to control macrophage response 281
 5.3. References ... 282

Appendices: Protocols and supplementary information 287
 A. List of components and reagents ... 288
 B. Type I collagen isolation protocol ... 292
 B.1. Materials .. 292
 B.2. Equipment ... 292
 B.3. Method .. 292
 C. Collagen film fabrication and cross-linking .. 295
 C.1. Materials .. 295
 C.2. Method .. 295
C.3. Cross-linking methods (0.5 ml per 10 ml collagen sample):296

D. Freeze-drying protocol ...298
 D.1. Materials ...298
 D.2. Method ...298

E. Hydroxyproline assay for collagen quantification................................300
 E.1. Materials ...300
 E.2. Method ...300

F. SDS-PAGE ..302
 F.1. Materials ...302
 F.2. Method – gels preparation ..303
 F.3. Method – sample preparation ..305
 F.4. Method – running gels ..305

G. Silver staining of SDS-PAGE gels ..306

H. Densitometry analysis of SDS-PAGE ...308

I. Ninhydrin assay for free amine quantification309
 I.1. Materials ...309
 I.2. Method ...309

J. Collagenase: degradation/stability assay ...310
 J.1. Materials ...310
 J.2. Method ...310

K. Scanning electron microscopy (SEM) - sample preparation311
 K.1. Materials ...311
 K.2. Method ...311

L. Protocol of fibroblasts cell culture ..312
 L.1. Expansion ...312
L.2. Splitting ... 312
L.3. Cell freezing ... 313
L.4. Cell thawing .. 313
M. Protocol of macrophages cell culture ... 314
M.1. Expansion ... 314
M.2. Differentiation ... 314
M.3. Cell freezing and thawing ... 315
N. Cell metabolic activity assay using alamarBlue™ .. 316
N.1. Materials ... 316
N.2. Method .. 316
O. Cell proliferation assay using Quant-it™ Picogreen® ... 317
O.1. Materials ... 317
O.2. Method .. 317
P. Cell viability assay using Live/Dead staining .. 319
P.1. Materials ... 319
P.2. Method .. 319
Q. Cell viability assay using cytotoxicity kit ... 320
Q.1. Materials ... 320
Q.2. Method .. 320
R. Optimisation of collagen type I extraction .. 321
R.1. Materials and methods .. 321
R.2. Results and discussion .. 323
R.3. Conclusions .. 329
S. Research outputs .. 330
S.1. Manuscripts ... 330
S.2. Outreach manuscripts ..331
S.3. Abstract publications ..331
S.4. Conferences participations ...332
S.5. Courses ..333
Plagiarism statement

I certify that the thesis is all my own work and I have not obtained a degree in this University, or elsewhere, on the basis of this work.

Luis M. Delgado
Table of figures

Chapter 1

Figure 1.1. Temporal distribution of the four overlapping wound healing phases (A) and associated cell type (B). ... 7

Figure 1.2. Acute inflammation is characterized by the presence of neutrophils, monocytes, and macrophages. Depending on the resolution of the acute inflammation, injury repair could lead to a wound healing process or a classical foreign body response. In wound healing, M2 macrophages attract fibroblast and endothelial cells to secrete a new vascularized tissue. This connective tissue replaces fibrin clot and degraded scaffold. Tissue remodelling is the last healing and could continue for over a year. In foreign body response, acute inflammation persists over time and M1 macrophages aggregate into foreign body giant cells (FBGCs). M1 macrophages and FBGCs fail to degrade the foreign scaffold, resulting in fibroblast recruitment and deposition of a fibrous connective tissue around the scaffold (peri-implantation fibrosis). .. 8

Figure 1.3. Macrophages polarized from M0 (non-polarised) to M1 (pro-inflammatory) or M2 (M2a, anti-inflammatory; M2b, homeostatic; M2c, wound healing) depending on inducing signals. Each macrophage subpopulation expresses different surface markers, cytokines, and reactive species. CD, cluster of differentiation; FBF-2, puf-domain RNA-binding protein; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; MMP, matrix metalloproteinases; NO, nitric oxide; ROS, reactive oxygen species; TGFb, transforming growth factor beta; TNF-a, tumour necrosis factor alpha; VEGF, vascular endothelial growth factor. 21

Figure 1.4. Chemical cross-linking of collagen reactions – Part 1. GTA: glutaraldehyde; HMDI: hexamethylene diisocyanate. ... 50
Figure 1.5. Chemical cross-linking of collagen reactions – Part 2. EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, NHS: N-hydroxysuccinimide; DPPA: diphenyl-phosphorylazide.

Figure 1.6. Physical (DHT and UV) and biological (TGase) cross-linking of collagen reactions. DHT: dehydrothermal treatment; TGase: transglutaminase.

Figure 1.7. Schematic summary of the effects of different sterilization methods on structural, mechanical and biological stability of collagen-based devices.

Figure 1.8. Thesis overview. The project developed herein is composed of three different research phases: collagen extraction and purification (Phase I – Chapter 2), scaffold fabrication and cross-linking (Phase II – Chapter 3), and scaffold sterilisation (Phase III – Chapter 4).

Chapter 2

Figure 2.1. Flow chart of the collagen extraction process and table describing the various groups assessed in this study.

Figure 2.2. SDS-PAGE (a) and complementary densitometric analysis of α_1(I) and α_2(I) bands (b) revealed that significantly more ($p < 0.05$) collagen came into solution when AA was used. The use of pepsin, independently of the acid used, significantly increased ($p < 0.001$) yield. Pepsin also reduced the cross-links in the AAP and AASP (as compared to AA and AAS, respectively), as evidenced by the reduction in β and γ bands. Salt precipitation did not appear to induce a significant effect.

Figure 2.3. (a) The AAP and the HCP groups exhibited the highest % free amines ($p < 0.05$). (b) The AAP group exhibited the lowest denaturation temperature ($p <$...
Figure 2.4. Phase contrast microscopy analysis demonstrated that most macrophages, independently of the treatment and time in culture, adopted a rounded morphology, although elongated cells (black arrows) and cell aggregates (white arrows) were evidenced. Scale bars: 50 µm.................................145

Figure 2.5. (a) Cell morphology analysis of the phase contrast images showed significantly more \((p < 0.001) \) elongated macrophages on AA films rather than on HC films at both time points. (b) DNA quantification analysis revealed that HC treatments exhibited significantly lower \((p < 0.001) \) cell proliferation to the respective AA treatments. (c) No significant differences \((p > 0.05) \) were observed between the groups with respect to metabolic activity. ...146

Figure 2.6. Multiplex ELISA on pro- and anti-inflammatory cytokines of THP-1 cells cultured on distinct collagen extractions for 1 and 2 days. Cytokine profile release analysis revealed that HC treatments exhibited significantly higher \((p < 0.001) \) IL-1\(\beta \) and TNF-\(\alpha \) secretion to the respective AA treatments at both time points ...147

Figure 2.7. Multiplex ELISA on pro- and anti-inflammatory cytokines of THP-1 cells cultured on distinct films for 1 and 2 days. Multiple comparison tests for every pair of conditions (*: \(p < 0.05 \), ns: not significant). ...148

Chapter 3

Figure 3.1. The purity of the extracted type I collagen was assessed using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. SDS-PAGE analysis revealed the purity of the extracted collagen
solution (left lane) was ~ 96 %, similar to commercially available BD Biosciences (right lane) type I collagen (~ 97 %). ... 174

Figure 3.2. Optical and SEM images of the different collagen films. NCL, EDC and 4SP films were colourless, whilst GTA and OLE cross-linking induced a yellow / brown hue and GEN cross-linking resulted in dark blue hue. SEM analysis revealed that only NCL and 4SP cross-linked films maintained the fibrillar structure of collagen. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). 183

Figure 3.3. Quantification of free amine group of collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE); non-cross-linked collagen film (NCL) was used as control. *: Denotes significant difference ($p < 0.05$) from the control group (NCL). ... 185

Figure 3.4. Denaturation temperature measured by differential scanning calorimetry (DSC) of collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE); non-cross-linked collagen film (NCL) was used as control. *: Denotes significant difference ($p < 0.05$) from the control group (NCL). 187

Figure 3.5. Degradation by collagenase after 24 hours incubation. of collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE); non-cross-linked collagen film (NCL) was used as control. *: Denotes significant difference ($p < 0.05$) from the control group (NCL). ... 189
Figure 3.6. Tensile test stress-strain deformation mechanism of the produced collagen films. Stress-strain curves consisted of a small toe region, a region of steeply rising stress and a long region of constant gradient until fracture. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE).

Figure 3.7. Phase contrast microscopic images of human skin fibroblasts cultured onto cross-linked collagen films for 1, 3 and 7 days. Human skin fibroblasts maintained their spindle-shaped morphology, independently of the treatment and the time in culture. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) was used as control.

Figure 3.8. Human skin fibroblasts onto cross-linked collagen films after 1, 3 and 7 days of culture. Cellular proliferation was assessed through DNA concentration quantification (A). Metabolic activity was assessed using alamarBlue® (B). Cellular viability was assessed via Live/Dead® (C). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) was used as control. *: Denotes significant difference ($p < 0.05$) from the control group (NCL).

Figure 3.9. Phase contrast microscopic images of THP-1 cells cultured onto cross-linked collagen films for 1 and 2 days. The macrophages adopted a round morphology and formed aggregates, independently of the treatment and time in culture. Some elongated cells were also detected (indicative examples are
highlighted using arrows). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.

Figure 3.10. THP-1 cells onto cross-linked collagen films after 1 and 2 days of culture. Cellular proliferation was assessed through DNA concentration quantification (A). Metabolic activity was assessed using alamarBlue® (B). Cellular viability was assessed via Live/Dead® (C). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls. *: Denotes significant difference ($p < 0.05$) from the control group (NCL).

Figure 3.11. Multiplex ELISA on pro- and anti-inflammatory cytokines of THP-1 cells cultured on distinct films for 1 and 2 days. The bar represents the average. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.

Figure 3.12. Multiplex ELISA, multiple comparison tests for every pair of conditions (* $p < 0.05$, ns: not significant). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.
Figure 3.13. Phase contrast microscopic images of THP-1 cells cultured for 2 days with pre-conditioned media from the cross-linked collagen films. Macrophages adopted a round morphology and only cells on GTA films formed aggregates. Some elongated cells were also detected (indicative examples are highlighted using arrows). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.

Figure 3.14. THP-1 cells cultured with pre-conditioned media from the cross-linked collagen films after 2 days of culture. Cellular proliferation was assessed through DNA concentration quantification (A). Metabolic activity was assessed using alamarBlue® (B). Cellular viability was assessed via Live/Dead® (C). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls. *: Denotes significant difference ($p < 0.05$) from the control group (NCL).

Figure 3.15. Multiplex ELISA on pro- and anti-inflammatory cytokines of THP-1 cells cultured with pre-conditioned media from the cross-linked collagen films after 2 days of culture. The bar represents the average. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.
Figure 3.16. Multiplex ELISA, multiple comparison tests for every pair of conditions (* $p < 0.05$, ns: not significant). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.

Chapter 4

Figure 4.1. Sterility assessment as a function of cross-linking method and sterilisation treatment. No sample showed microbial growth.

Figure 4.2. Qualitative morphology assessment as a function of cross-linking method and sterilisation treatment. NS NCL and 4SP films were colourless and transparent, whilst GEN produced dark blue films. After sterilisation, the EO-4SP films became brownish, whilst no macroscopic differences were observed in the other treatments.

Figure 4.3. Scanning electron micrographs of collagen films as a function of cross-linking method and sterilisation treatment. Cross-linking did not affect the morphology of the non-sterilised samples. Sterilisation differentially affected the surface morphology of the collagen films.

Figure 4.4. Swelling and enzymatic resistance as a function of cross-linking method and sterilisation treatment. (a) GP sterilisation significantly increased ($p < 0.001$) % swelling for the NCL and 4SP groups. For the GEN group, no significant difference ($p > 0.05$) was observed between the different sterilisation methods. (b) No significant difference, between the sterilisation methods, was observed in susceptibility to collagenase digestion for the NCL and GEN samples ($p > 0.05$).
Within the 4SP sample, the GP treated exhibited the lowest ($p < 0.001$) resistance to collagenase digestion.

Figure 4.5. Solubility assessment as a function of cross-linking method and sterilisation treatment. SDS-PAGE (a) and complementary densitometric analysis (b) revealed no detectable (ND) differences in solubility of the 4SP and GEN films as a function of the sterilisation method. Within the NCL films, the highest ($p < 0.001$) solubility was observed for the GP and EO treated films.

Figure 4.6. Indicative stress-strain curves as a function of cross-linking method and sterilisation treatment. In general, similar in shape (a small toe region, followed by a rising stress region and a long region of constant gradient until fracture) stress-strain curves were obtained for all treatments, apart from the NCL GP, 4SP GP and 4SP EO, which failed too early. The GEN films exhibited a steeply rising stress region.

Figure 4.7. Phase contrast microscopy of human skin fibroblasts as a function of cross-linking method and sterilisation treatment. The cells maintained their spindle-shaped morphology, independently of the cross-linking method, sterilisation method or culture time.

Figure 4.8. Biological assessment, using human skin fibroblasts, as a function of cross-linking method and sterilisation treatment. No significant difference ($p > 0.05$) was observed in DNA concentration (a), metabolic activity (b) and cell viability (c).

Figure 4.9. Phase contrast microscopic images of THP1 cells as a function of cross-linking method and sterilisation treatment. Most macrophages, independently of the cross-linking method, sterilisation treatment and time in culture, adopted a round morphology. Only the 4SP films did not exhibit under any sterilisation method
elongated cells after 2 days in culture. Only the 4SP films, independently of the sterilisation method, promoted macrophage aggregates (5 or more cells) after 2 days in culture. Black arrows: elongated cells. White arrows: cell aggregates.

Figure 4.10. Biological assessment, using THP1 cells, as a function of cross-linking method and sterilisation treatment. 4SP significantly reduced ($p < 0.001$) DNA concentration (a), metabolic activity (b) and cell viability (c), whilst GEN significantly reduced ($p < 0.001$) DNA concentration and cell viability, in comparison to the NCL groups. No significant differences ($p > 0.05$) were observed between the sterilisation methods for a given cross-linking state.
Table of tables

Chapter 1

Table 1.1. *In vitro* inflammatory response associated with cross-linked collagen-based materials. ..24

Table 1.2. Overview of the animal models and experimental parameters used to study host response and wound healing associated with cross-linked collagen-based materials. ..27

Table 1.3. *In vivo* response associated with cross-linked collagen-based materials. The degree of cross-linking regulates scaffold stability and host response.33

Table 1.4. Mechanical properties of collagen-based devices as a function of cross-linking method and conformation. ..46

Table 1.5. The influence of various sterilization methods on the properties of implantable devices. ..57

Chapter 3

Table 3.1. Cross-linking methods employed to stabilise collagen films in order to obtain about 80% free amine reduction. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE)...176

Table 3.2. Mechanical data of the produced collagen films. The highest ($p < 0.001$; +) force at break, stress at break, strain at break and E modules values were obtained from the GEN, GEN, EDC and GEN cross-linked films, respectively. The lowest ($p < 0.001$; #) force at break, stress at break, strain at break and E modules values were obtained from the EDC, EDC, GTA and EDC cross-linked films, respectively. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with
glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE).

Table 3.3. Summary table of the properties of the produced scaffolds to the performed assays. = denotes non-significant ($p > 0.05$) alterations with respect to the NCL group; ↑ denotes a significant ($p < 0.05$) increase with respect to NCL group; and ↓ denotes a significant ($p < 0.05$) reduction with respect to the NCL group.

Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE).

Chapter 4

Table 4.1. Differential scanning calorimetry data of collagen films as a function of cross-linking method and sterilisation treatment. In general, GP treatment yielded films with the lowest denaturation temperature, independently of the cross-linking state. *: Significant difference at $p < 0.001$. #: Significant difference at $p < 0.05$. 249

Table 4.2. Tensile test data of collagen films as a function of cross-linking method and sterilisation treatment. GP treatment yielded films with the lowest mechanical properties for the NCL and GEN films. For the 4SP, the EO yielded the lowest in mechanical properties films. *: Significant difference at $p < 0.001$. #: Significant difference at $p < 0.05$...253
List of abbreviations

AA: acetic acid;
APS: ammonium persulphate;
CD#: cluster of differentiation (#);
CFU: colony forming units;
CH: carbohydrate;
COL#: collagen type #;
DSC: differential scanning calorimetry;
ECM: extracellular matrix;
EDC: 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide;
ELISA: enzyme-linked immunosorbent assay;
EO: ethylene oxide;
ET: ethanol;
DHT: dehydrothermal treatment;
DMEM: Dulbecco’s modified Eagle’s medium;
DPPA: diphenyl-phosphorylazide;
FBGCs: foreign body giant cells;
FBS: foetal bovine serum;
GAG: glycosaminoglycan;
GEN: genipin;
GI: gamma irradiation;
GP: gas plasma;
GTA: glutaraldehyde;
HBSS: Hank’s balanced salt solution;
HCl or HC: hydrochloric acid;
HE: haematoxylin and eosin staining;
HIF 1α: hypoxia inducible factor 1 alpha;
HMDI: hexamethylene diisocyanate;
IF: immunofluorescence;
IFN-γ: interferon gamma;
IHC: immunohistochemistry;
IL-#: interleukin (#);
FITC: fluorescein isothiocyanate;
LDH: lactate dehydrogenase;
LPS: lipopolysaccharide;
MCP-#: monocyte chemo-attractant protein-#;
MIP-#: macrophage inflammatory protein-#;
MMC: macromolecular crowding;
MMP: matrix metalloproteinases;
MT: Masson's trichrome staining;
Mw: molecular weight;
NCL: non-cross-linked;
NHS: N-hydroxysuccinimide;
NO: nitric oxide;
NS: non-sterile;
OLE: oleuropein;
PBMCS: peripheral blood mononuclear cells;
PBS: phosphate buffered saline;
PCR: polymerase chain reaction;
PDGF: platelet-derived growth factor;
PEG: polyethylene glycol;
PF4: platelet factor 4;
PG: proteoglycan;
PMA: phorbol 12-myristate 13-acetate;
RANTES: regulated on activation, normal T cell expressed and secreted;
RAW264.7: mouse leukemic monocyte-macrophage cell line;
RGD: Arg-Gly-Asp or arginyl-glycyl-aspartic acid;
ROS: reactive oxygen species;
RPM: rotations per minute;
SDS: sodium dodecyl sulphate;
SDS-PAGE: sodium dodecyl sulphate polyacrylamide gel electrophoresis;
SEM: scanning electron microscopy;
SIS: small intestinal submucosa;
TCP: tissue culture plastic;
TEMED: tetramethylethylenediamine;
TGase: transglutaminase;
TGF-β: transforming growth factor beta;
THP-1: human derived leukemic monocyte cell line;
TIMP: tissue inhibitors of matrix metalloproteinases;
TNF-α: tumour necrosis factor alpha;
TSB: Tryptic soy broth;
U937: human leukemic lymphoma monocytes cell;
VEGF: vascular endothelial growth factor;
4SP: 4-arm PEG succinimidyl glutarate;
Acknowledgements

First of all, I would like to sincerely thank Dr Dimitrios Zeugolis for the opportunity to work in his research group with such exciting topic and for his valuable supervision, patience, huge support and encouragement even at very difficult moments. His impetus and great sense of humour have helped me to develop this project and to improve my research skills. I would also like to thank European Union Seventh Framework Programme (FP7/2007-2013) for the financial support, under the grant agreement number 263289 (Green Nano Mesh).

I would like to profoundly extend my thanks to Prof Abhay Pandit for his valuable scientific advice. Also, I wish to extend my gratitude to both former and current members of REMODEL, CURAM and NUIG, especially Dr Oliver Carroll, Dr Oonagh Dwane, Dr Manus Biggs, Dr Fitzgerald, Mr Vidoja Kovacevic, Ms Tara Cosgrave, Mr Anthony Slogan, Dr Enda O'Connell, Mr Maciej Doczyk, Mr Keith Feerick, Mr David Connolly and Mr William Kelly.

This thesis project would have been even harder to complete without the continuous, unconditional and unforgettable help from Mr Kieran Fuller, Ms Diana Gaspar, Ms Ayelen Helling, Mr Kyriakos Spanoudes, Ms Lígia Bré and Mr Joshua Chao. I do not have enough words to acknowledge what you have done for me, especially to you Kieran and Diana for getting me away from the late lab hours and for the kayaking hours.

I would like to thank the members of Phibo for the selfless training about the sterilisation treatment and regulatory. For their guidance since I was an undergraduate student who wanted to dedicate his life to research, I would like to sincerely extend my thanks to Prof F. Javier Gil, Prof Maria Pau Ginebra, Dr Conrado Aparicio, Dr Elisabeth Engel, Dr Marta Pegueroles and Dr Román Pérez.
I would like to thank my lab colleagues and Galway friends Marc, Tom, Estelle, Eleni, Andrew, Anna, Naledi, Christina, Diana P, Zhuning, Pramod, Abhigyan, Alex, Daniela, Peader, Aitor, Shane, Dilip, Akshay, Bill, Gianluca, Peter and Colm. I have a funny story from each one of you.

Finally, but not less important, I wish to thank my family. Thanks mum and dad for your support and education showing me the importance of love, work and knowledge. Thanks Miguel for your lessons and being an example of commitment and integrity. And, I am honestly grateful to my wife Irene. I still remember her sad face when I told her that I finally was moving to Ireland to perform this challenging project; it was tough, but we have reached the finish line. Although it was a very complex episode of our story, we had the fortune to receive such a great gift: our daughter Aina. Sincerely, thank you for your love, being behind me even living far away and giving me the greatest gift of life. I cannot imagine finishing this PhD thesis without you.
Abstract

Collagen-based devices are frequently associated with foreign body response. Although several pre- (e.g. species, state of animal, tissue, isolation protocol) and post- (e.g. cross-linking, scaffold architecture, sterilisation) scaffold fabrication factors have a profound effect on foreign body response, little is known about how collagen-based devices fabrication mediates macrophage response. In this thesis, we assessed biophysically, biochemically and biologically three different treatments during the fabrication of a collagen type I film: collagen isolation, cross-linking and sterilisation.

In the first phase of this thesis, we studied the influence of acetic acid and hydrochloric acid and the utilisation or not of pepsin or salt precipitation during collagen extraction on the yield, purity, free amines, denaturation temperature, resistance to collagenase degradation and macrophage response. Subsequently, as extracted collagen forms are usually subjected to chemical cross-linking to enhance their stability and the traditional cross-linking approaches are associated with toxicity and inflammation, we investigated the stabilisation capacity, cytotoxicity and inflammatory response of collagen scaffolds cross-linked with glutaraldehyde, carbodiimide, 4-arm polyethylene glycol succinimidy1 glutarate, genipin and oleuropein. Therefore, as a step forward and given that there is still no single cross-linking method / sterilisation treatment that can be used universally for collagen-based devices, we assessed the influence of ethylene oxide, ethanol, gamma irradiation and gas plasma sterilisation on the structural, biophysical, biochemical and biological properties of self-assembled collagen films cross-linked with the optimised cross-linking agents from the previous part, 4-arm polyethylene glycol succinimidy1 glutarate and genipin.
Acetic acid / pepsin extracted collagen exhibited the highest yield, purity and free amine content and the lowest denaturation temperature. No differences in resistance to collagenase digestion were detected between the different extraction groups. Although all treatments exhibited similar macrophage morphology comprised of round cells (M1 phenotype), elongated cells (M2 phenotype) and cell aggregates (foreign body response), significantly more elongated cells were observed on collagen films extracted using acetic acid. Moreover, cytokine analysis revealed that hydrochloric acid treatments induced significantly higher IL-1β and TNF-α release from macrophage with respect to acetic acid treatments. Salt precipitation did not influence the assessed parameters. Overall, our data suggest that collagen extraction variables affect the physicochemical and biological properties of collagen preparations.

Regarding collagen cross-linking, fibroblast cultures showed no significant difference between the treatments. Although direct cultures with human derived leukemic monocyte cells (THP-1) clearly demonstrated the cytotoxic effect of glutaraldehyde, THP-1 cultures supplemented with conditioned media from the various groups showed no significant difference between the treatments. No significant difference in secretion of pro-inflammatory (e.g. IL-1β, IL-8, TNF-α) and anti-inflammatory (e.g. VEGF) cytokines was observed between the non-cross-linked and the 4SP and genipin cross-linked groups, suggesting the suitability of these agents as collagen cross-linkers.

With regards to collagen sterilisation, our data clearly illustrate that gas plasma is not suitable for collagen-based devices. Ethylene oxide, after 4-arm polyethylene glycol succinimidyl glutarate cross-linking, resulted in significant reduction of the mechanical properties of the collagen films. Gamma irradiation and ethanol
sterilisation did not significantly affect thermal, degradation, solubility and mechanical properties of the collagen films. Human skin fibroblast and human macrophage cultures did not reveal any considerable differences as a function of the cross-linking method / sterilisation treatment. Overall, our data illustrate that genipin cross-linking maintains collagen stability even against the most severe sterilisation treatments.

Collectively, these data suggest that during collagen scaffold fabrication all processing variables should be monitored as, evidently, they affect collagen stability and biological response.

Keywords

Collagen; Collagen isolation; Acid extraction; Pepsin extraction; Salt precipitation; Collagen cross-linking; Mechanical resilience; Enzymatic stability; Macrophage response; Cytokine release; Foreign body response; Host response; Inflammation; Collagen sterilisation; Collagen stability.
Chapter 1: Introduction

Sections of this chapter have been published or are under submission at:

1.1. Introduction

Collagen is one of the major structural extracellular matrix (ECM) proteins in mammals, constituting 20 to 30% of the total body proteins. To-date, 29 different collagen types have been identified [1], with all types sharing a unique and common triple-helical configuration with a repeated \([\text{Gly-X-Y}]_n\) sequence, where \(X\) is often proline and \(Y\) is frequently hydroxyproline [2, 3]. Among the different collagen types, collagen type I, predominantly localised in skin, tendon, cornea and bone, is the most abundant in the body and consequently the most widely studied. Collagen-based materials, in the form of tissue grafts and reconstituted scaffolds (Although scaffold has been traditionally defined as three-dimensional macroporous substrate, it could be currently defined as 2D or 3D engineered devices mimicking ECM properties and allowing cell and tissue infiltration), are attractive for biomedical applications such as wound healing, due to their natural composition and their well-tolerated degradation products, are perceived by the host as normal constituents rather than as foreign matter and therefore provide an acceptable host response [4].

In addition to their superior mechanical properties, collagen-based devices provide instructive cues to the cells, promoting this way functional tissue repair and regeneration [5, 6]. It is therefore not surprising that the collagen-based medical device market is estimated to reach US$ 3.7 billion by 2017 [7].

The natural cross-linking pathway of lysyl oxidase is responsible for mechanical resilience of tissues and their proteolytic resistance [8]. Given that the natural cross-linking pathway of lysyl oxidase does not occur \textit{in vitro}, the harsh extraction / purification methods [9], scaffold fabrication technologies [10] and the subsequent sterilisation methods [11] necessitate the introduction of exogenous cross-links (chemical, physical or biological in nature) into the molecular structure of collagen.
implants to control their degradation rate and enhance their mechanical stability [12-14]. However, such cross-linking approaches are associated with numerous shortfalls as a function of the cross-linking density/method, including cytotoxicity [15, 16], calcification [17-19] and foreign body response [20, 21], impairing wound healing. The physico-chemical and biological factors need to be maintained after the final sterilization processing. Effective sterilization is required, as with every other medical device. However, current sterilisation methods may adversely affect material properties, release profile of therapeutic molecules, protease degradation and in vivo absorption rate [22-24], they simultaneously give rise to potentially beneficial changes with respect to cellular attachment and growth [25]. Indeed, both moist and dry heat are known to denature, albeit to different extent, the triple helical structure of collagen [12], resulting in the increased availability of the otherwise cryptic RGD motifs that are recognised by integrins, thus promoting cell attachment [26, 27].

In this chapter, the physiological and impaired wound healing, the collagen sources and extraction methods and the collagen cross-linking and sterilisation methods are discussed. The project rationale is also introduced.
1.2. Wound healing

1.2.1. Physiological wound healing

The wound healing process is the innate response of all tissues to any injury or device implantation. It is a complex process that is regulated by several cell types; growth factors; and cytokines that direct the four overlapping phases (Figure 1.1 and Figure 1.2), namely haemostasis, inflammation, new tissue formation and tissue remodelling [28].

Haemostasis occurs immediately after injury or device implantation. Released factors from the tissue induce platelets to secrete clotting factors (e.g. mainly serotonin, thromboxane, PDGF, TGF-β) to promote coagulation and to develop a fibrin clot [29]. This provisional fibrin matrix acts as a scaffold for further cell migration. Simultaneously to the formation of the fibrin clot, a dynamic interaction between blood plasma proteins and the device surface occurs and a provisional matrix around the biomaterial surface is developed; this event is known as Vroman effect [30]. The initial protein adsorption depends on the surface properties of the device, including wettability [31, 32]; surface charge / chemistry [33, 34]; topography / roughness [35-37]; and stiffness [38], which modulate cell / inflammatory response and subsequent wound healing.

Following haemostasis, acute inflammation begins between 24 and 48 hours after injury. This phase is characterised by the recruitment of neutrophils and mast cells in response to chemokines (cytokines with chemo-attractive properties) and other chemo-attractants (mainly IL-1, IL-6, IL-8, MCP-1, MIP-1 and TNF-α) [39, 40]. Neutrophils and mast cells phagocytise foreign material, bacteria, dead cells and damaged matrix within the wound. The presence of contaminants / foreign matter at wound bed increases neutrophil presence, reactive oxygen species (ROS) and
cytokine signalling [39, 41]. Neutrophils secrete TGF-β, PDGF, PF4 and IL-1 to recruit further mast cells and monocytes. Mast cells secrete histamine and other cytokines that recruit leukocytes into the injury site. After 48-72 hours, monocytes migrate and differentiate into macrophages, which secrete TNF-α, IL-6, RANTES, MCP-1 and MIP-1 to recruit further macrophages and dominate the cell population at the injury site [42]. Initially, macrophages are mainly M1 phenotype, a pro-inflammatory or classically activated phenotype. M1 macrophages attack potential pathogens or phagocytise at the wound site, as a response to IFN-γ, TNF-α or bacterial lipopolysaccharides. Gradually, M1 macrophages change to M2 phenotype, an anti-inflammatory or alternatively activated phenotype. M2 macrophages have been described as displaying different sub-phenotypes or roles, which are anti-inflammatory (M2a), immunoregulatory or homeostatic (M2b) and pro-wound healing (M2c) [43-45]. The macrophage phenotype switch is induced by cytokines, such as IL-4, IL-10 and IL-13, and functional reconstruction depends on the timing of this change. Macrophage activation and polarisation is crucial in the coordination of the later inflammation and regeneration phases [46, 47]. Thus, macrophage polarisation and activation is at the forefront of scientific investigation, with various studies aiming to modulate it using biophysical cues (e.g. architectural features [48]; topographical patterns [36]); biochemical signals (e.g. incorporation of glycosaminoglycans [49] or drugs [50]); and biological means (e.g. gene therapy with lipoplexes [51] or polyplexes [52]).

New tissue formation begins 2-10 days after injury and is identified by migration and proliferation of different cell types that produce new ECM and form the initial wound. In skin, for example, keratinocytes migrate over the dermis and restore the barrier function of the epidermis [39], while fibroblasts, attracted by macrophage
cytokines, migrate to the injury site from the wound edge or bone marrow and differentiate into myofibroblasts, contributing to the wound contraction [53]. During this stage, fibroblasts and myofibroblasts interact, migrate, proliferate and secrete ECM proteins to replace the fibrin matrix and form new tissue, predominantly constituted by collagen type III and smaller amounts of fibronectin, elastin and proteoglycans [39, 54]. Meanwhile, macrophages and fibroblasts secrete VEGF and FGF2 respectively that promote endothelial and progenitor cells to produce new blood vessels [54, 55]. These new vessels start out from pre-existing vessels adjacent to the wound [39].

Tissue remodelling significantly increases 2-3 weeks after injury and could continue for over a year. The remodelling phase is characterised by different cell types undergoing reduction in cell activity and apoptosis and the creation of mature blood vessels. Collagen type III is gradually replaced by collagen type I, an event mainly controlled by matrix metalloproteinases (MMP), tissue inhibitors of matrix metalloproteinases (TIMP) and mechanical stress and strain. The properties of the tissue are partially recovered, but the new tissue hardly ever reaches the pre-injury state; for example, dermis reaches up to 70% of its pre-injury tensile strength [39].
Figure 1.1. Temporal distribution of the four overlapping wound healing phases (A) and associated cell type (B).
Figure 1.2. Acute inflammation is characterized by the presence of neutrophils, monocytes, and macrophages. Depending on the resolution of the acute inflammation, injury repair could lead to a wound healing process or a classical foreign body response. In wound healing, M2 macrophages attract fibroblast and endothelial cells to secrete a new vascularized tissue. This connective tissue replaces fibrin clot and degraded scaffold. Tissue remodelling is the last healing and could continue for over a year. In foreign body response, acute inflammation persists over time and M1 macrophages aggregate into foreign body giant cells (FBGCs). M1 macrophages and FBGCs fail to degrade the foreign scaffold, resulting in fibroblast recruitment and deposition of a fibrous connective tissue around the scaffold (peri-implantation fibrosis).
1.2.2. Impaired wound healing

Multiple potential factors, local (e.g. injury size, infection, device properties and degradation products) or systemic (e.g. nutrition, age, health state) [56] in nature can interfere with one or more wound healing stages resulting in improper or impaired wounds. The most common impaired wounds after device implantation are delayed acute wounds, chronic wounds and peri-implantation fibrosis, the hallmark of which is a patch of inflammatory cells, mainly macrophages and foreign body giant cells (FBGCs), and a disorganised extracellular matrix, mostly collagen [39, 56]. The foreign body response is composed of macrophages, foreign body giant cells and a fibrous connective tissue around the scaffold, this response is considered the end-stage response of a pro-inflammatory responses following implantation of a medical device [42]. On the other hand, chronic wounds are defined as wounds that fail to proceed through the normal wound healing phases in an orderly and timely manner, including excessive levels of pro-inflammatory cytokines, proteases, ROS, and senescent cells [57].

In severe burns, immunosuppression is brought about due to suppression of T-cell proliferation, large macrophage activation and high amount of pro-inflammatory cytokine and free radicals that predispose patients to impaired healing, infection and systemic organ failure [58, 59].

Local factors, such as bacterial contamination and foreign material that cannot be cleaned or degraded respectively, induce the inflammatory cells (monocytes, M1 macrophages and FBGCs) to remain at the device’s interface, prolonging the inflammation phase to over months or years and leading into chronic inflammation and healing failure [39]. Systemic factors are associated with the overall health / disease state of the patient. Increased age is often associated with impaired wound
healing. For example, in healthy older adults, wound healing suffers a temporal delay associated with dysfunction of macrophage phagocytic capacity [60] and polarisation [61]; delayed angiogenesis [62]; and delayed collagen synthesis and re-epithelisation [63]. Obesity, that nowadays affects over 500 million people worldwide [64], induces hypoxia and high infection rate due to skin folds and partial suppression of T-cell function [65, 66]; prompts wound dehiscence by increasing tension on wound site [67]; and alters adipocytes and macrophages ratio in adipose tissue, inducing increased production of adipocytokines (e.g. TNF-α, IL-6, IL-8 and MCP-1)[68]. This increase of adipocytokines, in combination with the activation of granulocytes and monocytes that secrete free radicals and proteolytic enzymes [66], compromise the wound healing process. Diabetes, with over 382 million sufferers worldwide in 2013 [69], increases reactive oxygen species production and reduces antioxidant secretion, leading to oxidative stress [70], which when combined with the hypoxic stress of diabetic wounds [71], leads to an increased inflammatory response [56]. Further, diabetic patients have several dysregulated cellular functions, including reduction of inflammatory cell recruitment [72]; limited bacterial phagocytosis [73]; and dysfunction of macrophage polarisation (maintaining a strong M1 marker expression and function [74] or fibroblast dysfunction [75]) that result in an unbalanced expression of growth factors and MMPs that inhibit new tissue formation [76], compromising that way physiological wound healing.
1.3. State of the art of collagen

The term ‘collagen’ encompasses a large group (40 different genes form 29 homo- and hetero- trimeric molecules) of glycoproteins. In the human body, collagen is the major connective tissue component; it constitutes 75-90 % of the human skin, organic part of bone, cartilage, tendon and cornea and provides mechanical support/integrity and specific function of each tissue [77-87]. This abundance of collagen in human tissues has prompted scientific research and technological innovation into its utilisation as a scaffold fabrication material in tissue engineering applications due to its natural composition, favourable mechanical properties, low antigenicity and well-tolerated degradation products [4, 5, 12, 88-92]. In addition, collagen-based materials provide biological cues that support cell attachment, proliferation and growth, ultimately promoting functional repair and regeneration of tissues and organs \textit{in vivo} [46, 93].

1.3.1. Collagen diversity

‘Collagen’ encapsulates a broad range of glycoproteins with some common characteristic features: all collagen types share a unique and common triple-helical configuration with [Gly-X-Y]$_n$ amino acid sequence where X is often proline and Y is frequently hydroxyproline. The triple-helical structure is based on a right-handed triple helix formed by three left-handed polyproline α chains of identical length, which determines the unique quaternary structure of collagen stability [12, 93]. These difference between collagens have been identified by minor alterations in the collagen molecule in terms of triple helix length, molecular weight, charge profile, interruptions of the triple helix, size and shape of the terminal globular domains, cleavage or retention of the latter aggregates, and variation in the post-translation
modifications [6, 82]. To-date, all collagens have been classified into four different types: fibrous collagens (types I, II, III, V, XI, XXIV and XXVII consist of quarter-staggered fibrils), non-fibrous collagens (types IV, VII and XXVIII with inabilities to form quarter-staggered fibrils by themselves), filamentous collagens (types VI, VIII and X) and fibril associated collagens with interrupted triple-helices (FACIT, types IX, XII-XVII, XIX–XXIII and XXV) [1].

1.3.2. Collagen structure and conformation

The triple-helical conformation is the common and unique structural element of all collagens, which was deduced from high angle X-ray fibre diffraction studies in tendon [94]. The collagen triple-helix (tertiary structure) has a coiled-coil structure made of three parallel polypeptide chains. Subsequently, each α-chain (secondary structure) is constituted by three collagen polypeptides which are wound around each other in a regular helix to generate a rope-like structure approximately (280nm in length and 1.4nm in diameter). In particular, collagen type I, present in the form of elongated fibres in skin, bone and tendon, present individual fibrils that can be longer than 500 μm with diameter about 500nm and contain more than 10 million molecules. The collagen fibrils possess a high level of axial alignment, which results in the characteristic D banding; this produces an average periodicity of 67 nm in the native hydrated state and 55-65 nm in dehydrated samples for electron microscopy [95-100].

Moreover, the intra-molecular hydrogen bonds between glycines in adjacent chains provide the helix stability. The hydroxyl groups of hydroxyproline residues are also involved in hydrogen bonding the stabilisation of triple helix structure. Specifically, the two hydrogen bonds formed within the chains are due to the attraction force
between the amine group of a glycyne residue and the carboxylic group of the residue in the second position of the triplet in the adjacent chain and the second bond is via the water molecule participating in the formation of additional hydrogen bonds with the help of the hydroxyl group of hydroxyproline in the third position. Each α-chain is a left-handed helix and the three chains are staggered by one residue relative to each other and are super-coiled around a central axis and form a right-handed super-helix [101-104]. At each end of the collagen molecule is a short non-helical region known as telopeptide. These telopeptide domains are crucial for the fibril formation and are involved in the collagen cross-linking process [105-107].

1.3.3. Collagen-based materials in Tissue Engineering

Collagenous materials, in various physical forms (tissue grafts, hydrogels, sponges, fibres, films, hollow spheres and tissue-engineered substitutes), are extensively used in Tissue Engineering.

Autologous, allogeneic or xenogeneic tissue grafts are commonly used for tissue repair as their similar biological structure and molecular composition that allows cell infiltration and tissue ingrowth and remodelling [108, 109]. Due to the restricted availability of autografts, allogeneic and xenogeneic tissue graft such as skin [110], small intestine submucosa [111], bladder [112], pericardium [113] or tendon [114] grafts are well established in clinical therapies and used as gold standards. Tissue grafts manufacturing process should be designed in order to maintain structure, mechanical integrity and bioactivity of the tissue to the best extent possible [115]. Most common process includes separation of surrounding tissues, decellularisation, cross-linking, disinfection and sterilisation. Decellularisation is a crucial step which combines chemical, biological and physical treatments to remove cells and to
minimize the amount of cellular debris and any other molecules with immunogenic capacity [116, 117]. Chemical cross-linking treatment is also commonly used to control mechanical properties and degradation profile. However, cross-linking should be optimized for each application to avoid cytotoxicity, predominant pro-inflammatory response and delayed wound healing or even peri-implantation fibrosis [46, 118]. Moreover, several different tissue grafts have been developed for each clinical application. For example, small intestine submucosa and bladder have been used for treatments, such as hernia, tendon, bladder and wound healing treatments, which require rapid cell infiltration, graft degradation and tissue remodelling with low mechanical performance [20, 112, 119-121]. On the other hand, skin derived tissue grafts are well established for ventral and abdominal hernia repair and infected wounds which require high mechanical performance and enzymatic resistance [20, 122-125].

Collagen hydrogels are a network of collagen fibrils which is held together by electrostatic and hydrophobic bonds. Collagen has the ability of self-assembling when diluted collagen solutions are reconstituted at physiological pH, ionic strength and temperature [126-132]. The fluency and fast assembly time allow collagen preparations to be used as injectable systems for cell and molecules delivery [133]. Furthermore, cross-linking is used to control mechanical stability and degradation rate [134, 135]. Specifically for hydrogels, mechanical properties can be improved by plastic compression [136-140]. Collagen hydrogels have been employed in numerous clinical applications. Stem cells from skeletal muscle encapsulated into a collagen type I hydrogel increased cardiac genes expression, contractile forces and calcium ion exchange as native cardiac cells [141]. Moreover, embryonic stem cells or cardiomyocytes loaded in collagen type I hydrogels and mechanically stimulated
differentiated into cardiomyocytes [142] or cardiac muscle bundles [143], respectively. In the neural treatment, collagen type I hydrogels with or without growth factors, have been shown to promote neural polarity, adhesion, survival and growth [144-147]. In the cartilage repair, collagen type II hydrogels have been demonstrated to maintain chondrocyte phenotype [148, 149] and drive mesenchymal stem cell differentiation towards chondrogenic lineage [150-152].

Collagen sponges are obtained by freeze-drying. Initially, collagen is entrapped within the developing ice crystals and then ice is sublimated. This process permits controlling pore size and distribution by modifying collagen concentration and freezing set-up [153-155]. Pores should be designed to allow cell migration and nutrients/debris diffusion [156, 157]. Several different cell types and biomolecules have been combined with collagen sponges with promising in vitro and in vivo results. For example, collagen sponges with glycosaminoglycans or calcium phosphate scaffolds have been shown to repair rat calvarial defects as effectively as natural bone materials or biomaterials with mesenchymal stem cells [158-160]. Collagen sponges have also shown to retain growth factor such as bone morphogenetic protein 2, enhancing bone healing in critical size rat calvarial defect [161]. Regarding skin wound healing, collagen sponge with skin cell precursors accelerated wound healing and enhanced local capillary regeneration in a diabetic wound mice model [162]. On the other hand, adult bone marrow mesenchymal stem cells loaded into collagen sponges increased vascularisation in a immuno-deficient mice model [163]. Collagen sponges functionalised with different fibroblast growth factor [164-166] or platelet lysate [167] have been shown to regenerate full-thickness defects in normal and diabetic wounds.
As collagen hydrogels, hollow collagen microspheres can be used as carrier systems for drug delivery with high reproducibility, surface area, cargo capacity, controlled size, shape, dispersity and degradation rates [168, 169]. These hollow microspheres are obtained by the collagen deposition on sulphonated polystyrene beads as templates, which afterwards are removed, leaving behind the hollow collagen shell [168-172]. These hollow collagen spheres have been used for gene [52, 170], growth factor [173] and drug [174] delivery or ROS scavenging [175, 176].

Collagen fibres have been explored using three different methods: electrospinning, extrusion and isoelectric focusing. Electrospinning allows the fabrication of matrix composed of nanofibres of gelatin, as the current process leads to irreversible denaturation [177, 178]. Collagen fibres within 50 - 400 µm diameter and structural and mechanical properties similar to native tissues can be obtained by the extrusion of collagen solution in a series of phosphate buffers at 37 °C [179-185]. Collagen fibres with high collagen fibril alignment are prepared by isoelectric focusing, which induces collagen monomers to align and to migrate at isoelectric focusing point, where the overall charge is neutral [186]. Extruded collagen fibres have been shown to promote cell alignment and bidirectional cell growth [187, 188] and neotissue formation [189-191]. In tendon repair, extruded collagen fibres were infiltrated by new tissue; however, the resorption degree was low due to the high cross-linking level [191]. On the other hand, isoelectric focused collagen fibres induced bidirectional growth of tenocytes and bone marrow stromal cells [192, 193] and to stimulate tenogenic differentiation of bone marrow stem cells [194, 195]. These fibres have also been shown to provide topographical cues for in vitro axonal guidance, even in the presence of myelin-associated glycoprotein that is known to inhibit neurite guidance [196].
Finally, collagen films, produced through evaporation with or without previous fibrillogenesis, have been used extensively in biomedicine for several applications [197, 198]. Moreover, several approaches, such as magnetic field, soft lithography, imprinting or reverse dialysis, have been explored to align the sub-fibrillar structure of collagen within collagen films. In particular, magnetic field between 1.9 to 12 T during 30-90 minutes induced collagen fibrils to align perpendicularly to the field direction due to the negative diamagnetic moment of the collagen α chains [199-206]. However, the superconducting magnets required to induce alignment have a high-cost and, therefore, iron oxide particles in combination with a low magnetic field of 0.0001 T have been explored to align collagen fibrils with partially satisfactory results [207, 208]. Given the high cost of this magnetic field technology, soft lithography has been explored for replicating topographical patterns such as grooves, pillars and holes [209, 210], even for cell encapsulation within patterns [211]. Molecular imprinting [212-214] and high speed spinning methods [214, 215] have also been used to align collagen fibrils through the introduction of high shear forces during the collagen impression on a substrate. Both molecular imprinting and high speed spinning result in slightly misaligned collagen film due to the fast collagen desiccation requirement to fix the fibril structure and alignment. Alternatively, reverse dialysis to obtained high collagen concentration and alignment have been explored successfully; however, further investigations are needed to increase the scaffold dimensions [213, 216].

Collagen films with or without gelatin, hyaluronic acid, carbodiimide cross-linked or lamellae-like sub-structure, exhibited similar properties to human cornea and supported growth of human corneal epithelial cells and stromal fibroblasts [217-219]. On the other hand, collagen films were used to guide pulmonary stem cell
attachment and growth [220], while same films functionalised with Ficoll™ and cross-linked with genipin supported WI38 fibroblasts attachment and proliferation [197]. Given that collagen films can be wrapped to obtain single channel tubes, they have been for peripheral nerve regeneration with successful neurite outgrowth from explants [221]. Even more, these wrapped collagen films have reached the clinical market as nerve guidance conduits such as NeuraWrap™, NeuroMend™, NeuroMatrix™, NeuraGen™ [222], reducing myofibroblast infiltration while guiding Schwann cell migration and axonal regrowth towards their distal targets smaller than 4 cm in length [223-225]. Furthermore, magnetically aligned collagen scaffolds in combination of proteoglycans or hyaluronic acid have been used to align human keratocytes [202] or to maintain primary chondrocytes [203] in culture, respectively.
1.4. Assessment of the inflammatory response to collagen-based devices

Herein, host / macrophage response is discussed, as a function and extent of the cross-linking density / method employed to stabilise collagen-based devices. The extent of cross-linking can be assessed by denaturation temperature, quantification of free amine groups, swelling, mechanical properties and / or resistance to enzymatic degradation. However, denaturation temperature is customarily used to assess cross-linking density due to the simplicity and accuracy of the technique. Thus, herein we define collagen materials that are slightly cross-linked; moderately cross-linked; and heavily cross-linked as those that have exhibited denaturation temperature of <65 °C; 65-70 °C; and >70 °C, respectively.

1.4.1. Methods for assessing in vitro inflammatory response to collagen-based devices

Although numerous cells (e.g. macrophages [113], monocytes [226], neutrophils [227], leukocytes [228] and dendritic cells [229]) are employed to study the in vitro inflammation response to biomaterials, macrophages appear to be the preferred cell population for collagen-based devices. This may be due to the determinant role of macrophages in the resolution of inflammation and wound healing and the availability of techniques to characterise macrophage sub-populations and response [230]. To date, the most reliable macrophage sources are those isolated from human peripheral blood mononuclear cells (PBMCs) [49] and immortalised cell lines, such as human derived leukemic monocyte cell line (THP-1) [52]; human leukemic lymphoma monocytes cell line (U937) [113]; and mouse leukemic monocyte-macrophage cell line (RAW264.7) [231]. The advantages of immortalised macrophage cell lines include higher accessibility; lower cell phenotype variability;
unnecessary addition of inflammatory mediators in media to prevent apoptosis; and cryopreservation without detrimental effect on cell viability and differentiation [232, 233]. Nonetheless, immortalised cell lines suffer from certain cell dysfunctions, such as adapted growth in culture, reduced cell-cell interaction and decreased protein secretion [234].

Our understanding of the host response to collagen-based materials is largely attributed to experimental data on macrophage activation and polarisation (Figure 1.3). Macrophages express different surface markers according to each sub-population; M1 macrophages are positive for CD80, CD86 and CCR7, whilst M2 express CD163 and CD206 [43, 46]. Furthermore, the different macrophage sub-populations direct inflammation and tissue repair by secreting cytokines and other reactive species. Specifically, M1 macrophages produce pro-inflammatory cytokines such as IL-1α, IL-1β, IL-6, IL-8, IL-12, IL-23 and TNF-α, whilst M2 macrophages secrete IL-1ra, IL-4, IL-10, IL-13, VEGF, TGF-β and arginase [43-46]. M1 macrophages regulate inflammation and collagen-based devices degradation by the secretion of nitrites, reactive oxygen species (ROS) and MMPs [113, 235].
Figure 1.3. Macrophages polarized from M0 (non-polarised) to M1 (pro-inflammatory) or M2 (M2a, anti-inflammatory; M2b, homeostatic; M2c, wound healing) depending on inducing signals. Each macrophage subpopulation expresses different surface markers, cytokines, and reactive species. CD, cluster of differentiation; FBF-2, puf-domain RNA-binding protein; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; MMP, matrix metalloproteinases; NO, nitric oxide; ROS, reactive oxygen species; TGF-β, transforming growth factor beta; TNF-a, tumour necrosis factor alpha; VEGF, vascular endothelial growth factor.
1.4.2. *In vitro* assessment of inflammatory response to collagen-based devices

Cross-linked collagen-based materials have been shown to preferentially alter macrophage response *in vitro* (Table 1.1). GTA cross-linked decellularised bovine pericardium (non-commercial material) induced moderate fibroblast cytotoxicity and THP-1 macrophage activation, which secreted higher amount of TNF-α and IL-6 than the non-cross-linked counterpart [236]. Additionally, this same material altered U937 macrophage morphology (cell area reduction and disrupted membrane), reduced attachment and viability, increased release of pro-inflammatory cytokines (TNF-α and IL-6) and changed MMP pattern secretion (up-regulated MMP-1 and down-regulated MMP-2 and MMP-9), whilst EDC cross-linked pericardium reduced the release of pro-inflammatory cytokines, altered MMP pattern and induced rounded macrophage [113], which morphology has been recently associated with M1 macrophages [237]. Moreover, PBMCs released higher amount of TNF-α and IL-6 than IL-10, when cultured on non-commercial GTA cross-linked porcine pulmonary valves [238]. With regard to reconstituted collagen materials, non-commercial EDC cross-linked collagen sponges have been shown to increase *in vitro* resistance to degradation by macrophages; however, these sponges promoted RAW 264.7 macrophage aggregation to form FBGCs that gradually degraded the sponges [239]. When incubated with human primary monocytes / macrophages, commercially available slightly cross-linked (HMDI) porcine dermis grafts (Permacol™ Surgical Implant, Covidien, denaturation temperature of 60-61 °C [110, 240], whilst its non-cross-linked counterpart has denaturation temperature of 56-57 °C [241]) induced low amount of pro-inflammatory (TNF-α, IL-1β, IL-6, MCP-3, MIP-1α) and anti-inflammatory (IL-1ra, CCL18, MIP-4) cytokines, when compared to other synthetic materials used for soft tissue repair, showing a low M1/M2 protein secretion index.
Moreover, Permacol™ materials did not alter in vitro leukocyte viability, activation and reactive oxygen species expression. When they were exposed to fresh human peripheral whole blood, they behaved similarly to their non-cross-linked counterparts [228]. As EDC treatment, non-commercial DHT cross-linked collagen sponges induced FBGCs formation, although the treatment increased the enzymatic resistance [239].

Macrophage activation has also been associated with release of chemicals / processing by-products and surface modification. Specifically, released by-products from HMDI and EDC cross-linked porcine dermis grafts (Permacol™, and CollaMend™ FM Implant, Bard, denaturation temperature at 66 °C [110, 240]) were associated with the increase of pro-inflammatory (IL-1β, IL-6, IL-8) and vascular (VEGF) cytokine expression of human PBMCs [243]. However, a recent publication questioned this theory, as no cross-linking agent traces were detected by nuclear magnetic resonance spectroscopy on conditioned media with non-commercial GTA cross-linked collagen scaffold, and put forward the notion that the increase of pro-inflammatory cytokine expression may be induced by collagen surface modification as a function of cross-linking method employed [113]. Overall, cross-linking of collagen-based devices has been shown to induce a pro-inflammatory response: macrophage activation and increase of pro-inflammatory cytokine release. Despite the significant efforts and the advances in elegant readout systems, the mechanism by which cross-linking alters inflammation has not been elucidated as yet.
Table 1.1. *In vitro* inflammatory response associated with cross-linked collagen-based materials.

<table>
<thead>
<tr>
<th>Cross-linking agent</th>
<th>Summary of in vitro results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTA (i.e. Peri-Guard® & non-commercial materials)</td>
<td>Alteration of macrophage morphology (cell area reduction and membrane disruption) Reduction of macrophage attachment and viability Up-regulation of pro-inflammatory cytokines Alteration of MMP secretion</td>
<td>[113, 236, 238]</td>
</tr>
<tr>
<td>HMDI (i.e. Permacol™ & non-commercial materials)</td>
<td>Increase of enzymatic resistance Moderate up-regulation of pro-inflammatory and angiogenic factors/cytokines No alteration of leukocyte behaviour or release of reactive oxygen species</td>
<td>[228, 242, 243]</td>
</tr>
<tr>
<td>EDC (i.e. CollaMend™ & non-commercial materials)</td>
<td>Increase of enzymatic resistance Up-regulation of pro-inflammatory and angiogenic factors/cytokines Induction of rounded macrophages and macrophage aggregations that form FBGCs to degrade the scaffolds</td>
<td>[113, 239, 243]</td>
</tr>
<tr>
<td>DHT (i.e. non-commercial materials)</td>
<td>Increase of enzymatic resistance Induction rounded macrophages and of macrophage aggregations that form FBGCs to degrade the scaffolds</td>
<td>[239]</td>
</tr>
</tbody>
</table>
1.4.3. *In vivo* models for assessing host response to collagen-based devices

In vivo studies assessing host response can be roughly grouped based on the animal model employed (Table 1.2). Small animal models are primarily utilised to assess inflammatory response to novel devices, whilst large animal models are used ‘as close’ replicates of clinical setting. The most common small animal model for collagen-based devices *in vivo* characterisation is the subcutaneous implantation in mouse or rat for up to a month in duration [21, 112]. A rat full-thickness skin defect model has also been used to evaluate the wound healing ability of collagen materials combined with plastic dressings in acute and chronic wounds [244, 245]. The rabbit ear model has also been used to study specific wounds, such as burns [246] and hypertrophic scarring [247]. Inflammatory response and wound healing are evaluated by routine histological analysis that is sometimes complemented with immuno-staining and evaluation of protein and gene expression levels. Collagen-based devices have been extensively assessed in large animal abdominal muscle model repair with significant differences in the size of the defect, time points and characterisation methods (Table 1.2). However, rat abdominal model has also been used to evaluate collagen devices for soft tissue repair, despite the lower biomechanical stimulus of small animal models compared to large animals. Obviously, the type of the defect depends on the size of the animal; partial-thickness defect is induced in small animals [248], whilst full-thickness defect is used in large animals [249]. Furthermore, small animal models are primarily used to study early host response; thus such studies have more early time points (before 30 days). In contrary, large animal models are primarily focused on long-term response and therefore early time points (less than 30 days) are hardly ever of interest. Although routine histological analysis is carried out in both small and large animal models,
small animal models use more immunohistochemistry, ELISA and PCR assays to study inflammation cells, surface markers, proteins and cytokines, whilst large animal models study functional parameters, such as histomorphometry and mechanical properties of the new tissue. This deviation may be due to the lack of antibodies for large animal models, such as pig, sheep and bovine species.
Table 1.2. Overview of the animal models and experimental parameters used to study host response and wound healing associated with cross-linked collagen-based materials.

<table>
<thead>
<tr>
<th>Model size</th>
<th>Species</th>
<th>Material</th>
<th>Model</th>
<th>Time points</th>
<th>Characterisation</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small animal models</td>
<td>C57BL/6 mouse</td>
<td>Dermal sheep collagen disk (GTA, HMDI)</td>
<td>Subcutaneous implantation</td>
<td>2, 7, 14 and 21 days</td>
<td>Toluidine blue staining, PCR (IL-4, IL-6, IL-10, IL-13, IFN-γ, TGF-β, MCP-1, MIP-1), IHC (IL-10), zymography</td>
<td>21, 250</td>
</tr>
<tr>
<td></td>
<td>Sprague-Dawley rat</td>
<td>Porcine bladder (EDC, GTA), porcine heart valve (GTA), bovine pericardium (GTA)</td>
<td>Subcutaneous implantation</td>
<td>7, 28, 63 and 180 days</td>
<td>HE and MT staining, quantitative stereological analysis</td>
<td>112, 251</td>
</tr>
<tr>
<td>Model size</td>
<td>Species</td>
<td>Material</td>
<td>Model</td>
<td>Time points</td>
<td>Characterisation</td>
<td>Ref.</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>-------------</td>
<td>------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Small animal models</td>
<td>Sprague-Dawley rat</td>
<td>SIS (EDC, non-cross-linked), porcine dermis (EDC, unknown, non-cross-linked)</td>
<td>Partial-thickness defect in abdominal muscle</td>
<td>7, 14, 28 and 112 days</td>
<td>MT staining and IHC (CD68, CD80, CD163, CCR7)</td>
<td>[20, 248]</td>
</tr>
<tr>
<td></td>
<td>Wistar rat</td>
<td>Bovine pericardium (GTA, non-cross-linked)</td>
<td>Partial-thickness defect in abdominal muscle</td>
<td>21 and 90 days</td>
<td>HE and MT staining, IHC (CD80, CD163), lymphocyte transformation test</td>
<td>[252]</td>
</tr>
<tr>
<td></td>
<td>Sprague-Dawley rat</td>
<td>Porcine dermis (EDC, HMDI) and human dermis (non-cross-linked)</td>
<td>Partial-thickness defect in abdominal muscle</td>
<td>3, 7, 14, 30, 90, and 180 days</td>
<td>HE, MT and Verhoeff’s staining, IF (COLI, COLIII, FN, elastase and MMP-9)</td>
<td>[253]</td>
</tr>
<tr>
<td>Model size</td>
<td>Species</td>
<td>Material</td>
<td>Model</td>
<td>Time points</td>
<td>Characterisation</td>
<td>Ref.</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>-------------</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>Large animal models</td>
<td>Sprague-Dawley rat</td>
<td>Collagen hydrogel with or without growth factors</td>
<td>Full-thickness skin defect</td>
<td>3, 7 and 14 days</td>
<td>HE staining, IHC (CD68, COL IV), stereological analysis, wound contraction</td>
<td>[244, 245]</td>
</tr>
<tr>
<td>Large animal models</td>
<td>New Zealand white rabbit</td>
<td>Porcine dermis (EDC, HMDI) and SIS (non-cross-linked)</td>
<td>Partial-thickness defect in abdominal oblique muscle</td>
<td>14, 30, 90 and 180 days</td>
<td>MT staining, IF and qRT-PCR for COLI and COLIII, tensile test</td>
<td>[254, 255]</td>
</tr>
<tr>
<td>Large animal models</td>
<td>New Zealand white rabbit</td>
<td>Collagen sponge with or without growth factors</td>
<td>2nd degree-burn defect</td>
<td>15 days</td>
<td>HE staining, tensile test</td>
<td>[246]</td>
</tr>
<tr>
<td>Model size</td>
<td>Species</td>
<td>Material</td>
<td>Model</td>
<td>Time points</td>
<td>Characterisation</td>
<td>Ref.</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Large animal models</td>
<td>Yucatan minipig</td>
<td>Porcine dermis (EDC, HMDI), bovine pericardium (non-cross-linked) and human dermis (non-cross-linked)</td>
<td>Full-thickness defect in abdominal muscle</td>
<td>30, 180 and 360 days</td>
<td>HE staining, stereological analysis, tensile test</td>
<td>[249, 256]</td>
</tr>
<tr>
<td></td>
<td>Caribbean vervet monkey</td>
<td>Porcine dermis (EDC, HMDI) and SIS (non-cross-linked)</td>
<td>Full-thickness defect in abdominal muscle</td>
<td>180 days</td>
<td>HE staining, IHC (CD3, CD20, CD68), ELISA (immunoglobulin G and M), tensile test</td>
<td>[240, 257]</td>
</tr>
</tbody>
</table>
1.4.4. *In vivo* assessment of host response to collagen-based devices

Non-cross-linked (Table 1.3) acellular ECM tissue grafts have shown different host response depending on their origin. Commercially available porcine small intestinal submucosa (SIS; Surgisis™ Soft Tissue Graft, Cook, denaturation temperature of 61-62 °C [110, 240]) and porcine bladder commercially available (MatriStem, Acell) [20] or research grade [112, 251] promoted a dense mononuclear cell infiltration, predominantly neutrophils at week 1 and macrophages (more M2 macrophages than M1) at week 2. At week 4-5, SIS and bladder grafts were completely degraded and grafts were followed by constructive wound healing; grafts were totally replaced by organised collagenous connective tissue and skeletal muscle tissue. Evidence of FBGCs and peri-implantation fibrosis were not observed [20, 112] or the fibrous tissue surrounding the implants was slight, less than 52 µm [251]. In the same way, commercially available human, porcine and bovine dermis (Alloderm® Tissue Matrix, LifeCell, denaturation temperature 64 °C; Strattice™ Reconstructive Tissue Matrix, LifeCell, denaturation temperature 60 °C; SurgiMend™ Collagen Matrix for Soft Tissue Reconstruction, TEI Biosciences, denaturation temperature 57 °C [110]) demonstrated a dense mononuclear cell infiltration, higher M2 macrophage population than M1, and no presence of FBGCs or encapsulation [20, 253, 258, 259]. However, dermis grafts showed lower cell infiltration, degradation and new tissue formation than those of SIS and bladder [20, 253, 258, 259], prolonging graft remodelling over 12 months [258, 259]. This longer degradation may be due to the higher organisation and density of dermis compared to SIS or bladder. With regards to reconstituted collagen materials, non-cross-linked materials have been shown to be well-tolerated, to promote tissue regeneration with minimal inflammatory response [93]. Finally, the wound healing capacity (cell infiltration, new tissue
deposition and neovascularisation) of non-cross-linked collagen materials have also been confirmed in clinical setting [260].
The degree of cross-linking regulates scaffold stability and host response.

<table>
<thead>
<tr>
<th>Cross-linking agent</th>
<th>Summary of in vivo results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-cross-linked</td>
<td>In general, non-cross-linked collagen materials: Relevant initial cell infiltration</td>
<td>[20, 256, 260-262]</td>
</tr>
<tr>
<td></td>
<td>High ratio M2/M1 macrophages</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Functional reconstruction, no encapsulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcine SIS and bladder (i.e. Surgisis™, MatriStem™ or other non-commercial materials): Fast degradation and remodelling ratio</td>
<td>[112, 248, 251]</td>
</tr>
<tr>
<td></td>
<td>Human, porcine and bovine dermis (i.e. Strattice™ or other non-commercial materials): Lower cell infiltration and over-extended remodelling over 12 months</td>
<td>[20, 253, 259]</td>
</tr>
<tr>
<td>GTA</td>
<td>Heavily cross-linked collagen-based materials (i.e. Peri-Guard® & non-commercial materials): Reduced cell infiltration</td>
<td>[21, 112, 249, 251, 252, 256, 263-265]</td>
</tr>
<tr>
<td></td>
<td>Low ratio M2/M1 macrophages</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up-regulation of pro-inflammatory cytokines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign body response - Fibrous encapsulation</td>
<td></td>
</tr>
<tr>
<td>Cross-linking agent</td>
<td>Summary of in vivo results</td>
<td>Ref.</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>HMDI</td>
<td>Slightly cross-linked collagen-based materials (i.e. Permacol™): Reduced cell infiltration and similar early recruitment of mononuclear cells than its non-cross-linked counterpart and less than non-cross-linked SIS and bladder. Low degradation ratio, over 12-24 months (similar to non-cross-linked counterparts) Prolonged presence of macrophages around scaffold Prolonged remodelling and tissue support</td>
<td>[228, 253-255, 257-260, 262, 266-268]</td>
</tr>
<tr>
<td>HMDI</td>
<td>Heavily cross-linked collagen-based materials (i.e. non-commercial materials): Poor cell infiltration and low ratio M2/M1 macrophages Up-regulation of IL-10 from FBGCs Over-prolonged presence of macrophages and FBGCs Limited scaffold degradation over 2 years, chronic inflammation and fibrous encapsulation</td>
<td>[21, 250, 269]</td>
</tr>
<tr>
<td>EDC</td>
<td>Slightly cross-linked collagen-based materials (i.e. non-commercial materials): Relevant initial cell infiltration Scaffold degradation and remodelling over 180 days New connective tissue replace degraded scaffold</td>
<td>[112, 270-273]</td>
</tr>
<tr>
<td>Cross-linking agent</td>
<td>Summary of in vivo results</td>
<td>Ref.</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Moderately and heavily cross-linked collagen-based materials (i.e. CollaMend™ & non-commercial materials):</td>
<td></td>
<td>[20, 240, 248, 253-255, 260, 262]</td>
</tr>
<tr>
<td>Reduced cell infiltration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low ratio M2/M1 macrophages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited scaffold degradation over 12 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolonged presence of macrophages and FBGCs around scaffold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic inflammation and fibrous encapsulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slightly cross-linked collagen-based materials (i.e. non-commercial materials):</td>
<td></td>
<td>[274]</td>
</tr>
<tr>
<td>Moderate initial cell infiltration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaffold degradation and remodelling up to 12 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New connective tissue replace degraded scaffold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavily cross-linked collagen-based materials (i.e. non-commercial materials):</td>
<td></td>
<td>[274, 275]</td>
</tr>
<tr>
<td>Reduced cell infiltration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited scaffold degradation at 12 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolonged presence of macrophages and FBGCs around scaffold and chronic inflammation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chemically cross-linked collagen-based devices demonstrated extended support on the defect area overtime, when compared to the non-cross-linked counterparts [276]. Commercially available GTA cross-linked tissue grafts (Table 1.3) (Peri-Guard® Repair Patch, Synovis, denaturation temperature 83 °C [110]) have been shown to elicit chronic inflammation and typical foreign reaction, as evidenced by the early dense accumulation of mononuclear cells and the prolonged presence of macrophages, FBGCs and fibrous encapsulation surrounding the implant [249, 256, 263]. GTA cross-linked bovine pericardium grafts reduced M2/M1 macrophage ratio during inflammation phase, as compared to non-cross-linked grafts [252]. Moreover, non-commercial GTA cross-linked sheep collagen disks induced a massive infiltration of neutrophils that secreted a high amount of MIP-1, MCP-1 and IFN-γ, recruiting and activating macrophages. As a result, macrophages upregulated IL-6 and downregulated IL-10, IL-13, promoting FBGC formation [21]. Additionally, commercially available GTA cross-linked collagen sponges for guided bone regeneration and guided tissue regeneration (BioMend® Extend™, Zimmer Dental) promoted ossification in vivo; however, the incidence of mucosa tissue perforation was increased [277]. This tissue perforation may be related to the prolonged degradation over 24 weeks, decreased tissue integration and vascularisation, and prolonged presence of macrophages and FBGCs around the material [278]. Similar to tissue grafts, non-commercial GTA cross-linked collagen hydrogels demonstrated a reduced in vivo degradation (20% degradation after 6 weeks), whilst their non-cross-linked counterparts were largely degraded within a week. However, GTA cross-linked hydrogels reduced cell infiltration and promoted a dense connective tissue layer with inflammatory cells around the hydrogel at an early stage [264]. The non-healing result of GTA cross-linked collagen materials has been attributed to the
toxicity of GTA residues [265] and the high cross-linking density that prohibit degradation and cell infiltration, even after 2 years of implantation [263].

Slightly cross-linked (HMDI) porcine dermis Permacol™ (Table 1.3) has displayed high resistance to degradation in vivo and in clinical applications, maintaining structural integrity for over 2 years [253, 266]. Permacol™ has also been shown to induce early recruitment of mononuclear cells around the graft and limited cell infiltration than its non-cross-linked counterpart [259]. However, this early inflammatory cell population recruitment has been shown to be lower for Permacol™ than non-cross-linked SIS and porcine and human dermis (Surgisis™, Strattice™ and Alloderm®, respectively). However, this response was normalised between all grafts over extended periods [255, 259]. Regarding cell infiltration, mononuclear cells were detected around Permacol™ and only infiltrated through material pores; only 20% of implants were colonised at day 14 and the totality of graft was colonised after 1 month [254, 255, 258]. At 90 days, Permacol™ showed a higher amount of macrophages (RAM-11 positive, specific antibody for rabbit macrophages) and FBGCs than non-cross-linked SIS graft (Surgisis™), but slightly lower macrophage recruitment than other cross-linked porcine dermis graft (CollaMend™) [254]. After 90 and 180 days of implantation, Permacol™ implants were surrounded by a new randomly organised connective tissue and fibroblast, supporting tissue integration in its immediate environment. This new tissue adhered to the implants, penetrated them through surface pores and showed a lower collagen density than that of the typical fibrous tissue [253, 255, 257]. Although Permacol™ demonstrated reduction of remodelling ratio, as non-cross-linked Strattice™ and Alloderm®, the absence of encapsulation may indicate that these materials are well tolerated and integrated, as they may be assimilated as a normal host matter.
Non-commercial heavily cross-linked (HMDI) dermal grafts (denaturation temperature of 74 °C) exhibited extended degradation resistance; induced a limited cell infiltration and demonstrated a prolonged delay in wound healing [269]. These observations may be related to the IL-10 upregulation from FBGCs, which is known to upregulate transcription of TIMP-1, preventing degradation by MMPs. This has also been observed in heavily cross-linked (HMDI) dermal sheep collagen disks [21] and heavily cross-linked (HMDI) bovine collagen type I disks [250]. Decellularisation and delipidation process can also dramatically influence the inflammatory profile of collagen grafts. Specifically, HMDI cross-linked porcine dermis grafts, that were decellularised and delipidated with sodium dodecyl sulphate (SDS) and non-cross-linked SIS (Surgisis™) have shown increased ROS expression as compared to non-cross-linked collagen grafts (Strattice™ and AlloDerm™), Permacol™ and non-cross-linked Permacol™ [228]. This suggests that ROS increase may be processing-dependent. Finally, Permacol™ has been widely used for human hernia repair with favourable outcomes, as compared to synthetic implants [261]. Nonetheless, tissue grafts have been associated with a 10% failure rate and 14% chronic inflammation issues for the most complex surgery cases for which no ideal material exists as yet [266-268]. Commercially available HMDI cross-linked porcine dermis (Zimmer® Collagen Repair Patch, Zimmer) has been used for rotator cuff repair with significant improvement of tendon functionality [279]; however, chronic inflammation has been reported in few cases [280]. It is worth pointing out that these clinical studies were focused on visual observations of the wound and CT scans to evaluate seroma formation; hernia recurrence; and infection. The lack of systematic tissue analysis prohibits precise identification of the cause; is it the graft itself or the comorbidity of the patients?
EDC has also been studied extensively with in vivo degradation and host response depending on the tissue graft characteristics (Table 1.3). Commercially available EDC cross-linked porcine dermis grafts (CollaMend™) showed high resistance to degradation, with no degradation signs and no significant cell infiltration for over 180 days [255]. Further, CollaMend™ induced a disorganised connective tissue with a large amount of macrophages and FBGCs at the implant interface at day 7, reaching the highest cell amount by day 14. By day 30-35, these materials were encapsulated within a dense collagenous tissue and FBGCs [20, 253]; encapsulation and non-constructive remodelling layer were evidenced over 180 days, the longest published time point [240, 255]. Regarding macrophage polarisation, CollaMend™ implants presented the lowest population of M2 macrophages (CD206+) and the highest of M1 macrophages (CCR7+) [20]. EDC cross-linked porcine dermis has been employed for human abdominal wall reconstruction and clinical data showed similar recurrence to HMDI cross-linked porcine dermis, largely attributed to poor tissue integration and delay in wound healing [260, 262, 281]. However, these clinical studies did not assess inflammatory response in detail. Another commercially available EDC cross-linked SIS (CuffPatch™, Arthrotek) showed similar results to CollaMend™; a higher amount of M1 macrophages (CD80+ and CCR7+) than M2 macrophages (CD163+) and a prolonged presence of macrophages and FBGS over 16 weeks were reported [248]. Interestingly, further investigations demonstrated that the degree of EDC cross-linking of non-commercial decellularised porcine bladder modulated degradation rate, whilst it delayed the different stages of reconstructive wound healing [112]. Specifically, the low dose EDC cross-linked tissue grafts (0.0005 mmol per mg of tissue) were completely infiltrated with host cells by day 7 and remained intact, with new collagen being deposited after 28 days.
The degradation of these tissue grafts and new collagenous connective tissue deposition was evidenced up to 180 days. The high dose EDC cross-linked porcine bladder (0.0033 mmol per mg of tissue) displayed the same tendency than the low dose EDC with some delays in remodelling: low degradation at day 63 and partial degradation with new organised connective tissue by day 180 [112]. Authors of this study mentioned that the outstanding cellular infiltration and the remodelling features are due to the slight cross-linking degree and the fibroporous structure of these materials. Certainly, the introduction of interconnected porosity (30-40 µm pore size) in other synthetic bulk materials has been demonstrated to promote M2 macrophages and to increase integration of the materials [282]. Although porosity would be a relevant designing parameter modulating host response, it has not been explored in detail for collagenous materials.

The same host response tendency than EDC cross-linked tissue grafts was observed for EDC cross-linked collagen-elastin sponges (non-commercial materials) [270]; the low degree of EDC cross-linking (0.3 mM EDC) increased stability of the scaffolds and supported tissue regeneration, although it delayed the wound healing phases. In contrast, the medium degree of EDC cross-linking (0.5 mM EDC) impaired wound healing, induced more macrophages and FBGCs, and scarring was evidenced [270]. Furthermore, low dose EDC cross-linked collagen conduits and sponges (non-commercial materials) have been shown to increase guidance of regenerating axons through distal peripheral nerve sections without obvious macroscopic signs of inflammation or neuroma formation [271-273].

As with other cross-linking methods, genipin cross-linking (Table 1.3) has been shown to increase resistance to degradation for over a year of non-commercial collagen materials, which delayed wound healing [274, 275]. 0.00625, 0.05 and
0.625% genipin was used to cross-link bovine pericardium tissue grafts. 0.00625% genipin cross-linked grafts were unable to elicit tissue regeneration due to premature degradation and lack of cell support. 0.05% genipin cross-linked grafts promoted a dense layer of inflammatory cells surrounding the grafts and low cell infiltration at day 3. Cell ingrowth increased with time, reaching maximum by month 3. A gradual graft degradation and new tissue deposition were observed over time; the graft was totally degraded and replaced by connective tissue after 12 months. In contrast, 0.625% genipin cross-linked grafts presented more inflammatory cells; less graft degradation; and less tissue replacement; limited graft surface degradation was observed even after 12 months [274]. Ribose has also been used commercially to cross-link collagen sponges (Ossix®, ColBar LifeScience) for guided bone regeneration. This material has demonstrated prolonged degradation, limited cell integration and vascularisation, and to induce the presence of macrophages and FBGCs around the material for 24 weeks [278]. Overall, in vivo studies demonstrate that host response depends on the cross-linking density and methods employed. Indeed, slightly cross-linked with HMDI, EDC or genipin collagen-based materials support initial cell infiltration and ultimately scaffold replacement by new tissue. Nonetheless, delays in wound healing have also been reported. On the other hand, heavily cross-linked collagen-based materials promote a pro-inflammatory response (macrophage activation, predominant M1 macrophage population and increase of pro-inflammatory cytokine release) that results in impaired wounds or fibrous encapsulation. Despite the extensive investigation into alternative cross-linking methods, no host response studies have been reported as yet.
1.5. Collagen source and extraction

Collagen can be extracted from human, animal or fish tissues, in vitro mammalian cell cultures or recombinant synthesis technologies. In the biomaterials field, the mammalian skin or tendon and cartilage are the standard sources of collagen type I and type II, respectively; and the main origin of these tissues are porcine, bovine or human [12]. However, the tissue origin is one of the major drawbacks for clinical translation of these collagen products because of batch-to-batch variability, disease transmission, immunogenic reactions, microbial or virus contaminations and cultural or religious issues [283]. For these reasons, extensive research has been performed to extract collagen from in vitro cell culture, fish processing waste or recombinant protein systems.

As cells produce their own ECM proteins, several primary and immortalised cell types have been used for the production of various collagens. However, cell culture conditions have been modified to increase the collagen synthesis yield. Media supplementation with L-ascorbic acid was demonstrated to be essential given that ascorbate is a crucial cofactor in the hydroxylation of proline and lysine of collagen [284, 285]. The supplementation with growth factor and gene transfection was investigated between the 1980 and 1990s [286-288]; however, these strategies did not increase the collagen synthesis yield in a comparable amount to the tissue extraction. On the other hand, hypoxia condition has been demonstrated to increase significantly collagen synthesis, through the activation of hypoxia inducible factor 1 α (HIF 1α) and TGF-β1 [289, 290]. Macromolecular crowding (MMC) has also been shown to enhance ECM deposition in cell culture, mainly collagen type I [291, 292]. Interestingly, MMC and hypoxia condition has been demonstrated to increase synergistically the ECM protein deposition [293, 294].
Regarding recombinant collagen technologies, genetically modified microorganisms and plants have also been proposed as an alternative to collagen extracted from mammalian tissues, avoiding their main drawbacks [295]. Transgenic microorganisms (bacteria and yeasts) have been investigated due to their glycosylation capacity; however, the yield of this approach is below 260 mg/l [296-298] and their proteolytic resistance is lower than native collagen, even when collagen was expressed with a thermally stable triple helical structure [298, 299]. These issues were tackled with corn and tobacco plants that have been genetically modified to produce human recombinant procollagens which require complex post-translational modifications [300, 301].

Regarding collagen extraction, mammalian or fish tissues have a fibrillar structure with different amounts of covalent cross-links, which are makes difficult the collagen extraction. To this end, solubilisation using neutral salted, diluted acid with or without enzymes and alkaline solutions are used to isolate different types of collagen. However, not all treatments can break native collagen cross-links: dilute acids only disassociate intermolecular cross-links between triple helices (aldimide bonds) while enzymes, such as pepsin, can disassociate mature and more stable cross-links (ketoimine bonds), increasing extraction yields [9, 302, 303]. On the other hand, more severe procedures use heat combining acid or alkaline solution to dissolve collagen whilst tend to denature collagen into gelatin. Pepsin treatment also produces a lower collagen immune response due to a selectively cleavage of the non-helical N- and C- telopeptides, removing the antigenic P-determinant segment that is located in the telopeptides located [304-306]. Finally, solubilised collagen needs purification steps (salt precipitation, filtration or centrifugation and dialysis) to eliminate collagen telopeptides, protein aggregates, other proteins and proteoglycans,
pepsin and acid. Nonetheless, extracted and purified collagen is not completely safe because of the risk of disease transmission due to bacteria, virus or prion. Therefore, besides quality hazard tests, disinfection with sodium hydroxide and final product sterilisation treatments are performed whilst these treatments affect collagen stability [307, 308].
1.6. Collagen cross-linking

The hierarchical assembling of the collagen molecules provides structural stability and mechanical resilience to the collagen-based tissues. Additionally, the collagen packaging is stabilised by weak interactions and strong intermolecular cross-links that contributes to mechanical and enzymatic stability [12]. Collagen type I has four cross-linking types, two in the helical region and one more in each telopeptide where the action of lysyl oxidase catalyses aldehydes from lysine and hydroxylysine residues [8]. The resulting aldehydes react spontaneously with other lysines and hydroxylsines from adjacent chains of the same molecule or from other adjacent molecules. These cross-links between two different molecules result in head-to-tail bonding along fibrils, known as aldimide bridges [309]. However, the natural cross-linking mediated by lysyl oxidase would not occur in vitro [8] and, consequently, reconstituted forms of collagen can lack sufficient strength and may disintegrate upon handling or collapse under the pressure from surrounding tissue in vivo. Furthermore, the rate of biodegradation has to be customised based for the specific application. Thus, it is often necessary to introduce exogenous cross-linking (chemical, physical or biological in nature) into the molecular structure, in order to tune mechanical properties, to prevent the denaturation at 37°C and to control the degradation rate which may also determine tissue regeneration rate [14, 310] (Table 1.4). The fundamental principle of exogenous collagen cross-linking is the formation of covalent bonds between collagen molecules using chemical or natural reagents, biological cross-linkers or physical methods, which generally link either to the free amine or carboxyl groups of collagen.
Table 1.4. Mechanical properties of collagen-based devices as a function of cross-linking method and conformation.

<table>
<thead>
<tr>
<th>Type</th>
<th>Cross-linking method</th>
<th>Stress (MPa)</th>
<th>Strain (%)</th>
<th>E Modulus (MPa)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>-</td>
<td>1-27.5</td>
<td>30-180</td>
<td>4.6-20</td>
<td>[311-314]</td>
</tr>
<tr>
<td>Tendon</td>
<td>-</td>
<td>5-86</td>
<td>5-22</td>
<td>1.9-1800</td>
<td>[315-317]</td>
</tr>
<tr>
<td>Cornea</td>
<td>-</td>
<td>0.12-0.25</td>
<td>7-9</td>
<td>0.1-11.1</td>
<td>[318-320]</td>
</tr>
<tr>
<td>Cartilage</td>
<td>-</td>
<td>0.5-1.0</td>
<td>7-10</td>
<td>0.5-0.9</td>
<td>[321, 322]</td>
</tr>
<tr>
<td>Biomaterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogel</td>
<td>Non-cross-linked</td>
<td>0.020-0.027</td>
<td>25-30</td>
<td>0.001-0.100</td>
<td>[323-327]</td>
</tr>
<tr>
<td></td>
<td>Glutaraldehyde</td>
<td>0.010-0.188</td>
<td>25-30</td>
<td>0.004-0.100</td>
<td>[323, 327]</td>
</tr>
<tr>
<td></td>
<td>EDC-NHS</td>
<td>0.010-0.172</td>
<td>20-40</td>
<td>0.002-0.125</td>
<td>[327, 328]</td>
</tr>
<tr>
<td></td>
<td>Transglutaminase</td>
<td>0.005-0.010</td>
<td>30-40</td>
<td>0.001-0.002</td>
<td>[324, 329, 330]</td>
</tr>
<tr>
<td>Fibre</td>
<td>Non-cross-linked</td>
<td>0.2-4</td>
<td>12-40</td>
<td>1-5</td>
<td>[14, 331, 332]</td>
</tr>
<tr>
<td>Type</td>
<td>Cross-linking method</td>
<td>Stress (MPa)</td>
<td>Strain (%)</td>
<td>E Modulus (MPa)</td>
<td>Ref.</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Glutaraldehyde</td>
<td>8-60</td>
<td>27-53</td>
<td>3-47</td>
<td>[14, 331]</td>
</tr>
<tr>
<td></td>
<td>EDC-NHS</td>
<td>1-4</td>
<td>23-65</td>
<td>1-4</td>
<td>[14, 332]</td>
</tr>
<tr>
<td></td>
<td>Genipin</td>
<td>4-60</td>
<td>15-43</td>
<td>2-500</td>
<td>[14, 333, 334]</td>
</tr>
<tr>
<td>Film</td>
<td>Non-cross-linked</td>
<td>1.5-8</td>
<td>19-50</td>
<td>1.5-8</td>
<td>[197, 335]</td>
</tr>
<tr>
<td></td>
<td>Glutaraldehyde</td>
<td>8-48</td>
<td>3-11</td>
<td>100-1000</td>
<td>[197, 336]</td>
</tr>
<tr>
<td></td>
<td>EDC-NHS</td>
<td>4-20</td>
<td>30-60</td>
<td>5-35</td>
<td>[337, 338]</td>
</tr>
<tr>
<td></td>
<td>Genipin</td>
<td>3.5-15</td>
<td>5-18</td>
<td>35-130</td>
<td>[197, 335]</td>
</tr>
</tbody>
</table>
1.6.1. Chemical cross-linking

The most widely used chemical cross-linking agents are aldehydes (e.g. glutaraldehyde, GTA) [113], isocyanates (e.g. hexamethylene diisocyanate, HMDI) [228], and carbodiimides (e.g. 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, EDC) [338]. All these agents have been employed to induce different extensions of collagen cross-linking, which depends on the processing parameters (cross-linking concentration and incubation time) and the cross-linking mechanism of each agent (Figure 1.4 and Figure 1.5). For example, GTA has been shown to extensively stabilise collagen materials because of its self-polymerisation capacity, since these agents could cross-link high amounts of amines from lysine and hydroxylysine residues, including those that are relatively far apart [339-341]. However, unreacted GTA or hydrolytic or enzymatic degradation products may remain non-specifically bound to the matrix even after exhaustive rinsing, thereby introducing cytotoxic derivatives [342]. As GTA, isocyanates react with amine groups, HMDI forms urea linkages; this, however, is with superior cytocompatibility because there are no potentially toxic side products formed [343, 344] and the short half-life of the isocyanate group in water ensures that reactive groups will not be released from the treated surface over extended time periods [345, 346].

On the other hand, carboxyl groups of aspartic and glutamic acid residues from collagen chains can be used to cross-link collagen through acyl azides [269, 347-352] and carbodiimides [353-355]. Such approaches activate carboxyl groups which spontaneously bonds to amine groups of lysine and hydroxylysine residues of collagen. After extensive washing to completely remove by-products, foreign cross-linking molecules do not remain in the collagen protein and, therefore, these methods demonstrate less toxicity. These methods are less strong and less resistant to
proteolytic attack, as such methods can couple proximate collagen molecules; they are, however, less susceptible to calcification [356, 357].

Although chemical cross-linking agents are widely used in collagen-based industry and the research field, chemical cross-linking is associated with alteration of the normal wound healing, even at low concentration. High cross-linking densities are associated with numerous shortfalls as a function of the cross-linking density / method, including cytotoxicity [15, 16], calcification [17, 358, 359] and foreign body response [20, 310]. Therefore, natural and synthetic moieties have been advocated as alternatives to these common agents; the alternatives most commonly reported are acyl azide (e.g. diphenyl-phosphorylazide, DPPA [16]; photo-reactive agents (e.g. rose Bengal [360]; riboflavin [361]); carbohydrates (e.g. ribose [362], glucose [363]) and plant extracts (e.g. genipin [364, 365]; oleuropein [366]; and myrica rubra [331]). And, more recently, branched polyethylene glycol (PEG) polymers with various molecular weight and functional residues have been promoted to cross-link collagen-based devices [367-370]. Despite the extensive investigation into alternative cross-linking methods, no deep biological studies have been reported as yet.
Figure 1.4. Chemical cross-linking of collagen reactions – Part 1. GTA: glutaraldehyde; HMDI: hexamethylene diisocyanate.
Figure 1.5. Chemical cross-linking of collagen reactions – Part 2. EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, NHS: N-hydroxysuccinimide; DPPA: diphenyl-phosphorylazide.
1.6.2. Physical cross-linking

To avoid cytotoxic effects associated with either the chemical cross-linker itself or its by-products, dehydrothermal [22, 181, 371-374] and UV irradiation [22, 375-378] have been assessed. Both treatments increase mechanical and proteolytic stability only slightly and have also been associated with collagen denaturation during processing. Dehydrothermal treatment uses high vacuum and temperatures over 100°C for several hours to promote severe collagen dehydration. Consequently, formation of inter-chain cross-links is induced as a result of condensation reactions either by amide formation or esterification between carboxyl and free amino and hydroxyl groups respectively (Figure 1.6). Prior to heat treatment, collagen-based materials are exposed to vacuum to remove as much water as possible to avoid collagen denaturation [22]. After dehydrothermal treatment, the helix-to-coil transition temperature is increased, enhancing the thermal stability of collagen without altering its triple helical structure [181]. Regarding UV cross-linking, this promotes bonds by free radical formation on tyrosine and phenylalanine residues, which in collagen are few. For that reason, UV cross-linking efficiency is considered negligible. The mechanism causes the formation of the hydroxyl radical (OH\(^\cdot\)) from water. The OH radical attacks the peptide backbone to produce peptide radicals (-NH-C\(^*\)-CO-), which can interact to form a cross-link (Figure 1.6) [375, 376]. Moreover, UV irradiation is efficient for the introduction of cross-links which is especially useful for treatment of collagen solutions [378]. The efficiency of the reaction depends mainly on the sample preparation, the irradiation dose and time of exposure [379]. It has been reported that UV irradiation of wet collagen fibres causes rapid insolubility [380] and increases their tensile strength [381].
1.6.3. Biological cross-linking

Mimicking the *in vivo* collagen cross-linking, a more recent cross-linking strategy used tissue-type transglutaminase for catalysing covalent cross-linking of ECM proteins in a Ca\(^{2+}\) dependent manner [382-386]. Specifically, the transglutaminase reaction catalyses acyl donation from the \(\gamma\)-carboxamide group (glutaminyl residue) to the \(\varepsilon\)-amine group, resulting in the \(\gamma\)-glutamyl-lysine stabilising isopeptide between proteins (Figure 1.6) [387]. Collagen-based materials have been cross-linked with different transglutaminase sources, mammalian tissue or microbial extracted, and both types showed a moderate increase in denaturation temperature and mechanical and biological stability [324, 387, 388].
Figure 1.6. Physical (DHT and UV) and biological (TGase) cross-linking of collagen reactions. DHT: dehydrothermal treatment; TGase: transglutaminase.
1.7. Collagen sterilisation

As with every other medical device, effective sterilisation is required. ISO Standards for medical devices are already in place for radiation requirements and identification of optimal dose [329-331]; for ethylene oxide requirements and determination of residuals [332, 333]; and for microbiological methods to be performed when defining [197, 334], validating or maintaining a sterilisation method. However, sterilisation methods have been shown to have a variable cross-linking / biological effect on collagen-based devices (Figure 1.7 and Table 1.5). For example, amino acid analysis indicates intensive reaction of ethylene oxide with lysine and hydroxylysine residues [389] and simultaneously necessitates appropriate post-treatment steps to avoid cytotoxicity [390]. Irradiation methods have been shown to induce both cross-linking, albeit weak, and polypeptide chain scission and in collagen-based devices [391-393]. Formation of cross-links is attributed to free radicals formed on aromatic amino acid residues (e.g. tyrosine and phenylalanine). However, these free radicals may initiate degradation of collagen chains [6, 394-396]. In the case of 70kGy irradiation, for example, damaging effects are induced on both mature and immature cross-links [397]. Given that such methods do not introduce any foreign substances, either as residual molecules or as compounds formed during in vivo degradation, they are considered biocompatible [12, 348, 398].
Figure 1.7. Schematic summary of the effects of different sterilization methods on structural, mechanical and biological stability of collagen-based devices.
<table>
<thead>
<tr>
<th>Sterilisation method</th>
<th>Material form</th>
<th>Sterilisation parameters</th>
<th>State during sterilisation</th>
<th>Result</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene oxide</td>
<td>ECM matrix</td>
<td>750 mg/h for 16h.</td>
<td>Dry</td>
<td>Less reduction of mechanical properties than γ- and E-beam irradiation.</td>
<td>[399]</td>
</tr>
<tr>
<td></td>
<td>Collagen sponge</td>
<td>24h at 35°C</td>
<td>Dry</td>
<td>Less degradation than γ- irradiation.</td>
<td>[400]</td>
</tr>
<tr>
<td></td>
<td>Collagen sponge</td>
<td>100% EthO at 70% RH for 8 h at 55°C.</td>
<td>Dry</td>
<td>Structure and stability as untreated. No effect on cell proliferation, migration and morphology.</td>
<td>[401]</td>
</tr>
<tr>
<td>Gamma radiation</td>
<td>ECM matrix</td>
<td>2.0-30 kGy at 0.30 kGy/h and 22–25°C</td>
<td>Dry</td>
<td>Collagen condensation and hole formation, producing a reduction of swelling ratio, elasticity and stability.</td>
<td>[402]</td>
</tr>
</tbody>
</table>

Table 1.5. The influence of various sterilization methods on the properties of implantable devices.
<table>
<thead>
<tr>
<th>Sterilisation method</th>
<th>Material form</th>
<th>Sterilisation parameters</th>
<th>State during sterilisation</th>
<th>Result</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma radiation</td>
<td>Collagen solution</td>
<td>0.25, 0.5 and 1.0 kGy at 10 kGy/h and 30-35°C</td>
<td>Wet</td>
<td>γ-irradiation, at low dose (0–1 kGy), induced increased degradation and cross-linking.</td>
<td>[403]</td>
</tr>
<tr>
<td></td>
<td>ECM matrix</td>
<td>0-32 kGy at 0.23 kGy/h</td>
<td>Dry</td>
<td>γ-irradiation caused significant damage to native dermis ECM, even at moderate dose (7–12 kGy).</td>
<td>[404]</td>
</tr>
<tr>
<td></td>
<td>Tendon</td>
<td>25 and 50 kGy</td>
<td>Wet</td>
<td>Degradation (less severe for cross-linked samples).</td>
<td>[405]</td>
</tr>
<tr>
<td>E-beam radiation</td>
<td>ECM matrix</td>
<td>2.2 Mrad</td>
<td>Dry</td>
<td>Decreasing of uniaxial & biaxial strength, maximum tangential stiffness and energy dissipation.</td>
<td>[399]</td>
</tr>
<tr>
<td>Sterilisation method</td>
<td>Material form</td>
<td>Sterilisation parameters</td>
<td>State during sterilisation</td>
<td>Result</td>
<td>Ref.</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>E-beam radiation</td>
<td>Tendon</td>
<td>5 MeV</td>
<td>Wet</td>
<td>Degradation (less severe for cross-linked samples)</td>
<td>[405]</td>
</tr>
<tr>
<td>Gas plasma</td>
<td>Collagen sponge</td>
<td>6 mg/ml of H₂O₂ at 35°C for 30 min</td>
<td>Dry</td>
<td>Significant less degradation than gamma irradiated samples.</td>
<td>[400]</td>
</tr>
<tr>
<td>Peracetic acid</td>
<td>Human graft</td>
<td>2.5% peracetic acid and 25% ethanol in distilled water for 4 hours</td>
<td>Wet</td>
<td>No degradation evidence</td>
<td>[406]</td>
</tr>
<tr>
<td></td>
<td>Tendon</td>
<td>0.1% peracetic acid</td>
<td>Wet</td>
<td>Porosity increased and collagen fibre pattern is slightly loosened.</td>
<td>[407]</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Pericardium</td>
<td>70% ethanol</td>
<td>Wet</td>
<td>Thermal stability and tensile strength slightly increased and enzymatic degradation unaltered.</td>
<td>[408]</td>
</tr>
</tbody>
</table>
1.7.1. Ethylene oxide

Ethylene oxide has been used extensively to sterilise collagen-based devices with very reliable/reproducible results, subject to appropriate aeration step to minimise/eliminate residual ethylene oxide; to avoid cytotoxic side-effects; and to comply with regulatory limits \[390\]. Ethylene oxide has been shown to decrease helix stability of non-cross-linked, glutaraldehyde cross-linked and hexamethylene diisocyanate cross-linked collagen scaffolds, evidenced by reduction in shrinkage temperature \[389\]. Although significant decrease elastic modulus and increase of elongation capacity can be brought about, maximum mechanical resistance under uniaxial and biaxial loading conditions is not significantly altered in terminally sterilised porcine bladder derived scaffolds \[399\]. Furthermore, ethylene oxide sterilisation induces a lower rate of degradation as compared to non-sterilised collagenous materials \[389\] or other sterilization methods \[400, 401\]. The osteoinductivity of collagen type I and partially purified bone morphogenetic protein scaffold has also been shown to be reduced after ethylene oxide sterilisation at 37°C for 4h and at 55°C for 1 hour; however, the reduction induced by ethylene oxide at 29°C for 5 hours is about half of the control values, making this approach suitable for clinical use in sterilisation of bone morphogenetic protein \[409\]. In addition, ethylene oxide has a minor influence on collagen-induced platelet aggregation \[400\]; this factor could determine the success of devices for vascular applications. The porous structure and stability of ethylene oxide sterilised collagen sponges (dry materials) remains almost unaltered, whilst fibroblasts and endothelial cells have been shown to exhibit normal morphology \[401\]. It is worth pointing out that environmental humidity appears to be a critical variable in ethylene oxide sterilisation process. Recent studies indicate that sterilisation efficacy decreases
markedly below 30% and above 90%, as relative humidity is critical for the ethylene oxide diffusivity into the devices’ structure [410].

1.7.2. Gamma irradiation

Gamma irradiation is a very attractive method for sterilisation of biopolymers due to its high efficacy and lack of residual chemicals that can cause cytotoxicity. Although it is considered as the most reliable sterilisation method available [411], it induces chain scission in non-cross-linked, glutaraldehyde cross-linked and hexamethylene diisocyanate cross-linked dermal sheep collagen, resulting in a decrease of tensile strength and high strain modulus values [389]. Furthermore, it has been observed in recent years that 31.7 kGy gamma irradiated bone has significantly less resistant to fatigue crack growth than the control bone tissue, whilst there was less micro-damage associated with fracture in the irradiated specimens than in the control specimens. The authors attributed these changes to ultra-structural alterations in the collagen matrix, caused by the irradiation, and concluded that gamma irradiation sterilised bone allografts may be more predisposed to fracture [412]. Similarly, gamma irradiation, at 2 Mrad (20kGy), has been reported to have no influence in the quarter-staggered arrangement of the collagen of patellar tendon allografts or to acetic acid solubility. However, an increased solubility in pepsin and a significantly lower shrinkage temperature were observed [413], both indicative of a compromised triple helical conformation [10]. Another study that assessed the influence of 25 kGy (2.5 Mrad) on mechanical, physicochemical and biological function of glutaraldehyde cross-linked tendon xenografts showed that the irradiation did not affect the ultimate tensile stress, but affected response to long-term collagenase degradation and thermal denaturation temperature. Of significant importance is the
finding that indicates that following 12 months implantation study, there was a slightly more active cellular response around irradiated tendon, but the mechanical properties of the retrieved implants were the same for irradiated and non-irradiated tissue grafts [414]. These results indicate that gamma irradiation may have a surface effect, whilst the bulk properties of the tissue graft remain unaffected. A mild surface denaturation may be beneficial, as cryptic RGD sequences may become available and may positively influence integration of the scaffold in the host tissue [415].

With respect to bone grafts, a dose-dependent decrease in mechanical properties has been established in the literature, when gamma dose is increased above 25 kGy for cortical bone or 60 kGy for cancellous bone. Therefore, a trend towards application of lower gamma dose has been observed the recent years. However, to substantiate the lower dose, an in depth investigation on the stability, mechanical properties, and biological function should be carried out to ensure safety and efficacy [416]. Other studies have suggested that gamma irradiation (0 and 1.0 kGy) brings about simultaneously chain degradation and cross-linking in fish and porcine gelatin and collagen in protein concentration and irradiation dose dependent manner [417]. Indeed, it has been reported that irradiation dosage of 1 Mrad (10 kGy) is less damaging to the collagen peptide backbone, whilst at higher dosage, although pronase resistance was observed, significant damage was clearly demonstrated, under enzymatic digestion, to non-cross-linked and chemically cross-linked collagen. The authors suggested caution on the interpretation of data from enzymatic assays and long-term experiments for functional changes assessment [418]. The osteoinductivity of collagen type I and partially purified bone morphogenetic protein scaffold was reduced considerably after sterilization by gamma irradiation at 2.5
Mrad (25 kGy), with collagen being far more labile than the bone morphogenic protein [409].

Gamma irradiation sterilised sponges (2.5 Mrad, 25 kGy) showed a dramatic decrease of resistance against enzyme degradation and severe shrinkage after cell seeding. Collapsed porosity inhibited fibroblasts and barred completely the human umbilical vein endothelial cell ingrowth into the sponges [401]. These results indicate that irradiation compromised the triple helical structure of collagen and upon immersion in the culture media, the scaffold collapsed. Suboptimal results have also been obtained for synthetic devices. For example, gamma irradiation (25, 75 or 125 kGy) sterilised polylactic acid (PLA) meshes induced milder inflammatory response and more orderly collagen deposition than ethylene oxide treated meshes during degradation, but tissue healing after 12 months was not of sufficient strength to prevent hernia recurrences [419].

A recent study demonstrated that gamma irradiation did not induce morphological changes, nor did it have an effect on the amount of primary amine groups, or the amount of heparin covalently attached to collagen scaffolds. However, irradiation (15 and 25 kGy) did result in collagen degradation products, a decrease in collagen denaturation temperature, and an increase in proteolytic degradation in a dose dependent fashion. These parameters were hardly influenced by ethylene oxide treatment. Both methods had hardly any effect on tensile strength and the cytocompatibility of the cross-linked collagen scaffolds, indicating that aspects like cost, safety and practicality of use may be taken into account in the choice of sterilisation method [420]. Gamma irradiation in inert environment (e.g. argon, nitrogen, vacuum) as means to minimise oxidation has also been proposed [421]. However, argon gas protection of gamma irradiated (2.5 Mrad) deep-frozen canine
bone-ACL-bone allografts demonstrated reduced mechanical properties and slight hyper-vascularity, as compared with the non-irradiated grafts at 12 months post implantation [422, 423], possibly due to free radical production and associated chain scission, thus questioning whether the use of argon gas protection is actually necessary.

1.7.3. E-beam irradiation

E-beam irradiation has been introduced as an alternative sterilisation method to ethylene oxide and gamma irradiation for sterilisation of human tissue graft in tissue banks [424]. However, results today have not demonstrated significant improvement over the aforementioned methods; e-beam has been shown to affect the structural properties of scaffolds composed of extracellular matrix. Specifically, e-beam sterilisation has been shown to decrease the uniaxial and biaxial maximum strength, stiffness and dissipation energy, increasing elongation capacity or altering porous structure in urinary bladder matrix, bone or tendon [399, 405, 424]. Moreover, when porcine small intestinal submucosa (SIS) samples were sterilised with ethylene oxide, gamma irradiation and e-beam irradiation and were subsequently subjected to hydrolytic degradation conditions for specific periods of time, all sterilisation methods resulted in an increase in the rate of sample degradation, with e-beam irradiation causing the greatest percentage of weight loss. All sterilisation methods caused an increase in both cellular protein production and metabolic activity, with ethylene oxide causing the greatest effect at short time points, but this was decreased after 28 days in culture [425]. To minimise material degradation by e-beam, irradiation dose, temperature of irradiation and defatting procedure have been evaluated. For that purpose, human femur rings were defatted in alcohol solution and
frozen in dry ice before e-beam sterilisation at 25 or 35 kGy. Temperature and defatting procedure was shown to be ineffective in reducing degradation phenomena, and the decrease in mechanical properties was similar for both irradiation doses [424]. However, it has been shown that e-beam sterilised extracellular matrix scaffolds (derived from porcine urinary bladder) are able to maintain mechanical strength and stability after 12 month of storage at room temperature or refrigerated conditions, following e-beam sterilisation [426]. Finally, e-beam sterilised tendon allografts have been shown to decrease the biomechanical properties and increased the remodelling ratio at early implantation time, when used in anterior cruciate ligament reconstruction. Further, this study demonstrated that e-beam treated tendons did not promote a recovery of the biomechanical function and authors concluded that e-beam irradiation cannot be recommended for soft tissue allograft sterilisation [427].

1.7.4. Radioprotectants

Given that physical irradiation method impair the mechanical strength and the enzymatic degradation of implantable devices, due to free radical reactions with the molecular structure of collagen [428, 429], radioprotectant (e.g. L-cysteine, N-acetyl-L-cysteine, L-cysteine-ethyl-ester) utilisation has been proposed to reduce radiation damage. It is hypothesised that reducing the presence or viability of free radicals, with pre-treatment of the device with radioprotecting free radical scavengers, will reduce the damaging effects of irradiation [430, 431]. Free radical scavengers inhibit free radical damage to the target molecule either by directly chemically reacting with the radical or by minimising / inhibiting the formation of the radical [428]. Although the use of thiourea as a radioprotectant has been shown
to significantly improve biochemical and biomechanical properties of irradiated bone [428] compared to bone irradiated without thiourea, the vast majority of studies assess the sterilisation efficacy of radioprotectants, rather their beneficiary effects on the properties of the device [432]. Performing irradiation (50 kGy), on radioprotectant pre-treated tissues, at dry ice temperature, a condition believed to substantially limit the diffusion of free radicals, resulted in tissue integrity as good as allografts treated with low irradiation dose (18 kGy) [433]. Moreover, free radical scavenging has been compared with exogenous chemical cross-linking techniques in order to stabilize materials prior to irradiation. After gamma and e-beam irradiation at 25 and 50 kGy, samples cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide showed higher strength and higher resistance to enzymatic degradation than scavenger-treated and unprotected samples. Although free radical scavenging treatment with ascorbate and riboflavin showed protective effects up to 25 kGy [405]. Further studies demonstrated that combination of exogenous cross-linked and free radical scavenged rabbit tendons increased mechanical properties and degradation resistance compared to cross-linking or scavenger-treated only [434]. This increase in stability of the irradiated treated samples was validated successfully in a rabbit in vivo model and a dynamic bioreactor system, which combined dynamic loading and collagenase degradation [435]. It is worth pointing out that there is limited literature about the biological effect of radioprotectant techniques on the biological behaviour of medical devices and therefore the potential application of radioprotectant technology is subject to further investigation. Given that free radical scavengers, such as ascorbate, riboflavin, tocopherol, have received FDA clearance, it is worth investigating further their free radical scavenging capacity, following irradiation.
1.7.5. Gas plasma
The use of gas plasma sterilisation has been advocated as means to avoid denaturation issues associated with gamma and e-beam irradiation and toxicity issues associated with ethylene oxide residues. The non-degrading effect of gas plasma sterilisation was evidenced to be as minimal as ethylene oxide and less significant than gamma irradiation, using SDS-PAGE assays [400]. The authors also demonstrated that although ethylene oxide sterilisation was most comparable to non-sterilised collagen platelet aggregation, plasma treatment and gamma irradiation were not significantly different [400]. One of the distinct advantages of plasma sterilisation is that can be achieved at low temperatures (<50°C), preserving the integrity of temperature sensitive polymers [436]. An important characteristic of plasma sterilisation is the limitation of efficacy to only thin materials, as any material covering the microorganisms, including packaging, will slow down the process [437]. Another limitation is that the process will not work with moist materials; plasma techniques require vacuum which cannot be achieved in the presence of any moisture [438]. An argon gas plasma glow-discharge system (5W for 5min) effectively sterilised non-degradable and biodegradable, mono- and multi-filament, natural and synthetic sutures (except plain and chromic catguts) without changing mechanical properties [439]. Although the preliminary results are promising [440], detailed *in vitro* and *in vivo* studies are still to be carried out. No data has been found regarding to the influence of gas plasma on mechanical properties of collagen-based devices.
1.7.6. **Peracetic acid**

Peracetic acid sterilisation is an alternative method for tissue banks with the purpose of avoiding denaturation phenomena associated with gamma and e-beam irradiation. Peracetic acid has been shown to be an efficient way to disinfect collagen-based electro-spun films, skin grafts, tendon grafts, and small intestinal submucosa without producing harmful reaction residues [441-446]. Another study has demonstrated that peracetic acid treatment is as efficient on virus inactivation as gamma irradiation [447]. 2.5% peracetic acid-treated amnion showed the highest moisture vapour permeability and oxygen permeability, the highest tensile strength and the lowest sulphur content and thickness; however collagen types V and VII were preserved best in the control (non-sterilised) group [406]. Other studies have shown that the structural integrity of tendon grafts was maintained after 0.1% peracetic acid sterilisation, although the collagen fibrils pattern was slightly loosened. Moreover, peracetic acid incubation caused significant changes in pore size of tendon grafts [407]. Regarding mechanical properties alterations, sterilisation with a mix of 0.1% peracetic acid and 4% ethanol has been shown to increase the biaxial strength of a canine submucosa tissue while it decreased the biaxial strength of porcine bladder tissue [443]. It is worth pointing out that non-cytotoxic response was observed with 0.1% peracetic acid-treated tendon graft after appropriated rinsing step [441]. Peracetic acid has also been used successfully as a decellularisation sterilisation method [444].

1.7.7. Ethanol

Ethanol is a common sterilisation methods for collagen-based materials, such as films [197], sponges [239, 448, 449], fibres and tissue graft [274, 275, 450], prior to
in vitro and in vivo experiments. Reconstituted collagen forms are usually immersed into 70% between 15 and 30 minutes [197, 239, 449], whilst tissue graft are sterilised with gradual increase in ethanol concentration from 20 to 75% over a period of 4 hours [274, 275]. Data to-date indicate that ethanol sterilisation does not degrade porcine pericardium; whilst denaturation temperature and tensile strength were slightly increased and enzymatic degradation was unaffected [408]. Ethanol treatment slightly increased porosity, but did not affect biomechanical properties and cytocompatibility of equine tendon grafts [451]. A contradictory to these observations study demonstrated that ethanol sterilisation of sericin scaffold resulted in significant changes in pore size and mechanical properties, resulting from shrinkage of the scaffold [452]. A study that assessed the influence of different sterilisation methods on the in vivo osteoinductive properties of partially demineralised bone matrix demonstrated that the osteoinductive properties were not reduced after ethanol sterilisation and 3 and 6 weeks post-implantation, ethanol sterilised bone graft showed osteoclastic and osteoblastic activity and new bone lamellae formation adjacent to the implanted bone graft [453].
1.8. Project rationale and hypothesis

In the last 20 years, the biomaterials field has seen tremendous progress, especially in the area of fabrication. Indeed, we now have the capability to fabricate 3D implantable devices that closely imitate the architectural features of native tissue supramolecular assemblies, offer control over cellular functions (e.g. attachment, growth, migration, differentiation, lineage commitment) at the nano- and micro-scale biointerface and, ultimately, direct neotissue formation. However, there are significant challenges that should be addressed to enable clinical translation and commercialisation. For example, collagen extraction protocols need to reduce batch-to-batch variability and a better understanding of how the extraction parameters influence reconstituted scaffolds is required. Self-assembled collagen-based devices should gain sufficient mechanical resilience and degradation resistance, whilst modulating inflammatory response through a more pro-wound healing scenario. All fabrication methods need to provide readily functionalisation opportunities to aid tissue repair. Moreover, sterilization and scalability should also be incorporated into the developmental plans for the production of industrial-relevant prototypes. These challenges are likely to be surmounted over the years as the promise of clinical translation and commercialization of these ground-breaking technologies is compelling. In this context, the overall goal of this project was to develop an optimal type I collagen film capable of modulating macrophage response. It was hypothesised that the modulation of pre-, during- and post- fabrication parameters (e.g. collagen extraction, film fabrication, cross-linking, sterilisation) will induce a collagen film with sufficient mechanical and enzymatic stability, avoiding toxicity and ultimately reducing pro-inflammatory macrophage activation.
To achieve this goal, the thesis project was divided into three phases (Figure 1.8): collagen extraction and purification (Phase I), scaffold fabrication and cross-linking (Phase II), and scaffold sterilisation (Phase III). Each phase has its specific hypothesis and objectives that we ventured to validate herein.
Figure 1.8. Thesis overview. The project developed herein is composed of three different research phases: collagen extraction and purification (Phase I – Chapter 2), scaffold fabrication and cross-linking (Phase II – Chapter 3), and scaffold sterilisation (Phase III – Chapter 4).
1.8.1. Phase I (Chapter 2)

Overall aim: To assess the influence of different collagen extraction methods on the structural, biochemical, biophysical and biological properties of collagen-based devices.

Hypothesis: The usage of acetic acid or hydrochloric acid, pepsin and salt precipitation during collagen type I extraction can affect the collagen ultrastructure and enzymatic stability, and can modulate the in vitro macrophage response.

Specific Objectives:

1. To extract collagen using acetic acid and hydrochloric acid, pepsin and salt precipitation.
2. To assess the structural, biochemical, biophysical and biological properties of collagen-based devices as a function of the extraction method used.

1.8.2. Phase II (Chapter 3)

Overall aim: To assess the influence of different collagen cross-linking methods on the structural, biochemical, biophysical and biological properties of collagen-based devices.

Hypothesis: The collagen chemical cross-linking method used can affect the fibrillar structure, free amine content, enzymatic and mechanical stability, and in vitro macrophage response of collagen-based devices.
Specific Objectives:

1. To cross-link collagen devices using different cross-linking methods.

2. To assess the structural, biochemical, biophysical and biological properties of collagen-based devices as a function of the cross-linking method used.

1.8.3. Phase III (Chapter 4)

Overall aim: To assess the influence of different collagen sterilisation methods on the structural, biochemical, biophysical and biological properties of collagen-based devices.

Hypothesis: Physical and chemical sterilisation method used can affect the collagen ultrastructure, free amine content, enzymatic and mechanical stability, and macrophage response of collagen-based devices.

Specific Objectives:

1. To sterilise collagen devices using different sterilisation methods.

2. To assess the structural, biochemical, biophysical and biological properties of collagen-based devices as a function of the sterilisation method used.
1.9. References

modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter 2012;2:226-w236.

Chapter 1 – Introduction

[349] Chevallay B, Abdul_Malak N, Herbage D. Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: Influence of crosslinking with

Chapter 1 – Introduction

Sections of this chapter have been published at:

2.1. Introduction

Collagen for food, cosmetics, drug delivery and tissue engineering applications is primarily extracted from land animals; to a lesser extent is extracted from marine sources or synthesised recombinantly [1, 2]. A typical protocol for collagen extraction involves solubilisation using neutral / slightly alkaline salt, acidic, alkaline or acidic / proteolytic enzymes solutions followed by repeated salt precipitation. Neutral / slightly alkaline salt (e.g. phosphate) solubilisation, albeit simple and economical, it is of low yield, as most tissues contain little amount of salt-extractable collagen [3, 4]. Dilute acids (e.g. acetic acid, hydrochloric acid), although they can break intra-molecular cross-links (aldimine type), resulting in higher yields than salt-extracted collagen, they cannot disassociate stable / mature (e.g. ketoimine) cross-links [5, 6]. To this end, alkaline solutions (e.g. sodium hydroxide, sodium sulphate) are employed [7, 8]. However, alkaline extracted collagen has several disadvantages (e.g. high hydrolysis level, hydroxyl amino acids are destroyed) that reduce its applicability in food and medical industries [9]. As such, acidic / proteolytic enzymes (e.g. pepsin) solutions are extensively used, as they increase significantly the yield [10-17] and through the cleavage of the non-helical ends, the antigenic P-determinant is removed [13, 14].

Salt precipitation is an inherent part of the collagen purification due to the physicochemical properties of the different collagen types that permit their precipitation by adjusting the pH and the salt concentration [18]. For example, sodium chloride at 0.9 M and at acidic pH has been used to purify collagen type I from porcine [19], rat [12] and bovine [20] tendons. Collagen type II has been extracted using 5 M sodium chloride at neutral pH from articular cartilage of calf legs [21] and 0.7 to 0.9 M sodium chloride at acidic pH from chicken cartilage [22]. Collagen type III from
Chapter 2 – Collagen Extraction

chicken skin and collagen type IV from human and murine basement membranes have also been purified using 1.8 M sodium chloride at alkaline pH [5] or 1.2 to 3.0 M sodium chloride at neutral pH [23, 24], respectively.

Although subsequent dialysis steps reduce the acidity and remove small molecular weight impurities (e.g. salt), still, a collagen material with reduced inflammatory potential is not produced. For example, collagen scaffolds produced from acetic acid / pepsin / salt precipitated collagen exhibited low inflammatory profile [25] or similar in vivo inflammation response to the non-treated control [26]. On the other hand, collagen scaffolds produced from hydrochloric acid / pepsin induced granulomatous inflammation up to 8 months after implantation [27] and a dense infiltration of inflammatory cells was observed for up to 21 days [28]. However, other studies have demonstrated that collagen extracted using hydrochloric acid / pepsin promoted a similar low in vivo inflammation response to the non-treated control [29, 30]. Further, hydrochloric acid extracted collagen without pepsin and without salt precipitation induced low macrophage infiltration after 4 and 8 weeks of implantation [31]. These data suggest that the acid used to extract the collagen and the use or not of pepsin or salt in the extraction process may determine the inflammation potential of the resultant scaffold. Thus, herein, we ventured to assess the influence of acetic acid (AA), hydrochloric acid (HC), pepsin (P) and salt precipitation (S) on the biophysical, biochemical and biological properties of collagen-based devices. These two acids (AA and HC) were selected because of their different acid strength and the different ion residues that will remain in the collagen after the purification process that may have an influence on the biochemical and biological properties.
2.2. Materials and methods

2.2.1. Materials

Porcine tendons were collected from a local abattoir and transferred in ice to our laboratory. All other materials and reagents were purchased from Sigma-Aldrich (Ireland), unless otherwise stated.

2.2.2. Type I collagen isolation

Collagen extraction was based on well-established protocols [32, 33] with slight modifications; see Appendix R for further optimisation data. Figure 2.1 summarises the extraction process of the different collagen preparations used in this study. Briefly, the tendons were dissected from the surrounding fascia, cryo-milled (Freezer/Mill 6870, SPEX SamplePrep, USA) and washed with 1X phosphate buffered saline (PBS) solution. The milled tendons were either dissolved in 0.5 M acetic acid or 0.003 M HCl under orbital agitation for 72 h at 4 °C. Due to the different acid strength, the concentrations were adjusted to obtain a solution at pH 2-3 which is known to be more efficient dissociating intermolecular cross-links (aldimine type) [3]. Enzymatic digestion (when used) was carried out using pepsin from porcine gastric mucosa at a ratio of 80 U/mg of milled tendon. After incubation at 4 °C for 72 h under stirring, soluble collagen was collected through filtration and centrifugation (16,800 g at 4 °C for 20 min). Collagen purification (when used) was performed using salt precipitation at 0.9 M NaCl, as collagen type I precipitates at this acidic pH and specific salt concentration [18]. Precipitated collagen was collected after centrifugation (16,800 g at 4 °C for 20 min) and re-suspended in 1.0 M acetic acid or 0.006 M HCl. The final collagen solutions were dialysed (Mw 8,000
cut off) repeatedly against 1 mM acetic acid or 0.006 mM HCl. Dialysed collagen solutions were then freeze-dried (Virtis Advantage 2.0, USA).
Figure 2.1. Flow chart of the collagen extraction process and table describing the various groups assessed in this study.
2.2.3. Collagen purity assessment

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used to assess the purity of the produced collagen preparations, as has been described previously [33-35]. Freeze-dried samples were dissolved in 0.5 M acetic acid at 1 mg/ml. 0.1 mg/ml commercial type I bovine collagen (Symatese Biomateriaux, France) was used as control / standard. The samples were neutralised using NaOH and denatured at 95 °C for 5 min. Subsequently, the samples were loaded onto 5 % running and 3 % stacking acrylamide gels and run using the Bio-Rad Protean II® system (Bio-Rad Laboratories, UK). Gels were stained with the SilverQuest® kit (Invitrogen, USA) following the manufacturer’s protocol. Densitometric analysis of gels was performed using a gel analyser plugin of ImageJ 1.48v software (National Institutes of Health, USA). Collagen bands [α₁(I) and α₂(I)] were quantified after defining each band with the rectangular tool and subtracting the background.

2.2.4. Free amine assessment

The amount of free primary amine groups of the type I collagen was quantified using ninhydrin assay, as has been described previously [36]. Briefly, 3 mg of each sample were mixed with 200 μl of deionized water and 1 ml of running buffer, which contained one part of 4 % (w/v) ninhydrin in 2-ethoxyethanol and one part of 200 mM citric acid with 0.16 % (w/v) tin (II) chloride at pH 5.0. After incubation at 95 °C for 30 min, the reaction was stopped by cooling down in ice and the addition of 250 μl of 50 % isopropanol. Tubes were vortexed and the absorbance of the developed purple colour was read at 570 nm. Glycine, at different concentrations, was used for the standard curve.
2.2.5. Denaturation temperature assessment

The denaturation temperature was assessed using a differential scanning calorimeter (DSC-60, Shimadzu, Japan), as has been described previously [37]. Briefly, 20 mg of each freeze-dried collagen sample were incubated in 1X PBS at room temperature overnight, blotted using filter paper to remove water excess and sealed in aluminium pans. Samples were subjected to a single constant heating ramp at 5 °C/min in the range of 25-90 °C, with an empty pan as reference. Denaturation temperature was determined as the maximum heat absorption of the endothermic peak.

2.2.6. Enzymatic stability assessment

Enzymatic degradation was assessed using the collagenase assay, as has been described previously [38]. Briefly, 5 mg of each collagen sample were incubated at 37 °C for 3, 6, 9 and 24 h in 0.1 M Tris-HCl and 5 mM CaCl₂ at pH 7.4 containing 50 U/ml of reconstituted bacterial collagenase type I from Clostridium histolyticum. Subsequently, centrifugation at 10,000 g for 5 min was carried out; supernatant was discarded and the pellets were freeze-dried. Scaffold degradation (% weight loss) was determined from the weight of remaining scaffolds after collagenase degradation and expressed as a percentage of the original weight.

2.2.7. In vitro inflammatory response assessment

In vitro inflammatory response was assessed, as has been described previously [39, 40]. Briefly, human derived leukemic monocyte cells (THP-1, ATCC, USA) were grown in RPMI-1640 supplemented with 10 % foetal bovine serum (FBS), 1 % penicillin / streptomycin. 200 µl of each collagen solution (1 mg/ml) were placed into each well of 24-well plates and let dry at room temperature for 24 h. Prior to
use, films were sterilised in 70 % ethanol for 30 min, followed by three washes in sterilized Hank's Balanced Salt Solution (HBSS). Cells were seeded onto collagen films at a density of 26×10^3 cells per cm^2. Mature macrophage-like state was induced by treating cells with phorbol 12-myristate 13-acetate (PMA) at 100 ng/ml for 6 h. Subsequently, adherent cells were washed with HBSS and incubated with supplemented media at 37 °C, 5 % CO$_2$ and 95 % humidified air for 24 and 48 h. Activated control was induced with 100 ng/ml of lipopolysaccharide (LPS) in supplemented media.

Macrophage response was characterised by cell morphology, proliferation, metabolic activity and inflammatory cytokine release. Macrophage morphology analysis was performed using the cell counter plugin of Image J software (National Institute of Health, USA). Elongated cells and total amount of cells were quantified by a single blind operator, counting 5 different regions per condition (50 ± 10 cells per region). Morphology measurements were made considering the R-ratio, an elongation factor that compares the length of major axis with the length of minor axis of a cell. A perfectly round cell has a R factor of 1 while an elongated cell has R factor greater than 2.5 [41]. Proliferation was assessed using Quant-iT™ PicoGreen® dsDNA kit (Invitrogen, USA), while cell metabolic activity was measured by 2 h incubation at 37 °C with 10 % alamarBlue® (Invitrogen, USA) following manufacturer's instructions. Cell metabolic activity was expressed in terms of reduction of alamarBlue®, considering metabolic activity of cells in TCP at each time point as 100 %. Inflammatory cytokines (IL-1β, IL-4, IL-6, IL-10, IL-12p70, IL-13, TNF-α, VEGF) were measured using Meso Scale Discovery (MSD®, USA) electrochemoluminescence assay as per manufacturer’s guidelines. Briefly, cell free supernatants of each sample and supplied standard curve were incubated on MSD
plates for 2 h followed by a wash. Then, plates were incubated with detection antibody solution for 2 h. The plates were then washed and read using a Meso™ QuickPlex SQ120 instrument (MSD, USA).

2.2.8. Statistical analysis

Numerical data are expressed as mean ± standard deviation. Statistical analysis was performed using MINITAB® (version 16.2, Minitab Inc.). One way analysis of variance (ANOVA) followed by Fisher's post-hoc test were employed after confirming normal distribution from each sample population (Anderson-Darling normality test) and equality of variances (Bartlett’s and Levene’s tests for homogeneity of variance). Non-parametric statistics were used when either or both of the above assumptions were violated and, consequently, Kruskal-Wallis, for multiple comparisons, test was carried out. Statistical significance was accepted at $p < 0.05$.
2.3. Results

2.3.1. Collagen purity assessment

SDS-PAGE (Figure 2.2a) and complementary densitometric analysis of the α_1(I) and α_2(I) bands (Figure 2.2b) revealed that significantly more ($p < 0.05$) collagen came into solution when AA was used (as opposed to when HC was used). For both AA and HC preparations, the use of pepsin significantly increased ($p < 0.001$) yield. Pepsin decreased the cross-links of the AAP and AASP collagen (in comparison to AA and AAS, respectively), as evidenced by reduction in β and γ bands (Table 2.1). The use of salt did not increase ($p > 0.05$) yield or purity.
Figure 2.2. SDS-PAGE (a) and complementary densitometric analysis of α_1(I) and α_2(I) bands (b) revealed that significantly more ($p < 0.05$) collagen came into solution when AA was used. The use of pepsin, independently of the acid used, significantly increased ($p < 0.001$) yield. Pepsin also reduced the cross-links in the AAP and AASP (as compared to AA and AAS, respectively), as evidenced by the reduction in β and γ bands. Salt precipitation did not appear to induce a significant effect.
Table 2.1. Corresponding densitrometric analysis of type I collagen extracted with acetic acid and hydrochloric acid. Alpha bands increased and impurities decreased with pepsin treatment for all AA collagens. Alpha bands were lower for AA collagen without pepsin than HC collagen without pepsin. * indicates significant statistical difference respect to AA; #, respect to HC (p < 0.05).

<table>
<thead>
<tr>
<th>Bands</th>
<th>Control</th>
<th>AA</th>
<th>AAS</th>
<th>AAP</th>
<th>AASP</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>23.3 ± 0.7</td>
<td>9.6 ± 1.5</td>
<td>5.9 ± 3.2</td>
<td>0.5 ± 0.4*</td>
<td>1.1 ± 0.3*</td>
</tr>
<tr>
<td>β11 + β12</td>
<td>33.8 ± 0.6</td>
<td>47.1 ± 1.6</td>
<td>47.4 ± 1.7</td>
<td>11.4 ± 1.3*</td>
<td>10.6 ± 0.6*</td>
</tr>
<tr>
<td>α11 + α12</td>
<td>42.2 ± 1.5</td>
<td>39.2 ± 1.3</td>
<td>42.4 ± 3.9</td>
<td>86.3 ± 1.5*</td>
<td>86.3 ± 0.6*</td>
</tr>
<tr>
<td>Impurities</td>
<td>0.7 ± 0.3</td>
<td>4.1 ± 0.4</td>
<td>4.4 ± 0.9</td>
<td>1.8 ± 0.3*</td>
<td>2.0 ± 0.2*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bands</th>
<th>Control</th>
<th>HC</th>
<th>HCS</th>
<th>HCP</th>
<th>HCSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>23.3 ± 0.7</td>
<td>7.9 ± 1.9</td>
<td>4.7 ± 2.5</td>
<td>1.5 ± 0.2#</td>
<td>4.2 ± 2.7</td>
</tr>
<tr>
<td>β11 + β12</td>
<td>33.8 ± 0.6</td>
<td>15.3 ± 2.1</td>
<td>10.6 ± 2.5</td>
<td>17.0 ± 1.2</td>
<td>20.1 ± 1.8#</td>
</tr>
<tr>
<td>α11 + α12</td>
<td>42.2 ± 1.5</td>
<td>67.1 ± 3.3</td>
<td>75.1 ± 4.0</td>
<td>77.6 ± 1.0#</td>
<td>69.9 ± 2.5</td>
</tr>
<tr>
<td>Impurities</td>
<td>0.7 ± 0.3</td>
<td>9.6 ± 2.0</td>
<td>9.1 ± 1.5</td>
<td>4.0 ± 0.2#</td>
<td>5.8 ± 0.7#</td>
</tr>
</tbody>
</table>
2.3.2. Free amine, denaturation temperature and enzymatic stability assessment

Ninhydrin assay was used to evaluate the amount of free amine groups (Figure 2.3a) and data obtained revealed that the highest % of free amines, for both AA and HC treatments, was detected for the AAP and the HCP groups ($p < 0.05$). DSC was used to assess the denaturation temperature / extend of cross-linking (Figure 2.3b) and data obtained revealed that the lowest denaturation temperature was detected for the AAP group ($p < 0.05$). Collagenase assay was used to assess resistance to enzymatic degradation (Figure 2.3c) and data obtained revealed no significant differences ($p > 0.05$) between the treatments.
Figure 2.3. (a) The AAP and the HCP groups exhibited the highest % free amines ($p < 0.05$). (b) The AAP group exhibited the lowest denaturation temperature ($p < 0.05$). (c) No difference in resistance to collagenase degradation was observed between the groups ($p > 0.05$).
2.3.3. *In vitro* inflammatory response assessment

Phase contrast microscopy analysis demonstrated that most macrophages, independently of the treatment and time in culture, adopted a rounded morphology ([Figure 2.4](#)). Cells grown on TCP, LPS and all collagen preparations induced some macrophages to adopt an elongated morphology at both time points ([Figure 2.4](#)). Macrophage aggregates (5 or more cells) were also formed on TCP, LPS and all collagen preparations at both time points ([Figure 2.4](#)). At both time points, significantly more elongated macrophages were observed on AA films rather than on the HC films ([Figure 2.5a](#)).

Although DNA quantification analysis revealed that HC treatments exhibited significantly lower \(p < 0.001 \) cell proliferation to the respective AA treatments at both time points ([Figure 2.5b](#)), no significant differences \(p > 0.05 \) were observed between the groups in metabolic activity ([Figure 2.5c](#)).

Cytokine secretion analysis ([Figure 2.6](#) and [Figure 2.7](#)) revealed minimal / below detection limit release of IL-4, IL-6, IL-12, IL-13 and IL-10 and considerable release of IL-1β, TNF-α and VEGF at both time points. The secretion of TNF-α and VEGF was significantly increased \(p < 0.001 \) from day 1 to day 2. LPS activated cells exhibited significantly higher \(p < 0.001 \) levels of IL-1β and TNF-α at both time points, when compared to TCP. HC treatments exhibited significantly higher \(p < 0.001 \) IL-1β and TNF-α to the respective AA treatments at both time points. Within the HC treatments, the HCP treatment induced significantly higher \(p < 0.001 \) release of TNF-α at both time points.
Figure 2.4. Phase contrast microscopy analysis demonstrated that most macrophages, independently of the treatment and time in culture, adopted a rounded morphology, although elongated cells (black arrows) and cell aggregates (white arrows) were evidenced. Scale bars: 50 μm.
Figure 2.5. (a) Cell morphology analysis of the phase contrast images showed significantly more ($p < 0.001$) elongated macrophages on AA films rather than on HC films at both time points. (b) DNA quantification analysis revealed that HC treatments exhibited significantly lower ($p < 0.001$) cell proliferation to the respective AA treatments. (c) No significant differences ($p > 0.05$) were observed between the groups with respect to metabolic activity.
Figure 2.6. Multiplex ELISA on pro- and anti-inflammatory cytokines of THP-1 cells cultured on distinct collagen extractions for 1 and 2 days. Cytokine profile release analysis revealed that HC treatments exhibited significantly higher ($p < 0.001$) IL-1β and TNF-α secretion to the respective AA treatments at both time points.
Figure 2.7. Multiplex ELISA on pro- and anti-inflammatory cytokines of THP-1 cells cultured on distinct films for 1 and 2 days. Multiple comparison tests for every pair of conditions (*: \(p < 0.05 \), ns: not significant).
2.4. Discussion

The term ‘collagen’ is used to epitomise a large family (40 different vertebrate collagen genes form 29 homo- and hetero-trimeric molecules) of glycoproteins with a characteristic \([\text{Gly-X-Y}]_n\) amino acid sequence (X is often proline and Y is frequently hydroxyproline). In vertebrates, collagen is the major connective tissue component; it constitutes 75 % to 90 % of the human skin, bone (organic matter), cartilage, tendon and cornea and is primarily responsible for the mechanical integrity and specific function of these tissues [42-57]. This abundance of collagen in human tissues has prompted scientific research and technological innovation into its utilisation as a scaffold fabrication material [58-64]. Indeed, bovine and porcine skin and tendon tissues are widely used to obtain collagen type I, the most abundant collagen family member. Traditionally, dilute acidic solutions (acetic acid or hydrochloric acid) are used to disassociate aldimine cross-links and dilute acidic solutions and proteolytic enzymes (e.g. pepsin) are used against the mature ketoimine cross-links, resulting in higher yields [10-17] and lower immune response [65-76]. Salt precipitation is also an integral part of the purification process, as by fine-tuning salt concentration / solution pH, different collagen types can be obtained [5, 12, 18-24]. Despite advances in the field of collagen as a biomaterial, collagen-based devices are frequently associated with foreign body response. Although exogenous cross-linking has been customarily blamed [77-80], several studies have suggested that other factors may also be responsible. For example, profound differences were observed in foreign body response of the same implant (hexamethylene diisocyanate cross-linked dermal sheep collagen), when it was assessed in rats and mice and within different strains of rats and mice [81]. Non-denatured and non-cross-linked collagen provoked completely different foreign body
reaction to gelatin [82]. Substantial biophysical, biological and immunological differences were also observed between different commercially available collagen preparations [83], possibly due to the different preparation protocols (e.g. different species / tissues from which the collagen was extracted from; different collagen types ratio present; different acids; utilisation or not of pepsin or salt). Thus, herein, we ventured to assess for first time whether the utilisation of different acids (AA and HC) and the utilisation or not of pepsin (P) or salt (S) could influence the yield, purity, free amines, denaturation temperature, resistance to collagenase degradation and macrophage response on collagen scaffolds. To eliminate species variability [12, 84], all experiments were conducted using collagen extracted from porcine tendons.

Starting with yield and purity assessment, we found that AA, possibly due to its weaker nature, brought more collagen into solution. This is in agreement with previous publication, where although HC has been shown to hydrolyse more collagen than AA, citric acid and lactic acid, higher yield and purity resulted from the lactic acid, followed by the AA, citric acid and HC [85]. In contrast to these data, more viscous collagen solutions and scaffolds with larger pores, higher compressive modulus, lower swelling and lower cell proliferation were resulted from HC extracted collagen, as opposed to AA extracted collagen [86]. This may be due to the acid concentration; previous studies have shown that maximum yield for collagen extracted from the skin of hybrid catfish *Clarias* sp. was obtained when 0.7 M AA was used; the yield was reduced at higher AA concentrations [87].

The use of pepsin, due to its capacity to break mature cross-links, brought more collagen into solution, as has been reported repeatedly in the literature [10-17]. Further, pepsin, having removed the telo-peptides regions that are involved in cross-linking [88-90], resulted in collagen preparations with less cross-links (as evidenced
by reduced β and γ bands in the AAP and AASP, as compared to AA and AAS, respectively), with higher free amine content and lower denaturation temperature, especially for the AAP group. In other words, pepsin induced higher disassociation of collagen ultrastructure and removed both telopeptides, reducing molecular stability and length which justify the lower denaturation temperature. Resistance to collagenase digestion was not able to detect any differences between the treatments, possibly due to the sensitivity of the assay. Other enzymes, such as trypsin and papain, have also been used in collagen extraction. However, trypsin has been shown to degrade collagen [91-93], whilst papain was not as efficient (yield wise) in comparison to pepsin [94-96].

Phase contrast microscopy analysis of macrophages seeded on the various collagen preparations revealed a mixed cell response, as evidenced by round cells, elongated cells and cell aggregates. Nonetheless, among the two acids, AA induced more macrophages to adopt an elongated morphology. Elongated macrophage morphology is associated with transition from M1 (round morphology; pro-inflammatory) to M2 (elongated morphology; anti-inflammatory) phenotype [97] and cell aggregates indicate foreign body response [98]. Such heterogeneous macrophage response has been reported as a function of different collagen cross-linking methods [39] and when macrophages were exposed to polyethylene particulate [99]. Macrophage phenotype variations may be responsible for this variable response [97, 100-102]. Although no difference in metabolic activity was observed between the two different acids, the DNA concentration was lower for the HC treatments. Cytokine analysis further corroborated the differences between the two acids: HC treatments exhibited higher IL-1β and TNF-α to the respective AA treatments at both time points. The observed DNA reduction may be related to the increased TNF-α release, which has
been associated with inducing apoptosis of adherent macrophage on biomaterials [103, 104]. These differences may be attributed to the strength of the acids and the variation of surface energy or hydrophilicity that they can cause. As hydrochloric acid is a strong acid, the HCl molecules instantly dissociate into ions and, therefore, higher amount of anions remain in the collagen network in comparison with the acetic acid. This fact could give a higher negative charge to the HCl collagen formulations; that is highly interesting because surface energy and charge were found to induce different macrophage response [105, 106]. The sensitivity of macrophage to surface charge has been also confirmed with endocytic assays with positive and negatively charged particles [107-109]. Although AAP increased the amount of free primary amine which are known to increase the positive charge balance and to affect macrophage response [110], our data do not reveal any influence on the macrophage morphology or cytokine release.

The different macrophage response can also be attributed to the different extent of cross-linking that results in different amounts of collagen released in the media, which has been shown to induce differential mononuclear cell activation in vitro [111]. We feel that pH could not be the reason, as HBSS was used for rinsing following sterilisation and its pH is between 7.1 and 7.4.

On the other hand, this study has some limitations regarding the assessment of macrophage adhesion and collagen degradation assisted by macrophages. For example, a recent publication demonstrated that macrophage polarisation can be controlled through integrin-mediated interactions between THP-1 macrophages and collagen matrix. Indeed, integrin α2β1 has a pivotal role to induce M2 phenotype, whereas inhibiting integrin α2β1 mechanism induces M1 phenotype [112]. Moreover, macrophages are known to degrade collagen matrix and it could have an
effect on their polarisation as a recent study showed that U937 macrophages recognise/respond to collagen fibril damage within tendon [113] and collagen debris [114]. Collagen degradation could be compared between conditions by direct staining of the collagen film or by SDS-PAGE of the supernatant in combination with the silver staining.

Salt precipitation did not appear to influence the parameters assessed due to the repeated dialysis step. In general, special attention should be paid when purifying collagen with salt precipitation, as even modest increase of sodium chloride salt in medium has been demonstrated to regulate the activation of mitogen-activated protein kinases and Akt, which potentiate macrophage apoptosis [115]. Furthermore, salt increase could lead to inhibition of endotoxin-induced stress fibre polymerisation in vivo [116].
2.5. Conclusions

Collagen-based devices are frequently associated with foreign body response. Pre- and post- extraction method variables have been shown to influence foreign body response. Herein, we demonstrated that during the extraction process variables could also affect the physicochemical and biological properties of collagen preparations. Our data suggest that high yield, high purity, low in innate cross-linking density and low in secretion of IL-1β and TNF-α collagen can be extracted using pepsin in acetic acid.
2.6. Reference

Chapter 3: Collagen cross-linking

Sections of this chapter have been published at:

3.1. Introduction

Collagen, in the form of tissue grafts or reconstituted scaffolds, is one of the most widely used biomaterial in tissue engineering applications due to its natural composition, favourable mechanical properties, low antigenicity and well-tolerated degradation products [1-5]. In addition, collagen-based materials provide biological cues that support cell attachment, proliferation and growth, ultimately promoting functional repair and regeneration of tissues and organs in vivo [6, 7]. Exogenous cross-linking methods, primarily chemical in nature, are customarily used as a means to control the mechanical stability and the degradation rate of collagen-based biomaterials. However, chemical cross-linking of collagen is associated with a predominant pro-inflammatory macrophage response, inhibition of macrophage polarisation, reduced cell infiltration, increased pro-inflammatory cytokine expression and delayed wound healing, resulting in cytotoxicity, reduced biocompatibility and peri-implantation fibrosis [7-10].

The mechanism behind the inflammatory and wound healing response to collagen cross-linking is still poorly understood. Macrophages have been described as a ‘rapid response’ cell type, with crucial role in coordinating later inflammatory response and regeneration phases following implantation [11]. Interestingly, recent studies indicate that macrophage response can be modulated by the physicochemical properties of an engineered scaffold and, in particular, the architectural [12, 13], topographical [14] and chemical [15] properties that can be variably affected as a function of the cross-linking method employed.

Macrophage phenotype switching is controlled by numerous factors, including disease and disease state, drugs, growth factors, cytokines, chemokines, hormones, cell shape, scaffold present and its properties [16-21]. Through direct interactions
[12] and via released by-products [22], cross-linked collagen devices directly modulate macrophage response \textit{in vitro}. M1 macrophages (pro-inflammatory or classically activated) are activated by bacterial lipopolysaccharide (LPS), tumour necrosis factor \(\alpha\) (TNF-\(\alpha\)) and interferon \(\gamma\) (IFN-\(\gamma\)) to stimulate the secretion of large amounts of pro-inflammatory interleukin (e.g. IL-1\(\alpha\), IL-1\(\beta\), IL-6, IL-8, IL-12, IL-23) and TNF-\(\alpha\) cytokines, reactive oxygen species and matrix metalloproteinases to attack and phagocytise pathogens or foreign matter [23-25]. M2 macrophages (anti-inflammatory or alternatively activated) are activated by IL-4, IL-10 and IL-13 or a combination of these, to produce IL-1ra, IL-4, IL-10, IL-13, vascular endothelial growth factor (VEGF), transforming growth factor \(\beta\) (TGF-\(\beta\)), arginase and scavenging molecules [23-25]. Critically, M2 macrophages display differential functions according to the cellular sub-phenotype [e.g. anti-inflammatory (M2a), homeostatic (M2b) and pro-wound healing (M2c)]. In instances that macrophages fail to remodel the substrate or to degrade foreign matter (frustrated phagocytosis), they aggregate and form foreign body giant cells, which are generally accepted as cells with higher degradation / resorption capacity than monocytes / macrophages. Furthermore, giant cells are related to peri-implantation fibrosis and foreign body response [26, 27], often encountered with heavily cross-linked collagen devices. The mechanism behind this transformation is unclear, however, hydrophobicity, ionic charge and soluble fusion mediators (e.g. receptor activator of nuclear factor kappa-B ligand, macrophage colony-stimulating factor, TNF-\(\alpha\), IL-1, IL-4, IL-13) are believed to be important in the formation of foreign body giant cells [28].

Customarily used collagen cross-linking approaches, such as glutaraldehyde (GTA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), have been associated with cytotoxicity [29, 30], calcification [31, 32] and foreign body response [8, 33].
To this end, the use of alternative methods [multi-branched polyethylene glycol (PEG) polymers [34, 35] and plant extracts (e.g. genipin (GEN) [36], myrica rubra [37], oleuropein (OLE) [38]] has been advocated as a means to enhance mechanical and enzymatic stability, whilst reducing cytotoxicity. However, their immune response has yet to be assessed. Herein, the structural, physical and biological properties of non-cross-linked (NCL) and GTA, EDC, 4-arm PEG succinimidyl glutarate (4SP), GEN and OLE cross-linked collagen films were assessed.
3.2. Materials and methods

3.2.1. Materials

Bovine Achilles tendons were collected from a local abattoir (steers aged 24 months). 4-arm polyethylene glycol (PEG) succinimidyl glutarate (4SP, Mw 10,000), genipin (GEN) and oleuropein (OLE) were purchased from JenKem Technology (USA), Challenge Bioproducts (Taiwan), and Extrasynthese (France), respectively. All other materials and reagents were purchased from Sigma-Aldrich (Ireland), unless otherwise stated.

3.2.2. Type I collagen isolation

Bovine type I collagen was extracted from Achilles tendons by adapting a previously described protocol [39]. Briefly, the tendons were manually separated from the surrounding fascia, cryo-milled (Freezer/Mill 6870, SPEX SamplePrep, USA) and washed with 1X phosphate buffered saline (PBS) solution. Milled tendon tissue was dissolved in 1.0 M acetic acid under orbital agitation for 48 hours at 4 °C. Subsequently, pepsin (from porcine gastric mucosa) was added in the solution at ratio of 80 U/mg of milled tendon. The solution was incubated at 4 °C for 72 hours under stirring. Insoluble tendon was separated by filtration and centrifugation (21,000 g at 4°C for 20 min). Collagen solution was purified by repeated salt precipitation (0.9 M NaCl), centrifugation and re-suspension in 1.0 M acetic acid. The final atelocollagen solution was dialysed (Mw 8,000 cut off) against 1 mM acetic acid and the final solution was kept at 4°C. Collagen concentration was determined using hydroxyproline assay (~5 mg/ml) [40] and collagen purity was assessed using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining [41] (Figure 3.1).
Figure 3.1. The purity of the extracted type I collagen was assessed using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. SDS-PAGE analysis revealed the purity of the extracted collagen solution (left lane) was ~ 96 %, similar to commercially available BD Biosciences (right lane) type I collagen (~ 97 %).
3.2.3. Collagen film fabrication

Typical protocols for the fabrication of collagen films were followed [42], with slight modifications. Briefly, the pH of the collagen solution was adjusted to ~ 7.3 using 1.0 M NaOH and 10X PBS. Cross-linking was conducted as per established protocols (Table 3.1) in order to obtain about 80% free amine reduction. The final solutions were placed in silicone moulds and incubated for 1 hour at 37 °C to induce gelation. Subsequently, the water content was evaporated overnight at 25 °C.
Table 3.1. Cross-linking methods employed to stabilise collagen films in order to obtain about 80% free amine reduction. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE).

<table>
<thead>
<tr>
<th>Cross-linking agent</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCL</td>
<td>No cross-linker in 1X PBS</td>
<td>-</td>
</tr>
<tr>
<td>GTA</td>
<td>0.625 % in 1X PBS</td>
<td>[36]</td>
</tr>
<tr>
<td>EDC</td>
<td>50 mM EDC / 10 mM N-hydroxysuccinimide (NHS) in 50 mM 2 (N-morpholino) ethanesulfonic acid (MES) in 1X PBS</td>
<td>[36]</td>
</tr>
<tr>
<td>4SP</td>
<td>1 mM in 1X PBS</td>
<td>[43]</td>
</tr>
<tr>
<td>GEN</td>
<td>0.625 % in 1X PBS</td>
<td>[36]</td>
</tr>
<tr>
<td>OLE</td>
<td>5.0 % in 1X PBS (After activation with 0.5 U/ml β-glucosidase at 25 ºC for 2 hours)</td>
<td>[38]</td>
</tr>
</tbody>
</table>
3.2.4. Structural characterisation

Morphological analysis of the produced films was analysed using a Stereo Microscope (SZX16, Olympus, UK) and a Hitachi S-4700 Scanning Electron Microscope (SEM, Hitachi, UK). Prior to SEM analysis, collagen films were incubated in 1X PBS overnight, dehydrated in ascending ethanol concentrations (50 %, 70 %, 90 %, 96 % and 100 %) and gold-coated (Emitech K-550X Sputter Coater, Emitech, UK).

3.2.5. Quantification of free amines

Free amines were quantified using ninhydrin assay, as has been described previously [44]. Briefly, ~ 3 mg of each film were mixed with 200 µl of deionised water and 1 ml of running buffer, which contained one part of 4 % (w/v) ninhydrin in 2-ethoxyethanol and one part 200 mM citric acid with 0.16 % (w/v) tin (II) chloride at pH 5.0. The mixtures were incubated at 95 °C for 30 min. The reaction was stopped by cooling down in ice and the addition of 250 µl of 50 % isopropanol. After vortexing, the absorbance was read at 570 nm (Varioskan Flash Multimode Reader, Thermo Scientific). Glycine, at different concentrations, was used for the standard curve and the % of free amines of each condition was normalised against to the NCL collagen films.

3.2.6. Quantification of denaturation temperature

The denaturation temperature was evaluated using a differential scanning calorimeter (DSC-60, Shimadzu, Japan), as has been described previously [45]. Briefly, collagen films were incubated in 1X PBS at room temperature overnight and then, they were quickly blotted using filter paper to remove surface / unbound water. The samples
were then hermetically sealed in aluminium pans and were subjected to a single constant heating ramp at 5 °C/min in the range of 25 to 90 °C. An empty pan was used as reference. Denaturation temperature was determined as the maximum heat absorption of the endothermic peak.

3.2.7. Quantification of enzymatic degradation

Resistance to enzymatic degradation was quantified as has been described previously [46]. Briefly, collagen films were weighed and hydrated for 2 hours in 0.1 M Tris-HCl and 5 mM CaCl$_2$ at pH 7.4. Subsequently, the films were incubated in 10 U/ml bacterial collagenase type IV (*Clostridium histolyticum*), reconstituted in the same buffer. After 24 hours of incubation at 37 °C, centrifugation was carried out (10,000g for 5 min), the supernatant was removed, the remaining films were freeze-dried and weighed. Enzymatic degradation was quantified as weight loss.

3.2.8. Quantification of mechanical properties

Uniaxial tensile test of hydrated (overnight incubation at 37 °C in phosphate buffer saline and brief bloating in tissue paper prior to testing to remove surface liquid) films was performed using an electromechanical testing machine (Z2.5, Zwick, Germany). Uniform strips were prepared and, using a micrometer screw gauge, the width and thickness of the samples were measured. The grips of the testing machine were covered with a rubber film to avoid breakage at contact points. Samples that broke at contact points were excluded. The grips were set at 20 mm distance. The samples were deformed to complete failure (deformation rate of 10 mm/min, 10 N static load cell). The following parameters were assessed: force at break, stress at break, strain at break and elastic modulus.
3.2.9. Human skin fibroblast response

Basic cellular functions were assessed using human skin fibroblasts [WS1, American Type Culture Collection (ATCC), USA]. WS1 fibroblasts were grown in Eagle's Minimum Essential Medium supplemented with 10% foetal bovine serum (FBS), 1% penicillin and streptomycin. Films were sterilised in 70% ethanol for 30 minutes, followed by three washes in sterilised Hank's Balanced Salt Solution (HBSS). Cells were seeded onto the samples at 16 x 10³ cells/cm² and incubated at 37 °C, 5% CO₂ and 95% humidified air for 1, 3 and 7 days. Phase contrast microscopy images were obtained using an inverted microscope (Leica microsystem, Germany) and images were analysed with the LAS EZ 2.0.0 software. Cell proliferation was assessed using Quant-iT™ PicoGreen® dsDNA kit (Invitrogen, USA), as per manufacturer's guidelines. Cell metabolic activity was assessed after two hours incubation at 37 °C with 10% alamarBlue® (Invitrogen, USA), as per manufacturer's protocol. Cell metabolic activity was expressed in terms of % reduction of alamarBlue® and normalised considering metabolic activity of cells in tissue culture plastic (TCP) at each time point as 100%. Cell viability was evaluated using Live/Dead® assay. Briefly, samples were incubated in HBSS with 4 µM calcein and 2 µM ethidium homodimer for 30 min. Stained samples were visualised using an inverted fluorescence microscope (IX 51, Olympus, UK). Five images were captured per film. Viable (green) and dead (red) cells were counted using ImageJ 1.48v software (National Institutes of Health, USA).

3.2.10. Human macrophage response and cytokine release

Human derived leukemic monocyte cells (THP-1, ATCC, USA) were grown in RPMI-1640 supplemented with 10% FBS, 1% penicillin and streptomycin. Cells
were seeded onto the various samples at 26 x 10^3 cells/cm^2 and mature macrophage-
like state was induced through treatment with phorbol 12-myristate 13-acetate (PMA) at 100 ng/ml for 6 hours, as has been described previously [47-49]. Subsequently, adherent cells were washed with HBSS and incubated with supplemented media at 37 °C, 5 % CO_2 and 95 % humidified air for 1 and 2 days. Activated positive control phenotype was induced with 100 ng/ml of LPS in supplemented media for 24 hours. Cell proliferation and metabolic activity were determined as described in section 3.2.9. Cellular viability was quantified using CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, USA) to measure released lactate dehydrogenase (LDH) in the supernatant from dead cells. Phase contrast microscopy images were obtained using an inverted microscope (Leica microsystem, Germany) and images were analysed with the LAS EZ 2.0.0 software.

Inflammatory cytokines (IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-α, VEGF) were measured using Meso Scale Discovery (MSD, USA) electrochemoluminescence assay, as per manufacturer’s guidelines. Briefly, cell free supernatants of each sample and supplied standard curve were incubated on MSD plates for 2 hours followed by a wash. The plates were then incubated with detection antibody solution for 2 hours. Subsequently, the plates were washed and read using a Meso™ QuickPlex SQ120 instrument (MSD).

The potential effect of released / degradation sub-products of cross-linked collagen films was investigated using the pre-conditioned media. Cross-linked films were incubated in supplemented RPMI-1640 media at 37 °C and 5 % CO_2 for 6 days prior to be exposed to cells. THP-1 cells were seeded at 26 x 10^3 cells/cm^2 with 100 ng/ml of PMA for 6 hours. Subsequently, plastic-adherent cells were washed with HBSS and incubated with pre-conditioned media at 37 °C, 5 % CO_2 and 95 % humidified...
air for 48 hours. An activated control was induced with 100 ng/ml of LPS for 24 hours. Characterisation of macrophage cells was performed as described above.

3.2.11. Statistical analysis

All experiments were carried out in triplicate, except swelling, denaturation temperature and tensile test assays that were carried out in quintuplicate. Numerical data are expressed as mean ± standard deviation. Statistical analysis was performed using MINITAB® (version 16.2, Minitab Inc., USA). One way analysis of variance (ANOVA) followed by Fisher's post-hoc test were employed after confirming normal distribution from each sample population (Anderson-Darling normality test) and the equality of variances (Bartlett’s and Levene’s tests for homogeneity of variance). Nonparametric statistics were used when either or both of the above assumptions were violated and, consequently, Kruskal-Wallis for multiple comparison analysis was carried out. Statistical significance was accepted at $p < 0.05$.

Chapter 3 – Collagen Cross-linking

181
3.3. Results

3.3.1. Structural characterisation

Non-cross-linked collagen films (NCL) and cross-linked collagen films with carbodiimide (EDC) and 4-arm PEG succinimidyl glutarate (4SP) were colourless and totally transparent, glutaraldehyde (GTA) and oleuropein (OLE) cross-linking made the films yellow / brown and semi-transparent and genipin (GEN) cross-linking resulted in dark blue and totally opaque films (Figure 3.2). SEM analysis revealed that NCL and 4SP cross-linked films maintained the fibrillar structure of collagen, which was diminished in EDC, GTA, GEN and OLE cross-linked films (Figure 3.2).
Figure 3.2. Optical and SEM images of the different collagen films. NCL, EDC and 4SP films were colourless, whilst GTA and OLE cross-linking induced a yellow / brown hue and GEN cross-linking resulted in dark blue hue. SEM analysis revealed that only NCL and 4SP cross-linked films maintained the fibrillar structure of collagen. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE).
3.3.2. Quantification of free amines

Collagen cross-linking involves the formation of covalent bonds between the free amine or carboxyl groups of collagen with the cross-linking agent; reduction in free amines can be used as a cross-linking efficiency indicator. A significant ($p < 0.001$) decrease in free amine groups was observed for all cross-linked collagen films (Figure 3.3). Among the cross-linked groups, GTA, EDC, 4SP and GEN brought about an approximate 80% reduction in free amines, whilst OLE induced an approximate 40% reduction in the amount of free amines (Figure 3.3).
Figure 3. Quantification of free amine group of collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE); non-cross-linked collagen film (NCL) was used as control. *: Denotes significant difference ($p < 0.05$) from the control group (NCL).
3.3.3. Quantification of denaturation temperature

DSC analysis revealed that all cross-linking methods, but EDC ($p > 0.05$), significantly increased ($p < 0.001$) the denaturation temperature of the produced collagen films, as compared to the NCL films (Figure 3.4).
Figure 3.4. Denaturation temperature measured by differential scanning calorimetry (DSC) of collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE); non-cross-linked collagen film (NCL) was used as control. *: Denotes significant difference ($p < 0.05$) from the control group (NCL).
3.3.4. Quantification of enzymatic degradation

In vitro enzymatic degradation analysis (Figure 3.5) revealed that NCL, EDC and OLE films were almost completely degraded within 24 h, whilst GTA, 4SP and GEN induced a very high resistance to enzymatic degradation (less than 20 % was degraded).
Figure 3.5. Degradation by collagenase after 24 hours incubation of collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE); non-cross-linked collagen film (NCL) was used as control. *: Denotes significant difference ($p < 0.05$) from the control group (NCL).
3.3.5. Quantification of mechanical properties

Stress-strain curves consisted of a small toe region, a region of steeply rising stress and a long region of constant gradient until fracture (Figure 3.6). GEN stabilised films exhibited the highest ($p < 0.001$) force at break, stress at break and E modules values, whilst EDC cross-linked films exhibited the highest ($p < 0.001$) strain at break values (Table 3.2). EDC stabilised films exhibited the lowest ($p < 0.001$) force at break, stress at break and E modules values, whilst GTA cross-linked films exhibited the lowest ($p < 0.001$) strain at break values (Table 3.2).
Figure 3.6. Tensile test stress-strain deformation mechanism of the produced collagen films. Stress-strain curves consisted of a small toe region, a region of steeply rising stress and a long region of constant gradient until fracture. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE).
Table 3.2. Mechanical data of the produced collagen films. The highest ($p < 0.001$; +) force at break, stress at break, strain at break and E modules values were obtained from the GEN, GEN, EDC and GEN cross-linked films, respectively. The lowest ($p < 0.001$; #) force at break, stress at break, strain at break and E modules values were obtained from the EDC, EDC, GTA and EDC cross-linked films, respectively.

Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE).

<table>
<thead>
<tr>
<th>Cross-linking agent</th>
<th>Force at break (N/cm)</th>
<th>Stress at break (MPa)</th>
<th>Strain at break (%)</th>
<th>E Modulus (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCL</td>
<td>0.35 ± 0.09</td>
<td>0.10 ± 0.03</td>
<td>40.82 ± 13.52</td>
<td>0.64 ± 0.63</td>
</tr>
<tr>
<td>GTA</td>
<td>0.26 ± 0.11</td>
<td>0.13 ± 0.09</td>
<td>5.77 ± 2.51 #</td>
<td>3.51 ± 2.47</td>
</tr>
<tr>
<td>EDC</td>
<td>0.23 ± 0.06 #</td>
<td>0.03 ± 0.01 #</td>
<td>51.60 ± 4.49 +</td>
<td>0.08 ± 0.02 #</td>
</tr>
<tr>
<td>4SP</td>
<td>0.47 ± 0.24</td>
<td>0.08 ± 0.04</td>
<td>15.22 ± 3.84</td>
<td>0.45 ± 0.13</td>
</tr>
<tr>
<td>GEN</td>
<td>5.59 ± 1.10 +</td>
<td>3.28 ± 1.37 +</td>
<td>16.49 ± 4.50</td>
<td>20.21 ± 5.01 +</td>
</tr>
<tr>
<td>OLE</td>
<td>1.22 ± 0.66</td>
<td>0.41 ± 0.22</td>
<td>15.46 ± 1.87</td>
<td>2.02 ± 0.89</td>
</tr>
</tbody>
</table>
3.3.6. Human skin fibroblast response

Phase contrast microscopy analysis revealed that human skin fibroblasts maintained their spindle-shaped morphology, independently of the cross-linking method and culture time (Figure 3.7). By day 7, DNA quantification [Figure 3.8A; only OLE was significantly higher \(p < 0.001 \) to the non-cross-linked control], cell metabolic activity (Figure 3.8B) and cell viability (Figure 3.8C) assays revealed no apparent differences between the non-cross-linked and cross-linked groups \(p > 0.05 \).
Figure 3.7. Phase contrast microscopic images of human skin fibroblasts cultured onto cross-linked collagen films for 1, 3 and 7 days. Human skin fibroblasts maintained their spindle-shaped morphology, independently of the treatment and the time in culture. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) was used as control.
Figure 3.8. Human skin fibroblasts onto cross-linked collagen films after 1, 3 and 7 days of culture. Cellular proliferation was assessed through DNA concentration quantification (A). Metabolic activity was assessed using alamarBlue® (B). Cellular viability was assessed via Live/Dead® (C). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) was used as control. *: Denotes significant difference ($p < 0.05$) from the control group (NCL).
3.3.7. Human macrophage response and cytokine release

Phase contrast microscopy analysis revealed that by day 2 (a) most macrophages, independently of the treatment and time in culture, adopted a round morphology; (b) some elongated cells were observed on TCP, GEN, LPS, 4SP and OLE; and (c) all treatments, but GTA, formed aggregates (Figure 3.9). Cells grown on TCP, LPS and NCL exhibited significantly higher ($p < 0.001$) DNA concentration than cells grown on GTA, EDC, 4SP, GEN at day 1, whilst at day 2, cells grown on TCP, LPS and NCL exhibited significantly higher ($p < 0.001$) DNA concentration than cells grown on GTA, EDC, 4SP, GEN and OLE (Figure 3.10A). GTA cross-linked films induced the lowest ($p < 0.001$) cell metabolic activity at both time points, TCP, LPS and OLE induced the highest ($p < 0.001$) cell metabolic activity at day 1 and TCP, LPS, GEN and OLE induced the highest ($p < 0.001$) cell metabolic activity at day 2 (Figure 3.10B). GTA cross-linked films induced the lowest cell viability ($p < 0.001$) at both time points, no significant difference was observed between EDC, 4SP, GEN and OLE at both time points (Figure 3.10C).

When THP-1 cells were seeded on the various substrates, no significant difference ($p > 0.05$) in secretion of IL-1beta, IL-8, TNF-alpha and VEGF was detected between NCL, 4SP and genipin groups at both time points (Figure 3.11 and Figure 3.12). Cytokine release of IL-4, IL-6, IL-12, IL-13 and IL-10 was below the detection limit for all treatments for both time points (Figure 3.11). Cytokine release from cells seeded on GTA films was very low (Figure 3.11) due to the low cell number (Figure 3.10C).

Phase contrast microscopy analysis revealed that by day 2: (a) most macrophages, independently of the treatment, adopted a round morphology; (b) some elongated cells were observed on all samples, but TCP and OLE; and (c) all treatments, but
OLE, formed aggregates (Figure 3.13). All cross-linking treatments exhibited significantly higher ($p < 0.05$) DNA concentration (Figure 3.14A) and metabolic activity (Figure 3.14B) than the NCL counterparts, whilst no significant difference ($p > 0.05$) was observed in cell viability (Figure 3.14C). With respect to inflammatory cytokine release, only pre-conditioned media with GTA and OLE cross-linked films significantly increased ($p < 0.05$) IL-8 release (Figure 3.15), in comparison to the non-cross-linked samples. No significant difference ($p > 0.05$) was detected for VEGF, TNF-alpha and IL-1beta between the treatments (Figure 3.15). Cytokine release of IL-4, IL-6, IL-12, IL-13 and IL-10 was below the detection limit for all treatments (Figure 3.15 and Figure 3.16).
Figure 3.9. Phase contrast microscopic images of THP-1 cells cultured onto cross-linked collagen films for 1 and 2 days. The macrophages adopted a round morphology and formed aggregates, independently of the treatment and time in culture. Some elongated cells were also detected (indicative examples are highlighted using arrows). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.
Figure 3.10. THP-1 cells onto cross-linked collagen films after 1 and 2 days of culture. Cellular proliferation was assessed through DNA concentration quantification (A). Metabolic activity was assessed using alamarBlue® (B). Cellular viability was assessed via Live/Dead® (C). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls. *: Denotes significant difference ($p < 0.05$) from the control group (NCL).
Figure 3.11. Multiplex ELISA on pro- and anti-inflammatory cytokines of THP-1 cells cultured on distinct films for 1 and 2 days. The bar represents the average. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.
Figure 3.12. Multiplex ELISA, multiple comparison tests for every pair of conditions (* p < 0.05, ns: not significant). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.
Figure 3.13. Phase contrast microscopic images of THP-1 cells cultured for 2 days with pre-conditioned media from the cross-linked collagen films. Macrophages adopted a round morphology and only cells on GTA films formed aggregates. Some elongated cells were also detected (indicative examples are highlighted using arrows). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.
Figure 3.14. THP-1 cells cultured with pre-conditioned media from the cross-linked collagen films after 2 days of culture. Cellular proliferation was assessed through DNA concentration quantification (A). Metabolic activity was assessed using alamarBlue® (B). Cellular viability was assessed via Live/Dead® (C). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls. *: Denotes significant difference ($p < 0.05$) from the control group (NCL).
Figure 3.15. Multiplex ELISA on pro- and anti-inflammatory cytokines of THP-1 cells cultured with pre-conditioned media from the cross-linked collagen films after 2 days of culture. The bar represents the average. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.
Figure 3.16. Multiplex ELISA, multiple comparison tests for every pair of conditions (* $p < 0.05$, ns: not significant). Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE). Tissue culture plastic (TCP) and LPS stimulated TCP (LPS) were used as controls.
3.4. Discussion

Collagen-based devices represent one of the largest subsets of biomaterials currently in clinical practice [50]. Chemical cross-linking methods [51-53] are customarily employed to induce stability and to offer control over enzymatic degradation, yet collagen biomaterials are commonly associated with persistent and chronic activity of M1 macrophages [33], resulting in inflammation, suboptimal \textit{in vivo} performance and, in several cases, implant failure [7, 8]. Herein, we ventured to assess the influence of various cross-linking methods (e.g. GTA, EDC, 4SP, GEN, OLE) on the structural, biochemical, biophysical and biological properties of collagen-based films (Table 3.3 summarises around findings).

Although collagen can be cross-linked through its free amine or carboxyl groups, each cross-linking method has a unique mode of action, which consequently would be responsible for the properties of the resultant scaffold. GTA, for example, is considered a potent, but cytotoxic, collagen cross-linker that, in physiological conditions, reacts with the amine groups (primarily lysine, hydroxylysine, histidine, arginine and tyrosine) to form Schiff bases. Carboxylic acid groups of aspartic and glutamic acid residues in collagen react with EDC and then NHS; the NHS-activated carboxylic acid groups then react with the amine groups of lysine and hydroxylysine residues and release the NHS. EDC has limited cross-linking ability due to its short length structure and inability to polymerise, but is not as cytotoxic as GTA. The succinimidyl groups of 4SP react with the amine groups present on the collagen molecule. 4SP is not as potent as GTA, but it is significantly more cytocompatible. GEN cross-links free amine groups (e.g. lysine, hydroxylysine, arginine) and forms intra- and inter- molecular cross-links with collagen. OLE is an iridoid glycoside that contains a glucose molecule, which is cleaved by β-glucosidase to produce an
aglycone, which then reacts with the lysine residues of proteins. Both GEN and OLE are almost as efficient cross-linkers as GTA and less cytotoxic. A direct comparison though between these prominent collagen cross-linkers has yet to be reported.

Non-cross-linked collagen films (NCL) and cross-linked collagen films with carbodiimide (EDC) and 4-arm PEG succinimidyl glutarate (4SP) were clear and transparent, cross-linked collagen films with glutaraldehyde (GTA) and oleuropein (OLE) were brown and cross-linked films with genipin (GEN) were dark blue. The observed discolouration is attributed to the reaction between the cross-linking agents and the amino acids of collagen, as has been reported previously [36, 38, 43, 54, 55]. OLE presented a few brown dots that we attributed to clusters of the β-glucosidase enzyme used to active oleuropein aglycones, which bind to collagen amines [38].

The surface morphology was found to be cross-linking dependent, as it has been reported previously [43, 56-58], but in general a typical fibrous surface [59] was observed. GTA and OLE exhibited the least fibrous surface / smoothest surface, which is in agreement with previous observations, where cross-linking reduced / preferentially altered surface roughness [42, 60, 61].

Overall, cross-linking reduced the % free amines and increased the denaturation temperature and the resistance to enzymatic degradation of the collagen films. 4SP and GEN exhibited similar values to GTA, further advocating previous studies on their use as collagen cross-linking agents [34, 35, 43, 54, 55, 62, 63]. Although EDC is used extensively as a GTA alternative [64-68], herein EDC samples despite exhibiting lower % of free amines in comparison to the NCL samples, neither the denaturation temperature nor the resistance to enzymatic degradation was improved. In our case, this low stabilisation capacity of EDC could be attributed to the pH adjustment. Analysing the reaction, it could be observed that the optimal pH for the
substitution of the carbodiimide by NHS requires an acidic pH, around 5.5 [69], and in our case pH was around 7 to induce fibrillogenesis. Therefore, EDC cross-linking reaction was partially inhibited. This finding indicates that not all cross-linking agents can be used initially when fibrillogenesis is induced. Certainly, EDC-NHS crosslinking is commonly used to stabilise final forms of collagen such as fibres or sponges [70, 71] or to covalently bind functional molecules to collagen [72]. Further, although OLE has been claimed to be a potent collagen cross-linker [38, 73], herein it reduced the % of free amines and increased the denaturation temperature, but did not improve resistance to enzymatic degradation. Indeed, the commercially available form of oleuropein does not contain a reactive aglycone as genipin does and, therefore, oleuropein requires a pre-activation with β-glucosidase in the lab. Although a previous published protocol was used [38], the cross-linking efficiency was lower than the commercially available cross-linking agents. Even more, although we tried to improve the pre-activation by increasing the time and temperature and by introducing ultrasounds, the efficiency did not improve. Overall, these data illustrate that an array of assays should be conducted to assess the potential of a collagen cross-linking agent.

Even though several collagen deformation mechanisms have been proposed [74-77], the most widely accepted may be those of the Fratzl’s model [78]. The relation between stress-induced structural changes and the J-shape stress-strain curve of collagen can be divided into four regions: toe or low strain region, the heel region, elastic or linear region and fibre failure. The region of low strain corresponds to the gradual removal of a macroscopic crimp in the collagen fibrils and this is visible in the light microscope. The crimp has been shown to act as a buffer or a shock absorber, permitting small longitudinal elongation of individual fibrils without
damage to the tissue [79]. This phenomenon results in a very low stiffness [80]. The second stage starts at strains typically beyond 2%, the effective elastic modulus increases progressively and, therefore, it is called the heel region. X-ray studies have demonstrated D-period distance increasing and lateral molecular packing of collagen molecules within fibrils, occurring as a result of the straightening of kinks. The straightening of the kinks allows an elongation of the fibrils and a resulting reduction in entropic disorder, which provides the force acting against the elongation. The entropic forces increase as the number of kinks decreases leading to the typical upwards curvature of the stress-strain curve [81-83]. The elastic region starts when collagen is stretched beyond the heel region, most kinks are straightened out and no further extension is possible by the entropic mechanism described above [78]. For larger strains, the exact mechanism by which mechanical energy is translated into molecular and fibrillar deformation is still unclear; most probably, large strain rates indicate stretching of the triple helixes and slippage occurs, resulting in increases in the length of the gap region with respect to the length of the overlap region, implying a side-by-side gliding of proteoglycans matrix that is around collagen fibrils [78, 84]. During loading at large strains, collagen hierarchical structure is extensively deformed and fibrils could split into individual microfibrils. Then, the collagen network disrupts when several microfibrils break up, a process termed defibrillation [82, 85-88].

The mechanical properties of the cross-linked scaffolds also appeared to be method dependent, with EDC producing the most extendable scaffolds and GEN resulting in scaffolds with the highest force at break, stress at break and elastic modulus values. Although both GTA [71, 89-91] and EDC [92-94] have been reported repeatedly to produce scaffolds with superior mechanical properties to non-cross-linked
counterparts and/or other cross-linkers, our data are in agreement with previous observations, where GEN significantly improved mechanical resilience [95-98] of collagen-based scaffolds and EDC failed to yield scaffolds with similar strength to more potent cross-linkers [43, 99, 100]. With respect to deformation mechanism, typical stress-strain curves of collagen materials that yield and undergo plastic flow were observed. The low modulus of the toe region, which is succeeded by the non-linear stress-strain curve, has been attributed to reorientation and uncramping of the collagen fibrils and the initiation of stretching of the triple helix, the non-helical ends and the cross-links [36, 101-103].

With respect to human skin fibroblast compatibility assessment, none of the cross-linking methods affected cell morphology (in all cases, human skin fibroblasts maintained their spindle shaped morphology) and they were not cytotoxic (no significant reductions were detected in DNA concentration, cell viability and cell proliferation at a given time point between non-cross-linked and cross-linked scaffolds). Previous studies have reported both cytotoxic [104] and non-cytotoxic [105] effects of EDC and GTA cross-linked collagen scaffolds. These contradictory data suggest that the cross-linking concentration / post-cross-linking treatments (e.g. number, duration and composition of washing bath) should be optimised for a specific device to identify the optimal cross-linker concentration with the desired cell response.

Macrophage polarisation has been closely linked to their shape. For example, macrophage elongation has been associated with transition from a pro-inflammatory M1 phenotype into an anti-inflammatory M2 phenotype [18], whilst cell aggregates are indicative of fusogenic phenotype and foreign body response [26]. Qualitative cell shape analysis revealed that most THP-1 macrophages exhibited a round
morphology, whilst some elongated THP-1 cells were also identified. Further, THP-1 aggregates were also formed. Such heterogeneous macrophage populations have been reported previously, when mature human monocyte-derived macrophages were exposed to polyethylene particulate [106] and have been associated with macrophage phenotype variations [18, 107-109].

By day 2, all cross-linked scaffolds significantly reduced THP-1 DNA concentration; GTA, EDC and 4SP significantly reduced THP-1 metabolic activity; and GTA and 4SP significantly reduced THP-1 viability in comparison to the NCL samples. When macrophages treated with pre-conditioned media, NCL media significantly reduced THP-1 DNA concentration and metabolic activity, whilst cell viability was not affected. Reduction in cell proliferation, viability and metabolic activity as a function of cross-linking method employed indicates cytotoxicity, as has been observed previously for macrophages exposed to GTA cross-linked bovine pericardium-derived scaffold [12], but was not verified herein with dermal fibroblasts and was not verified with the pre-conditioned media. Although previous data have demonstrated the influence of substrate rigidity on macrophage response [110, 111], no clear correlation was observed herein between scaffold rigidity, as a function of the different cross-linking method utilised, and macrophage response. Previous studies have demonstrated the influence of surface topography and chemistry on macrophage response [112-115]. We believe that this may be the reason for the variable cell response to the various scaffolds, but more detailed analysis (e.g. scaffolds with very specific topography; cross-linkers with similar chemistry) is required to verify this assumption.

THP-1 cells seeded on collagen scaffolds secreted significant amounts of 1L-1β (pro-inflammatory), TNF-α (pro-inflammatory), IL-8 (pro-inflammatory) and VEGF
(pro-angiogenesis), with OLE samples exhibiting the highest IL-1β, TNF-α and IL-8 values and EDC and 4SP samples exhibiting the highest VEGF values. Previous studies have demonstrated high IL-1β, IL-6 and TNF-α secretion when GTA was used [116, 117]; this was not verified here due to the toxicity of the cross-linker [although GTA due to its self-polymerisation capacity can cross-link amines that are relatively far apart [118, 119], degradation products and unreacted GTA result in high cytotoxicity [29, 120] and calcification [121, 122]]. With respect to EDC, similarly to our work, previous studies have demonstrated comparable to the control bovine pericardium tissue pro-inflammatory cytokine profile [12]. In vitro data for GEN are not available, however previous in vivo studies have shown inflammatory response to GEN cross-linked bovine pericardium as a function of cross-linking concentration [123]. Although in our hands OLE films exhibited similar TNF-α production to LPS, previous studies have shown OLE to attenuate IL-1β, IL-6 and TNF-α secretion in LPS activated macrophages [124]. With respect to 4SP, in vitro data are available as yet, with respect to inflammatory response. To-date though, all published papers have shown promise in various clinical indications, including tendon [43], nucleus pulposus [35], cartilage [34, 125] and cornea [126].
Table 3.3. Summary table of the properties of the produced scaffolds to the performed assays. = denotes non-significant ($p > 0.05$) alterations with respect to the NCL group; ↑ denotes a significant ($p < 0.05$) increase with respect to NCL group; and ↓ denotes a significant ($p < 0.05$) reduction with respect to the NCL group. Treatments: non-cross-linked collagen film (NCL), collagen films cross-linked with glutaraldehyde (GTA), carbodiimide (EDC), 4-arm PEG succinimidyl glutarate (4SP), genipin (GEN) and oleuropein (OLE).

<table>
<thead>
<tr>
<th>Cross-linking agent</th>
<th>GTA</th>
<th>EDC</th>
<th>4SP</th>
<th>GEN</th>
<th>OLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>↓</td>
<td>↓</td>
<td>=</td>
<td>=</td>
<td>↓</td>
</tr>
<tr>
<td>Free amine</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Denaturation temperature</td>
<td>↑</td>
<td>=</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Enzymatic degradation</td>
<td>↑</td>
<td>=</td>
<td>↑</td>
<td>↑</td>
<td>=</td>
</tr>
<tr>
<td>Cross-linking agent</td>
<td>GTA</td>
<td>EDC</td>
<td>4SP</td>
<td>GEN</td>
<td>OLE</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Mechanical properties</td>
<td>Stress at break =</td>
<td>Stress at break ↓</td>
<td>Stress at break =</td>
<td>Stress at break ↑</td>
<td>Stress at break ↑</td>
</tr>
<tr>
<td></td>
<td>Strain at break ↓</td>
<td>Strain at break ↑</td>
<td>Strain at break ↓</td>
<td>Strain at break ↓</td>
<td>Strain at break ↓</td>
</tr>
<tr>
<td></td>
<td>E modulus ↑</td>
<td>E modulus ↓</td>
<td>E modulus =</td>
<td>E modulus ↑</td>
<td>E modulus ↑</td>
</tr>
<tr>
<td>In vitro fibroblast response</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>In vitro macrophage response to direct contact</td>
<td>Proliferation ↓</td>
<td>Proliferation ↓</td>
<td>Proliferation ↓</td>
<td>Proliferation ↓</td>
<td>Proliferation ↓</td>
</tr>
<tr>
<td></td>
<td>Metabolic activity ↓</td>
</tr>
<tr>
<td></td>
<td>Viability ↓</td>
<td>Viability =</td>
<td>Viability =</td>
<td>Viability =</td>
<td>Viability =</td>
</tr>
<tr>
<td>Cross-linking agent</td>
<td>GTA</td>
<td>EDC</td>
<td>4SP</td>
<td>GEN</td>
<td>OLE</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>In vitro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrophage response to direct contact</td>
<td>Pro-inflammatory cytokine ↓ (only IL-8)</td>
<td>Pro-inflammatory cytokine ↓</td>
<td>Pro-inflammatory cytokine =</td>
<td>Pro-inflammatory cytokine =</td>
<td>Pro-inflammatory cytokine ↑</td>
</tr>
<tr>
<td></td>
<td>Proliferation ↑</td>
<td>Proliferation ↑</td>
<td>Proliferation ↑</td>
<td>Proliferation ↑</td>
<td>Proliferation ↑</td>
</tr>
<tr>
<td></td>
<td>Metabolic activity ↑</td>
</tr>
<tr>
<td></td>
<td>Viability =</td>
<td>Viability =</td>
<td>Viability =</td>
<td>Viability =</td>
<td>Viability =</td>
</tr>
<tr>
<td></td>
<td>Pro-inflammatory cytokine ↑</td>
<td>Pro-inflammatory cytokine =</td>
<td>Pro-inflammatory cytokine =</td>
<td>Pro-inflammatory cytokine =</td>
<td>Pro-inflammatory cytokine ↑ (only IL-8)</td>
</tr>
</tbody>
</table>
3.5. Conclusions

During the extraction and purification of collagen, native cross-linking is degraded. In order to reinstate integrity to reconstituted forms of collagen, exogenous cross-links are incorporated into the supramolecular structure, primarily through chemical approaches. However, traditional cross-linking methods (e.g. glutaraldehyde, carbodiimide) are often linked to poor cytocompatibility, high inflammation and poor tissue integration. Herein we assessed the stability and biological response of collagen-based devices stabilised with glutaraldehyde, carbodiimide, 4-arm polyethylene glycol succinimidyl glutarate, genipin and oleuropein. All cross-linking methods reduced free amine groups. Denaturation temperature, resistance to collagenase digestion and mechanical properties were cross-linking method dependent. No significant differences were observed between the treatments in fibroblast cultures. Only the glutaraldehyde-cross-linked scaffolds were cytotoxic to human derived leukemic monocyte cells, whilst cultures supplemented with conditioned media from the various groups showed no significant difference between the treatments. No significant difference in pro-inflammatory and anti-inflammatory cytokines was observed between the non-cross-linked and the 4-arm polyethylene glycol succinimidyl glutarate and genipin cross-linked groups, suggesting the suitability of these agents as collagen cross-linkers.
3.6. References

Chapter 4: Collagen sterilisation

Sections of this chapter are under submission at:

4.1. Introduction

Collagen is widely used in tissue engineering due to its natural composition, well-tolerated degradation products, suitable mechanical stability and appropriate biological response [1-3]. International standards are in place to govern/ regulate medical devices sterilisation [4-8], including collagen [9]. Similarly to any other implantable device, ensuring sterility of collagen-based devices is essential for the device success and safety. However, there is no gold standard sterilisation method for collagen-based devices; the selection of the most appropriate sterilisation method is device-dependent and is determined primarily by the physical state of the device and the influence of the sterilisation treatment on the properties of the device to be sterilised [10].

Given the thermosensitive nature of collagen, common sterilisation methods, such as dry heat or steam, cannot be used, as they would denature it. As such, physical (e.g. gamma or e-beam irradiation) and chemical (e.g. ethylene oxide) are the sterilisation methods of choice. However, all come with drawbacks. Gamma irradiation, for example, has been shown to cause structural changes and to induce significant reduction in mechanical properties, resistance to degradation and cell attachment [11-13]. E-beam irradiation at low and high doses significantly decreased the ultimate strain and toughness of human cortical bone [14], whilst high doses of e-beam irradiation negatively impacted on bone regeneration of octacalcium phosphate collagen composites [15]. Ethylene oxide has been shown to reduce stability and cell attachment of collagen-based devices [13, 16]. In recent years, sterilisation through hydrogen peroxide gas plasma has been advocated, as it can be conducted at temperatures (< 50 °C) well tolerated even by non-cross-linked collagen devices [17] and has demonstrated minimal detrimental effects in comparison to ethylene oxide.
sterilisation [18, 19]. Ethanol / alcohol treatments are also gaining pace, as they do not affect structural, degradation and mechanical properties [20-22]. It is however worth noting that alterations in pore size, due to shrinkage, have been reported [21, 23] and it is not used extensively in clinical setting, as it cannot eliminate spores and viruses [24]. Considering that sterilisation treatments may negatively impact on the mechanical and enzymatic stability of collagen-based devices, cross-linking thereof has been proposed as means to minimise the damage [25-27]. However, cross-linking influences biological responses, including inflammatory and wound healing processes [28]. It is therefore essential to correlate the influence of cross-linking / sterilisation method on the properties of collagen-based devices. Herein, we assessed the influence of no sterilisation (NS) and gas plasma (GP), gamma irradiation (GI), ethylene oxide (EO) and ethanol (ET) sterilisation on the biophysical, biochemical and biological properties of non-cross-linked (NCL) and cross-linked with 4-arms polyethylene glycol succinimidyl glutarate (4SP) and genipin (GEN) collagen films. We chose 4SP [29-32] and GEN [33-36], as their beneficial effects in the stabilisation of collagen-based devices have been well documented in the literature.
4.2. Materials and methods

4.2.1. Materials

Bovine Achilles tendons were collected from a local abattoir (steers aged 24 months). 4SP (Mw 10 kDa) and GEN were purchased from JenKem Technology (USA) and Challenge Bioproducts (Taiwan), respectively. All other materials and reagents were purchased from Sigma-Aldrich (Ireland), unless otherwise stated.

4.2.2. Collagen type I isolation and film fabrication

Bovine type I collagen was extracted as has been described previously [37] with slight modifications. Briefly, bovine Achilles tendons were cryomilled, washed with 1x phosphate buffered saline (PBS) solution and dissolved in 1.0 M acetic acid with 80 U / mg wet weight tendon of pepsin from porcine gastric mucosa (lyophilized powder, 3,200-4,500 units/mg protein) at 4 °C. The supernatant obtained following filtration (1 mm pore size nylon screen) and centrifugation (9,000 rpm at 4 °C, Thermo Fisher Scientific, Ireland) was purified by repeated salt precipitation (0.9 M NaCl), centrifugation (9,000 rpm at 4 °C) and re-suspension in 1.0 M acetic acid. Finally, the resultant atellocollagen solution was dialysed (Mw 8,000 cut off) against 1 mM acetic acid; the collagen concentration was adjusted to ~6 mg/ml and kept at 4 °C.

Collagen films were fabricated and cross-linked as has been described previously [30, 33] with slight modifications. Briefly, 10 ml 10x PBS, 3-4 ml of 1.0 M NaOH, 100 ml of collagen (6 mg/ml) and 5 ml of 4SP (20 mM in x1 PBS) or 5 ml of GEN (0.625 % in x1 PBS) were mixed together in ice (final solution pH ~7.3). The solutions were placed in silicone moulds and incubated at 37 °C for 1 h to induce
self-assembly. The films were let to evaporate overnight at 25 °C. Non-cross-linked (NCL) films were used as control.

4.2.3. Collagen film sterilisation

Collagen films were sterilised as follows using the minimum dose reported to obtain sterile films: Gas plasma (GP) of 58 % hydrogen peroxide at 6 mg/l for 45 min diffusion and 20 min radiofrequency excitation [18, 38]; Gamma irradiation (GI) at 8.8 kGy at room temperature [39, 40]; Ethylene oxide (EO) at 750 mg/ml at 40 °C for 12 h [41, 42] and 70 % ethanol (ET) for 30 min at room temperature [31, 43]. Non-sterile (NS) films were used as control. The sterilisation cycle of GP and GI was ensured with a dosimeter indicator. The sterility of each treatment was confirmed as per ISO 11737-2:2009 [6]. Briefly, collagen films were incubated in tryptic soy broth (TSB) at 37 °C for 7 and 14 days. Sterile TSB medium was used as negative control. TSB medium, inoculated with 10 colony forming units (CFU) per ml of *Escherichia coli* (Catalogue Number: 25922, ATCC, UK), was used as positive control. Sterile samples should maintain medium transparency, whilst non-sterile samples should show turbidity. In our case, no sample showed microbial growth (Figure 4.1).
Figure 4.1. Sterility assessment as a function of cross-linking method and sterilisation treatment. No sample showed microbial growth.
4.2.4. Structural characterisation

Morphological characterisation was conducted using a stereo microscope (SZX16, Olympus, UK) and a Hitachi S-4700 scanning electron microscope (SEM, Hitachi, UK). Prior to SEM analysis, collagen films were incubated in 1x PBS overnight, dehydrated in increasing ethanol concentrations (50 %, 70 %, 90 %, 96 % and 100 %) and gold-coated (Emitech K-550X Sputter Coater, Emitech, UK).

4.2.5. Quantification of swelling capacity

Collagen films were incubated in 1x PBS at room temperature overnight. Prior to being weighed, films were quickly blotted with filter paper to remove excess surface water. The swelling ratio (%) was calculated as [(wet weight – dry weight) / dry weight] * 100 %.

4.2.6. Quantification of enzymatic degradation

Resistance to enzymatic degradation was assessed as described previously [44]. Briefly, collagen films were weighed and hydrated for 2 h in 0.1 M Tris-HCl and 5 mM CaCl$_2$ at pH 7.4. Subsequently, the films were incubated with bacterial collagenase type IV ($Clostridium histolyticum$), previously reconstituted in the same buffer at 10 U/ml. After 24 h of incubation at 37 °C, centrifugation was carried out (10,000 g for 5 min), the supernatant was removed, and the remaining films were freeze-dried and weighed. Enzymatic degradation was quantified as a percentage of remaining mass using the following equation: % Remaining mass = $[1 - (\text{Initial weight} - \text{Final weight}) / \text{Initial weight}]$ * 100 %.
4.2.7. Quantification of solubility

Collagen film solubility was assessed via sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and complementary densitometric analysis [45, 46], as has been described previously [47]. Briefly, collagen films were suspended in 1 M acetic acid solution containing 1 mg/ml pepsin from porcine gastric mucosa (lyophilized powder, 3,200-4,500 units/mg protein) at 1 mg/ml concentration for 7 days. The bovine type I collagen solution from which the films were made was used as control. A 3 % stacking gel and a 5 % separation gels were used in a Mini-Protean® 3 apparatus (Bio-Rad Laboratories, UK). Protein bands were stained using the SilverQuest™ kit (Invitrogen, USA) according to the manufacturer's protocol. Densitometric analysis of gels was performed using Image J software (National Institute of Health, USA). Collagen bands were quantified by defining each band with the rectangular tool with background subtraction.

4.2.8. Quantification of denaturation temperature

The denaturation temperature was studied using a differential scanning calorimeter (DSC-60, Shimadzu, Japan), as has been described previously [48]. Briefly, collagen films were incubated in 1x PBS at room temperature overnight and then they were quickly blotted using filter paper to remove unbound surface PBS. Following this, samples were hermetically sealed in aluminium crucibles (Mettler Toledo, UK) and were subjected to a single constant heating ramp at 5 °C/min in the range of 25 to 90 °C. An empty pan was used as reference. The endothermic transition was recorded as a typical peak. The onset (temperature at which the tangent to the initial power versus temperature line crosses the baseline) and peak (temperature of maximum
power absorption during denaturation) temperatures, as well as the denaturation enthalpy (area under the denaturation peak, using a straight base line) were recorded.

4.2.9. Quantification of mechanical properties

Uniaxial tensile test of wet films was performed using an electromechanical testing machine (Z2.5, Zwick, Germany) as has been described previously [49, 50] with slight modifications. Briefly, uniform strips were prepared and their width and thickness were measured using a micrometre. The grips of the testing machine were covered with a rubber film to avoid breakage at contact points; samples that broke at contact points were excluded. The grips were set at 20 mm distance. The samples were tested to complete failure (deformation rate of 10 mm/min, 10 N static load cell). The following parameters were assessed: force at break, stress at break, strain at break and elastic modulus.

4.2.10. Human skin fibroblast and macrophage response

Basic cell response was assessed using WS1 human skin fibroblasts (ATCC, UK) and THP1 human derived leukemic monocyte cells (ATCC, UK). WS1 fibroblasts were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10 % foetal bovine serum (FBS) and 1 % penicillin and streptomycin. WS1 fibroblasts were seeded onto the samples at 16 x 10³ cells/cm² density and incubated at 37 °C, 5 % CO₂ and 95 % humidified air for 1, 3 and 7 days. THP1 cells were grown in RPMI-1640 media supplemented with 10 % FBS and 1 % penicillin and streptomycin. THP1 cells were seeded onto the samples at 26 x 10³ cells/cm² density and mature macrophage-like state was induced through treatment with phorbol 12-myristate 13-acetate (PMA) at 100 ng/ml for 6 h, as has been described previously.
[51-53]. Subsequently, adherent cells were washed with Hanks’ Balanced Salt solution (HBSS) and incubated with supplemented media at 37 °C, 5 % CO₂ and 95 % humidified air for 1 and 2 days. Activated positive control phenotype was induced with 100 ng/ml of LPS in supplemented media for 24 h. Cell proliferation was assessed using Quant-iT™ PicoGreen® dsDNA kit (Invitrogen, USA), as per manufacturer's guidelines. Cell metabolic activity was assessed after 2 h incubation at 37 °C with 10 % alamarBlue® (Invitrogen, USA), as per manufacturer's protocol. Cell metabolic activity was expressed in terms of % reduction of alamarBlue® and normalised considering metabolic activity of cells in tissue culture plastic (TCP) at each time point as 100 %. Cell viability was quantified using CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, USA) to measure released lactate dehydrogenase (LDH) in the supernatant from dead cells.

4.2.11. Statistical analysis

All experiments were carried out in triplicate, except swelling, denaturation temperature and tensile test assays which were carried out in quintuplicate. Numerical data are expressed as mean ± standard deviation. Statistical analysis was performed using MINITAB® (version 16.2, Minitab Inc., USA). One way analysis of variance (ANOVA) followed by Fisher’s post-hoc test were employed after confirming normal distribution from each sample population (Anderson-Darling normality test) and the equality of variances (Bartlett’s and Levene’s tests for homogeneity of variance). Nonparametric statistics were used when either or both of the above assumptions were violated and, consequently, Kruskal-Wallis for multiple comparison analysis or Mann-Whitney test for 2-samples were carried out. Statistical significance was accepted at $p < 0.05$.

242
4.3. Results

4.3.1. Structural characterisation

NS NCL and 4SP films were colourless and completely transparent; whilst the GEN films were dark blue and totally opaque (Figure 4.2). Following sterilisation, EO-4SP films became brownish and semi-transparent (gross visual assessment), whilst no macroscopic differences were observed in the other treatments (Figure 4.2). SEM analysis revealed similar surface morphology for all NS treatments (Figure 4.3). Sterilisation differentially affected the surface morphology of the collagen films: GP altered the morphology of NCL and 4SP films; GI altered the morphology of GEN films; EO altered the morphology of 4SP films; and ET altered the morphology of NCL and 4SP films (Figure 4.3). Moreover, GP induced wrinkles in the 4SP films that could be associated with collagen mass loss due to the gas treatment (the weight variation induced by each sterilisation method was not studied in this study).
Figure 4.2. Qualitative morphology assessment as a function of cross-linking method and sterilisation treatment. NS NCL and 4SP films were colourless and transparent, whilst GEN produced dark blue films. After sterilisation, the EO-4SP films became brownish, whilst no macroscopic differences were observed in the other treatments.
Figure 4.3. Scanning electron micrographs of collagen films as a function of cross-linking method and sterilisation treatment. Cross-linking did not affect the morphology of the non-sterilised samples. Sterilisation differentially affected the surface morphology of the collagen films.
4.3.2. Swelling, enzymatic degradation, solubility and denaturation temperature characterisation

GP sterilisation significantly increased ($p < 0.001$) the swelling ratio of the NCL and the 4SP films, whilst no significant difference ($p > 0.05$) was observed as a function of the sterilisation method for the GEN films (Figure 4.4a). Collagenase degradation analysis via weigh loss revealed that only the enzymatic resistance of the GP 4SP films was significantly ($p < 0.001$) decreased (Figure 4.4b). SDS-PAGE (Figure 4.5a) and complementary densitometric (Figure 4.5b) analysis revealed no solubility for the 4SP and GEN treated samples, whilst between the NCL samples, NS, ET and GI exhibited the highest solubility ($p < 0.001$). DSC analysis (Table 4.1) revealed that between the NCL treatments, GP and EO significantly ($p < 0.001$) decreased the denaturation temperature of the films; between the 4SP treatments, the GP and the EO significantly ($p < 0.001$) decreased the denaturation temperature of the films; and between the GEN treatments, only the GP significantly ($p < 0.05$) decreased the denaturation temperature of the films.
Figure 4.4. Swelling and enzymatic resistance as a function of cross-linking method and sterilisation treatment. (a) GP sterilisation significantly increased ($p < 0.001$) % swelling for the NCL and 4SP groups. For the GEN group, no significant difference ($p > 0.05$) was observed between the different sterilisation methods. (b) No significant difference, between the sterilisation methods, was observed in susceptibility to collagenase digestion for the NCL and GEN samples ($p > 0.05$). Within the 4SP sample, the GP treated exhibited the lowest ($p < 0.001$) resistance to collagenase digestion.
Figure 4.5. Solubility assessment as a function of cross-linking method and sterilisation treatment. SDS-PAGE (a) and complementary densitometric analysis (b) revealed no detectable (ND) differences in solubility of the 4SP and GEN films as a function of the sterilisation method. Within the NCL films, the highest ($p < 0.001$) solubility was observed for the GP and EO treated films.
Table 4.1. Differential scanning calorimetry data of collagen films as a function of cross-linking method and sterilisation treatment. In general, GP treatment yielded films with the lowest denaturation temperature, independently of the cross-linking state. *: Significant difference at $p < 0.001$. #: Significant difference at $p < 0.05$.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Onset temperature (°C)</th>
<th>Peak temperature (°C)</th>
<th>Energy (J/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS NCL</td>
<td>47.5 ± 0.5</td>
<td>51.3 ± 1.1</td>
<td>7.7 ± 1.4</td>
</tr>
<tr>
<td>GP NCL</td>
<td>33.4 ± 3.6*</td>
<td>43.7 ± 1.1*</td>
<td>11.3 ± 0.9*</td>
</tr>
<tr>
<td>GR NCL</td>
<td>46.6 ± 1.1</td>
<td>50.4 ± 0.3</td>
<td>8.7 ± 1.1</td>
</tr>
<tr>
<td>EO NCL</td>
<td>41.6 ± 0.5*</td>
<td>46.0 ± 0.9*</td>
<td>8.6 ± 1.1</td>
</tr>
<tr>
<td>ET NCL</td>
<td>46.7 ± 0.1</td>
<td>50.8 ± 0.1</td>
<td>6.9 ± 0.3</td>
</tr>
<tr>
<td>NS 4SP</td>
<td>51.3 ± 2.2</td>
<td>56.6 ± 3.6</td>
<td>2.4 ± 1.4</td>
</tr>
<tr>
<td>GP 4SP</td>
<td>29.7 ± 4.0*</td>
<td>37.2 ± 2.2*</td>
<td>5.4 ± 0.9*</td>
</tr>
<tr>
<td>GR 4SP</td>
<td>51.6 ± 1.8</td>
<td>57.1 ± 0.8</td>
<td>1.2 ± 0.0</td>
</tr>
<tr>
<td>EO 4SP</td>
<td>44.1 ± 1.2*</td>
<td>47.7 ± 0.9*</td>
<td>1.8 ± 0.2</td>
</tr>
<tr>
<td>ET 4SP</td>
<td>51.5 ± 2.1</td>
<td>57.4 ± 5.8</td>
<td>0.9 ± 0.5</td>
</tr>
<tr>
<td>NS GEN</td>
<td>70.3 ± 0.9</td>
<td>73.8 ± 0.9</td>
<td>1.5 ± 0.2</td>
</tr>
</tbody>
</table>
Condition

<table>
<thead>
<tr>
<th>Condition</th>
<th>Onset temperature (ºC)</th>
<th>Peak temperature (ºC)</th>
<th>Energy (J/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP GEN</td>
<td>63.5 ± 6.3#</td>
<td>69.2 ± 1.5#</td>
<td>2.1 ± 0.5</td>
</tr>
<tr>
<td>GR GEN</td>
<td>70.2 ± 2.2</td>
<td>73.0 ± 0.9</td>
<td>1.4 ± 0.4</td>
</tr>
<tr>
<td>EO GEN</td>
<td>69.3 ± 2.8</td>
<td>73.4 ± 2.7</td>
<td>1.4 ± 1.3</td>
</tr>
<tr>
<td>ET GEN</td>
<td>69.3 ± 0.7</td>
<td>73.1 ± 0.7</td>
<td>1.6 ± 0.5</td>
</tr>
</tbody>
</table>
4.3.3. Biophysical assessment

In general, similar in shape (a small toe region, followed by a rising stress region and a long region of constant gradient until fracture) stress-strain curves were obtained for all treatments, but NCL GP, 4SP GP and 4SP EO, which failed too early (Figure 4.6). The GEN treatments exhibited a steeply rising stress region (Figure 4.6). Table 4.2 provides the biomechanical data of the produced scaffolds. Within the NCL groups, the GP treatment resulted in the lowest ($p < 0.05$) stress, strain and force at break and elastic modulus values, whilst the GI treatment resulted in the second lowest ($p < 0.05$) strain at break values. Within the 4SP cross-linked groups, the EO treatment resulted in the lowest ($p < 0.05$) stress, strain and force at break and elastic modulus values, whilst the GP treatment resulted in the second lowest ($p < 0.05$) stress, strain and force at break values. Within the GEN groups, the GP treatment resulted in the lowest ($p < 0.05$) stress and strain at break and elastic modulus values.
Figure 4.6. Indicative stress-strain curves as a function of cross-linking method and sterilisation treatment. In general, similar in shape (a small toe region, followed by a rising stress region and a long region of constant gradient until fracture) stress-strain curves were obtained for all treatments, apart from the NCL GP, 4SP GP and 4SP EO, which failed too early. The GEN films exhibited a steeply rising stress region.
Table 4.2. Tensile test data of collagen films as a function of cross-linking method and sterilisation treatment. GP treatment yielded films with the lowest mechanical properties for the NCL and GEN films. For the 4SP, the EO yielded the lowest in mechanical properties films. *: Significant difference at $p < 0.001$. #: Significant difference at $p < 0.05$.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Stress at break (MPa)</th>
<th>Strain at break (%)</th>
<th>Force at break (N/cm)</th>
<th>E Modulus (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS NCL</td>
<td>2.08 ± 0.74</td>
<td>51.94 ± 8.11</td>
<td>2.54 ± 0.67</td>
<td>2.43 ± 0.44</td>
</tr>
<tr>
<td>GP NCL</td>
<td>0.66 ± 0.20*</td>
<td>7.40 ± 2.55*</td>
<td>0.92 ± 0.29*</td>
<td>0.35 ± 0.15*</td>
</tr>
<tr>
<td>GR NCL</td>
<td>3.33 ± 0.48</td>
<td>27.74 ± 7.95*</td>
<td>3.54 ± 0.65</td>
<td>4.14 ± 0.73#</td>
</tr>
<tr>
<td>EO NCL</td>
<td>2.19 ± 0.31</td>
<td>40.45 ± 7.89</td>
<td>3.49 ± 0.6</td>
<td>2.92 ± 0.30</td>
</tr>
<tr>
<td>ET NCL</td>
<td>2.31 ± 0.28</td>
<td>42.09 ± 3.53</td>
<td>2.70 ± 0.58</td>
<td>3.39 ± 0.52</td>
</tr>
<tr>
<td>NS 4SP</td>
<td>1.57 ± 0.43</td>
<td>48.38 ± 14.98</td>
<td>6.06 ± 1.55</td>
<td>1.62 ± 0.42</td>
</tr>
<tr>
<td>GP 4SP</td>
<td>0.29 ± 0.19*</td>
<td>14.79 ± 9.00*</td>
<td>0.81 ± 0.49*</td>
<td>1.36 ± 0.50</td>
</tr>
<tr>
<td>GR 4SP</td>
<td>1.23 ± 0.21</td>
<td>33.21 ± 7.91</td>
<td>4.61 ± 0.77</td>
<td>1.91 ± 0.26</td>
</tr>
<tr>
<td>EO 4SP</td>
<td>0.13 ± 0.06*</td>
<td>6.21 ± 3.23*</td>
<td>0.45 ± 0.20*</td>
<td>0.97 ± 0.12*</td>
</tr>
<tr>
<td>ET 4SP</td>
<td>2.35 ± 0.63</td>
<td>43.02 ± 8.89</td>
<td>6.25 ± 2.00</td>
<td>1.96 ± 0.20</td>
</tr>
<tr>
<td>Condition</td>
<td>Stress at break (MPa)</td>
<td>Strain at break (%)</td>
<td>Force at break (N/cm)</td>
<td>E Modulus (MPa)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>NS GEN</td>
<td>8.19 ± 1.56</td>
<td>27.41 ± 3.54</td>
<td>7.28 ± 1.12</td>
<td>25.27 ± 3.33</td>
</tr>
<tr>
<td>GP GEN</td>
<td>4.48 ± 1.43#</td>
<td>19.98 ± 2.55#</td>
<td>5.54 ± 2.19</td>
<td>12.16 ± 2.15#</td>
</tr>
<tr>
<td>GR GEN</td>
<td>8.09 ± 0.89</td>
<td>22.28 ± 3.48</td>
<td>8.44 ± 1.48</td>
<td>21.84 ± 3.09</td>
</tr>
<tr>
<td>EO GEN</td>
<td>8.73 ± 1.64</td>
<td>23.90 ± 6.38</td>
<td>7.98 ± 0.82</td>
<td>26.43 ± 3.13</td>
</tr>
<tr>
<td>ET GEN</td>
<td>8.47 ± 2.15</td>
<td>22.93 ± 5.88</td>
<td>8.29 ± 2.08</td>
<td>22.93 ± 3.04</td>
</tr>
</tbody>
</table>
4.3.4. Biological assessment

Phase contrast microscopy analysis demonstrated that human skin fibroblasts maintained their spindle-shaped morphology, independently of the cross-linking method, sterilisation method or culture time (Figure 4.7). DNA concentration, metabolic activity and viability of human skin fibroblasts were not affected ($p > 0.05$) as a function of cross-linking method or sterilisation treatment (Figure 4.8).

Regarding to THP1 cells, phase contrast microscopy analysis revealed that most macrophages, independently of the cross-linking method, sterilisation treatment and time in culture, adopted a round morphology (Figure 4.9). Only the 4SP films did not exhibit under any sterilisation method elongated cells after 2 days in culture (Figure 4.9). Only the 4SP films, independently of the sterilisation method, promoted macrophage aggregates (5 or more cells) after 2 days in culture (Figure 4.9). DNA concentration, metabolic activity and viability were significantly ($p < 0.05$) reduced as a function of the cross-linking method, but they were not statistically ($p > 0.05$) affected as a function of the sterilisation treatment (Figure 4.10).
Figure 4.7. Phase contrast microscopy of human skin fibroblasts as a function of cross-linking method and sterilisation treatment. The cells maintained their spindle-shaped morphology, independently of the cross-linking method, sterilisation method or culture time.
Figure 4.8. Biological assessment, using human skin fibroblasts, as a function of cross-linking method and sterilisation treatment. No significant difference ($p > 0.05$) was observed in DNA concentration (a), metabolic activity (b) and cell viability (c).
Figure 4.9. Phase contrast microscopic images of THP1 cells as a function of cross-linking method and sterilisation treatment. Most macrophages, independently of the cross-linking method, sterilisation treatment and time in culture, adopted a round morphology. Only the 4SP films did not exhibit under any sterilisation method elongated cells after 2 days in culture. Only the 4SP films, independently of the sterilisation method, promoted macrophage aggregates (5 or more cells) after 2 days in culture. Black arrows: elongated cells. White arrows: cell aggregates.
Figure 4.10. Biological assessment, using THP1 cells, as a function of cross-linking method and sterilisation treatment. 4SP significantly reduced ($p < 0.001$) DNA concentration (a), metabolic activity (b) and cell viability (c), whilst GEN significantly reduced ($p < 0.001$) DNA concentration and cell viability, in comparison to the NCL groups. No significant differences ($p > 0.05$) were observed between the sterilisation methods for a given cross-linking state.
4.4. Discussion

Currently available sterilisation treatments are associated with either toxicity (e.g. chemical treatments) or degradation (e.g. physical treatments) of collagen-based devices [10]. Similarly, current potent chemical cross-linking methods (e.g. glutaraldehyde, carbodiimide) of collagen are associated with toxicity and inflammation at the effective concentration [28]. Although the cross-linking potential of 4SP [29-32] and GEN [33-36] has been well-established, their capacity to protect collagen-based devices against sterilisation-induced degradation has yet to be assessed.

Starting with structural analysis, it became apparent that both chemical (EO and ET) and physical (GP, GI) methods were capable of altering the surface morphology of both NCL and 4SP and GEN cross-linked collagen films. In contrast to our data, previous studies have shown EO to not alter the porous structure of collagen sponges [54] and cylindrical collagen scaffolds with longitudinally oriented pore channels [27]. However, EO treatment yielded aggregation of gentamicin loaded PLGA micro-particles, carried by a collagen device, resulting in increased initial release of gentamicin [55]. Similarly to our observations, ET treatment has been shown to induce morphological changes due to dehydration / shrinkage of collagen-based materials [21, 23]; GP has been shown to modify the surface morphology of PCL films [56]; and GI has been shown to damage the structure of various non-cross-linked and cross-linked, even with glutaraldehyde, collagen-based devices [54, 57]. However, it is worth noting that neither morphological changes nor gentamicin release changes were observed when collagen / gentamicin-loaded PLGA micro-particles were subjected to GI treatment [55].
The physicochemical properties of the collagen films appeared to depend on the cross-linking and sterilisation method used. Cross-linking with 4SP was not sufficient to protect against collagenase degradation of GP sterilised collagen films. Cross-linking was not able to avoid thermal denaturation of EO (only for 4SP) and GP (for 4SP and GEN) sterilised films. With respect to the biomechanical properties, within the 4SP groups, the EO and the GP treatments resulted in the lowest stress, strain and force at break values, whilst within the GEN groups, the GP treatment resulted in the lowest stress and strain at break and elastic modulus values. It is evidenced that the more potent the cross-linking method employed, the better the protection against sterilisation induced degradation. Herein, we observed that GEN induced higher stability than 4SP, as judged by higher denaturation temperature, stress at break and elastic modulus values, which is in agreement with previously published data [30]. The great stabilisation capacity of GEN has been attributed to its self-polymerisation capacity that results in efficient binding of primary amines, including those that are relatively far apart [58].

With respect to the influence of the various sterilisation methods on the stability of collagen-based devices, our data are both in agreement, but in contradiction as well, with previous observations. For example, in our hands, GP resulted in profound differences, which is in agreement [56] and disagreement [18, 19, 38] with previous publications. EO treatment of cylindrical collagen scaffolds with longitudinally oriented pore channels resulted in enhanced resistance to denaturation [27]. On the other hand, EO has been shown to decrease shrinkage temperature of non-cross-linked and cross-linked collagen devices [16] and to cause a moderate reduction of enzymatic stability and high reduction of mechanical properties of porcine urinary bladder matrix scaffolds [59]. In contrast to both above studies, no differences were
observed for EO treated collagen materials [18, 54]. GI has been shown to decrease thermal denaturation, but to not affect collagenase resistance and mechanical properties of cross-linked collagen preparations [11, 57, 60]. On the other hand, GI treatment has been shown to decrease resistance against enzymatic degradation [18, 54, 61] and, through chain scission, to decrease mechanical properties of non-cross-linked and cross-linked collagen devices [16, 62]. These contradictive data suggest that the sterilisation method is device dependent and should be appropriately optimised.

With respect to the human dermal fibroblasts cultures, neither the cross-linking method nor the sterilisation treatment appeared to have any effect, which is consistent with previous publications for EO [63-66], ET [66-68], GP [38, 69, 70] and GI [71-74] treated devices. Phase contrast microscopy analysis of THP1 macrophages revealed different polarisation phenotypes: M1 (round morphology; pro-inflammatory), M2 (elongated morphology; anti-inflammatory) and cell aggregates (foreign body response) [75, 76]. Such heterogeneous macrophage response has been previously reported as a function of different collagen cross-linking methods [30], clearly suggesting that the cross-linking method employed, as opposed to the sterilisation treatment used, is more potent modulator of immune response.
4.5. Conclusion

Terminal sterilisation treatments may induce detrimental alterations on the biochemical, biophysical and biological properties of biopolymers. Our data illustrate that gas plasma is not suitable for collagen-based devices. Ethylene oxide should be avoided in conjugation with 4-arms polyethylene glycol succinimidyl glutarate cross-linking, as it significantly alters the mechanical properties of the device. No biomechanical differences were observed for genipin cross-linked and ethylene oxide sterilised collagen-based materials. Gamma irradiation and ethanol did not affect any of the assessed properties. No cytotoxic side effects were brought about by any of the cross-linkers / sterilisation methods. We believe that the cross-linker / sterilisation method to be used are clinical target specific and should be optimised accordingly.
4.6. References

Chapter 5: Summary and future studies
5.1. Summary

The extracellular matrix has native biophysical, biochemical and biological properties, which provide cell support, protection and signalling that determine cell behaviour [1, 2]. Therefore, tissue engineering strategies focus on developing biomaterials that mimic extracellular matrix properties. In this sense, collagen-based materials are attractive due to their natural composition, well-tolerated degradation products and cell instructive cues [3, 4]. However, clinical translation and commercialisation are limited by some relevant challenges that need to be addressed, such as batch-to-batch variability [5], mechanical resilience [6], degradation resistance [7], cross-linking strategies that lead to a chronic inflammation or foreign body response instead of a more pro-wound healing response [8], or degradation during sterilisation treatments [9].

In this sense, macrophages have defined as a rapid response cell type with plasticity that support tissue repair [10]. Our aim was to assess the influence of collagen extraction, cross-linking and sterilisation on macrophage response to collagen-based devices.

The assessment of the different collagen extraction protocols (in chapter 2) revealed that pre- and post- extraction method variables have been shown to influence the biochemical properties of collagen and the in vitro macrophage response. Collagen extraction with acetic acid and pepsin exhibited the highest yield, purity and free amine content and the lowest denaturation temperature, with no differences in resistance to collagenase digestion. Although all treatments exhibited similar macrophage morphology comprised of round cells (M1 phenotype), elongated cells (M2 phenotype) and cell aggregates (foreign body response), significantly more elongated cells were observed on acetic acid films. Moreover, the most significant
finding herein was that hydrochloric acid treatments induced significantly higher release of pro-inflammatory cytokines (IL-1β and TNF-α) with respect to acetic acid treatments, while salt precipitation and pepsin treatment did not appear to influence the macrophage response. These findings indicate that acid strength, surface energy or ion presence may determine macrophage response.

Regarding the chemical cross-linking of collagen to enhance mechanical and enzymatic stability (in chapter 3), all cross-linking methods reduced free amine groups, showing some formation of covalent bonds between the free amine or carboxyl groups of collagen with the cross-linking agent. However, only 4-arm polyethylene glycol succinimidyld glutarate (4SP) and genipin cross-linking increased biochemical and biophysical resistance as glutaraldehyde cross-linking control. With respect to biological analysis, fibroblast cultures showed no significant differences between the cross-linking treatments. Although direct cultures with human macrophages clearly demonstrated the cytotoxic effect of glutaraldehyde, cultures supplemented with conditioned media from the various groups showed no significant differences between the different treatments. With respect to cytokine profile, no significant difference in secretion of pro-inflammatory (e.g. IL-1β, IL-8, TNF-α) and anti-inflammatory (e.g. IL-10, VEGF) cytokines was observed between the non-cross-linked and the 4-arm polyethylene glycol succinimidyld glutarate and genipin cross-linked groups, suggesting the suitability of these agents as collagen cross-linkers. Once more, the obtained results suggested that multifactorial approaches (e.g. collagen extraction optimisation, collagen self-assembling, collagen cross-linking) should be employed to modulate in vitro macrophage response.

Finally, chemical cross-linking was assessed as a tool to control degradation resistance to ethylene oxide, ethanol, gamma irradiation and gas plasma sterilisation.
Our data showed that gas plasma altered the structural, biophysical and biochemical properties of non-cross-linked collagen films and cross-linked counterparts with 4SP and genipin. On the other hand, ethylene oxide resulted in a significant reduction of the mechanical properties of the collagen films. However, gamma irradiation and ethanol sterilisation did not significantly affect thermal, degradation, solubility and mechanical properties of the collagen films. Regarding cell response, human skin fibroblast and macrophage cultures did not reveal any considerable differences as a function of the cross-linking method or sterilisation treatment. We believe that the choice of cross-linking and sterilisation method is device and clinical target dependent and should be optimised accordingly.

Overall, we provide evidence that mechanical and enzymatic resistance of collagen-based devices, such as films, can be improved without compromising human macrophage response or wound healing by controlling collagen extraction and purification, self-assembling, cross-linking, sterilisation, among other parameters. This work provides a new perspective in the field of tissue engineering by demonstrating that fabrication parameters of collagen scaffolds are specific for each clinical indication and they should be optimised accordingly.
5.2. Future studies

The design of bioengineered biomaterials for tissue engineering that can modulate macrophage polarisation to pro-healing and tissue remodelling functions is still under investigation [11]. We explored some of the factors, such as collagen extraction method, exogenous cross-linking or ultimate sterilisation, which can affect inflammatory response upon a reconstituted collagen-based scaffold upon implantation. However, other factors could have an effect on macrophage response such as collagen source, scaffold form and structure, topography, degradation period and products, substrate stiffness, among other factors. Moreover, there are several remarkable strategies in tissue engineering (such as controlled release of growth factors, gene vectors or small molecule drugs) that could be used to modulate macrophage response and consequently enhance tissue repair. Based on the findings and limitations encountered during this thesis, some project proposals are formulated in this section.

5.2.1. Structured collagen films to control macrophage response

Biophysical features, such as stiffness, topographical patterns, pore size or fibre diameter have been demonstrated to impact macrophage function. Regarding the influence of stiffness on macrophage function, macrophages showed a preferential phagocytosis through the stiffest polyacrylamide particles [12], higher spreading and elasticity on the stiffest polyacrylamide gels [13, 14] and increased pro- and anti-inflammatory cytokines in vitro and thicker fibrotic encapsulation in vivo at stiffest polyethylene glycol–RGD hydrogels (840 kPa) in comparison to the softer hydrogels (130 kPa) [15]. Moreover, topographical patterns on poly(dimethyl siloxane) or Pluronics F127 with fibronectin demonstrated to control macrophage function and
polarisation [16, 17]. Similarly, pore size or fibre diameter and alignment at poly(2-hydroxyethyl methacrylate-co-methacrylic acid) or poly(L-lactic) scaffolds determined macrophage phenotype [18-20]. It is imperative to identify the optimal biophysical features for collagen-based devices in order to modulate macrophage response and to enhance wound healing.

It can be hypothesised that biophysically engineered collagen films will preferentially promote macrophage polarisation from M1 phenotype to M2 phenotype, whilst maintaining mechanical and enzymatic resistance. The influence of collagen stiffness on macrophage response can be assessed using hydrogels with different collagen concentrations and compared to polyacrylamide hydrogels coated with a monolayer of collagen. Collagen stiffness can be also controlled using different degree of cross-linking. Topographical features (groove or pins with different sizes and distribution) can be introduced by soft-lithography onto collagen films alone or in combination with the optimised collagen stiffness to control macrophage response. The influence of pore size on macrophage response can be studied using moulds with pins. Alternatively, pore size could be assessed using collagen sponges obtained by controlled freeze-drying [21].

5.2.2. Functionalised collagen films to control macrophage response

Macrophage response is highly sensitive to biochemical and biological signals [22, 23]. Among others, biomaterial functionalisation approaches with glycosaminoglycans (GAGs), proteoglycans (PGs) and/or carbohydrates (CHs) are extensively studied as means to modulate macrophage response [24-26]. GAGs, PGs and CHs have the specific function of cytokine and growth factor retention due to
their specific binding sites [27-30]. The sulphate group and the extent of sulphation dramatically influence cytokine and growth factor retention [30, 31].

It can be hypothesised that functionalised collagen films will induce a pro-wound healing macrophage M2 phenotype, whilst maintaining collagen fibrillar structure and enzymatic resistance. Different sulphated and non-sulphated GAGs and CHs (e.g. hyaluronic acid, heparin sulphate, chondroitin sulphate, dermanan sulphate, Ficoll, carrageenan), as well as PGs will be incorporated into collagen solution before self-assembly and their influence on the structural, biophysical, biochemical and biological properties of collagen-based biomaterials will be assessed.

5.2.3. Controlled release of therapeutics to control macrophage response

In designing an immune-modulated and regenerative biomaterials, the most targeted method is the controlled release of IL-4 or IL-10 cytokines or DNA plasmids, as these anti-inflammatory cytokines can induce macrophage polarisation [32-34]. Other potential, yet less studied moieties, are synthetic drugs (e.g. steroids) [35, 36], microRNAs (miR, e.g. miR9, miR106, miR146, miR466) [37-40] and short RNA molecules involved in silencing and post-transcriptional regulation of gene expression [41]. The ideal cargo and carrier have yet to be identified.

It can be hypothesised that optimally cross-linked collagen scaffolds can afford sustained and localised delivery of such cargos at the site of injury. Collagen scaffolds will be stabilised with variable starPEG moieties (e.g. molecular weight, number of arms, concentration) and loaded with appropriate cargo(s). The structural, biophysical, biochemical and biological properties of the produced scaffolds will be assessed in vitro and in vivo in suitable preclinical model. Of interest would also be the simultaneous delivery of multiple cargos from one carrier.
5.3. References

Chapter 5 – Summary and Future Studies

Appendices: Protocols and supplementary information
Appendices

A. List of components and reagents

<table>
<thead>
<tr>
<th>Material</th>
<th>Supplier</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-(N-Morpholino)ethanesulfonic acid</td>
<td>Sigma Aldrich, Ireland</td>
<td>M3671</td>
</tr>
<tr>
<td>2-ethoxyethanol</td>
<td>Sigma Aldrich, Ireland</td>
<td>02540</td>
</tr>
<tr>
<td>4-(Dimethylamino)benzaldehyde</td>
<td>Sigma Aldrich, Ireland</td>
<td>39070</td>
</tr>
<tr>
<td>4arm PEG Succinimidyglutarate MW 10,000 (4S-StarPEG)</td>
<td>Jenkem Technology, China</td>
<td>4ARM-SG-10K</td>
</tr>
<tr>
<td>Acetic acid glacial</td>
<td>Fischer Chemical, Ireland</td>
<td>A/0360/PB17</td>
</tr>
<tr>
<td>Acrylamide/bis-acrylamide 30% solution</td>
<td>Sigma Aldrich, Ireland</td>
<td>A3699-100ML</td>
</tr>
<tr>
<td>All Tissue culture consumable</td>
<td>SARSTEDT, Ireland NUNC, Ireland</td>
<td>-</td>
</tr>
<tr>
<td>almarBlue reagent</td>
<td>Ireland</td>
<td>DAL1100</td>
</tr>
<tr>
<td>Ammonium persulfate</td>
<td>Sigma Aldrich, Ireland</td>
<td>A3678</td>
</tr>
<tr>
<td>Bovine tendons</td>
<td>Local abattoirs, Ireland</td>
<td>-</td>
</tr>
<tr>
<td>Bromophenol blue</td>
<td>Bio-Rad, UK</td>
<td>161-0404</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>Sigma Aldrich, Ireland</td>
<td>C5080</td>
</tr>
<tr>
<td>Chloramine T hydrate</td>
<td>Sigma Aldrich, Ireland</td>
<td>857319</td>
</tr>
<tr>
<td>Citric acid monohydrare</td>
<td>Sigma Aldrich, Ireland</td>
<td>33114</td>
</tr>
<tr>
<td>Collagen type I standard</td>
<td>Symatese Biomateriaux, France</td>
<td>CBPE2US500</td>
</tr>
<tr>
<td>Material</td>
<td>Supplier</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Collagen type I standard</td>
<td>BD Bioscience, France</td>
<td>354231</td>
</tr>
<tr>
<td>Collagenase type I from Clostridium histolyticum</td>
<td>Sigma Aldrich, Ireland</td>
<td>C0130</td>
</tr>
<tr>
<td>Collagenase type IV from Clostridium histolyticum</td>
<td>Sigma Aldrich, Ireland</td>
<td>C5138</td>
</tr>
<tr>
<td>Cytokine panel 1 (human) kit V-PLEX</td>
<td>Meso Scale Discovery (MSD), USA</td>
<td>K15050D</td>
</tr>
<tr>
<td>CytoTox 96® Non-Radio-active Cytotoxicity Assay</td>
<td>Promega, USA</td>
<td>G1780</td>
</tr>
<tr>
<td>Dialysis tubing cellulose membrane</td>
<td>Sigma Aldrich, Ireland</td>
<td>D9527</td>
</tr>
<tr>
<td>Dulbecco’s modified eagle’s medium</td>
<td>Sigma Aldrich, Ireland</td>
<td>D6429</td>
</tr>
<tr>
<td>Foetal bovine serum</td>
<td>Sigma Aldrich, Ireland</td>
<td>F7524</td>
</tr>
<tr>
<td>Genipin</td>
<td>Challenge Bioproducts Company (CBC), Taiwan</td>
<td>-</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td>Sigma Aldrich, Ireland</td>
<td>G5882</td>
</tr>
<tr>
<td>Glycine</td>
<td>Fisher Scientific, Ireland</td>
<td>9891</td>
</tr>
<tr>
<td>Hank’s Balanced Salt Solution</td>
<td>Sigma Aldrich, Ireland</td>
<td>H6648</td>
</tr>
<tr>
<td>Human derived leukemic monocyte cells, THP-1</td>
<td>ATCC, LGC Standards, UK</td>
<td>TIB-202</td>
</tr>
<tr>
<td>Human skin fibroblasts, WS1</td>
<td>ATCC, LGC Standards, UK</td>
<td>CRL-1502</td>
</tr>
<tr>
<td>Hydrochloric acid 37%</td>
<td>Sigma Aldrich, Ireland</td>
<td>320331</td>
</tr>
<tr>
<td>Material</td>
<td>Supplier</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Sigma Aldrich, Ireland</td>
<td>I9516</td>
</tr>
<tr>
<td>L-hydroxyproline</td>
<td>Panreac AppliChem, UK</td>
<td>A17050025</td>
</tr>
<tr>
<td>Lipopolysaccharides</td>
<td>Sigma Aldrich, Ireland</td>
<td>L9641</td>
</tr>
<tr>
<td>Live/Dead® reagent</td>
<td>Invitrogen, Thermo Fisher Scientific, Ireland</td>
<td>L-3224</td>
</tr>
<tr>
<td>N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide (EDC)</td>
<td>Sigma Aldrich, Ireland</td>
<td>39391</td>
</tr>
<tr>
<td>N,N,N,N’-Tetramethyl-ethylenediamine (TEMED)</td>
<td>Bio-Rad, UK</td>
<td>161-0800</td>
</tr>
<tr>
<td>N-hydroxysuccinimide (NHS)</td>
<td>Sigma Aldrich, Ireland</td>
<td>56480</td>
</tr>
<tr>
<td>Ninhydrin</td>
<td>Sigma Aldrich, Ireland</td>
<td>N4876</td>
</tr>
<tr>
<td>Oleuropein</td>
<td>Extrasynthese, France</td>
<td>0228 S</td>
</tr>
<tr>
<td>Penicillin / streptomycin</td>
<td>Sigma Aldrich, Ireland</td>
<td>P4333</td>
</tr>
<tr>
<td>Oleuropein</td>
<td>Sigma Aldrich, Ireland</td>
<td>P6887</td>
</tr>
<tr>
<td>Perchloric acid</td>
<td>Sigma Aldrich, Ireland</td>
<td>244252</td>
</tr>
<tr>
<td>Phenol red</td>
<td>Sigma Aldrich, Ireland</td>
<td>P3532</td>
</tr>
<tr>
<td>Phorbol 12-myristate 13-acetate</td>
<td>Sigma Aldrich, Ireland</td>
<td>P8139</td>
</tr>
<tr>
<td>Phosphate buffered saline</td>
<td>Fischer Bioreagents, Ireland</td>
<td>BP399-4</td>
</tr>
<tr>
<td>Porcine tendons</td>
<td>Local abattoirs, Ireland</td>
<td>-</td>
</tr>
<tr>
<td>Precision plus™ protein std.</td>
<td>Bio-Rad, UK</td>
<td>161-0373</td>
</tr>
<tr>
<td>Proinflammatory panel 1</td>
<td>Meso Scale Discovery, USA</td>
<td>K15049D</td>
</tr>
<tr>
<td>Material</td>
<td>Supplier</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>(human) kit V-PLEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quant-iT™ PicoGreen® dsDNA kit</td>
<td>Invitrogen, Thermo Fisher Scientific, Ireland</td>
<td>P11496</td>
</tr>
<tr>
<td>RPMI-1640 medium</td>
<td>Sigma Aldrich, Ireland</td>
<td>R8758</td>
</tr>
<tr>
<td>SilverQuest™ Silver Staining Kit</td>
<td>Invitrogen, Life Technologies, Ireland</td>
<td>LC6070</td>
</tr>
<tr>
<td>SimplyBlue SafeStain</td>
<td>Invitrogen, Thermo Fisher Scientific, Ireland</td>
<td>LC6060</td>
</tr>
<tr>
<td>Sodium acetate anhydrous</td>
<td>Sigma Aldrich, Ireland</td>
<td>71183</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>Sigma Aldrich, Ireland</td>
<td>S7653-5KG</td>
</tr>
<tr>
<td>Sodium dodecyl sulphate</td>
<td>Bio-Rad, UK</td>
<td>1610302</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>Sigma Aldrich, Ireland</td>
<td>S8045</td>
</tr>
<tr>
<td>Tin(II) chloride</td>
<td>Sigma Aldrich, Ireland</td>
<td>452335</td>
</tr>
<tr>
<td>Tris Base</td>
<td>Fisher Scientific, Ireland</td>
<td>BP152-1</td>
</tr>
<tr>
<td>Trisodium citrate dihydrate</td>
<td>Sigma Aldrich, Ireland</td>
<td>S1804</td>
</tr>
<tr>
<td>Trypan blue</td>
<td>Gibco, Thermo Fisher Scientific, Ireland</td>
<td>15250061</td>
</tr>
<tr>
<td>Trypsin/ EDTA</td>
<td>Sigma Aldrich, Ireland</td>
<td>T4049</td>
</tr>
<tr>
<td>Tryptic Soy Broth</td>
<td>Sigma Aldrich, Ireland</td>
<td>22092</td>
</tr>
<tr>
<td>β-Glucosidase from almonds</td>
<td>Sigma Aldrich, Ireland</td>
<td>49290</td>
</tr>
</tbody>
</table>
Appendices

B. Type I collagen isolation protocol

B.1. Materials

- Frozen Bovine Tendons.
- 1x PBS.
- Glacial Acetic Acid.
- Pepsin (high activity >3000 U/mg, stored at -20°C).
- Muslin.
- Sodium Chloride.

B.2. Equipment

- Surgical scalpel.
- Cryo-milling machine.
- Magnetic stirrer and magnetic stirring bar.
- Sieve.
- Centrifuge, 250 ml centrifuge tubes and 500 ml centrifuge bottles.
- Weighing scales.

B.3. Method

NOTE: Tendons and collagen solutions have to be kept around 4°C, use ice or the cold room for all the steps.

1. Cut the frozen tendons into small pieces (1x1x1 cm³) using a scalpel. Freeze the resulting small pieces until milling step.

2. Cryo-mill the chopped tendon using a Freezer/Mill 6870 (SPEX SamplePrep). Grinding vials should be filled to 2/3 parts of the total capacity (50 g of tendon approximately). The cryo-milling program (for Freezer/Mill 6870) is 10 min of
pre-cooling and 6 cycles of milling for 2 min and cooling for 2 min. Freezer/Mill 6770 program is 5 min of cooling and 4 min of milling.

3. Weigh and record the desired amount of tendon. This weight (milled tendon) is going to be used during other steps.

4. Wash the milled tendon with 1x PBS (40 ml 1x PBS/g milled tendon) and gently stirring in the cold room. Wash it three times for 40 min each.

5. Suspend the washed tendon in 0.5M Acetic Acid for 72h under stirring in the cold room. (400ml Acetic Acid/g milled tendon).

6. Add Pepsin at a ratio of 80,000 U/g Tendon (milled tendon weight) at room temperature (bench) for 2h and leave it for 48h in the cold room under stirring.

7. Filter through a sieve and scab to remove all the big pieces of tendon that did not come into solution. Alternatively, solution can be centrifuged at 10000 rpm for 20 min.

8. Add 0.9M NaCl to the filtered solution and stirring manually every 2hrs (if possible) for 18h (overnight). Any mechanical stirring should be as light as possible to ensure that the precipitated collagen does not break up into small pieces which are too small to collect.

9. The precipitated collagen should collect at the top of the solution with a sieve. Collect as much of the collagen as little as possible of the liquid. Centrifuge at 10000 rpm for 20 min to remove as much liquid as possible. Weigh the collagen.

10. Re-suspend in 1M Acetic Acid (50ml Acetic Acid/g wet collagen). Store at 4°C until all comes into solution (24h). Light stirring is recommended.

11. Centrifuge at 10000 rpm for 20 min. Collect only the top liquid, discard any precipitated or pellet for in the centrifuge tubes.

12. Add 0.9M NaCl to the re-suspended collagen solution, stirring manually every
2h and leave for 18h (overnight).

13. The precipitated Collagen should collect at the top of the solution. Collect as much as possible of the collagen with a sieve. Centrifuge at 10000 rpm for 20min to remove as much liquid as possible. Weigh the Collagen.

14. Re-Suspend in minimum volume of 1M Acetic Acid to produce highly concentrated collagen solution.

15. Once fully suspended, dialyse the collagen against 1mM Acetic Acid at least 4 times, changing the Acetic Acid every two hours. Last one should be overnight.

16. Check the final acid concentration (titration), collagen concentration (dry weight, hypro assay) and purity (SDS-PAGE).
C. Collagen film fabrication and cross-linking

C.1. Materials

- Collagen solution 6.0 mg/ml.
- 10x PBS.
- 1x PBS.
- 5M NaOH.
- 1M NaOH.
- pH meter.
- Centrifuge.
- Tubes.
- Silicone mould.

C.2. Method

NOTE: All solutions have to be kept at 4-8ºC. Therefore, keep them in ice during the film preparation. The volumes indicate in the table are for 12 films with a final collagen concentration of ~5 mg/ml.

1. Mix 10X PBS and the type I collagen. Each component of the hydrogel needs to be added in the order indicated in Table C1.
2. Add 5M NaOH.
3. Adjust pH 7.2-7.4 with 1M NaOH checking it with the pH meter.
4. Centrifuge at 3,000 rpm to remove bubbles (Cross-linkers can be added just before this step).
5. Add 10 ml of the neutralized solution to each well of the silicone mould.
6. Incubate at 37ºC for 1 hour.
7. Remove the hydrogel from the silicone mould and place them in a non-stick surface.

8. Dry samples in the flow hood at room temperature for at least 18 hours.

9. Wash films three times with 1x PBS for 20 minutes (each time).

10. Finally, dry films again and keep at room temperature avoiding light exposure.

Table C1. 5% Separation Gel for 1 mm thickness for collagen for mini gel (Protean II Bio-Rad).

<table>
<thead>
<tr>
<th>Component</th>
<th>Order</th>
<th>Concentration</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>1</td>
<td>10 X</td>
<td>6 ml</td>
</tr>
<tr>
<td>NaOH</td>
<td>2</td>
<td>5 M</td>
<td>3 ml</td>
</tr>
<tr>
<td>Collagen type I</td>
<td>3</td>
<td>6.0 mg/ml</td>
<td>120 ml</td>
</tr>
<tr>
<td>NaOH</td>
<td>4</td>
<td>1 M</td>
<td>Adjust pH 7.4</td>
</tr>
</tbody>
</table>

C.3. Cross-linking methods (0.5 ml per 10 ml collagen sample):

1. GTA (Glutaraldehyde): 0.5 ml of 0.625% v/v in 1X PBS (Stock solution: 25%).

2. EDC+NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) + N-Hydroxy-succinimide): 0.5 ml of 0.05M 2-(N-morpholino) ethanesulfonic acid (MES) buffer containing 1000 mM EDC and 200 mM NHS in distilled water (pH 5.5) (final concentration 50 mM EDC - 10 mM NHS).

3. 4S-StarPEG (4-arm polyethylene glycol succinimidyl glutarate MW 10,000): 0.5 ml of 20 mM in 1X PBS (Stock solution: powder. Final concentration 1mM).

4. GEN (Genipin): 0.5 ml of 0.625% w/v in 1X PBS (Stock solution: powder).

5. OLE (Oleuropein): 0.5 ml of 5.0 % w/v of activated oleuropein in 1X PBS (Final concentration 0.25%).
Oleuropein activation:

a) Dissolve 0.5 U/ml of β-Glucosidase in 1X PBS.

b) Add 5% oleuropein in 1X PBS and vortex vigorously.

c) Mix at 150 rpm at 25ºC for 2 hours.

d) Ready to add into collagen solution.
D. Freeze-drying protocol

This is an alternative protocol to freeze at –20°C and dry at high vacuum. This freeze-drying protocol for collagen solutions or samples attempts to ensure homogeneity between samples by controlling ice crystal formation, increasing the reproducibility between different batches. The last drying step should be repeated until samples are totally dry.

D.1. Materials

- Virtis Advantage 2.0.
- Silicone (diameter 4.5 cm) for collagen solutions or eppendorf tubes for other assays such as collagenase.

D.2. Method

1. Add 10-15 ml of collagen solution to each well or introduce samples in eppendorf tubes.
2. Introduce samples in the freeze-drier and set-up the following parameters:
Table D1. Freeze-drying parameters.

<table>
<thead>
<tr>
<th>R/H</th>
<th>Temp (ºC)</th>
<th>Time (min)</th>
<th>R/H</th>
<th>Temp (ºC)</th>
<th>Time (min)</th>
<th>Vacuum (mTorr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>4</td>
<td>10</td>
<td>R</td>
<td>-30</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>R</td>
<td>-15</td>
<td>60</td>
<td>H</td>
<td>-30</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>H</td>
<td>-15</td>
<td>30</td>
<td>R</td>
<td>-20</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>R</td>
<td>-40</td>
<td>60</td>
<td>H</td>
<td>-20</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>H</td>
<td>-40</td>
<td>60</td>
<td>R</td>
<td>-10</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>H</td>
<td>-10</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-5</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-5</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Repeat last step until samples are dry

Freeze-drying parameters: ‘R’ is a ramp while ‘H’ is isotherm.
E. Hydroxyproline assay for collagen quantification

E.1. Materials

- Citrate buffer (500 ml): 17.19 g of sodium acetate anhydrous, 18.75 g of trisodium citrate-2H₂O, 2.75 g of citric acid, 200 ml of distilled water and 200 ml of isopropanol. Dissolve solids in the distilled water, add the isopropanol and make up the volume with distilled water.
- Chloramine T reagent: 50 ml of citrate buffer, 0.70 g of Chloramine T and 10 ml of distilled water.
- Ehrlichs reagent: 6 g 4-(Dimethylamino)benzaldehyde, 9 ml of perchloric acid and 50 ml of isopropanol. The solids were dissolved in the perchloric acid and the isopropanol was added immediately prior to use.
- Diluent isopropanol: distilled water; 2 to 1 ratio.
- Hydroxyproline standards: 10 mg/ml.

E.2. Method

1. Place 0.75 ml of the collagen solution in a eppendorf tube.
2. Add 0.75 ml of concentrated HCl.
3. Incubate the tubes at 100 ºC for 4 hours.
4. After that, leave tubes to cool down and then transfer into volumetric flasks (50ml) containing approximately 10 ml distilled water. Rinse tubes with distilled water (3 times with 1 ml) and add the washings the volumetric flask.
5. Add water up to 50 ml and mix.
6. Dilute 1, 2 and 3 ml of the hydrolysed solution in 15 ml volumetric flasks, add water up to 10 ml and mix.
7. Prepare a hydroxyproline standard curve at 0, 1, 2.5, 5, 10, 15 and 20 µg/ml in water.

8. Add in a eppendorf tube 240 µl of standard or sample, 550 µl of diluent and 380 µl Chloramine T reagent.

9. Mix and then leave the samples to settle for 20 minutes at room temperature.

10. Add 1000 µl of Ehrlichs reagent and mix.

11. Incubate at 70°C for 10 minutes in a hot plate or water bath.

12. Finally, cool down, mix and read the absorbance in a spectrophotometer at 555nm.
F. SDS-PAGE

F.1. Materials

- 1.875 M Tris-HCl, pH 8.8. Dissolve 22.70 g Tris-base in 80 ml milliQ H₂O; add 2 ml concentrated HCl, leave it overnight to equilibrate, adjust pH to 8.8 with a few drops concentrated HCl, make it up to 100 ml with ddH₂O. Keep it at 4-8°C.

- 1.25 M Tris-HCl, pH 6.8. Dissolve 15.14 g Tris-base in 70 ml milliQ H₂O; add 7 ml concentrated HCl, leave it overnight to equilibrate, adjust pH to 6.8 with a few drops concentrated HCl, make it up to 100 ml with ddH₂O. Keep it at 4-8 °C.

- 5x sample buffer. Dissolve completely 0.25 g SDS in 0.625 ml 1.25 M Tris-HCl, pH 6.8 and 2 ml milliQ H₂O. Leave it overnight for the foam to settle. Top up with glycerol to 5 ml (approximately 2.3ml). Add 2.5 mg bromophenol blue per 10 ml buffer.

- 5x running buffer. Dissolve 15.1 g Tris-base, 72 g glycine and 5 g SDS in 1 litre milliQ H₂O. Store at 4°C. 1x running buffer is made to run the gel from 5x running buffer by diluting in milliQ H₂O.

- 30% Acrylamide/Bis (37.5:1).

- 10% SDS.

- 100 mg/ml Ammonium persulphate in milliQ H₂O. Dissolve 500mg APS in 5ml ddH₂O, aliquot it in eppendorf tubes and keep it at - 20°C. The solution is active for a few months.

- TEMED.

- 10% and 70% Ethanol in dH₂O.
F.2. Method – gels preparation

1. Defrost an aliquot of APS.

2. Clean glass plates with 70% ethanol and tissue papers.

3. Set the gel making system, ensuring that the glass plates fit tightly to the rubber base.

4. Check for any leak by placing into some water.

5. Add the different reagents in a conical tube to make the 5% gel according to the Table F1 below. Follow the reagent order of the table.

6. Pipette the mixture into the space between the 2 glass plates to reach about 1 cm from the bottom of the well comb (keep the excess solution to check the polymerisation).

7. Overlay the gel with 10% ethanol to cut off oxidation.

8. Leave it aside for approximately 30 minutes, a phase separation ethanol-gel can be observed when the mixture becomes a gel, check with the excess solution remained.

9. During the setting period, prepare the 3% stacking gel according to the Table F2 (except APS and TEMED).

10. Discard 10% ethanol and remove any traces using filter paper.

11. Add the APS and TEMED to the stacking gel mixture and carefully pipette on top of the previous gel. Immediately, insert the well comb, avoid trapping air bubbles formation (keep the excess solution to check the polymerisation).

12. After the gels have been set (10-15 minutes, check it with the excess solution), keep them at 4-8°C covered with running buffer or use it immediately.
Table F1. 5% Separation Gel for 1 mm thickness for collagen for mini gel (Protean II Bio-Rad).

<table>
<thead>
<tr>
<th></th>
<th>1 Gel</th>
<th>2 Gels</th>
<th>4 Gels</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% Acrylamide/Bis (37.5:1)</td>
<td>830 µl</td>
<td>1660 µl</td>
<td>3320 µl</td>
</tr>
<tr>
<td>1.875M Tris-HCl pH 8.8</td>
<td>1000 µl</td>
<td>2000 µl</td>
<td>4000 µl</td>
</tr>
<tr>
<td>10% SDS</td>
<td>50 µl</td>
<td>100 µl</td>
<td>400 µl</td>
</tr>
<tr>
<td>ddH2O</td>
<td>3070 µl</td>
<td>6140 µl</td>
<td>12280 µl</td>
</tr>
<tr>
<td>APS (100mg/ml)</td>
<td>42 µl</td>
<td>84 µl</td>
<td>168 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>5 µl</td>
<td>10 µl</td>
<td>20 µl</td>
</tr>
<tr>
<td>Total</td>
<td>5000 µl</td>
<td>10000 µl</td>
<td>20000 µl</td>
</tr>
</tbody>
</table>

Table F2. 3% Stacking Gel for 1mm thickness) for collagen for mini gel (Protean II Bio-Rad).

<table>
<thead>
<tr>
<th></th>
<th>1 Gel</th>
<th>2 Gels</th>
<th>4 Gels</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% Acrylamide/Bis (37.5:1)</td>
<td>200 µl</td>
<td>400 µl</td>
<td>800 µl</td>
</tr>
<tr>
<td>1.25M Tris-HCl pH 6.8</td>
<td>200 µl</td>
<td>400 µl</td>
<td>800 µl</td>
</tr>
<tr>
<td>10% SDS</td>
<td>33 µl</td>
<td>66 µl</td>
<td>132 µl</td>
</tr>
<tr>
<td>ddH2O</td>
<td>1550 µl</td>
<td>3100 µl</td>
<td>6200 µl</td>
</tr>
<tr>
<td>APS (100mg/ml)</td>
<td>17 µl</td>
<td>33 µl</td>
<td>66 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>3 µl</td>
<td>6 µl</td>
<td>12 µl</td>
</tr>
<tr>
<td>Total</td>
<td>2000 µl</td>
<td>4000 µl</td>
<td>8000 µl</td>
</tr>
</tbody>
</table>
F.3. Method – sample preparation

1. Mix 100 µl of sample (~0.5 mg/ml) with 5 µl Phenol red.
2. Neutralised sample with 1M NaOH until colour change.
4. Denature samples at 95°C for 5 min. Vortex and spin.

F.4. Method – running gels

1. Remove slowly the combs.
2. Assemble the electrophoresis apparatus, for small gel apparatus, fit the gel plates on the electrode bar and fit the set into the inner chamber and clamp them.
3. Fill the upper chamber with 1x running buffer. If no leaks, fill the inner chamber.
4. Load the standards, samples and markers using a 20 µl micropipette and a narrow tip.
5. Close the lid and run the gels.
6. Run at constant voltage: 50V until the front reaches the end of the stacking gel (± 30-40 min), then 120V until the front reaches the end of the separating gel (±1 hour).
7. Remove the glass using the wonder wedge, cut the lower right hand corner and release the gel slowly into milliQ H₂O.
8. Proceed with Coomassie or Silver staining (refer to SafeBlue or SilverQuest, Invitrogen Protocols respectively).
G. Silver staining of SDS-PAGE gels

Adapting the manufacturer instructions for the SilverQuest™ Silver Staining Kit, the method is briefly described in the following table:

Table G1. Silver staining method step by step. Volumes are indicated per gel.

<table>
<thead>
<tr>
<th>Step</th>
<th>Reagent</th>
<th>Incubation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix</td>
<td>Ethanol 10 ml, Acetic acid 2.5 ml, Water up to 25 ml</td>
<td>20 min</td>
</tr>
<tr>
<td>Wash</td>
<td>Ethanol 7.5 ml, Water up to 25 ml</td>
<td>10 min</td>
</tr>
<tr>
<td>Sensitize</td>
<td>Ethanol 7.5 ml, Sensitizer 2.5 ml, Water up to 25 ml</td>
<td>10 min</td>
</tr>
<tr>
<td>First wash</td>
<td>Ethanol 7.5 ml, Water up to 25 ml</td>
<td>10 min</td>
</tr>
<tr>
<td>Second wash</td>
<td>Water 25 ml</td>
<td>10 min</td>
</tr>
<tr>
<td>Stain</td>
<td>Stainer 0.25 ml, Water up to 25 ml</td>
<td>15 min</td>
</tr>
<tr>
<td>Wash</td>
<td>Water 25 ml</td>
<td>1 min</td>
</tr>
<tr>
<td>Develop</td>
<td>Developer 2.5 ml, Developer enhancer 1 drop, Water up to 25 ml</td>
<td>4-8 min</td>
</tr>
<tr>
<td>Step</td>
<td>Reagent</td>
<td>Incubation time</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| Stop | Stopper 10 ml
(add directly to developing solution) | 10 min |
| Wash | Water 25 ml | 10 min |
H. Densitometry analysis of SDS-PAGE

1. Scan the stained gels on using HP Scanjet 7400C scanner and the active transparency adapter HP Scanjet XPA c7671b.

2. Densitometry analysis is performed with ImageJ software.

3. Open ImageJ

4. Go to File/Open/select the desired images

5. Transform image to 16 bits: go to Image/Type/16-bits

6. Select the rectangle tool, and draw a box around the lane from above gamma band until below alpha bands.

7. Select first lane: go to Analyze/Gels/Select first lane or press Ctrl+1

8. Move the rectangle to the next lane and go to Analyze/Gels/Select next lane or press Ctrl+2. Repeat this for each lane.

9. After all the lanes have been marked, go to Analyze/Gels/Plot lanes or press Ctrl+3.

10. Use the line tool to draw a straight line at the bottom of each peak to close the area under each peak.

11. Select the magic wand from the tool menu and click it on each peak.

12. A new box with all the results will be displayed.
I. Ninhydrin assay for free amine quantification

I.1. Materials

- Collagen samples.
- Ninhydrin powder.
- 2-ethoxyethanol.
- 200 mM Citric acid.
- Tin II Chloride.
- Glycine.

I.2. Method

1. Cut collagen sample to small pieces of 3 mg ± 10%.
2. Place into a labelled eppendorf tube.
3. Add 200 μL dH2O to each sample.
4. Prepare an standard curve of glycine at 0, 0.01, 0.05, 0.1, 0.2 and 0.5 mg/ml.
5. Prepare one tube of 4% Ninhydrin powder in 2-ethoxyethanol and protect from light.
6. Prepare a second tube of 200 mM Citric acid, 0.16 w/v% Tin II Chloride, pH 5.0.
7. Mix both solutions together.
8. Add 1 ml Ninhydrin solution to each tube.
9. Incubate tubes at 95-100°C for 30-35 minutes, protecting from light.
10. Allow tubes to cool to room temperature.
11. Add 250 μL of 50% isopropanol and vortex.
12. Read using plate reader at 570 nm.
J. Collagenase: degradation/stability assay

J.1. Materials

- Collagen samples.
- 0.1M Tris-HCl pH 7.4 (Tris Base MW = 121.14 g/mol).
- 50 mM CaCl2 (CaCl2 MW = 111 g/mol).

J.2. Method

1. Sample preparation: cut pieces of films with a dry weight between 1.0-1.5 mg and introduce it in 1.5 ml eppendorf (n=5).
2. Prepare the buffer 0.1M Tris-HCl pH 7.4 + 50 mM CaCl2.

 i.e.: 0.25 L*0.1 mol/L* 124.14 g/mol = 3.03 g Tris Base

 i.e.: 0.25 L*0.05 mol/L* 111 g/mol = 1.39 CaCl2
3. Incubate samples in 500 µl of buffer for 30 minutes.
4. Prepare a 20 U/ml solution collagenase in 0.1M Tris-HCl pH 7.4 + 50 mM CaCl2.
5. Add 500 µl of reconstituted collagenase (the concentration of the collagenase buffer is 10 U/ml).
6. Incubate at 37°C and orbital agitation (150 rpm) for 24h.
7. Centrifuge at 11,000 rpm for 10 minutes.
8. Remove buffer and freeze it.
9. Weigh the dry samples and compare with the initial weigh.
K. Scanning electron microscopy (SEM) - sample preparation

K.1. Materials

- Collagen samples.
- 1x PBS.
- 50%, 70%, 90%, 96% and 100% ethanol.

K.2. Method

1. Hydrate samples at room temperature overnight.
2. Dehydrated in ascending ethanol concentration (50%, 70%, 90%, 96% and 100%), 30 minutes for each concentration.
3. Evaporate ethanol overnight at room temperature.
4. Dry sample at the vacuum chamber for at least 12 hours.
5. Gold coating using Emitech K-550X sputtering system for 2 minutes.
L. Protocol of fibroblasts cell culture

The entire protocol should be performed in aseptic conditions. All materials should be sprayed with 70% ethanol before putting into the biological safety cabinet.

L.1. Expansion

- EMEM supplemented with 10% FBS and 1% P/S or DMEM high glucose supplemented with 10% FBS and 1% P/S.
- Media was changed every two-three days.

L.2. Splitting

When cells reach approximately 80% confluence, they are split into two or more flasks or frozen for later use, as follow:

1. The media is removed from the flask and place in the waste container.
2. The cells are washed with HBSS twice.
3. Trypsin-EDTA is added to the flask, ensuring complete coverage of the flask.
4. The flask is returned to the incubator for 5 minutes (enzyme is active at 37 °C).
5. Then, flask is examined under the microscope to see if cells detach from the surface and are floating in the media. If not, lightly tapping.
6. Once cells are detached, equal volume of media supplemented with 10% serum is added to the flask to deactivate the trypsin.
7. All media is then collected and placed into a sterile centrifuge tube.
8. Centrifuge for 5 minutes at 1200 rpm.
9. Discard supernatant and the pellet is re-suspended in fresh media.
10. Finally, cells are counted using Neubauer chamber and seed into new flasks.
L.3. Cell freezing

To freeze cell perform the splitting protocol with a modification at the end

1. Instead of re-suspending the pellet in to media, cells are re-suspended in media supplemented with 10 % FBS and 10 % filtered DMSO.

2. Cell concentration should be adjusted at 0.5-1.0 million cells per ml.

3. Transfer 1 ml of media with cells into each vial.

4. Place vial into a Mr Frosty container and place it into the –80 °C freezer for 24 hours.

5. Then, vials should be kept in the liquid nitrogen container.

L.4. Cell thawing

1. Remove vials from the liquid nitrogen container.

2. Thaw the vial by gentle agitation in water bath at 37 °C. Keep the O-ring and cap out of the water to reduce potential contamination.

3. Transfer the content of the vials in a falcon with pre-warmed media.

4. Centrifuge at 1200 rpm for 5 minutes.

5. Discard supernatant and re-suspended in media.

6. Count cells and seed them at 3000-4000 cells/cm².

7. Incubate the cells in an incubator at 37°C and 5% CO₂.
M. Protocol of macrophages cell culture

M.1. Expansion

- RPMI 1640 medium supplemented with 10% FBS, 1% P/S and 1% glutamine.
- Seed at 300,000 cells/ml.
- Daily observation in the optical microscope for morphology check.
- Top up with fresh media every second day or when cell concentration reaches 800,000 cells/ml (Do not allow the cell concentration to exceed 1,000,000 cells/ml).
- Spin down and use fresh media every 7 days.

M.2. Differentiation

1. Use THP-1 cells when their density reaches 800,000-1,000,000 cells/ml.
2. Dilute PMA in DMSO at 5 µg/ml.
3. Add 100 µl PMA at 5 µg/ml for each 50 ml supplemented RPMI 1640 medium (10 ng/ml).
4. Spin down the cells and re-suspend them with the medium of differentiation.
5. Count the THP-1 cells with hematocytometer and trypan blue.
6. Adjust the cell density at 100,000 cells/ml.
7. Seed cells in a 24 well plate by adding 0.5 ml of cell suspension per well.
8. Incubate cells at 37°C for 6 hours.
9. Check the differentiation by observation at the microscope. If you see floating cells (undifferentiated), incubate for 6 hours more.
10. Then, remove the media and replace it by normal medium or activation medium (1ml/well). Activation medium is supplemented RPMI 1640 medium with 100 ng/ml LPS (2.5 µl of LPS stock solution at 2 mg/ml for 50 ml medium).
11. Incubate the cells for 24 hours at 37°C.

12. Replace by normal medium (this is time point 0).

M.3. Cell freezing and thawing

As Appendix K - Protocol of fibroblasts cell culture.
N. Cell metabolic activity assay using alamarBlue™

N.1. Materials

- alamarBlue™ (Invitrogen, USA).
- HBSS.

N.2. Method

1. Prepare a 10 % alamarBlue™ solution in HBSS.
2. Wash the wells with HBSS.
3. Add 0.4 ml of alamarBlue™ in each well and a negative control with 10% alamarBlue™ alone.
4. Incubate at 37°C for 3 hours.
5. Transfer 200 µl of each well in a 96-well clear plate.
6. Measure the absorbance at the wavelength of 550 nm and 595 nm.
7. Subtract the absorbance value of media only from the absorbance values of the absorbance values of alamarBlue™ in media. This gives the absorbance of alamarBlue™. Call this value AOLW or the absorbance of oxidised form at lower wavelength. Get the AOHW or absorbance of oxidised form at higher wavelength.
8. Calculate correlation factor: RO.
 \[RO = \frac{AOLW}{AOHW} \]
9. Calculate the percentage of reduced alamarBlue™:
 \[ARLw = ALw - (AHW \times Ro) \times 100 \]
O. Cell proliferation assay using Quant-it™ Picogreen®

O.1. Materials

- HBSS.
- Quant-it™ PicoGreen® dsDNA Reagent and Kits (Invitrogen, USA).

O.2. Method

1. Remove the media and gently rinse with HBSS.
2. Add 200μl of DNase free water.
3. Repeatedly freeze-thaw cells three times.
4. Prepare a 1X TE buffer from the 20X stock solution.
5. Prepare a standard of DNA using DNase free water and the Lambda DNA standard at 100 μg/ml in TE.
6. Make up a 2μg/ml DNA solution (dilution 1:50 from 100μg/ml DNA standard).
7. Make up a 50ng/ml DNA solution (dilution 1:80 from 2μg/ml DNA solution).
8. Transfer 100μl of each sample and DNA standard curve into a 96 well plate for fluorescence assays.
9. Make up diluted PicoGreen solution: 9 ml 1x TE + 45 μl concentrated PicoGreen (enough for a 96 well plate).
10. Add 100μl of diluted PicoGreen to each well.
11. Incubate at room temperature 2-5 minutes in the dark.
12. Read the plate using fluorescent channel (excitation 480 nm, emission 520 nm).
Table O1. Volume for preparing the DNA standard curve.

<table>
<thead>
<tr>
<th>DNA concentration (ng/ml)</th>
<th>Water volume (µl)</th>
<th>Volume of 2µg/mL DNA stock (µl)</th>
<th>Volume of 50ng/mL DNA stock (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>200</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>300</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>380</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>25</td>
<td>200</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>320</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>360</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>400</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
P. Cell viability assay using Live/Dead staining

P.1. Materials

- LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells (Invitrogen, USA).
- 1% Triton X-100.
- HBSS.

P.2. Method

1. For a toxic control, add 5 μl of 1% Triton X-100 per well 30 minutes before.
2. Defrost tubes and quick spin to ensure contents are at the bottom of the tube.
3. Remove media from each well and wash them with HBSS twice.
4. Prepare staining solutions:
 a) Calcein (live) is at 4 mM concentration in the tube and it should be used at 4 μM. Therefore, dilute it at 1:1000 (5 μl in 5 ml HBSS).
 b) Ethidium homoiomer-1 (dead) is at 2 mM and it should be used at 2 μM. Therefore, dilute it at 1:1000 (5 μl in 5 ml HBSS with calcein).
5. Protect from light.
6. Add 250 μl of staining solution or enough to cover the film.
7. Incubate for 30 minutes at 37°C.
8. Discard staining solution and wash wells with HBSS twice.
9. Then, stained samples are visualised using the inverted fluorescence microscope (IX 51, Olympus, UK), live cells with the FITC filter and dead cells with the Texas red filter. Five images per sample.
10. Viable/live (green) and dead (red) cells are counted using ImageJ 1.48v software (National Institutes of Health, USA).
Q. Cell viability assay using cytotoxicity kit

Q.1. Materials

- CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, USA).

Q.2. Method

1. At each time point transfer the supernatant of each well to eppendorf tubes.
2. Centrifuge at 250 x g for 4 minutes.
3. Transfer supernatant to a new eppendorf tube and keep it at – 80°C until testing.
4. Transfer 50 μl of the supernatant to the corresponding well of a flat-bottom 96-well plate.
5. Add 50 l of a 1:5,000 dilution of LDH Positive Control to 3 separate wells.
6. Reconstitute Substrate Mix using Assay Buffer from the kit.
7. Add 50μl of the reconstituted Substrate Mix to each well of the plate.
8. Cover the plate and incubate at room temperature, protected from light, for 30 minutes.
9. Add 50 μl of the Stop Solution to each well of the plate (NOTE: only perform this step if media is phenol red free).
10. Record absorbance at 490 nm.
R. Optimisation of collagen type I extraction

The extraction of large volumes of collagen solution maintaining high quality standards and reproducibility between batches is still being a challenge. Therefore, we evaluated how different tissues and extraction methods affect the purity collagen type I extractions.

R.1. Materials and methods

Three different mammalian tissues (rat tail tendon, RTT; bovine Achilles tendon, BAT; and porcine Achilles tendon, PAT), two crushing technologies (mincing and cryo-milling) and three solubilisation variables (acid-tendon ratio, temperature and time of the pepsin treatment) were studied. Figure R1 shows the flow diagram that summarises the collagen extraction protocol and the different studied variables.

<table>
<thead>
<tr>
<th>Studied Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tendon</td>
</tr>
<tr>
<td>RTT</td>
</tr>
<tr>
<td>BAT</td>
</tr>
<tr>
<td>PAT</td>
</tr>
</tbody>
</table>

Figure R1. Flow diagram of collagen extraction and studied variables in the different phases. RTT: rat tail tendon; BAT: bovine Achilles tendon; PAT: porcine Achilles tendon.
BATs and PATs were kindly donated by the local abattoir (steers aged 24 months and pigs aged 6 months, respectively). RATs were obtained from humane sacrificed rats used in other surgical procedures that did not affect rat tails. Collagen type I was extracted from tendons adapting a previous protocol from Zeugolis’ group. Briefly, RATs were dissected, washed with 1X phosphate buffered saline (PBS) solution and, subsequently, dissolved in 0.5M acetic acid. On the other hand, BATs and PATs were manually separated from the surrounding fascia, minced or cryo-milled, and washed with 1X PBS solution. Then, 0.5M acetic acid was added progressively to tendons and kept under orbital agitation at 4°C until tendon dissolution. Subsequently, pepsin from porcine gastric mucosa was added in a ratio of 80U/mg of milled tendon and solution was incubated at 22 or 37°C between 2-16 hours. Afterwards, solution was kept at 4°C for 72 hours in order to take profit of all pepsin activity and to increase the efficiency. Insoluble tendon was separated by filtration and centrifugation (21,000g at 4°C for 20 min). Collagen solution was purified by repeated salt precipitation (0.9M NaCl), centrifugation and re-suspension in 1M acetic acid. The final atellocollagen solution was dialysed (Mw 8000 cut off) against 1mM acetic acid.

Collagen concentration was assessed by dry weight after freeze-drying, hydroxyproline assay and/or Sircol assay. Furthermore, collagen purity was examined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) assays.
R.2. Results and discussion

Tendon chopping/crushing phase

Mincing is a common method for breaking tissues before any digestion; however, every single mincing machine, that we used to mince tendons mixed with ice, introduced metallic particles into tendon. The stirring bar used during the solubilisation phase collected the metallic particles and evidenciated their presence, see Figure R2. It could be concluded that the metallic particles come from the mincing machine, as no other metallic tool was used up to this point and degradation marks were observed in the mincers. For that reason, mincing was discarded and cryo-milling was the only method used to extract collagen from bovine and porcine tendon.

Figure R2. Metallic particles collected by the stirring bar during the solubilisation of minced bovine Achilles tendon in acetic acid. Metallic particles were introduced during mincing step and are partially collected by the stirring bar.
Solubilisation step

The dissolution of tendons depended on the animal source, RTTs presented the highest dissolution capacity in 0.5 M acetic acid (20 g/litre), followed by PATs (10.5 g/litre) and BATs (3.3 g/litre). This difference is mainly due to the natural cross-linking degree of each tendon source, which is higher as older and bigger are animals.

Regarding the pepsin treatment, increasing of temperature between 22-24°C showed to improve collagen extraction, while 37°C induced collagen denaturation (Figure R3). Moreover, the time increase affected collagen bands, alpha bands increased 12% when treated with pepsin at 22°C for 6 hours, indicating higher collagen extraction efficiency. On the other hand, treatment at 22°C for 16 hours reduced 34% alpha bands which may indicate partially collagen denaturation. Moreover, SDS-PAGE showed that collagen purity for all batches was over 96%.
Temperature	Time	Composition (%)	Purity
(°C) | (Hours) | γ | β_{11}+β_{12} | α_{11}+α_{12} | (%)
22-24 | 2 | 10.6 | 22.8 | 62.9 | 96.3
22-24 | 6 | 9.4 | 23.8 | 63.5 | 96.7
22-24 | 16 | 14.3 | 15.6 | 68.6 | 98.5
37-40 | 2 | Totally denatured

Figure R3. SDS-PAGE analysis of bovine pepsin soluble collagen incubated at 22°C or 37°C during pepsin digestion step. Table indicates the distribution of gamma (γ), beta (β) and alpha (α) collagen bands of each collagen batch. Moreover, data shows the high collagen purity.

Once basic parameters of collagen extraction protocol were fixed, collagen type I was extracted from RTT, PAT and BAT. RTT was not cryo-milled because RTT is much less tough than PAT and BAT and, therefore, tendons were directly dissolved in acetic acid without any mincing step. The three different extractions were viscous and smooth with different collagen concentrations, see Figure R4. SDS-PAGE of each collagen extraction demonstrated purities over 90% and similar to commercially available collagen type I BD™ solutions.
Figure A4. SDS-PAGE analysis of different collagen type I solutions extracted from RTTs (rat tail tendons), BATs (bovine Achilles tendons) and PATs (porcine Achilles tendons). Commercially available bovine collagen type I BD™ was used as control. Table indicates concentrations of each collagen batch that were measured by dry weight after freeze-drying (D Weight), hydroxyproline assay (Hypro) and Sircol assay. Moreover, table shows the collagen purity obtained from the SDS-PAGE analysis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Final volume (ml)</th>
<th>Concentration (mg/ml)</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dry Weight</td>
<td>Hydroxyproline assay</td>
</tr>
<tr>
<td>RTT</td>
<td>20</td>
<td>9.4 ± 0.5</td>
<td>8.0 ± 0.1</td>
</tr>
<tr>
<td>BAT</td>
<td>1,200</td>
<td>3.4 ± 0.2</td>
<td>2.7 ± 0.1</td>
</tr>
<tr>
<td>PAT</td>
<td>100</td>
<td>4.6 ± 0.4</td>
<td>4.2 ± 0.1</td>
</tr>
<tr>
<td>BBD</td>
<td>-</td>
<td>3.1 ± 0.3</td>
<td>3.0 ± 0.1</td>
</tr>
</tbody>
</table>
Up-scaling of collagen extraction

Last optimisation phase was up-scaling collagen type I extraction maintaining high purity and concentration of protein. This optimisation was only performed with BAT because it is the most complicated source to extract due to its high natural cross-linking degree and it required higher volume of acetic acid to dissolve it; optimised parameters could be used with other tendon sources.

In order to reduce the initial volume, two different concentration of acetic acid (0.5 and 1.0 M) were studied to dissolve milled BAT. 1.0 M acetic acid demonstrated to be more efficient dissolving bovine tendon; ratio tendon-acid was 10 g/litre, while 0.5 M acetic acid was 3.3 g/litre (as above presented). In addition, SDS-PAGE analysis did not show any reduction of purity by the increase of acetic acid concentration, see Figure R5.

Figure R5. SDS-PAGE analysis of bovine collagen type I solution extracted with 0.5 and 1.0 M acetic acid (AA). Commercially available bovine collagen type I BD™ was used as control (BDD).
Finally, we proceed to extract between 3.5 and 4 litres of collagen type I (5-6 mg/ml) with the reviewed protocol. From the initial 80 grams of cryo-milled BAT, 4.2 litres of collagen type I with a final concentration of 5.1 ± 0.3 mg/ml were obtained, see Figure R6. In addition, collagen purity was not compromised by up-scaling of the extraction and it was similar to commercially available bovine collagen type I BD™, see Figure R6.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Final volume (ml)</th>
<th>Concentration (mg/ml)</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT</td>
<td>4,200</td>
<td>5.2 ± 0.1</td>
<td>5.1 ± 0.3</td>
</tr>
<tr>
<td>BBD</td>
<td>-</td>
<td>3.0 ± 0.1</td>
<td>2.9 ± 0.1</td>
</tr>
</tbody>
</table>

Figure R6. SDS-PAGE analysis of pepsin soluble collagen type I extracted from BAT (bovine Achilles tendon). Commercially available bovine collagen type I BD™ was used as control (BDD). Table indicates collagen type I purity (calculated from the densitometric analysis of the SDS-PAGE image) and concentration (measured by dry weight after freeze-drying, D Weight; and hydroxyproline assay, Hypro).
R.3. Conclusions

Pepsin soluble collagen type I solutions with purities over 90% and diverse concentrations have been extracted from rat, bovine and porcine tendons. Cryo-milling of bovine and porcine tendons was an important factor in the extraction as it produced tendon powder free of metallic particles that dissolved fast and homogeneously in all batches. Moreover, the adjustment of temperature and time during pepsin treatment was critical, pepsin treatment at 22°C for 2 hours induced collagen cleavage and improved extraction. This effect was more pronounced when the processing time was 6 hours; it increased 12% collagen alpha bands, which is a sign of better digestion and extraction efficiency. Pepsin treatment at 22°C for 16 hours or at 37°C for 2 hours induced partially or totally collagen denaturation. Finally, bovine collagen extraction up-scaling allowed obtaining about 4 litres of collagen type I with 95% purity, similar to other commercially available collagen type I solutions.
S. Research outputs

S.1. Manuscripts

S.2. Outreach manuscripts

S.3. Abstract publications

S.4. Conferences participations

7. **Delgado LM**, Bayon Y, Pandit A, Zeugolis DI. To cross-link or not to cross-link collagen matrix for the reformation of the extracellular matrix? MBI – Meeting. 2014, Ireland.

S.5. Courses