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Abstract 

Swimming is a technically demanding sport that requires ongoing quantitative 

assessment in order to monitor technical progression and improvements in 

performance. Traditional methods of monitoring a swimmer’s technique rely 

on the use of video-based systems. However, the primary motivation for this 

thesis is that these systems have several limitations when applied in aquatic 

environments. Such limitations are hindering the extent to which quantitative 

analytical practices are used by elite swimming coaches. As a consequence, 

alternative solutions are required and the advancement in the miniaturisation of 

microelectromechanical systems (MEMS) has led to a recent increase is the 

interest in applying such technology in swimming. 

 

This thesis describes a set of studies focused on investigating the application of 

existing MEMS technology for the analysis of elite swimming performance. 

MEMS sensors such as accelerometers and gyroscopes have been shown to be 

capable of registering some basic parameters relevant to the analysis of 

swimming, such as lap time and stroke count, but further research and 

development are necessary in order to improve the functionality of these 

devices and to increase the applicability of this approach in elite settings.  

 

This thesis also describes the development of a novel swimming analysis 

system, based on the use of MEMS inertial sensor technology. A user-centred 

design approach was followed to fully investigate current practices and to 

understand the challenges of incorporating this technology in applied training 

environments. A key contribution of this work is the development of a number 

of novel feature detection algorithms for the analysis of swimming turns. These 

studies demonstrate the feasibility of incorporating MEMS technology in an 

elite swimming environment to inform and enhance the coaching process. 



 

 

 

 

 

 

 

 

 

Chapter 1 – Introduction 
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1.1 Technical analysis of swimming performance 

Elite swimming is a highly competitive sport, with world class athletes constantly 

challenging themselves against their rivals and tiny margins deciding the outcome of 

races. Consequently, elite swimmers and coaches continually strive for methods and 

strategies to optimise their performance. A fundamental aspect of this preparation 

involves regular, quantifiable, data measurement to assess skill acquisition and 

technical development for the different components of swimming races, namely 

starts, turns and free-swimming. With the continued advancement of technology in 

sports, athletes and coaches have ever increasing access to information of their 

performances.  

 

Swimming is characterized by a sequence of coordinated actions of the trunk and 

limbs, in a repeated, synchronous pattern. Arm action during each of the four 

competitive swimming strokes comprises specific phases. A commonly used 

description of these phases defines the stroke as various sweeps of the arms, which 

are specific to each stroke (Figure 1.1). For example, the downsweep; insweep; and 

upsweep movements are completed during frontcrawl swimming [1]. Important 

kinematic variables such as velocity and acceleration fluctuate greatly throughout 

each phase [1]. Variations between different swimmers are also typical. Techniques 

for accurately acquiring these valuable data can therefore be used as part of a 

quantitative biomechanical analysis process and to inform the coaching process. 

 

 

Figure 1.1 Typical hand movement patterns for each of the four competitive swimming strokes. 
Representation of typical arm actions during swimming, viewed from the front, highlighting the 
characteristic patterns of movement and sweeps of the arms during each of the four competitive 
strokes. Adapted from Maglischo [1].  
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Predominant methods for quantitative biomechanical analysis of swimming 

performance are video-based [2]. Images from cameras positioned above or below 

the water surface allow for the entire swimming stroke to be captured in training and 

competition. Video capture in aquatic environments has inherent disadvantages 

however, such as limited capture volumes, parallax error, hidden or obscured body 

segments and water turbulence, all of which affect the accuracy of data [3, 4]. 

Moreover, the video editing; digitization and data analysis process for video analysis 

is labour intensive and time consuming, thus reducing the practicality of the 

technique for routine use [5]. Furthermore, video analysis also often requires 

expensive and specialised equipment, which is a limiting factor in many coaching 

environments. Consequently, it is argued that current performance analysis 

methodologies may not adequately meet the needs of competitive swimming coaches 

who require rapid feedback to maximise performance gains. Therefore, a 

requirement exists for alternative solutions to obtain these essential quantitative data 

that can overcome the limitations with current technologies. 

 

In 1979, Holmer outlined a novel technique for measuring linear acceleration in 

swimming using an accelerometer attached to a swimmer with a nylon cord and 

pulley system [6]. Spectral analysis of recorded data highlighted specific frequencies 

corresponding to both the arm and leg actions of swimmers. The author postulated 

that this technique could potentially lead to a new method of recording acceleration 

and velocity during swimming. Later work demonstrated the feasibility of this 

approach using prototype microelectromechanical systems (MEMS) [7-9] and recent 

years has seen an expansion in research interest in this area [10, 11]. The potential 

benefits of this approach include providing swimming coaches with an accessible, 

low cost solution for rapidly obtaining data to support the biomechanical analysis of 

swimming technique. This may enable more efficient, effective and quantitative 

coaching by reducing the demands on a coaches time and equipment requirements.  

This has led some to suggest that this technology may offer significant advantages 

over traditional video-based coaching approaches [12]. However, this research area 

is in its infancy, particularly the translation of research findings into coaching 

practice, and anecdotal evidence suggests that MEMS technology is currently not in 

common usage in coaching settings. Additional research work in this area is 
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therefore warranted to fully realise how this technology may be applied in elite 

swimming. Two research objectives have been established and frame this body of 

work. Firstly, to comprehensively investigate the application of existing inertial 

sensing techniques for the analysis of swimming. Additionally, to propose, design 

and test a novel inertial sensor system, specifically for the quantitative analysis of 

turns in elite swimming.  

 

1.2 Outline of the thesis  

The work outlined in this thesis investigates the use of MEMS-based inertial sensor 

technology for the analysis of competitive swimming. This thesis comprises of ten 

chapters. The structure of the thesis is as follows: 

Chapter 1 – Introduction: introduces the problems associated with current 

practices for biomechanical evaluation of swimming in elite athletes and provides an 

overview of the whole thesis. 

Chapter 2 – Analysis of swimming performance: Perceptions and practices of 

US-based swimming coaches: describes the results of a survey conducted with 

competitive swimming coaches working in the United States of America. The 

primary aim of this study was to gain an understanding of the methods and 

procedures employed by coaches when conducting a technical examination of 

swimming performance. A secondary aim of this study was to examine the extent of 

the use of MEMS technologies amongst high level swimming coaches and to gain 

insight into coaches’ awareness of the potential of this technology to provide a 

solution for quantitative biomechanical analysis. This chapter has been published in 

the Journal of Sports Sciences (2016;34:997-1005).  

Chapter 3 – Review of the relevant literature (Part 1: video-based analysis of 

swimming): provides a comprehensive review of traditional video-based methods of 

analysing elite swimming performance. The current processes involved in capturing 

swimmers’ movements using video and the rationale for these processes are 

discussed. A discussion of the limitations associated with video-based methods is 



Robert Mooney PhD Thesis – Chapter 1 

 

25 

presented, focusing on how these issues may impact on coaching effectiveness. This 

chapter has been published in the Sport and Exercise Medicine Open Journal 

(2015;1:133-150). 

Chapter 4 – Review of the relevant literature (Part 2: inertial sensor-based 

analysis of swimming): investigates the current state of the art of MEMS-based 

inertial sensor technology for the analysis of swimming. with a particular emphasis 

on providing an evaluation of the accuracy of different feature detection algorithms 

described in the literature for the analysis of starts, turns and free-swimming. A 

detailed review of the technical considerations relevant to the application of MEMS-

based systems in aquatic environments follows. This chapter has been published in 

Sensors (2015;16:1-18). 

Chapter 5 – Evaluation of commercially available swimming activity monitors: 

describes a study designed to investigate the accuracy of two commercially available 

swimming devices that incorporate MEMS technology. The primary aim of this 

study was to test the hypothesis that these devices provide an accurate and reliable 

means of measuring key indices of swimming performance. A secondary aim of this 

study was to evaluate the suitability of these devices for use in elite swimming 

environments. This chapter has been published in PLoS ONE (2017;12:1-17). 

Chapter 6 – Application of a User Centred Design approach in the development 

of an inertial Sensor-based System for the analysis of swimming turns: describes 

how the application of a User Centred Design (UCD) methodology was used for the 

conceptual development of a novel system for analysing swimming performance – 

specifically for the analysis of swimming turns.  A Use Case was developed and 

tested that outlined how the intended end users (sports scientists, coaches and 

athletes) would interact with the system during various stages of its operation. By 

following this UCD methodology, it was intended to maximise the usability of the 

proposed system and thus increase the likelihood of the adoption of the proposed 

new technology into existing practices of analysing swimming performance in 

applied settings, thus providing justification for future hardware and software 

development. This chapter has been presented at the 2016 International Society for 

Performance Analysis in Sport (ISPAS) Conference. 
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Chapter 7 – Swimming sensor prototype development: describes the development 

of a prototype hardware system that can be used for the acquisition of human 

movement data during swimming activities. A detailed description of the hardware 

programming code and prototype testing procedures is presented. The design of the 

prototype hardware system is intended to meet the user requirements identified in 

Chapter 6, including factors such as the enclosure size, sensor positioning on the 

swimmers body and minimizing any interference with respect to the ability of the 

swimmer to perform their normal swimming activities. 

Chapter 8 – A method for the analysis of swimming turns using a head-worn 

inertial sensor: provides a comprehensive description of the development of novel 

feature detection algorithms for analysing swimming turns. Tri-axial acceleration 

and angular velocity signals that are recorded from a head mounted inertial sensor 

prototype device were investigated, using post-processing methods, to identify key 

signal features that are relevant to different turning styles performed during each of 

the four competitive swimming strokes. The primary aim of this study was to 

examine whether the signal outputs display characteristics which are consistent 

between different swimmers and to test the hypothesis that these signals could be 

used to automatically extract key features of interest for the purpose of analysing a 

swimmer’s performance.  

Chapter 9 – Evaluation of the Feasibility of Applying MEMS Inertial Sensor 

Technology for the Analysis of Swimming Turns: provides an evaluation of the 

suitability of the developed prototype system and associated algorithms for analysing 

swimming turns. A particular emphasises is placed on assessing the accuracy of 

these algorithms in an applied aquatic training environment. The principal 

hypothesis being tested in this study was that inertial sensor-based technologies 

could be used to accurately detect and measure important quantitative biomechanical 

parameters related to the performance of turns in swimming, such as turn time, wall 

contact time and rotation time. The implications are that this information could be 

used to inform the coaching process and beneficially impact on methods to improve 

swimming technique and performance. 
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Chapter 10 – Discussion and Conclusion: the final chapter of this thesis discusses 

the primary observations and conclusions of this PhD programme of research and 

presents potential avenues for future research.  

The main contributions to the research domain that are described in this body of 

work include: 

 A comprehensive and rigorous evaluation of existing technology for use in 

the examination of swimming performance, including current practices, 

current methodologies and emerging technologies.  

 The incorporation and methodological description of a user centered design 

focus into the development of sports technology.  

 The development of a novel system of analysis, demonstrating a potential 

role for inertial sensor technology in an elite swimming environment, 

including the description and evaluation of a wide range of new feature 

detection algorithms.   
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A starting point for this research project is to attempt to understand current 

practices of swimming coaches working in competitive environments. Anecdotal 

evidence and the researcher’s prior experience suggest that despite the availability 

of a wide range and ever expanding variety of equipment that is available for the 

analysis of swimming performance, coaches may not be incorporating these tools 

into their coaching practices. These suggestions have not been substantiated 

however. Moreover, the reasons for these suggestions are highly speculative and 

have not been explored in a research capacity. Therefore, it was decided to 

undertake a large scale coaching survey at the outset of this research project to try 

to elicit answers to some of these questions. The findings of this study are presented 

in this chapter.  

 

2.1 Introduction 

The preparation of elite swimmers for competition is characterised by detailed 

annual training plans designed to improve all aspects of performance. Central to 

these preparations are processes of regular testing and measurement as a method to 

assess and monitor progression. The swimming coach plays the vital role in the 

training process, with responsibility for instigating a positive change in a swimmer’s 

performance. This is achieved by implementing a structured, periodised programme 

of training and competition that simultaneously addresses physical, mental, tactical 

and technical components [1, 2]. Consequently, control over the nature of sports 

science service provision typically lies with the coach. 

 

Ultimately, an extensive range of resources must be considered to decide the 

appropriate method of analysis for any given training environment. A comprehensive 

review of the area summarised that performance analysis of competition using video 

is the most complete method available, providing a method of analysing the outcome 

of a performance that incorporates all the factors necessary for that performance [3]. 

Performance analysis can be defined as the provision of objective feedback to 
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athletes and coaches through the use of different means, typically involving video 

analysis and statistical information. The analysis can then be used to (i) make a 

permanent record of performance; (ii) monitor progress; (iii) track changes in 

performance related variables; and (iv) identify strengths and weaknesses of both the 

athlete and opposition. However, many other analysis options exist. These include 

force platforms, tethered devices and recently developed inertial-sensor-based 

technologies for biomechanical assessment; physiological tools such as heart rate 

and lactate monitors; as well as an assortment of systems and methods for assessing 

other areas including psychology, nutrition and strength and conditioning. What is 

unclear is the extent to which coaches incorporate these various tools when analysing 

their swimmers’ progression. 

 

Competitive swimming is a highly researched area and technological developments 

have aided advances in the understanding of the biomechanical principles that 

underpin these elements and govern propulsion through the water [4-6]. 

Deterministic models have been developed through biomechanical research to 

highlight the interplay between various temporal, kinematic and kinetic principles 

during swimming performance [7-10]. These models serve to identify the key 

parameters that practitioners could monitor to assess improvements when conducting 

performance analysis.  

 

Commonly, coaches conduct the analysis themselves, through observation and 

qualitative assessment using the naked eye and video playback [11, 12]. Qualitative 

biomechanical assessment is based on the coach’s own knowledge and experience. A 

key advantage is that it is both low cost and easy to implement with large numbers of 

athletes. The value of qualitative analysis of technique should not be ignored. 

Researchers have argued that biomechanical laws and principles can be 

counterintuitive [13], causing confusion when explaining & interpreting the 

meaningful information that results from quantitative analysis. However, a 

subjective methodology also relies heavily on the coach’s expertise and requires 

them to know what they should be looking for.  
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A coach may utilise the services of a sports scientist or biomechanist who will use 

specialist equipment and semi-quantitative analysis approaches to assess specific 

aspects of performance [14]. Semi-quantitative analysis is useful in conditions where 

direct measurement is not feasible and can be defined as gathering approximate, 

rather than exact, data measurements. For example, using video analysis software to 

estimate the distance travelled during the underwater glide phase following a turn or 

to approximate a joint angle or segment position using lines overlaid on video 

footage. However, time delay in data processing can often limit the effectiveness and 

use of such approaches in applied settings [15]. 

 

Finally, a coach may access a biomechanical service delivery that uses quantitative 

methods through a nationally coordinated programme [16, 17]. Quantitative 

approaches allow for the greatest level of detail and access to sophisticated 

equipment and therefore are often reserved for only elite level athletes. In practice, 

this type of delivery would not be coordinated by a club coach and focus would be 

on an individual swimmer’s needs rather than that of a group. However, research 

work conducted using similar methods can produce findings that can be generalised 

for wider impact potential. 

 

The coach is the link between research and practice and therefore it is important to 

understand their views and investigate practices carried out in elite swimming. 

However, despite their critical role in the process, the opinions of swim coaches have 

rarely been reported in the extant literature. Stewart and Hopkins [18] surveyed 24 

swim coaches and 185 swimmers to investigate the relationship between training 

prescription and performance outcome. The focus of that paper was on the 

periodisation of training, measuring training intensity, duration and volume. Surveys 

of swimmers themselves have explored the incidence of injury [19]; training 

practices [20]; coaching climate and behaviours [21] or nutritional considerations 

[22, 23]. However these studies have collectively failed to address methods of 

monitoring performance progression through measurement and testing.  
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To the authors’ knowledge, no published research paper has yet aimed to quantify 

the practices of top-level swimming coaches regarding the performance analyses that 

they conduct. It is unclear to what extent various tools are used and for what 

purposes. Understanding the motivations of coaches and how environmental 

constraints impact on their decisions is important. Previous surveys of other sports 

coaches have reported poor knowledge transfer between research and applied 

settings [24, 25], therefore coaches may not analyse swimmers’ techniques based on 

the key findings emerging from research studies, potentially limiting coaching 

effectiveness.  

 

Therefore, the aim of this paper was to survey a large sample of elite swim coaches 

regarding their practices and to gain insight into their perceptions regarding the 

performance analysis tools that they use. Particular attention was given to 

biomechanical analysis of swimming performance and exploration of the use of 

various systems, specifically video-based methods of analysis and emerging sensor-

based technologies. 

 

2.2 Methods 

A self-administered online questionnaire was distributed to all swim coaches 

affiliated with the ASCA. The survey was reviewed by the Chairman of the NUI 

Galway Research Ethics Committee and the conditions of the Helsinki Declaration 

were satisfied. The United States can be regarded as the top swimming nation 

internationally and consistently tops the rankings at major competitions. For 

example, USA won 30 medals at the 2012 Olympic Games (31% of the total medals 

available), including 50% of gold medals. Therefore, the opinions and practices of 

coaches working in the United States are important and may provide insight into the 

preparations of elite athletes for competition. In total 635 coaches responded to the 

survey. However, in order to gain insight into the practices of more senior level 

coaches with experience working in an elite or competitive setting, a filtering 

process was carried out and the final analysis was limited to responses from coaches 

with a minimum of ASCA Level 3 swim coaching qualification (N = 298). This level 
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of coaching qualification was deemed appropriate as coaches will be more likely to 

be coaching older, more senior/elite level swimmers with national and international 

level experience.  

 

Categories of questioning included (i) coaching experience; (ii) importance of 

various areas of sport science service provision; (iii) types of analysis conducted and 

equipment used for these analyses and (iv) advantages and disadvantages of various 

video and inertial-sensor-based systems. Opportunities for coaches to express their 

views in their own words were also included to gain a better insight into their 

perceptions and to allow them to expand on the responses provided. Questions were 

intended to be general in nature regarding all available systems and tools for analysis 

in swimming, to avoid bias regarding the specific aims of the survey. Coaches were 

asked to consider their experiences over the preceding six years, in order to gain 

awareness of their current practices, taking into account the latest technological 

developments.  

 

The majority of the data presented in the results are descriptive in nature. Statistical 

analyses were carried out using Minitab (version 16.0, Minitab Inc., State College, 

PA, USA).  The Chi-Square test was used to test for association between coaching 

experience and level of success and to compare the proportions of qualitative and 

quantitative video-analysis practices used by coaches [26]. In order to investigate if 

differences existed between coaches rankings of different service areas, a one-way 

ANOVA and Kruskal Wallis test was conducted on the mean and median scores 

respectively.   A significance level of 0.05 was used for all analyses. 

 

2.3 Results 

2.3.1 Characteristics of participants 

Table 2.1 provides descriptive information for the final group of survey respondents 

(N = 298, 245 male, 53 female). More than half of respondents have over 20 years 

swim coaching experience and almost one third of respondents have coached an 



Robert Mooney PhD Thesis – Chapter 2 

 

36 

athlete ranked inside the top 100 in the world in the previous six years. There is 

evidence of a significant association between coaching experience and ranking, 

where the more senior coaches tend to produce better ranked swimmers. Over 40% 

of coaches with 20+ years’ experience have coached swimmer(s) in the top 100 of 

the world rankings. 

 

Table 2.1. Descriptive information for survey respondents, detailing years of coaching 
experience and highest world ranking of athletes coached. 

Coaching 
Experience 

N = Top 25 Top 26-50 Top 51-100 Top 101-250 >Top 250 

0-4 years 8 0 0 0 0 8 

5-9 years 34 3 2 1 5 23 

10-14 years 46 4 2 7 4 29 

15-19 years 39 2 3 6 7 21 

20+ years 171 37 16 19 23 76 

Total 298 46 23 33 39 157 

 

2.3.2 Sports science and medicine service provision 

Coaches were asked to rank, in order of importance, several areas of sport science 

service provision typically included as part of the annual training plan of elite 

swimming programmes (1 = most important; 10 = least important). The ranking was 

based on perceived impact of the service area on swimming performance. Figure 2.1 

summarises these results. Biomechanics was ranked most important in order of 

priority for coaches. There was a significant difference in mean (ANOVA) and 

median (Kruskal Wallis) rankings across the service areas where biomechanics tends 

to be ranked higher, on average, compared to the other service areas. Interestingly, 

medical related areas such as sports medicine, physical therapy and physiotherapy 

were ranked lowest in order of perceived importance and potential for performance 

impact, but these rankings do not represent the views of any one coaching group (i.e. 

more successful or more experienced coaches). 
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Figure 2.1. Box-plot summarising areas of sports science service provision ranked in perceived 
order of importance for inclusion in training programme (1 = most important; 10 = least 
important).  Mean (    ), median ( | ), interquartile range and outliers (*) are displayed. 

 

Systems of analysis and key performance related parameters 

Coaches were asked to provide details of the frequency of use of various systems 

available for analysing swimming performance and also what they regarded as key 

system requirements when choosing an analysis tool. Table 2.2 displays results of 

coaches’ usage frequencies. Figure 2.2 provides a ranked order of system 

requirements, indicating that although more coaches ranked “accessibility” as their 

top priority, “ease of use” received a higher average ranking overall. A summary of 

the categories of performance measures reported by coaches as those most important 

to quantify in order to analyse swimming performance is shown in Table 2.3. The 

data highlight the central importance placed on temporal measures of performance. 

In fact, the category for start and turning related parameters reported were also 

mainly temporal in nature (i.e. breakout time, rotation time) but are grouped 

separately due to the high response rate amongst coaches, indicating a preference for 

assessing these key phases of swimming.  
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Table 2.2 Summary of the frequency of use of various systems available for swimming analysis. 
The most frequent response is highlighted in bold for each device. All values are percentages 
(%) based on the responses of coaches. 

Analysis System Daily Weekly  Monthly Quarterly Annually 
Less 
than 

annually 

Not at 
all 

Heart rate monitor 27.5 13.5 12.2 5.7 2.2 3.5 35.4 

2D Video-based system 9.2 38.8 25.3 9.6 5.7 3.5 7.9 

3D Video-based system 3.9 16.6 11.4 5.2 3.5 5.2 54.2 

Inertial-sensor device 3.9 7.9 9.6 7.0 2.6 6.1 62.9 

Physical activity monitor 3.9 3.9 6.1 5.7 1.7 3.5 75.2 

Lactate monitor 2.6 10.9 16.6 8.7 1.7 4.8 54.7 

Pressure sensor 1.7 3.5 6.6 7.9 1.3 5.2 73.8 

Portable metabolic system 1.3 3.1 7.0 5.2 3.5 3.1 76.8 

Tethered device (i.e. velocimeter) 0.9 12.2 14.4 10.0 4.4 3.9 54.2 

Force platform 0.0 3.9 10.0 8.7 2.6 6.6 68.2 

         

 

 

  

Figure 2.2. Ranking of the perceived most important system requirements reported when 
choosing an analysis tool. The frequency of response of coaches who ranked each category as 
one of their top three responses is included. Results indicate a preference for easy to use systems 
that can be implemented readily into training programmes.  
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Table 2.3. Summary of the self-selected performance indices reported by coaches as the most 
important parameters to measure in order to analyse swimming performance. Parameters are 
grouped into areas such as temporal, kinematic and kinetic parameters based on the specific 
responses provided.  

System requirements 
Frequency of 

response 

 

Temporal parameters (i.e. stroke rate, splits) 41.3% 

Body positioning 17.6% 

Start & Turn specific parameters 14.8% 

Kinematic parameters (i.e. stroke length, velocity, acceleration) 14.0% 

Physiological variables (i.e. heart rate, lactate) 3.4% 

Kinetic parameters (i.e. force) 3.7% 

Psychological parameters 0.5% 

N/A responses 4.7% 

   

 

Video-Based Analysis 

As shown in Table 2.2 video-based methods are used frequently by swim coaches, 

although the extent to which above-water and below-water cameras are used is not 

clear. Further questions were posed to gain additional insight into the type of 

analysis carried out using video (Figure 2.3). The expectation was that each category 

of analysis would be equally represented but a Chi-square goodness of fit test 

showed that a greater than expected proportion of qualitative analysis is taking place, 

with a  subsequent under-representation of quantitative analysis (X2 = 35.93, p < 

0.05). 
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Figure 2.3. Comparison of types of video analysis most frequently carried out. Coaches were 
asked to state the relative proportions of both qualitative and quantitative analysis conducted 
within their training programmes. * The results indicate a significant over-representation of 
qualitative analysis and under-representation of quantitative analysis (p < 0.05). 

 

Sensor-based technology 

Sensor-based technologies are a topic of recent research attention. Therefore, further 

enquiry was made regarding familiarity with this emerging technology. Overall 

familiarity was found to be poor (Figure 2.4) and when subsequently asked explicitly 

if they had used the devices in the preceding six months a very low number of 

coaches reported that they had (N = 14). Figure 2.5 compares coaches’ perceptions 

of key barriers to the use of both video and inertial-sensor-based systems. 
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Figure 2.4. Familiarity amongst swimming coaches of the application of body worn sensor-
based devices for the analysis of swimming performance, highlighting a lack of familiarity with 
the technology. 

 

Figure 2.5. Comparison of perceived barriers to use of video-based methods and sensor-based 
technologies for the analysis of swimming performance. Common barriers exist for both 
systems, but the time taken to complete analysis is an additional barrier to more widespread use 
of video.  
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Information sources 

Finally, coaches were asked about their preferred sources of information on 

swimming performance analysis when deciding what tools to use and what 

parameters to measure (Figure 2.6). Academic literature and input from a sport 

scientist ranked lowest. Instead, coaches opt for other information sources such as 

discussions with other coaches or their own coaching philosophy when making these 

decisions. 

 

Figure 2.6. Ranked-order of the sources of information for coaches regarding factors that 
influence decision making regarding the methods of analysis used within their programmes. 
Academic and non-academic sources are included as well as user requirements for analysis 
equipment.  

 

2.4 Discussion 

The purpose of this research was to determine the practices and perceptions of elite 

swim coaches based in the United States regarding different performance analysis 

tools used in competitive swimming, with a specific focus on biomechanical 

analysis. It was found that coaches regard biomechanics as the most important area 

of sport science service provision, of the categories queried. This is likely a 

reflection on the importance of correct technique and also on an accumulation of 

knowledge emerging from several decades of research into the biomechanical 

principles governing the four competitive swimming strokes [4, 5, 27-29]. Coaches 
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also indicated that in the majority of cases (196 of 298 respondents), they have 

sufficient control over how the services are implemented.  Not surprisingly therefore, 

almost three quarters of respondents used video-based methods of analysis on a 

monthly basis and close to 50 % used video weekly. However, whilst the use of 

video was widespread, there was a disparity between the perceived importance of 

quantitative biomechanical data analysis and existing practice that largely employs 

qualitative analysis of video footage. One coached summed this up by stating: 

 

“While biomechanics is an area that is a major focus, it's not always the 

first focus of either the swimmers or the coach.” 

[Male, 5-9 years’ experience; swimmer ranked top-25 in world]  

 

This disparity is consistent with previous research  that has suggested that the 

development of video technology in coaching has had an emphasis on qualitative 

approaches in many sports [11], albeit with a lack of detailed information on specific 

methods used [12]. Moreover, other performance monitoring tools are much less 

seldom incorporated into coaching practices. Usage rates of inherently quantitative 

systems such as force plates, activity monitors and pressure sensors appear limited, 

suggesting that either significant barriers exist that prevent coaches from conducting 

such work more frequently or  that quantitative data analysis is not considered 

important. When asked if actual provision mirrors their ideal or preferred provision 

as shown in Figure 2.1, less than half of respondents agreed (N = 136).  

 

Barriers 

According to the coaches surveyed, the main constraints preventing more 

widespread use of biomechanical tools in swimming were a lack of finances, time 

restrictions and accessibility to suitable testing equipment. Several coaches 

commented on the difficulties of balancing resources with requirements, hampering 

their ability to deliver the sports science services in an ideal manner. Additionally, 

coaches were often forced into balancing the needs of a group versus those of the 

individual. 
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“Time is always the culprit, we only have so much time and space so I 

must make the decisions to do what I think is best for the team and then 

the individual.” 

[Male, 20+ years’ experience; swimmer ranked top-50 in world]  

 

 “Time and budget make it difficult to spend as much time analysing 

mechanics and performance data.” 

[Male, 0-4 years’ experience; swimmer ranked outside top-250 in world]  

 

Several coaches’ remarks also indicated that in an ideal situation, without these 

constraints, they would perform more quantitative analysis, such as in-depth 

kinematical examination of specific skills; increased investigation into propulsive 

forces generated by individual athletes and acceleration profiling for different stroke 

phases. However such views were not universally held, with other coaches making 

reference to the experience and skill of the coach as the vital component in achieving 

swimming excellence.  

 

“Swimming excellence is based on form feel and aggressive approach. I 

am not convinced that those things can be acquired by the majority, using 

[available] technologies.” 

[Female, 15-19 years’ experience; swimmer ranked top-100 in world]  

 

“Coaches are too hung up on technology and forgetting that we are 

artisans. There is no perfect scientific way to create a champion; it must 

happen between the ears, not with a magic box.” 

[Male, 5-9 years’ experience; swimmer ranked outside top-250 in world]  
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Video-based analysis methods 

Many coaches provided interesting insight into what can be considered the key 

advantages and disadvantages of using video. Interestingly, none of the advantages 

related to quantitative approaches. Instead, coaches’ comments concur with research 

findings that the main feature promoting the use of video is  the objective record of a 

swimmer’s activity provided [11], from which both coach and swimmer can benefit. 

Visual feedback on performance is perceived to be vital for skill acquisition, with 

many coaches suggesting that swimmers’ awareness of their movements in the water 

may be at odds with what they are actually doing much of the time. Manipulation of 

the video image using tools such as slow motion replay, frame by frame viewing or 

split screen comparisons are also perceived as important advantages. Most of the 

swimmers’ movements occur under the water, causing difficultly for a coach to see 

what is going on, therefore the video appears to be just as important for the coach as 

for the athlete.  

 

“[Video gives a coach the] ability to show the athlete what they are 

actually doing versus what they feel they are doing so your instructions 

are supported by fact in their minds.” 

[Male, 10-14 years’ experience; swimmer ranked top-25 in world]  

 

“[Video] truly helps a swimmer to see what they are doing or need to do. 

Sometimes telling them just doesn't work, but letting them watch it does. 

[Video] also helps to slow down a stroke and allow you to see things you 

could not see [otherwise].” 

[Male, 0-4 years’ experience; swimmer ranked outside top-250 in world]  

 

Commonly perceived disadvantages to video analysis methods were clearly found 

from the results. Cost and availability are both important factors, however time delay 

has been found to be the most critical barrier. This may involve the time to complete 

data collection; time to interpret and analyse information or time lost from training to 

provide feedback information to swimmers.  
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“It is difficult to provide relevant information to a large group in a timely 

manner.” 

[Male, 15-19 years’ experience; swimmer ranked top-50 in world]  

 

“I love being able to offer [video analysis]; but it is extremely time 

consuming to provide good analysis to every swimmer. With even a small 

team of 40 athletes it can take me a week dedicated just to videotaping, 

analysing it for hours at home, and then with 15 minutes of feedback to 

the swimmer each, it takes me 10 hours to review with them all.” 

[Female, 20+ years’ experience; swimmer ranked outside top-250 in 

world]  

 

“Many programs that you can use (Dartfish for instance) offer great 

analysis, but are extremely labour intensive. The best programs offer 

immediate feedback for the athlete to make adjustments quickly.” 

[Male, 10-14 years’ experience; swimmer ranked outside top-250 in 

world]  

 

Time delay, too, is often cited as a disadvantage of video in research literature [30, 

31]. Aside from the editing process, digitization and data processing for quantitative 

analysis is labour intensive and time consuming, thus reducing the effectiveness of 

the feedback. Guadagnoli, et al. [32] demonstrated that video is an effective method 

of producing changes in technique over and above verbal feedback. However, others 

have shown that quantitative feedback is also important for swimming analysis 

rather than using video purely to provide the visual record of performance [33]. 

Researchers have also questioned the accuracy of various video-based methods [34]. 

Moreover, video capture in aquatic environments has other inherent disadvantages, 

such as hidden or obscured body segments, water turbulence and issues with light 

refraction [30, 35], none of which was referenced by respondents to the survey. 
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Sensor-based technology 

Comparison of the perceived barriers of video to those for sensor-based technology 

is of interest as inertial-sensors have been touted as a possible substitute for video-

based analysis [30]. Cost and availability were commonly expressed as 

disadvantages, but for inertial-sensors a perceived lack of knowledge amongst 

coaches is clearly another important issue. Despite recent claims of the potential 

benefits of inertial-sensor-based systems, usage remains extremely low, with very 

few of the coaches surveyed (N = 14) using these systems within the previous six 

months. Close to half of respondents (N = 138) described themselves as “not at all 

familiar” with the technology, with coaches commenting: 

 

“More literature needs to be published in the swimming community. As 

an everyday coach, if I have not heard of it, and I do more reading than 

the average coach, then there is a problem with the advancement of the 

technology right there.” 

[Male, 10-14 years’ experience; swimmer ranked outside top-250 in 

world]  

 

“[I would] need a demo of the technology and testimonies of people 

using it and making a difference.” 

[Male, 15-19 years’ experience; swimmer ranked outside top-250 in 

world]  

 

Swimming related applications for sensor-based technology have received much 

research attention recently [35-38] and some commercially available devices have 

recently emerged. The small number of coaches who have used sensors did provide 

insight into possible advantages of sensor-based technologies. They reference both 

the speed of feedback provided as well as the quantitative nature of the data 

obtained.  
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“[sensors provide] immediate feedback for multiple swimmers at once.” 

[Male, 10-14 years’ experience; swimmer ranked top-100 in world]  

 

“It is quantifiable.” 

[Male, 20+ years’ experience; swimmer ranked top-100 in world]  

 

“Information is collected automatically and feedback is given within 

seconds. Detailed information can be accessed [at a later time].” 

[Male, 20+ years’ experience; swimmer ranked outside top-250 in world]  

 

These sentiments echo the key conclusions of other researchers’ findings. Sensor-

based systems have been developed to provide rapid feedback to swimmers on key 

performance indices such as lap times and stroke rates [36, 38]. Other research 

purported advantages include high levels of accuracy and potential for integration 

with other feedback systems [30, 35, 38]. Interestingly, some academic sources also 

refer to the low cost of sensor-based technology [39], which is at odds with perceived 

opinion amongst coaches.  

 

Coaches’ perceptions of key performance related parameters 

Biomechanical swimming research has found certain measureable parameters to 

have a significant influence on swimming performance. Therefore it is interesting to 

explore and compare coaches’ perceptions of the most important parameters and the 

data they most frequently collect. A common theme evident from results presented in 

Table 2.3 is that coaches consistently reported time-based parameters such as stroke 

rates or split times over and above other types of information as being of most 

importance to them. Temporal measures are useful benchmarks of performance but 

more in-depth analysis of the underlying kinetic and kinematic factors influencing 

this temporal outcome is recommended [3]. 



Robert Mooney PhD Thesis – Chapter 2 

 

49 

The analysis of starts and turns is recognised by coaches as a vital component of 

overall performance but again the remarks of coaches are focused on time-based 

parameters. For example, time to 15m is frequently used as a measure of starting 

performance but has been shown to be influenced by other underlying factors, such 

as the horizontal velocity at take-off or time spent in flight [40, 41].  

 

Another theme that emerged was the perceived importance of body position, 

including streamlining, hand movements and joint angular positions. Coaches would 

appear to assess these areas through direct observation or qualitative examination of 

video footage to get a general picture of a swimmer’s position in the water and 

coordination of various body segments, without typically relying on quantitative data 

to support their opinions. Therefore, the coaches view would be that sophisticated 

data analysis tools are not currently used to get the information that they are looking 

for.  

 

User requirements 

Comparisons of the findings in the present study with previous research exploring 

the main user requirements of coaches when selecting an analysis tool are of interest. 

The data presented in Figure 2.2 show that the main requirements are (i) ease of use; 

(ii) accessibility and (iii) ease of understanding, suggesting a preference for 

straightforward analysis systems that do not require complex implementation. 

Presumably, coaches are more concerned with the data output for use with their 

athletes. Surprisingly, coaches ranked real-time feedback eighth out of eleven use 

requirements, which is unexpected given their comments on the issue of time 

affecting their practices. These findings contradict previously reported user 

requirements that suggested skill specific measures and repeatability of measures to 

be the key user requirements [38]. User requirements had been determined through a 

similar methodology in this previous study, which involved interviews and 

questionnaires with coaches, biomechanists and swimmers, but the numbers 

involved were unreported. Contradictory findings such as these serve to highlight 

that the requirements for different end user groups may not always be the same. 
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Information sources 

A potential explanation for the key findings of the present study lies in the sources of 

information used by swimming coaches. A coach’s knowledge source will drive the 

coaching process by informing training plans [42]. Coaches would appear to rely on 

their own coaching philosophy, coaching literature and other coaches’ opinions 

rather than academic or scientific sources when making decisions about technical 

analysis of swimming. Interestingly, time constraints have also been cited elsewhere 

as a reason for ignoring certain sources of information [25]. Although not considered 

in the present study, it would have been interesting to assess the academic 

background of respondents in addition to their vocational training, as access to such 

resources may also be a limiting factor. 

 

A supportive coaching community working within a collaborative knowledge-

sharing environment is to be welcomed. However, the results of the present study 

raise concerns that research led developments in elite assessment of swimming may 

not be filtering down to those on the side of the pool, a finding that is consistent with 

previous research [24, 25, 43]. Potentially, a situation may develop whereby coaches 

might not recognise how important certain kinetic or kinematic parameters are to 

measure or fully appreciate the link between these parameters and overall race 

performance. 

 

2.5 Conclusion 

The results of this survey highlight a disparity between ASCA Level 3 coaches’ 

perceptions and their practices in monitoring and assessing technical aspects of 

swimming performance. On the one hand, the findings suggest an understanding of 

the importance of applying biomechanical principles in their training programmes. 

However, swim coaches have a clear focus on measuring temporal based parameters 

and place limited emphasis on the underlying principles influencing these. A variety 

of factors are at play, including constraints due to their personal situations (time, 



Robert Mooney PhD Thesis – Chapter 2 

 

51 

cost, availability); accepted coaching practice and their awareness and application of 

the findings of research studies.  

 

What is unclear from this study is whether practices would change if the barriers 

were to be removed. Additional exploration of coaches’ needs is warranted, to 

examine more fully the reasons for conducting different types of analyses with their 

swimmers. It would also be interesting to compare these findings against other 

prominent swimming nations. Additionally, gaining the opinions of elite swimmers 

would also allow further insight into what they consider to be the best methods of 

analysing their technique and what modes of feedback and instruction they would 

find most beneficial. 

 

These findings have implications for coaches and researchers alike, as well as 

impacting on device development for swimming analysis. Enterprises concerned 

with new product development for swimming performance analysis can benefit from 

fresh insight into barriers against the use of existing technology and the key user 

requirements according to coaches. Poor crossover between research and applied 

practice is not unique to swimming. However, with such emphasis on technical 

development, it is important that swim coaches measure the parameters that will 

most impact performance. Coaching literature plays a large part in disseminating the 

information emanating from academic research and presenting findings to coaches in 

a convincing manner. Until such time that coaches fully appreciate the value of 

quantitative data it is likely coaches will continue to opt for traditional practices and 

their own intuition as the main means of assessing elite swimming performance.  
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The results of the coaching survey, presented in Chapter 2 of this thesis, 

raised a number of important and relevant issues. Firstly, video-based systems were 

found to be very widely used for the analysis of swimming performance in applied 

settings. However, the scope of the use of video is limited largely to qualitative 

practices, with clear barriers towards the use of video for quantitative data 

collection. Additionally, little is known regarding the specific methodologies that are 

employed for using video in aquatic environments. Therefore it was deemed 

important to undertake a comprehensive review of the relevant literature in order to 

fully understand the use of video-based systems for the analysis of swimming 

performance. This is the focus of Chapter 3 of this thesis.  

 

3.1 Introduction 

Elite sporting success is achieved through gradual improvements over an extended 

period of time, to ensure that the athlete has achieved a sufficient level of physical 

conditioning and technical expertise. Central to this process is a detailed training 

plan which is prepared by the coach and monitored using a variety of means, with 

video-based analysis arguably the most common methodology employed in elite 

sport. Unsurprisingly therefore, many reviews have been published on the various 

applications of video in sport, including technical recommendations [1] applications 

in coaching and feedback [2-4]; human motion tracking and analysis [5-7]; and 

technological advances [8].  

 

There are various methods by which video analysis is applied in different sports [2, 

3]. A recent review of the development of video technology in coaching settings 

examined key questions about why and how sports coaches apply video-based 

methods [2]. That author proposed that the main reason why video is used is to 

provide an objective record of performance, providing evidence that can be reviewed 

and analysed. To further understand the application of video in particular situations, 

reviews have been carried out for specific sports such as soccer [9]; tennis [10] and 
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golf [11]. Video analysis has been used for various purposes, including tactical; 

technical; physical and mental applications in different sports [12]. 

 

The use of video in competitive swimming is widespread, with close to three 

quarters of coaches based in the United States using video on a monthly basis [13]. 

This is not unexpected as underwater video cameras can be positioned in ways that 

can record what the coach cannot see from the pool deck, thus providing him/her 

with additional insight into the athletes’ performances. This is essential to ensure that 

swimmers develop a good technique, not just for performance gains but also to 

reduce the risk of injury [14]. Previous research has shown that video is used by 

swimming coaches mainly as a qualitative tool [13]. This is intuitive as the 

qualitative process is more straightforward to implement in applied settings 

compared with quantitative practices. However, Lees [15] has argued that there is a 

lack of information regarding the specific qualitative methods used in elite sport and 

also a shortage of evidence of how successful this approach may be. In a swimming 

context, this appears to be valid, with a dearth of published research papers outlining 

the application of qualitative video analysis and providing evidence of the 

effectiveness of the approach.  

 

Video is also widely utilised for quantitative purposes in swimming for various 

applications including assessing technique, for race analysis; as a teaching tool; or as 

part of a medical screening process. Additionally, video is the primary means by 

which data for swimming research are collected and has allowed researchers to 

greatly advance our understanding of the mechanics governing each of the four 

competitive swimming strokes [16-19]. Callaway, et al. [20] reviewed how our 

understanding of swimming mechanics developed through video analysis but 

focused on research breakthroughs, making comparisons with newer sensor-based 

technologies. Others have provided an extensive examination of the technical aspects 

of underwater videography, with an emphasis on calibration and reconstruction 

procedures [21-23].  
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No review has been published specifically assessing the processes by which video is 

captured in applied swimming settings. This may result in uncertainty amongst 

coaches and practitioners regarding the most appropriate methodologies to be 

adopted and the value of video in swimming. Additionally, it is the view of the 

authors that such a review could serve to provide recommendations for coaches, 

sports scientists and clinicians, given the challenges of working in an aquatic 

environment. This may lead to increased consistency in approaches to video analysis 

in competitive swimming to ensure the efficiency and effectiveness of coaching 

practices is maximized. The aim of this study is to systematically review the 

applications of video-based systems for the analysis of competitive swimming. The 

review will focus on the processes involved in video analysis in competitive 

swimming; the interpretation and feedback of data for technical analysis; and will 

outline future developments currently emerging in the literature. 

 

3.2 Methods 

A systematic review of the available literature on the application of video-based 

methods for the analysis of competitive swimming performance was conducted 

according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

analyses) guidelines in an attempt to address the following review questions: (1) 

what are the processes involved in obtaining video-based data for swimming 

analysis, (2) how can the video footage be interpreted and presented for technical 

analysis of swimming performance and (3) what are the emerging advances in video-

based technology for competitive swimming analysis. The electronic databases ISI 

Web of Knowledge, PubMed, Science Direct, Scopus and SPORTDiscus were 

searched for relevant publications over a five year period to the end of June 2015, 

using the following keyword search string: (swim OR swimming OR swimmer) AND 

(performance OR analysis OR quantitative OR qualitative) AND (camera OR video). 

The inclusion criteria for these articles were: (1) that they provided sufficient detail 

regarding the equipment specifications and experimental setup; (2) that they include 

relevant data regarding the application of video-based methods for the analysis of 

competitive swimming performance; (3) that they were published in the last five 
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years (1st July 2010 – 1st July 2015) to ensure that the most contemporary issues 

could be explored and (4) that they were written in the English language. Studies 

were excluded if they: (1) did not involve human competitive swimmers; (2) did not 

provide sufficient detail to answer at least one of the review questions and (3) were 

published as part of conference proceedings.  

 

3.3 Results 

The outcomes of the systematic search strategy process is summarised in Figure 3.1. 

The initial search identified 384 records. Reference manager software (EndNote X5, 

Thomson Reuters, Philadelphia, PA, USA) was used to collate results. Duplicates 

were removed and a screening process of both the title and abstract of the remaining 

records was subsequently conducted. The full-text of the remaining records was then 

assessed for relevance to the review. Following this procedure, 30 articles remained 

for the systematic review (Table 3.1).  
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Figure 3.1 Flowchart of the systematic literature search. 
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Table 3.1 Results of systematic review search summarising studies conducted that apply video-based systems for the analysis of swimming performance. Results are 
presented in chronological order and include the purpose of the study; experimental and equipment details; the number of anatomical landmarks and the variables 
that were measured using the video footage. Abbreviations: UW = underwater; AW = above water; FoV = Field of view; Unrep. = Unreported; IdC = index of 
coordination.  

Reference Purpose of Study Exp. 

Design 

No. of 
cameras 

Camera 

config. 

Plane(s) of 
movement 

 

Enclosures 
(for UW 
camera) 

Frame 
rate 

No. of 
anatomical 
landmarks 

Camera positioning Variables measured using video 

Andrews, et al. 
[24] 

Quantify shoulder 
kinematics in backstroke 
and compare between 
advanced and 
intermediate level 
swimmers 

  

2D 1AW Static Frontal Viewing 
window 

50 Hz 4 2.3m above water 

FoV: 2x2m 

Shoulder entry angles 

Ceseracciu, et 
al. [25] 

Analysis of freestyle 
kinematics using a 
markerless system  

 

3D 6UW Static Sagittal, 
frontal 

Waterproof 
housing 

Unrep. 0 0.0-1.65m depth Shoulder, elbow & wrist joint 
angles 

Psycharakis 
and McCabe 
[26] 

Examination of the 
effect of breathing 
patterns on freestyle 
swimming kinematics 

3D 4UW 

2AW 

Static Sagittal Waterproof 
housing 

50 Hz 

 

19 UW: 8m from swimmer, 0.5-
1.5m depth, 75-110° optical axis 

AW: 12m from swimmer, 100° 
optical axis 

FoV: 6.5m per camera 

 

Shoulder & hip roll 

de Jesus, et al. 
[27] 

 

Effect of fatigue on 
kinematics of butterfly 
swimming 

2D 1UW 

1AW 

Static Sagittal Waterproof 
housing 

50 Hz 13 UW: 1.6m depth 

AW: 0.9m above water 

2.1x3.0 calibration space 

9m from plane of movement 

 

Velocity, stroke length, stroke rate, 
intra-cyclic velocity variation, 
stroke duration, hand & foot 
displacement 

Figueiredo, et 
al. [28] 

Examination of the 
variability on arm 
coordination patterns in 
freestyle 

 

3D 4UW 

2AW 

Static Sagittal, 
frontal 

Unrep. 50 Hz 21 UW: 75-110° optical axis 

AW: approx. 100° optical axis 

Velocity, stroke length, stroke rate 
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Reference Purpose of Study Exp. 

Design 

No. of 
cameras 

Camera 

config. 

Plane(s) of 
movement 

 

Enclosures 
(for UW 
camera) 

Frame 
rate 

No. of 
anatomical 
landmarks 

Camera positioning Variables measured using video 

Komar, et al. 
[29]  

 

 

Analyse the effect of 
increased energy cost on 
kinematics of freestyle 
swimming 

 

2D 1UW 

1AW 

Static Sagittal Waterproof 
housing 

50 Hz 0 UW: 0.5m depth  

FoV: 5m 

Stroke rate, stroke length, velocity, 
arm coordination, energy cost 

McCabe and 
Sanders [30] 

Analysis of kinematic 
differences in freestyle  
performance between 
sprint and distance 
swimmers 

3D 4UW 

2AW 

Static Sagittal Waterproof 
housing 

50 Hz 

 

19 UW: 8m from swimmer, 0.5-
1.5m depth, 75-110° optical axis 

AW: 12m from swimmer, 100° 
optical axis 

FoV: 6.5m per camera 

 

Average velocity, stroke length, 
stroke rate, stroke duration, arm & 
foot displacement, shoulder, elbow 
& hip joint angles 

Martens and 
Daly [31] 

 

Qualitative analysis of 
breaststroke technique 

2D 1UW Static Sagittal Viewing 
window 

25 Hz 0 Unrep. Water displacement due to kicking 
patterns 

 

Puel, et al. [32]  

 

Kinematic and kinetic 
analysis of tumble turn 
performance 

3D 5UW Static Sagittal, 
transverse 

Waterproof 
housing 

50Hz 17 0.7-2.0m depth  

45-60° optical axis 

 

Temporal, kinematic & kinetic 
parameters related to turn 
performance (integrated with force 
platform) 

 

Takeda, et al. 
[33] 

 

Effect of starting block 
setup on the kinematics 
of track start 
performance  

2D 1AW Static Sagittal N/A 125 Hz 14 2m from plane of motion Block time, velocity (horizontal, 
vertical, resultant), flight distance, 
take off angle, rear foot take off 
time 

 

Thow, et al. 
[34] 

Comparison of different 
feedback methods on 
glide performance 

2D 

 

1UW 

1AW 

Static Sagittal, 
frontal 

Waterproof 
housing 

50 Hz 5 UW: 10m from swimmer 

AW: 5m from swimmer 

FoV: 9m 

 

Initial & average velocity, glide 
factor 

Bideault, et al. 
[35] 

 

Investigation of 
individual variations in 
limb coordination 
patterns 

2D 2UW 

1AW 

Static, 
trolley 

Sagittal, 
frontal 

Waterproofed 
camera 

50 Hz 0 UW: 0.4m depth 

FoV: 10m (side view) 

 

Average speed, stroke length, 
stroke rate, IdC 
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Reference Purpose of Study Exp. 

Design 

No. of 
cameras 

Camera 

config. 

Plane(s) of 
movement 

 

Enclosures 
(for UW 
camera) 

Frame 
rate 

No. of 
anatomical 
landmarks 

Camera positioning Variables measured using video 

 

Ceccon, et al. 
[36] 

Kinematical analysis of 
arm motion in freestyle 
using CAST technique 

 

3D 6UW Static Sagittal, 
frontal 

Waterproof 
housing 

Unrep. 31 0.0-1.65m depth Shoulder & elbow joint angles 

de Jesus, et al. 
[37] 

Comparison of different 
backstroke starting 
techniques 

 

2D 1UW 

1AW 

Static Sagittal Waterproof 
housing 

50 Hz 13 UW: 0.3m depth 

AW: 0.3m above water 

2.5m from head wall of pool 

2.1x3.0 calibration space 

 

Centre of mass position and 
velocity, contact time, take off 
angle, back angle arc, fight 
distance, start time 

Gourgoulis, et 
al. [38] 

 

 

 

Effect of resistance on 
propulsive forces during 
freestyle sprint 
swimming 

 

3D 4UW Static  Sagittal Periscope 60 Hz 11 3x1x1m capture volume Pitch & sweepback angles, hand 
velocity, propulsive forces 

Silva, et al. 
[39] 

Characterization of 
backstroke swimming 
kinematics at high 
intensity 

 

2D 2UW Static Sagittal, 
frontal 

Waterproof 
housing 

50 Hz 12 6.3m2 capture space Average velocity, stroke rate, 
stroke length, stroke index, IdC 

Strzala, et al. 
[40] 

Investigation of 
correlation between 
technique with velocity 
profile in breaststroke 
swimming 

 

2D 1UW 

1AW 

Trolley Sagittal Waterproofed 
camera 

50 Hz 0 UW: 1.0m depth 

5m from plane of motion 

Stroke phase analysis (arms & 
legs), stroke rate, stroke length, 
IdC, speed  

Veiga, et al. 
[41] 

Analysis of the 
kinematics of backstroke 
turns 

2D 4AW Static Sagittal N/A 25 Hz 0 All cameras positioned 7m 
above and 7m away from pool 

2 cameras fixed at ends of pool, 
perpendicular to plane of 
motion, 2 cameras fixed with 

Turn time (7.5m round trip), 
distance in, UW distance, velocity, 
normalized velocity, stroke 
velocity 
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Reference Purpose of Study Exp. 

Design 

No. of 
cameras 

Camera 

config. 

Plane(s) of 
movement 

 

Enclosures 
(for UW 
camera) 

Frame 
rate 

No. of 
anatomical 
landmarks 

Camera positioning Variables measured using video 

optical axes crossed (one from 
0-15m and the other from 10-
25m) 

 

Atkison, et al. 
[42] 

 

 

Examination of dolphin 
kicking performance 

2D 1UW Static Sagittal Waterproofed 
camera 

30 Hz 

 

12 0.5m depth, 7.5m from push-off 
wall, 4m from swimmers plane 
of motion 

Kick symmetry, displacement, 
amplitude & frequency. Horizontal 
centre of mass velocity, relative 
angles for ankle, knee, hip, 
shoulder, elbow, wrist, upper waist, 
lower waist & chest. 

 

Cohen, et al. 
[43] 

 

Examination of the 
pitching effects of 
buoyancy using a 
markerless system 

 

2D 2UW 

1AW 

Trolley, 
towing 
cable 

Sagittal, 
transverse 

Unrep. 50 Hz 0 Unrep. Centre of mass & centre of 
buoyancy positions, buoyancy 
torques, moment of inertia 

do Couto, et al. 
[44] 

 

Effect of breathing 
patterns on freestyle 
swimming kinematics 

 

2D 1AW Static Sagittal N?A 50 Hz 2 2.35m above water 

Approx. 11.7m from swimmer 

FoV: 7.5m 

Stroke rate, stroke length, velocity 

Gourgoulis, et 
al. [45] 

Assess the effect of leg 
kicking dynamics on 
freestyle kinematics 

 

3D 4UW Static  Sagittal Periscope 60 Hz 6 3x1x1m capture volume Stroke rate, stroke length, velocity, 
intra-cyclical hip velocity, IdC, 
pitch & sweepback angles 

Monnet, et al. 
[46]  

 

Determine the accuracy 
of a 3D kinematics 
system for swimming 
analysis 

 

3D 8AW Static Sagittal, 
frontal 

Viewing 
window 

200 Hz 4 0.55-2.0m height 

1.4-1.9m from viewing window 

0.45-1.8m between cameras 

 

Sweepback & pitch angles 

Schnitzler, et 
al. [47] 

 

Effect of aerobic training 
on freestyle kinematics 

 

2D 2UW 

1AW 

Static & 
panning 

Sagittal, 
frontal 

Waterproof 
housing 

50 Hz 0 UW: panning camera positioned 
at mid-pool, static camera 
captured frontal plane 

AW: profile view of entire swim 
trial 

Stroke rate, stroke length, velocity, 
IdC, propulsive phase duration 
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Reference Purpose of Study Exp. 

Design 

No. of 
cameras 

Camera 

config. 

Plane(s) of 
movement 

 

Enclosures 
(for UW 
camera) 

Frame 
rate 

No. of 
anatomical 
landmarks 

Camera positioning Variables measured using video 

 

Takeda, et al. 
[48] 

 

Examination of the 
kinematics of the 
backstroke start 
technique 

 

2D 1UW 

1AW 

Static Sagittal Viewing 
window 

60 Hz 14 UW: 1.0m depth 

AW: 0.2m above water 

7.5m from plane of motion 

 

Hip & knee joint angles, angular 
velocity, hip & toe displacement, 
time to 5m 

Seifert, et al. 
[49] 

Assessing the 
relationship between 
coordination and energy 
cost of freestyle and 
breaststroke swimming 

 

2D 2UW Static Sagittal, 
frontal 

Unrep. 50 Hz 0 FoV: 10m, between 10 & 20m 
mark in 50m pool 

Average velocity, stroke rate, 
stroke length, IdC, stroke phases, 
kick rate, arm & leg coordination 

Veiga, et al. 
[50] 

 

Analysis of kinematic 
parameters relevant to 
starts and turns, 
comparing national and 
regional level swimmers 

 

2D 2AW Static Sagittal N/A 25 Hz 0 Cameras positioned 7m above 
and 7m away from pool 

 

Turn distance & velocity, start 
distance & velocity 

Zatoń and 
Szczepan [51] 

 

Examination of the 
impact of verbal 
feedback on technique 

 

2D 1UW 

1AW 

Static Sagittal Waterproofed 
camera 

50 Hz 3 Cameras fixed mid-pool 

FoV: 15m 

 

Stroke rate, stroke length, velocity 

Gatta, et al. 
[52] 

Investigation of path 
linearity in elite freestyle 
swimmers 

 

2D 2AW Static Sagittal N/A 50 Hz 0 6m above water 

15m from plane of motion 

FoV: 40m 

Forward & lateral speed 
fluctuations 

[53] Examination of the 
effect of swim speed on 
coordination in 
Paralympic swimmers 

 

2D 2 UW Trolley Sagittal Waterproof 
housing 

50 Hz 

 

4 6.5m from swimmer (left and 
right sides), FoV: included 
whole body of participants, 10m 
test window 

 

Arm and leg cycle phases, swim 
speed, stroke frequency, kick 
frequency, kick pattern, downbeat 
time, upbeat time, pull time, 
recovery time, leg to arm 
coordination 
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3.4 Discussion 

3.4.1 Process of video capture 

It has been found that technical examination of a swimmer in an applied setting can 

be undertaken using many different types of video setup and using various analysis 

methods (Table 1). For example, quantitative or semi-quantitative techniques involve 

an objective, deductive means of examining components of a performance using 

specialized instrumentation. Alternatively, a qualitative approach is more inductive 

in design and analysis is descriptive and subjective in nature [54]. Qualitative 

analysis can be carried out to assess the quality of the performance or technique but 

is also important as a method of identifying the key variables that need to be 

measured by quantitative means at a later stage [1]. Figure 3.2 provides an overview 

of the video analysis process. Three stages are involved: (i) camera selection and 

setup (ii) video capture and (iii) data processing and analysis. Following these three 

stages, a coach will interpret the results, provide feedback to the swimmer and 

decide on appropriate intervention strategies.  

 

 

Figure 3.2 The process of video capture for swimming analysis involves three stages: (i) camera 
selection and setup; (ii) video capture and (iii) data processing and analysis. This may be 
conducted in either training or competition settings. 

 

Camera selection and setup  

Equipment specifications. Swimming presents unique challenges to the application 

of video that warrant consideration. Important issues to consider include light 

refraction and the effect of water turbulence such as bubbles and splash that are 

generated by a swimmers movements [20, 21]. Refraction can result in the distortion 
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of an image when light passes from a fast medium (air) to a slow medium (water). 

An additional concern for underwater recording is water clarity and its effect on 

image quality. For example, a swimming pool that is excessively aerated will result 

in high levels of bubbles around the swimmer, making identification of anatomical 

landmarks on the swimmer difficult (Figure 3.3).  

 

 

Figure 3.3 The motion of a swimmer in the water can cause turbulence resulting in bubbles that 
make identification of landmarks difficult. Rapidly moving body segments can also result in a 
blurred image. 

 

There is a vast array of video cameras to choose from, with both under-water and 

above-water cameras available from all the major camera manufacturers. Studies that 

utilise only above-water cameras tend to be analyses based on competition footage 

[41, 50, 52]. However, for a thorough technical examination of swimming using 

video it is imperative for the swim coach to have an underwater view to fully assess 

a swimmer’s movements. Specialist underwater equipment is available through 

dedicated manufacturers. Examples include SwimPro, SwimRight and Qualisys 

Oqus (Table 3.2). Some key parameters to consider when choosing a camera include 

the frame rate and shutter speed. Frame rate refers to the number of individual 

frames that comprise each second of video, also known as FPS (frames per second). 

Shutter speed refers to the amount of time that each individual frame is exposed for. 

It is generally advised that the denominator of your shutter speed should be at least 

double the number of FPS that you are recording. Consequently, a frame rate of 
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between 25-50 Hz and a shutter speed of between 1/350s - 1/750s are recommended 

for swimming applications to maximise image quality [1]. These frame rates are 

reflected in the extant literature although some examples of higher values such as 

125 Hz and 200 Hz  can be found [33, 46].  

 

Table 3.2 Comparison of technical specifications for various underwater cameras systems used 
in competitive swimming environments, highlighting that no common configuration has been 
established. 

Camera 
System 

Shutter Speed 
(s) 

Frames 
per second 

(fps) 

No. of 
Cameras 

Resolution 
(Mpixel) 

Min Illumination 
(Lux) 

      

      

SwimRight 

Shark Eye 
Coach 

 

1/50-1/10,000 25-30 1 0.3 1.0 

SwimPro 

IQ Recorder 

 

1/50-1/60,000 N/A 1-4 0.6 0.01 

GoPro 

Hero3 

 

1/1-1/8,192 12-240 1 0.4-12.0 1.4 

Qualisys  

Oqus 

 

N/A 180-10,000 1-24 0.3-12.0 0.0 

 

Various solutions have been developed to record underwater motion, including 

placing the camera in a waterproof housing [25, 47, 53]; using an underwater 

viewing window [24, 31, 46] or alternatively a periscope system [38, 45] (Figure 

3.4). Although periscope systems were frequently used in the past [55-58], 

waterproof camera housings would appear to now be the most popular choice and 

offer flexibility in positioning but have short camera to interface distances (the 

distance between the camera lens and the glass of the waterproof housing) which can 

result in reconstruction errors (Figure 3.5) [21]. Underwater viewing windows allow 

for increased camera to interface distances but video capture will be limited by 
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access to a swimming pool or flume with built in windows included and may also 

result in issues with refraction. Inverse periscopes allow for cameras to be positioned 

above the water to record activity both above and under the water. The advantage of 

a periscope system is that it allows for a longer camera to interface distance 

compared to waterproofed camera housings. However, the mirrors used in periscope 

systems must be of a very high quality to ensure a good image and consequently 

periscope systems can be expensive compared with the alternative approaches [21].  

 

 

Figure 3.4. To capture the underwater movements of the swimmer different options are 
available for the positioning of cameras including (a) using a waterproof housings such as the 
SharkEye system; (b) a periscope system or (c) placing cameras outside the water and tracking 
the swimmers as they pass underwater viewing windows. Reproduced from Yanai, et al. [56] 
(Figure 4b) and Monnet, et al. [46] (Figure 4c), with permission. 

 

 

Figure 3.5. When using a waterproof housing, the distance between the camera lens and the 
glass of the housing is important as refraction at both the water-glass interface and glass-air 
interface will cause deformation of the image. The thickness of the glass will also affect the 
degree of refraction experienced. 

Camera configuration.  

Water

Glass

Air

Incident ray

Reflected ray

Refracted ray

Emergent ray

Ø1 

Ø2 

Ø3 
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Using a single camera offers an ease of portability and setup, and can often be used 

for a rapid performance assessment [59]. Use of multiple cameras requires a more 

complex setup and requires images from different cameras to be synchronized. 

Between one and eight cameras have been used in studies capturing swimming 

footage, with various combinations of above-water and under-water cameras [31, 35, 

46]. Cameras can be positioned to capture the swimmer when viewed from the front, 

side, above or below, or a combination of these views, depending on the analysis 

requirements [53, 60, 61] (Figure 3.6).  

 

Payton [1] recommended that the size of the performer in view be maximized in 

order to reduce perspective error. Perspective error results in the size of an object 

changing with its distance from the lens and overcoming this is critical in 

measurement applications involving objects with depth or objects moving relative to 

the lens. This can be achieved through a combination of increasing the distance from 

the camera to the performer and choosing an appropriate zoom level. Whilst this is 

seldom an issue for above water cameras, when recording underwater this can 

present a challenge as it can often require several lanes of the pool to be left empty to 

avoid other swimmers from blocking the view. Moreover, underwater lenses 

typically have a fixed focal length (the distance between the centre of the lens and its 

focus) and do not always allow for adjustment in zoom or shutter speeds so it is 

necessary to increase the distance of the camera position in relation to the swimmer 

[1], which may be impractical for many training programmes.  
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Figure 3.6. Representative examples of different video setups and configurations for various 
quantitative analyses. (a) Two above water cameras, one static and one panning, for kinematic 
and temporal analysis of dive starting technique. Images from the static camera were used for 
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digitization of subjects during block and flight phases whilst the panning camera was used to 
measure temporal measures for the full 15m start phase. (b) A trolley system with underwater 
views from both sides of the pool facilitated following the swimmer over 10m to get three full 
stroke cycles for kinematic analysis. A graduated rope was fixed below the swimmer and within 
the field of view to facilitate calibration. (c) Multiple above and below water cameras around a 
calibrated space of known dimensions (4.5m x 1.5m x 1.0m) and control points distributed at 
regular intervals allows for a 3D analysis of swimming performance. Reproduced from Mooney 
[60] (Figure 6a); Osborough, et al. [62] (Figure 6b); Sanders, et al. [61] (Figure 6c), with 
permission. 

 

Static cameras are typically used in order to allow for the movement to be assessed 

relative to an external reference [28, 34, 42]. The camera is fixed on a specific field 

of view and the footage is captured as the swimmer moves past. When using a 

smaller capture space, issues arise as only a short number of stroke cycles can 

actually be recorded within the capture space. This may limit the effectiveness of 

such an approach as it does not allow for variations in swimmers patterns of 

movement to be fully observed [63, 64].  

 

Panning cameras introduce additional complexity for accurate measurement [56] but 

can be used to capture a swimmer’s movements through a longer distance, for 

example over the full length of an Olympic distance pool [59]. Alternatively, 

tracking cameras allow the videographer to manually follow the swimmer 

throughout the length of the pool using a camera mounted on a trolley or similar 

device [40, 43, 53]. This increases the analysis potential beyond the limited capture 

volume possible with static cameras.  

 

Calibration procedures. Calibration of a video image for a 2D quantitative analysis 

requires a scaling object and vertical reference to be recorded before video capture, 

to facilitate accurate extraction of variables during the digitization stage [1]. 

Typically, this is achieved using a metre stick. When conducting 3D analysis, a 

controlled volume is defined according to a calibration frame of known dimensions 

with control points positioned at known intervals and the calibration frame design 

must reflect its intended use.  
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Examples of differently sized calibration frames used in swimming can be found in 

the literature. Larger frames are capable of capturing the entire swimmer during one 

or more stroke cycles, with examples as large as 18 m3 [22] and 25.2 m3 [56] 

previously described. Others have used a calibration frame with dimensions of 4.5 m 

x 1.0 m x 1.5 m (6.75 m3) which is also suitable for whole body analysis [26]. 

Cappaert, et al. [65] used a 5.6 m3 calibration frame in a whole body swimming 

investigation. These researchers used digitized footage from four cameras (two 

below and two above the water) to determine changes in shoulder, hip and elbow 

angles throughout one stroke cycle, to compare the techniques of elite and sub-elite 

swimmers. 

 

Conversely, smaller calibration frame sizes have also been utilized [45, 57, 58, 66, 

67]. Payton, et al. [57] used a frame measuring 1.3 m x 0.93 m x 0.88 m (1.06 m3) 

and digitized six anatomical landmarks on the shoulder, forearm and hand in order to 

determine the movements of one arm during a single stroke. Lauder, et al. [66] 

previously reported the smallest frame found in a swimming related study, 

measuring just 0.4 m3 (1.0 m x 0.5 m x 0.8 m). These studies focused on specific 

aspects of swimmers’ arm movements and the relationship of these with propulsion. 

Smaller frame sizes can result in lower reconstruction errors than larger frames [55]. 

These reconstruction error differences can be attributed to various factors, including 

the effects of light refraction; image deformation when recording; the relative size of 

the reproduced image in relation to the capture volume or issues with the 

reconstruction algorithms used [21, 55]. A trade off exists in deciding the appropriate 

calibration frame size and the resultant accuracy of the reproduced image, in addition 

to the precision with which anatomical landmarks can be digitized (both manually 

and automatically). Moreover, increasing the distance between the camera and the 

performer can help compensate for errors owing to larger frame sizes. 

 

Video capture 

Preparation of swimmers. There are various factors involved in preparing swimmers 

for video-based data collection. Some factors are common to both quantitative and 
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qualitative analysis, but quantitative methods will require additional preparation. 

Swimmers may be required to wear specific clothing (such as different coloured hats 

or swim-suits to aid identification), have identification markers written on their skin, 

or some other markers for identifying body landmarks when conducting digitization 

procedures (Figure 3.7). Digitization involves the reconstruction of a swimmers 

body movement by tracking the displacement of markers placed at specific 

anatomical locations. Up to 31 landmarks have been included in the reviewed 

literature [36], although the number of specific locations of the markers will depend 

on the aims of the study. It is important to note that the swimmer cannot typically 

hear or see the videographer whilst performing trials so it is vital that instructions 

regarding the protocol are clearly communicated to the swimmer in advance to 

improve the efficiency and accuracy of data collection.  
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Figure 3.7. Representation of the anatomical locations of body segments used to facilitate the 
digitization process for kinematic analysis. The accuracy of the digitization process is dependent 
on anatomical knowledge when markings are made. Reproduced from Atkison, et al. [42], with 
permission. 

 

Video storage and retrieval. Various software packages are available, including 

Dartfish; Kinovea; Quintic; APAS; Coaches Eye and Simi Motion, for video capture, 

editing and subsequent analysis. Video requires a large amount of storage space on a 

computer, with footage of a typical 200m race lasting 2-3 minutes taking up 250-300 

MB. Recordings taken during a training activity are typically longer in duration and 

require much larger storage space.  
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A large volume of recording raises two concerns for the coach. Firstly, a suitable 

storage solution must be available with sufficient capacity for dealing with multiple 

recordings over an extended period of time. This may involve a physical hard drive 

or a cloud based solution. Advances in cloud based computing allow for vast storage 

and sharing solutions for coaches but this may also involve a lot of time for 

compressing, uploading and downloading of information when large squads of 

swimmers are involved. Secondly, a coach must have a system that allows for rapid 

retrieval of information at a later stage. This may involve manually indexing and 

tagging data, to attribute information related to a specific swimmer, event or analysis 

type conducted. Many software packages include features for this to be carried out or 

alternatively a coach may develop their own notational system. It is important that 

coaches and sports scientists working with the same group of swimmers follow a 

consistent approach for ease of retrieval at a later stage.  

 

Data processing and analysis 

For a qualitative analysis, it is typically only necessary to edit and store the files for 

later review. However, processing may involve merging of images from multiple 

views for thorough assessment. Data processing for quantitative analysis involves 

additional steps however. Digitization procedures are required to obtain the 

coordinates of body landmarks from recorded video and can be completed using 

manual or automatic methods. Manual methods involve an operator having to 

identify landmarks through visual inspection of each frame of the footage. In order to 

improve the consistency of the process, the same operator should perform all the 

digitizing for data to be analysed. Certain limb positions can be difficult to identify 

due to water turbulence or hidden body segments. Operators should have a sound 

anatomical knowledge and use markers on the skin only as a guide.  

 

The scaling object or control points must be digitized with a high degree of accuracy 

as this process is used to generate all other outputs from the system [1]. It is also 

recommended to assess the level of systematic and random error involved. Errors 

can arise from various factors including the quality of the video image; the resolution 
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of the digitization software; the size of the calibration volume and the skill of the 

operator [1]. Error estimation typically involves a both inter-operator and intra-

operator reliability testing [68-70]. Reconstruction error for 3D analysis of less than 

5mm for each axis is deemed acceptable [61, 71].  

 

According to swim coaches, a key disadvantage to performing quantitative video 

analysis methods is the time taken to manually digitize the footage [13]. Coaches 

perceive that it takes too long to carry out quantitative analysis and this outweighs 

any perceived advantage of conducting such work. A recent study reported that it 

took approximately seven and a half hours to carry out manual digitization of a 

relatively small amount of footage, involving ten swimmers performing three dives 

each [72]. Magalhaes, et al. [73] also cite another example whereby it took 27 hours 

to digitize footage of four separate stroke cycles for one swimmer, involving images 

from six cameras, 19 anatomical landmarks and 1,620 frames in total [74].  

 

Automatic digitization offers a clear time-saving advantage over manual methods. 

However, it is not always possible to complete automatic digitization as markers 

cannot always be placed on a performer (in a competitive setting for example) and in 

the water the negative drag effects of markers hinders the swimmers movements 

significantly. An increase of between 7-10% in passive drag was reported in one 

study which involved 24 markers, each 19mm in diameter [75]. Additionally, 

underwater and/or outdoor conditions lead to variations in the pixel contrast (the 

difference in luminance or colour that makes an object or its image representation 

distinguishable) between the markers and the background and air bubbles in the 

water can also introduce additional error in automatic procedures, rendering them 

impractical [1].  

 

Based on the evidence presented in this review, the overall trend in video capture in 

swimming appears to be towards the use of multiple cameras and that both the 

underwater and above water images are important to the coach. This is logical as it 

allows for swimmers movements to be tracked through complete stroke cycles and 

from multiple planes of motion. Increased availability of low-cost equipment is also 
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facilitating coaches in obtaining these multiple views. Additionally, whilst a number 

of 3D analysis setups are reported in the extant research, there is a much greater 

emphasis on 2D approaches, especially in applied practice.  

 

3.4.2 Interpretation and feedback 

Qualitative technical assessment 

Commonly, a coach will conduct technical analysis using video as an aid to their 

own observations [2, 15]. This analysis is based on a coach’s own knowledge and 

experience but video allows the coach to prepare, observe, assess and evaluate a 

swimmer’s performance before taking what they consider to be the most appropriate 

action [54, 76]. A key advantage is that it is low cost and easy to implement with 

large numbers of athletes. Wilson [2] suggests that in coaching settings there is more 

of a focus on qualitative methods as it allows for rapid video feedback to be provided 

at any stage during a training session. Moreover, qualitative analysis is considered by 

some to be more intuitive for an athlete, compared with quantitative approaches [76]. 

Despite this, limited examples of qualitative swimming research using video can be 

found [31, 77, 78]. 

 

One recent study used a qualitative approach to assess different breaststroke 

techniques [31]. By using an underwater camera, researchers were able to use flow 

visualization techniques to assess the impact of different arm and leg movements 

(Figure 3.8). For example, it was found that supination of the foot at the end of leg 

extension resulted in increased displacement of the swimmer compared with leg 

extension without a corresponding foot supination.  
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Figure 3.8. A qualitative assessment of breaststroke kicking action is facilitated through the use 
of underwater video footage. A fluorescent dye is used to assess the impact of foot supination at 
the end of leg extension (squeezing). The supinated position (on right) results in increased 
displacement of the swimmer as compared to the non-supinated position (on left). Reproduced 
from Martens and Daly [31], with permission. 

 

Another example of the application of video for qualitative assessment is the use of 

self-modelling. Self-modelling is an observational technique based on preparing a 

video of an athlete’s own performance that has been edited to show a performance 

level that is greater than what the athlete is currently capable of [79]. Such an 

approach has been implemented previously for the learning of swimming skills [78] 

and may also have relevance in competitive environments. This may involve taking 

video footage of a swimmers four best laps (from a longer race or from different 

performances) and editing them together with the swimmer’s best ever start, turns 

and finish, to create a video file that the swimmer can then view. This approach has 
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been used in competitive gymnastics and shown to significantly increase 

performance compared to when no video is provided to the athletes [80]. 

 

This visual feedback on performance is vital for skill acquisition, it raises a 

swimmer’s awareness of their movements in the water and it is suggested that 

feedback should be provided as quickly as possible during the skill acquisition stage 

to maximise the learning effect [81]. Furthermore, it has been believed that the 

timing and content of feedback information should change as learning and skill 

development progresses [4, 8]. Video facilitates this augmented feedback approach 

just as readily.  

 

Video allows for a thorough qualitative evaluation from any viewing angle to be 

conducted. As most of a swimmer’s movements occur under the water it is difficult 

for a coach to see what is going on. Therefore underwater video appears to be just as 

important for the coach as it is for the athlete. Manipulation of the video image using 

tools such as slow motion replay, frame-by-frame viewing or split screen 

comparisons can be used to facilitate both observation and assessment of the 

performance and highlight issues that could be missed with the naked eye. Moreover, 

video footage can be used to compare the same swimmer on different occasions to 

check for changes in technique following a period of training or for the effects of 

fatigue. 

 

The lack of qualitative swimming research highlighted in this review is of concern as 

it has been found that coaches most often employ qualitative procedures in their own 

environments [13]. However, without a strong evidential basis for its efficacy, it is 

possible that coaches are not making the best use of the methods, leading to poor 

practice and potentially in-efficient performance gains. Future research should focus 

on examining the merits of qualitative approaches in applied swimming settings. 
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Quantitative technical assessment 

Alternatively, video may be used along with specialist equipment and software to 

assess swimming technique using quantitative or semi-quantitative means [30, 35, 

61, 82, 83]. Whilst qualitative analysis using video has been shown to be an effective 

method of producing changes in technique compared with verbal coach feedback 

[11], it has been suggested that quantitative feedback is also important for improving 

technique rather than using video purely for qualitative analysis [34, 84]. Thow, et 

al. [34] reported significantly greater improvements in both initial and average 

velocity measurements in elite swimmers during the glide phase following a dive 

start when swimmers were provided with quantitative feedback to compliment the 

coach’s instructions. Average velocity increased from 1.74 ±0.16 m∙s-1 to 1.84 ±0.09 

m∙s-1 over a five week intervention period. Moreover, whilst the results also 

indicated that a qualitative feedback approach brought about significant gains in 

performance, the addition of quantitative data elicited faster improvement gains [34]. 

 

Video facilitates the quantification of key performance-related parameters, which 

have been shown to significantly influence overall performance. These quantitative 

methods can also be applied to injury prevention strategies. Ayyildiz and Conrad 

[85] used video to assess different phases of butterfly swimming technique in order 

to highlight how changes to technique can reduce the risk of injury by affecting the 

forces experienced by the swimmers’ hands as they propel themselves through the 

water. Furthermore, video has been used to determine stroke asymmetries [86, 87] 

and has informed musculoskeletal screening procedures to help clinicians and 

coaches to identify such deficiencies [88]. 

 

The studies included in this review demonstrate that video has been used in a diverse 

number of ways for providing analysis in swimming. Whilst some differences can be 

attributed to the advancement of filming and computer technology, the review does 

highlight an apparent lack of common approaches for conducting quantitative video 

analysis in swimming, with different studies using different camera configurations to 

measure the same variables. What is also apparent is that in-depth quantitative video 

analysis does not always require a complex experimental setup.  
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For example, the pitch and sweepback angles of the hand are important factors for 

generating propulsion [38, 71]. Recent studies have used either two, four or eight 

cameras positioned either in waterproof housings, behind viewing windows or with a 

periscope system and have digitized between 4 and 12 anatomical landmarks in order 

to measure these angles [38, 46, 50, 66, 71]. Similarly velocity, stroke rate and stroke 

length have been variously derived using static cameras [29], or cameras with a 

trolley setup [53], both with  and without [89] digitization procedures. Such diversity 

in approaches is undoubtedly due to the specific nature of different studies, but may 

lead to confusion among practitioners as to the best methods to employ in their own 

environments.  

 

Turns are a vital component of swimming competition and have been shown to be 

significantly related to overall performance [32, 90] and as a result have received 

much research attention [32, 41, 50]. Puel, et al. [32] provided a comprehensive 

three-dimensional analysis of the key parameters related to successful performance 

of the freestyle tumble turn, using five underwater cameras and an integrated force 

platform to quantify 51 separate variables. In contrast, Veiga, et al. [50] recently also 

assessed turning performance in a group of elite swimmers but used just two above 

water cameras and measured only turning distance and velocity. Clearly the 

objectives of these studies differed but it is interesting to consider which study would 

be more likely to be replicated by a coach in their own environment. 

 

3.4.3 Emerging advances in video technology 

The criticisms of video appear to be commonly expressed by both researchers and 

coaches. A central theme of this criticism is the time required to carry out video-

based procedures [13, 20, 91]. This is certainly limiting the frequency of quantitative 

video analysis performed in applied settings but is likely to also decrease qualitative 

video practices, given that video editing for multiple swimmers can be very labour 

intensive in its own right. It is unsurprising therefore that much research attention is 

currently focused on reducing the time taken to obtain pertinent information using 

video and on the automation of many of the laborious manual procedures involved 

[4, 6-8]. By way of example, one recently reported automated digitization approach 
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claims to reduce processing time by a factor of ten over manual tracking methods 

[46]. 

 

Automated tracking systems 

One such approach uses an array of LEDs mounted on flexible circuit board that was 

worn by the swimmer [92]. The system removes the requirement for manual 

digitization and initial testing suggests comparable accuracy to manually derived 

variables related to swimming starts and turns. Another automated tracking system 

recently described is based on the Calibrated Anatomical System Technique (CAST) 

[36]. The CAST system, frequently seen in clinical settings, estimates anatomical 

landmarks based on joint degrees of freedom and can be used to estimate the position 

of hidden landmarks [93]. Initial results indicate that this approach may be suitable 

for swimming applications [36, 73], although the procedures are still time-

consuming and complex, with 31 anatomical landmarks required during swimmer 

preparation for one arm and a portion of the trunk to be digitized, which perhaps 

offsets the time gained elsewhere.  

 

Marker-less analysis 

Another emerging approach found in other sports is a marker-less 3D analysis 

method based on the extraction of a swimmer’s silhouette from video images [25, 

43]. Marker-less systems have an advantage over other techniques for swimming 

applications, as form and drag caused by markers are central concerns [75]. The 

results of initial investigations suggest that this method shows similar reliability to 

manual digitization approaches, but further investigation of system reliability has 

been suggested [46]. This method may help to reduce both participant preparation 

and processing time [94] and has also been investigated in other sports to provide 

real-time kinematic data on performance with promising results [95]. As with any 

new methodology, additional investigation is required to fully assess the merits and 

feasibility of any new approach for applied settings. For instance, the system 

described by Ceseracciu, et al. [25] was tested for one arm only and for front-crawl 
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swimming, and it remains to be seen if the same level of accuracy would be achieved 

for whole body kinematic analysis and for other swimming strokes.  

 

This trend towards automated procedures is likely to increase quantitative analysis 

practices as the time constraints associated with digitization are reduced. However, it 

could be reasonably argued that many of the automatic video analysis procedures are 

currently overtly costly to be applied in the majority of coaching settings, with one 

example costing over US$35,000 to purchase the equipment and software 

(ProAnalyst, Xcitex Inc., Woburn, MA, USA). Additionally, with a concurrent 

growth in interest in alternative methods of quantifying swimming performance, 

some have argued that more suitable solutions are starting to emerge, such as the use 

of low cost MEMS inertial sensor devices [20, 94, 96]. What is more likely is that 

integrated systems will become more prominent, with data measurements arising 

from multiple sources.  

 

3.5 Conclusion 

The aim of this study was to systematically review the process of applying video-

based systems for the analysis of competitive swimming.  It is clear that video can be 

used in a variety of ways to provide feedback, and to aid technical development and 

to reduce the risk of injury. Video allows a coach to review, reflect and evaluate the 

development of many aspects of athletic preparation and can be used to facilitate 

both qualitative and quantitative analysis.  

 

Video capture in swimming shares many common characteristics with other sports, 

but with additional considerations for underwater filming. The aquatic environment 

adds to the time, cost and complexity of implementing video analysis. In using video 

to provide feedback to swimmers, coaches, sport scientists and researchers must 

make appropriate decisions regarding the equipment, camera configurations and 

processing methods involved, and ensure they follow key recommendations.  
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There are a large number of factors to be considered when using video analysis for 

swimming applications and no common specifications or methodologies appear to 

exist. It could be argued that this lack of consistency is hindering the effectiveness of 

the technique. A more consistent approach would remove some of the confusion 

around the process and could facilitate increased use of video. Figure 3.9 provides a 

detailed flowchart of the various stages involved and is intended to provide 

recommendations that may aid decision making and perhaps improve the 

effectiveness of video for coaching purposes.  

It would appear that the key feature of video is its adaptability to various 

applications. Video analysis can be tailored to suit the specific needs at the time. If 

rapid feedback is required, video can facilitate instant review by both the coach and 

the swimmer. Additionally, video can be edited, processed and reviewed either 

qualitatively or quantitatively to provide an augmented feedback approach. 

Furthermore, video can be used to capture movement in both 2D and 3D for in-depth 

study or combined with other measurement tools. Finally, video can also be used in 

training, competition and research situations, and can capture movements both above 

and under the water. This versatility extends its application potential far beyond 

other analysis systems used in elite sport. With continued advances in video and 

software technology it is also likely that video will continue to remain an integral 

part of the elite training environment in future. 
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Figure 3.9. Flowchart detailing recommendations for the key steps to be followed and decisions 
to be made when undertaking video analysis in swimming.  
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The review conducted into the application of video-based systems for the 

analysis of swimming performance, presented in Chapter 3 of this thesis, has 

demonstrated that there are significant methodological and technical issues that 

must be considered. This, along with the findings of the survey what were presented 

in Chapter 2, demonstrates that traditional methodologies of conducting 

biomechanical analysis of swimmers are not ideal and solutions are required. As a 

consequence, several new technologies have been developed, including instrumented 

force platforms and pressure plates. The use of body worn inertial sensor technology 

has gained increased prominence in many sporting situations in recent years as an 

alternative to video-based approaches. In swimming, several research studies have 

described the application of these systems for the analysis of swimming. 

Additionally, a limited number of commercial systems have become available. 

However, to date, no attention has been paid to providing an evaluation of the 

accuracy of different feature detection algorithms described in the literature for the 

analysis of different phases of swimming, or the consequences associated with 

different sensor attachment locations. Therefore, a systematic review of the relevant 

literature was conducted and presented here as the next chapter of the thesis. 

 

4.1 Introduction 

Elite swimming is highly competitive, with world class athletes constantly 

challenging themselves against their rivals and tiny margins deciding the outcome of 

races. Consequently, swimmers and coaches continually strive for methods and 

strategies to optimise performance. A fundamental aspect of this preparation 

involves regular, quantifiable data measurement to assess skill acquisition and 

technical development. 

 

Swimming is characterised by a sequence of coordinated actions of the trunk and 

limbs, in a repeated, synchronous pattern. Arm action during each of the four 
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competitive swimming strokes comprises specific phases. It is typical to define these 

phases according to the various sweeps of the arms, which are specific to each stroke 

(Figure 4.1). For example downsweep; insweep; and upsweep movements are 

completed during frontcrawl [1]. Important kinematic variables such as velocity and 

acceleration fluctuate greatly throughout each phase, both for specific body segments 

and the body as a whole. Techniques for accurately determining this valuable 

information can therefore be used for quantitative biomechanical analysis and to 

inform the coaching process. 

 

 

Figure 4.1. Representation of typical arm actions during swimming, viewed from the front, 
highlighting the characteristic patterns of movement and sweeps of the arms for each of the 
four competitive strokes. Adapted from Maglischo [1]. 

 

Competitive swimming can be broken down into specific segments to facilitate such 

analysis (Figure 4.2). Starts are typically defined as the duration from the starting 

buzzer until the swimmer reaches the 15 m mark. Turns are defined according to 

coaches’ requirements and involve varying distances on approach to and leaving the 

wall after each lap. For example, competition analyses from major international 

competitions have defined this segment from 5 m before the wall to 5 m after the 

wall [2]. Finishes involve the final few metres (typically 5 m) before the wall is 

touched at the end of the race. Finally, free swimming is the term given to describe 

the regular swimming strokes performed during each lap that occurs outside of the 

other race segments. During each of these race segments, different categories of 

analysis are appropriate and can take place through the measurement of temporal, 

kinematic and kinetic variables. Examples of swimming variables related to each 

category are provided in Figure 2 and may be examined with various methods. 
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Figure 4.2. Swimming can be broken down into different race segments to facilitate  
technical analysis and different categories of performance related variables can be selected  
for measurement. 

 

Predominant methods for extracting this quantitative information are video-based 

[3]. Images from cameras positioned above and/or below the water allow for the 

entire swimming stroke to be captured, yielding vast amounts of information such as 

velocity profiling [4] or joint angular kinematic analysis [5]. Video capture in 

aquatic environments has inherent disadvantages however, such as parallax error, 

hidden or obscured body segments and water turbulence. Moreover, the digitization 

and data analysis process associated with video analysis is labour intensive and time 

consuming, thus reducing its effectiveness as a feedback tool [6, 7]. A recent survey 

of swimming coaches also found that although quantitative analysis is perceived to 

be important, the time consuming nature of the process is limiting its application in 

practice [8].  

 

Recent advances in the development of microelectromechanical systems (MEMS); 

wearable technologies and waterproofed coatings facilitate a potentially new 

approach to swimming coaching. These advances may allow for the development of 

new kinematic swim sensor technology which facilitates improved analysis of stroke 

mechanics, race performance and evaluation of exercise intensity thus enabling more 

efficient, competitive and quantitative coaching. This has led some to suggest that 

this technology may offer significant advantages over traditional video-based 

approaches [9].  

 

A number of authors have developed the use of MEMS systems for measuring key 

performance related parameters in swimming [10-12]. An important consideration in 
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this ongoing development work is feature extraction. However, a thorough 

evaluation of different feature detection algorithms described in the literature and the 

consequences associated with different sensor attachment locations is warranted and 

has been cited by Magalhaes, et al. [13] as an important gap in the literature. By way 

of example, various algorithms have been described for measuring the same 

parameter, such as velocity, and often using devices placed at different locations on 

the body; but the relative merits of these approaches has not yet been examined in 

detail. This has led to substantial ambiguity with respect to the optimal system 

design; the most suitable algorithms for a given parameter of interest and the best 

means of applying kinematic swim sensor technologies. All of which are 

significantly limiting the potential of sensor technology in applied settings.  

 

Indeed it was suggested by Magalhaes, et al. [13] that there has been poor uptake of 

this technology by coaches for these reasons, with research evidence also supporting 

this claim [8]. The aim of this systematic review is to address these gaps in the 

literature and to provide further depth of understanding of this growing area of 

research. Additional information such as this should help practitioners to select the 

most appropriate systems and methods for extracting the key performance related 

parameters that are important to them for analysing their swimmers’ performance 

and may serve to inform both applied and research practices.  

 

4.2 Methods 

4.2.1 Review questions 

A systematic review of the literature into the application of inertial sensor 

technology for the analysis of swimming performance was conducted in an attempt 

to address the following review questions: (1) What signal processing methods have 

been utilised to measure parameters for the analysis of the different swimming race 

segments, including free-swimming, starts and turns? (2) What is the current 

functionality and performance of commercially available swimming sensor devices? 

(3) What are the implications for the placement of these sensors at different body 
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sites on device functionality? (4) What technical specifications are required for the 

optimum design of kinematic swim sensor technologies? 

 

4.2.2 Article selection 

Article selection was based on a systematic search for publications following the 

PRISMA guidelines [14] of the following scientific databases: Embase; European 

Patent Office; IEEE Xplore; ISI Web of Knowledge; PatentScope (World 

Intellectual Property Organisation); PubMed; Science Direct; Scopus; SPORT 

Discus and the United States Patent and Trademark Office. These databases were 

chosen as the most relevant sources of information related to the areas of 

engineering; sports science and sports technology. All publications from January 

2000 to May 2015 were included in the search. The keyword string used for the 

search was “(swimming OR frontcrawl OR freestyle OR backstroke OR backcrawl 

OR breaststroke OR butterfly) AND (accelerometer OR gyroscope OR inertial 

sensor OR IMU (Inertial Measurement Unit) OR MEMS OR acceleration OR 

angular velocity)”. In this context, IMU and MEMS are commonly used acronyms 

for Inertial Measurement Unit and Micro Electro Mechanical Systems, respectively. 

The inclusion criteria were that the publication: (i) was written in English; (ii) 

appeared in a peer-reviewed academic source or patent; (iii) was related to the 

analysis of human competitive swimming. Exclusion criteria included: (i) animal 

studies and (ii) publications not directly related to the topics outlined in the review 

questions. 

 

4.3 Results 

The process flowchart detailing the results of the database search and article 

selection is provided in Figure 4.3. The initial search yielded 1498 results. 

Duplicates were removed and the title and abstract of each publication was reviewed 

and evaluated based on the relevance to the systematic review questions. The final 

number of publications included for this review was 87. Table 4.1 provides a 

summary of the publications selected and includes information related to the 

participants involved in these studies; the swimming strokes examined; the sensor 
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output variables that were extracted; the phase of swimming that the variables are 

relevant to and the validation method used to verify the results of the study. Figure 4.4 

details the body location and sensor configuration used in these studies. 

 

 

Figure 4.3. Systematic review search strategy and results. 
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Table 4.1. Summary of selected research studies investigating the use of inertial sensor technology for swimming analysis. References are presented in chronological order. 
Details included relate to the number of participants involved and their status (E: elite, C: competitive, R: recreational), swimming strokes examined (Fc: frontcrawl; Br: 
breaststroke, Bk: backstroke, Bf: butterfly); accelerometer and gyroscope sensor ranges; device size and mass; volume (where three dimensions are reported); sampling rate; 
filter design (LP: Low Pass, BW: Butterworth, HW: Hamming window, MA: Moving average); data storage; data transmission (RF: radio-frequency, IR: infra-red); output 
variables reported for different phases of swimming (F: free-swimming; S: starts; T: turns) and validation procedures. (Unrep = unreported). 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

 

 E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T 

 

[15] 2000 - 2 - •    ±490.5 N/A 
Unrep 
62 

Unrep Unrep LP BW Unrep Unrep 
stroke phase 
acceleration patterns 

•   Video 

[16] 2002 - 5 - • •   ± 98.1 ±26.2  
142.8×23  
78 

Unrep 128 Unrep 128 Unrep 

stroke phase 
acceleration & 
angular velocity 
patterns, effect of 
fatigue 

•   Video 

[17] 2002 - 5 - •    ±98.1  N/A 

88×21  

50 

Unrep 128 LP BW 32 Unrep 
stroke phase 
acceleration patterns, 
effect of fatigue 

•   Video 

[12] 2003 - 2 -  •   ± 490.5  N/A 
Unrep 
62 

Unrep Unrep LP BW (10 Hz) Unrep Unrep 
stroke phase 
acceleration patterns 

•   Video 

[18] 2004 - 1 - • • • • ±19.62  N/A Unrep Unrep 150 LP HW (0.5 Hz) Unrep IR 
stroke id, lap time, 
stroke count 

•   
Video& 
observation 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[19] 2004 6 - - •    Unrep Unrep Unrep Unrep 250 Unrep Unrep Unrep 
Stroke id, stroke 
count 

•   
Video & 
observation 

[20] 2004 - 5 - • • • • ±98.1 ±26.2  
142×23 
78 

Unrep 128  Unrep 128 Unrep 
stroke phase 
acceleration patterns 

•   Video 

[21] 2005 - 1 - •    ±19.6  N/A Unrep Unrep 150 LP HW (0.5 Hz) Unrep IR 
Lap time, stroke 
count, stroke rate 

•   
Video & 
manual 

[22] 2006 - 4 - •    ±98.1  N/A 

88×21  

50 

Unrep 128 LP BW Unrep Unrep 
stroke phase 
patterns, arm joint 
angles 

•   Video 

[23] 2007 - - - • • • • N/A N/A Unrep Unrep 32 LP (5 Hz) Unrep Unrep 
lap count, lap time, 
stroke count, swim 
speed, distance 

•   Unrep 

[24] 2007 - - - - - - - Unrep N/A Unrep Unrep Unrep Unrep Unrep Unrep Hip rotation •   Unrep 

[25] 
2008 - 4 4 •    Unrep N/A Unrep Unrep 256 LP BW (0.01 Hz) 

1000 
Flash 

Unrep 
Velocity, distance 
per stroke 

•   Manual 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[26] 2008 1 - 3    • 
±14.7  – 

±58.9  
N/A Unrep Unrep 200  LP BW (10 Hz) 128 Flash USB 

stroke count, stroke 
rate, temporal stroke 
phase analysis 

•   Video 

[11] 2008 6 - - • • • • ±19.6  N/A Unrep Unrep 150  LP HW (0.5 Hz) Unrep IR 
stroke id, lap time, 
stroke count, stroke 
rate 

•   
Video & 
manual 

[27] 2008 - 2 - • •  • ±19.6  ±2.6  

52×34×12  

22  

2.12x10-5 150  LP HW (0.5 Hz) 128 Flash RF, USB acceleration, velocity •   
Tethered 
speed meter 

[28] 2008 - - - • • • • Unrep N/A Unrep Unrep 100 LP BW (2.5 Hz) Unrep 2.4 GHz RF 
velocity, stroke rate, 
distance per stroke, 
intra stroke velocity 

•   Unrep 

[29] 2008 - 1 - • • • • Unrep Unrep Unrep Unrep Unrep Unrep Unrep Unrep 
Acceleration profile 
recognition 

•   Video 

[30] 2009 - 1 - •    Unrep N/A 

36×42×12 

34 

5.14x10-5 256  Unrep 
1000 
Flash 

Unrep Acceleration •   Unrep 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume Sample Rate Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[31] 2009 7 - 15 •    ±29.4  N/A 

36×42×12 

34 

5.14x10-5  256  
LP BW (0.01 
Hz) 

1000 
Flash 
MMC 

USB 

velocity, lap time, 
time per stroke, 
stroke length, 
orientation 

•   
Video & 
observation 

[32] 2009 - - - • • • • Unrep Unrep Unrep Unrep Unrep Unrep Unrep 
Wi-Fi, 
Bluetooth, 
ANT or RF 

stroke id, average 
speed, pace, 
distance, stroke 
count, swim 
distance, lap count 

•   Unrep 

[33] 2009 12 - - •    ±19.6  >600  

52×33×11  

20.7 

1.89x10-5 100  
LP BW (0.5 
Hz) 

256 USB kick rate, kick count •   Video 

[34] 2009 14 - - •    ±19.6  >600  

52×33x11  

20.7 

1.89x10-5 100  
LP BW (0.5 
Hz) 

256 USB kick rate, kick count •   Stopwatch 

[35] 2009 - 1 - •    Unrep N/A Unrep Unrep 128  Unrep Unrep 2.4 GHz RF 
Arm acceleration 
and timing profiles 

•   Video 

[36] 2009 - - - •    Unrep Unrep Unrep Unrep Unrep Unrep Unrep 
Bluetooth, 
ZigBee or 
Wi-Fi 

lap counter, lap time, 
stroke count, stroke 
length 

•   Unrep 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume Sample Rate Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[37] 2009 - - - • • • • Unrep N/A Unrep Unrep Unrep Unrep Unrep Unrep 
lap count, stroke 
count 

•   Unrep 

[38] 2010 - - - • • • • Unrep Unrep Unrep Unrep 30  LP (1 Hz) Unrep USB 

stroke id, stroke 
count, stroke rate, 
stroke length, lap 
time, speed, force 

•   Unrep 

[39] 2010 - - - • • •  Unrep Unrep Unrep Unrep Unrep Unrep Unrep Unrep 
stroke count, lap 
count 

•   Unrep 

[40] 2010 - 1 - • • • • ±29.4  ±8.7  
150×90  
Unrep  

Unrep 50  LP BW (5 Hz) 4  RF 
stroke count, stroke 
rate, lap count 

•   Video 

[41] 2010 - 1 - •    ±29.4  ±8.7  
150×90 
Unrep 

Unrep 50  LP BW (5 Hz) 4  RF 

stroke count, stroke 
rate, lap count, start 
and turn phase 
analysis 

• • • Video 

[42] 2010 - - - •    Unrep Unrep Unrep Unrep Unrep LP Unrep Unrep 
body orientation, 
speed, lap time 

•   Unrep 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data Trans. Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[43] 2010 - - 1 • •   Unrep Unrep Unrep Unrep 190  Unrep Unrep Wireless 

stroke phase 
acceleration and 
angular velocity 
profiles 

•   Unrep 

[44] 2010 - - 1 • • •  Unrep N/A 
Unrep 
7 

Unrep Unrep LP (5 Hz) 2  2.4 GHz RF 
pitch and roll angles, 
breathing patterns 

•   Unrep 

[45] 2010 - 1 - •    ±29.4  ±8.7  
150×90 
Unrep 

Unrep 50  LP BW (5 Hz) 4  RF 
acceleration profile  
during turns 

  • Video 

[46] 2010 3 - - • • • • Unrep N/A Unrep Unrep 100  Unrep Unrep Unrep stroke id •   Video 

[47] 2010 8 - - • • • • Unrep Unrep 

88x51×25  

93  

1.1x10-4 

Unrep 
100  Unrep Unrep Unrep 

angular velocity, 
temporal phase 
assessment, stroke 
rate, r index 

•  • 
Video & 
stopwatch 

[48] 2010 - 53 - •    Unrep N/A Unrep Unrep Unrep Unrep Unrep Unrep speed, swim distance •   Manual 

[49] 2010 - - - • • • • Unrep Unrep Unrep Unrep Unrep Unrep Unrep RF 
stroke id, lap time, 
stroke count 

•   Unrep 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data Trans. Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[50] 2011 - 1 -    • 
±14.7  – 

±58.9  
Unrep Unrep Unrep 200  LP BW (0.6 Hz) 

512 
Flash 

USB 
acceleration, angular 
velocity, pitch angle 

•   Video 

[51] 2011 12 - - •    ±19.6  >600  

52×33×11  

20.7 

1.89x10-5 100  LP BW (0.5 Hz) 256  USB kick rate •   Video 

[52] 2011 - - 1 •    Unrep N/A Unrep Unrep 50  Unrep Unrep RF stroke phases •   Unrep 

[53] 2011 1 - - •    ±78.5  ±26.2  

52×33×10  

20 

1.72x10-5 100  LP HW (0.5 Hz) 1000 2.4 GHz RF 
temporal stroke 
phase analysis 

•   Video 

[54] 2011 - - - •    Unrep Unrep Unrep Unrep 100  Unrep Unrep 2.4 GHz RF Unrep •   Unrep 

[55] 2011 - - 6 •    Unrep Unrep Unrep Unrep 200  Unrep Unrep Unrep 
simulated arm stroke 
patterns 

•   Video 

[56] 2011 2 - - •    ±78.5  ±26.2  

52×33×10  

20 

1.72x10-5 100  LP HW (0.5 Hz) 1000 2.4 GHz RF 
turn phase 
acceleration patterns 

  • Video 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[57] 
2011 - 2 - • • • • ±29.4  ±8.7  

150×90 
Unrep 

Unrep 50  LP BW (5 Hz) 4 RF 
stroke count, stroke 
rate, stroke duration, 
lap count 

•   Video 

[58] 
2011 - - - • • •  Unrep N/A 

Unrep 
18 

Unrep 50  Unrep Unrep Unrep stroke id •   Unrep 

[59] 
2011 - 11 - • • •  Unrep N/A Unrep Unrep 50  MA Unrep Unrep 

stroke id, stroke 
count, swimming 
intensity 

•   Unrep 

[60] 

 

2011 - 1 - • •  • Unrep Unrep 

57×91×24  

65.6 

1.24x10-4 50  Unrep Unrep 2.4 GHz RF stroke id •   Unrep 

[61] 2011 - - 1 •    ±78.5  ±26.2  

53×33×10  

20 

1.75x10-5  100  LP HW (0.5 Hz) 1000 2.4 GHz RF mean velocity 

•   Tethered 
speed meter 

[62] 2012 7 - 11 •    ±29.4  N/A 

36×42×12  

34 

1.81x10-5 256  LP BW (0.01 Hz) 
1000 
Flash 
MMC 

USB 

velocity, lap time, 
time per stroke, 
stroke length, 
orientation 

•   Video & 
observation 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[63] 2012 12 - - •    ±19.6  >600  

52×33×11  

20.7 

1.89x10-5 100  LP BW (0.5 Hz) 256  USB 
kick rate, kick count, 
breathing patterns 

•   Video 

[64] 2012 11 - 19 •    ±107.9  ±15.7  Unrep Unrep 500  Unrep Unrep Unrep 
instantaneous 
velocity, mean 
velocity 

•   
Tethered 
speed meter 

[65] 2012 - - - • • • • Unrep Unrep Unrep Unrep Unrep Unrep Unrep Unrep 
lap count, swim 
distance 

•   Unrep 

[66] 2012 - - - • • • • Unrep N/A Unrep Unrep Unrep Unrep Unrep Unrep stroke rate •   Unrep 

[67] 2012 - - - • • • • Unrep Unrep Unrep Unrep Unrep LP 0.5–5.0 Hz Unrep Unrep stroke id •   Unrep 

[68] 2012 - 1 - •    ±29.4  ±8.7  
150×90 
Unrep 

Unrep 50  LP BW (1 Hz) 4 RF 

start and turn phase 
acceleration patterns, 
stroke count, stroke 
duration 

• • • Video 

[69] 2012 1 - - •    ±29.4  ±8.7  
150×90 
Unrep  

Unrep 50  LP BW (1 Hz) 4 RF 
turn phase 
acceleration patterns, 
temporal analysis 

  • Video 

 



Robert Mooney PhD Thesis – Chapter 4 

 

116 

Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range Size & Mass Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[70] 2012 9 - - •    ±78.5 ±26.2  

52×33×10  

20 

1.72x10-5 100 
HW FIR (0.5 
Hz) 

1000 2.4 GHz RF 
arm symmetry, 
stroke rate 

•   Video 

[71] 2013 - 2 - • • • • ±29.4  ±8.7  
150×90 
Unrep 

Unrep 50 LP BW (1 Hz) 4 RF 
stroke count, stroke 
rate, lap count 

•   Video 

[10] 2013 - 7 - •    ±98.1  ±20.9  Unrep Unrep 500 Unrep Unrep Unrep 
temporal stroke 
phase analysis, arm 
coordination 

•   Video 

[72] 2013 - 20 - •    ±107.9  ±15.7  

50×40×16  

36 

3.2x10-5 500 LP (100Hz) Unrep microSD mean velocity •   
Tethered 
speed meter 

[73] 2013 - 6 6 •    ±107.9  ±15.7  

50×40×16  

36 

3.2x10-5 500 LP (100Hz) Unrep microSD 
energy expenditure, 
velocity, cycle 
velocity variation 

•   
Indirect 
calorimetry, 
lactate 

[74] 2013 - 7 -  •   ±98.1  ±15.7  

50×40×16  

36  

3.2x10-5 100 Unrep Unrep Unrep 
stroke phase 
acceleration patterns 

•   Video 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[75] 2013 - - 1 • • • • Unrep N/A Unrep Unrep 50 Unrep 2 RF stroke rate •   Unrep 

[76] 2013 - - 1 •    Unrep N/A Unrep Unrep 50 Unrep 2 2.4 GHz RF 
stroke count, stroke 
length, stroke rate, 
velocity 

•   Unrep 

[77] 2013 - - 1 • • • • Unrep N/A Unrep Unrep 50 Unrep 2 2.4 GHz RF stroke rate •   Unrep 

[78] 2013 - 12 - • • • • ±14.7  ±8.7  Unrep Unrep 200 MA Unrep SD stroke id •   Video 

[79] 2013 - - 1 •    ±29.4  ±8.7  
150×90 
Unrep 

Unrep 50 LP BW (5 Hz) 4 RF 

block time, entry 
time, kick initiation 
time, stroke initiation 
time, kick rate, 
stroke rate, stroke 
count 

 •  Video 

[80] 2013 - - - • • • • Unrep Unrep Unrep Unrep 200 Unrep Unrep Bluetooth stroke id •   Unrep 

[81] 2013 1 1 - •    Unrep ±1500  Unrep Unrep 100 LP BW (2 Hz) Unrep Unrep body roll velocity •   Video 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[82] 2013 1 2 4 •    ±58.9  N/A 

69×28×07  

15 

1.59x10-5 100 HW FIR (0.5 Hz) Unrep Unrep push-off velocity   • 
Tethered 
speed meter 

[83] 2013 8 9 - •    ±78.5  ±26.2  

53×33×10  

20 

1.75x10-5  100 LP HW (0.5 Hz) 1000 2.4 GHz RF 
mean velocity, 
stroke rate 

•   
Tethered 
speed meter 

[84] 2013 - 53 - •    Unrep N/A 

29×37×11 

34 

1.18x10-5  32 Unrep Unrep Unrep speed, distance •   Stopwatch 

[85] 2014 - - 3 • • •  ±19.6  N/A 
5×58×25 
Unrep 

7.25x10-6  Unrep Unrep Unrep Bluetooth 
stroke count, kick 
count, symmetry 

•   Unrep 

[86] 2014 - 21 - • •  • Unrep N/A Unrep Unrep 100 Unrep Unrep 2.4 GHz RF 
stroke count,  
mean velocity 

•   Video 

[87] 2014  9 9 •    ±107.9  ±15.7  

50×40×16 

36 

3.20x10-5 500 LP (100 Hz) Unrep microSD 
energy expenditure, 
velocity, kick rate 

•   
Indirect 
calorimetry, 
lactate 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[88] 2014 - - - • • • • Unrep Unrep Unrep Unrep Unrep Unrep Unrep Unrep 
stroke count, stroke 
id, lap count, lap 
time 

•   Unrep 

[89] 2014 - 2 - • • • • ±19.6  ±4.4 
16×12×10 
Unrep 

1.92x10-6 100 MA 
NOR flash 
memory 
64  

433 MHz 
RF 

stroke id, breathing 
patterns 

•   Unrep 

[90] 2014 - - - • • • • Unrep Unrep Unrep Unrep Unrep Unrep Unrep 2.4 GHz RF lap count •   Unrep 

[91] 2014 - - - • • • • Unrep Unrep Unrep Unrep Unrep Unrep Unrep Unrep 
swim distance, lap 
count, lap time, 
stroke id 

•   Unrep 

[92] 2014 - - 60 •    Unrep N/A Unrep Unrep Unrep Unrep Unrep Unrep energy expenditure •   Cosmed 

[93] 2014 - 45 - • • • • ±19.6  N/A Unrep Unrep 32 Unrep Unrep Unrep stroke id •   Video 

[94] 2014 - 1 -    • ±9.8  ±8.7  
53×32×19 
Unrep 

3.22x10-5 Unrep Unrep Unrep Blue-tooth 
joint angles during 
fly kick 

•   Video 

[95] 2014 - 1 1  •   Unrep Unrep Unrep Unrep Unrep 
LP Fourier  
(8 Hz) 

Unrep Unrep joint angles •   Video 
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Table 4.1. Cont. 

Ref Year Participants Swim Strokes Sensor Range 
Size &  
Mass 

Volume 
Sample 
Rate 

Filter Design 
Data 
Storage 

Data 
Trans. 

Output Variables 
Swim 
Phase 

Validation 
Methods 

  E C R Fc Br Bk Bf 
Accel. 
(m·s-2) 

Gyro. 
(rad·s−1) 

(m x103) 
(kg x103) 

(m3) (Hz)  (MB)   F S T  

[96] 2014 10 - - • • • • Unrep N/A 

30×30  

33 

Unrep 100 LP (2 Hz) Unrep Unrep stroke id •   Manual 

[97] 2015 - 8 7  •   ±107.9  ±15.7  

50×40×16  

36 

3.2x10-5 500 LP (100Hz) Unrep microSD mean velocity •   
Tethered 
speed meter 

[98] 2015 - - 3 •    Unrep Unrep Unrep Unrep 50 Unrep Unrep Unrep Positioning •   Video 
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Figure 4.4. Locations and specifications of different inertial sensor units used in previous swimming related studies. Studies have used devices in both single and multiple 
sensor configurations. The most popular locations are the lower back and wrist/lower arm and the most prevalent sensor specifications incorporate a tri-axial accelerometer 
and tri-axial gyroscope. 
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4.4 Discussion 

4.4.1 Parameters for Analysing Free-Swimming 

Stroke Phase Analysis 

In 2000, Ohgi and colleagues were the first to apply inertial sensor technology to 

identify swimming stroke phases during frontcrawl swimming from a wrist-worn 

accelerometer device sampled at 128 Hz [15, 17]. This work was soon expanded to 

include an analysis of other swimming strokes and also to combine the acceleration 

signal with angular velocity measurements from a gyroscope [12, 16, 20]. During a 

swimming stroke, a swimmer continuously alters shoulder, elbow and wrist joint 

angles, combined with actions of the rest of the body, to change hand position in the 

water and generate propulsive forces. This movement can be tracked by analysing 

the signal signatures from these inertial sensors and through comparison with video 

footage. 

 

For example, a positive local acceleration maximum in the ulnar-radial direction (X-

axis) seen in Figure 4.5 is indicative of the start of the insweep, which is followed by 

local minimum along the distal-proximal direction (Y-axis) at the beginning of the 

upsweep phase during frontcrawl [15]. These studies found that wrist acceleration 

ranges from -40 m∙s−2 to +40 m∙s−2 whilst angular velocity ranges from −10.5 rad∙s−1 

to +14.0 rad∙s−1, with evident differences between strokes (Table 4.2). This early 

research confirmed that features of the acceleration signal output could potentially be 

used as a novel means of analysing a swimmer’s technique. 

 

Table 4.2. Indicative range of acceleration and angular velocity values recorded at the wrist 
during each of the four swimming strokes. Adapted from Ohgi [20]. 

Swimming stroke Acceleration (m·s−2) Angular velocity (rad·s-1) 

Frontcrawl −20 to +40 −7.0 to +8.7 

Backstroke −10 to +30 −10.5 to +10.5 

Breaststroke −20 to +40 −7.0 to +7.0 

Butterfly −40 to +40 −7.0 to +14.0 



Robert Mooney PhD Thesis – Chapter 4 

 

123 

Additionally, this work highlighted an individual nature to signal signatures, albeit 

with limited subject numbers. To illustrate, Figure 4.6 compares the Z-axis 

acceleration profile for two swimmers during a frontcrawl stroke cycle. This palmar-

dorsal direction can be related to the orientation of the wrist. Differences in the 

signals can be seen throughout the different phases. For example, it can be seen in 

Figure 6a that the Z-axis is close to 0 m∙s−2 at the point of hand entry (at time zero). 

Conversely, the value at the same point in the stroke is much larger in Figure 4.6(b). 

Ohgi, et al. [15] postulated that this difference can be explained by the two 

swimmers displaying a different pitch of the hand at the point of entry, with 

swimmer (a) displaying a more ideal pitch as opposed to swimmer  

(b) who demonstrated a flatter hand entry. Furthermore, it has been found that the 

effects of fatigue can be seen in the acceleration signal. Reduced acceleration during 

the upsweep phase is indicative of poor elbow extension and this can be related 

directly to shorter stroke durations and reduced propulsive movements during the 

arm sweeps [17]. Differences such as these facilitate a detailed and specific analysis 

of a swimmers hand actions, but also lead to difficulties in identifying common 

features upon which to base automatic feature detection algorithms. 
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Figure 4.5. Different swimming styles will exhibit different acceleration (A) and angular velocity 
(ω) patterns. Representative signal output from the wrist is shown. Each signal begins from the 
point of hand entry into the water and the various phases of each stroke style are identified with 
vertical lines. Characteristic features of each signal allow researchers extract key performance 
related information. Adapted from Maglischo [1] and Ohgi [20]. 
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Figure 4.6. Features of the acceleration signal can be used to distinguish between different 
swimming techniques. Swimmer (a) demonstrates a more ideal pitch angle at the point of hand 
entry to the water and this is reflected in the Z-axis (palmar-dorsal) acceleration of 
approximately 0 m∙s−2. In contrast, swimmer (b) has a much larger Z-axis acceleration at this 
point, which is indicative of a flatter hand entry to the water. Adapted from Ohgi, et al. [15]. 

 

An Australian research group, led by Davey and James, later combined the signals 

from both an accelerometer and a gyroscope in an attempt to more accurately define 

the phases of arm action during frontcrawl [53]. These events were identified and 

described through visual inspection of the sensor data in conjunction with video 

images. This work compared arm, back and leg worn sensors and argued that the 

primary signal of interest for stroke phase detection should be the medio-lateral 

signal of the gyroscope located on the wrist, which is indicative of pronation and 

supination of the forearm (Figure 4.7) Acceleration data were then used as a 

secondary confirmation of specific events such as the instant of hand entry. The 

authors acknowledged a previously highlighted issue that the point of hand exit from 

the water, marking the beginning of the recovery phase, was not easily identified and 

did not correspond with any particular spike in any of the three dimensional 

accelerometer or gyroscope sensor signals. Indeed, Ohgi and colleagues had 

combined the upsweep and recovery phases when determining the temporal 

durations of phases of arm actions for this reason [17]. This issue also raises 

concerns about feasibility testing of new technology using dry-land swim bench 

apparatus, as found in Lee, et al. [55], as the acceleration signal may not be 

consistent with that produced in the water, even if stroke patterns are reproducible. 
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Figure 4.7. Comparison of signal output from both gyroscope and accelerometer sensors for 
four arm strokes. The signal displayed is from the Y-axis (ulnar-radial direction). It can be seen 
that the angular velocity pattern that is obtained is smoother and may facilitate easier feature 
detection of key events such as hand entry; glide; catch; and recovery. Reproduced with 
permissions from James, et al. [53].  
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Figure 4.8. The changing angle between the Y-axis orientation of a sensor worn at the sacrum 
and a sensor worn at the forearm, measured using the gyroscopic signal and used to determine 
the start of the recovery phase, which occurs when the angle is at a maximum value. 
Reproduced with permissions from Dadashi, et al. [10].  

 

A recent paper has suggested a possible solution for this. By using multiple sensors 

positioned on both forearms and on the swimmers lower back, researchers measured 

the changing angle between the sensors at the sacrum and the forearm throughout the 

stroke, calculated from the angular velocity signal. It was suggested that the start of 

the recovery phase occurs when this angle is at a maximum value of approximately 

2.6 rad to 3.1 rad (150° to 175°), and a peak detection algorithm was used to track 

these points in the stroke [10].  

 

Furthermore, the authors developed a change detection algorithm to track the 

changing slope from both the accelerometer and gyroscope signals and were able to 

identify stroke phases as a result (Figure 4.8). By using sensors on both arms, this 

work also allowed for the measurement of the lag time between propulsive phases, 

termed the index of coordination (IdC), which previous research has found to 
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correspond with skill level and swimming intensity and is traditionally measured using 

video [4, 99, 100]. The results demonstrated the validity of this approach, with a 

strong linear relationship found between the sensor derived data and the gold-

standard data determined from video footage. 

 

The research undertaken investigating how stroke phases can be determined using 

inertial sensors is important because it has provided coaches with a new way of 

analysing swimming techniques. This work has also demonstrated the potential for 

examining movement characteristics of both left and right arms independently [35] 

or to determine stroke rates and other performance related variables from regularly 

occurring patterns in the sensor signal, laying the foundations for future exploration in 

this field. 

 

Stroke Type Identification 

Specific characteristics of the acceleration profile for the four competitive swimming 

strokes allow for swimming stroke type to be detected. This functionality is 

important because feature detection algorithms frequently depend on knowledge of 

stroke type. Similar methodological approaches have been described in the literature 

that have detected stroke type using sensors positioned on the upper or lower back 

[11, 27, 59, 79, 101], wrist [27, 32, 59, 91], chest [85, 93] and head [78, 89]. Figure 

4.9 provides a representation of a typical acceleration signal from the lower back over 

a full lap of swimming for each stroke [79]. A swimmer will lie in a supine position 

when performing backstroke. Consequently, the Z-axis signal (i.e., acceleration in 

the anterio-posterior direction) outputs a value of approximately +1 g (+9.81 m∙s-2) 

during backstroke. This is in contrast to the other three strokes in which the Z-axis 

tends towards −1 g (-9.81 m∙s-2) as the swimmer is in a prone position when 

performing these strokes and the device will be orientated in the opposite direction. 

Additionally, whilst the X and Y axes during all four strokes appear to show 

similarities, there are differences in the magnitude and spread of the local maxima 

and minima that can be recognised. 
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Researchers have exploited these characteristics to develop methods which may be used 

to automatically detect the stroke type completed for any given lap [11, 46, 59, 60]. 

Davey & colleagues [11, 19] developed an algorithm that calculates sensor 

orientation and signal energy (Figure 4.10). The raw acceleration data were filtered 

using a low-pass Hamming window filter with a cut-off frequency of 0.5 Hz. The 

device orientation for each lap of swimming was determined using the Z-axis data as 

described above to first discriminate backstroke from the other three strokes. To 

distinguish further between strokes, thresholds were set for the three axes based on 

the magnitude of the filtered signal [11]. For example, it can be seen in Figure 9 that 

the amplitude of the Y-axis (medio-lateral direction) is large for frontcrawl and 

backstroke. This is because the body rotates along this longitudinal axis during each 

stroke cycle. In contrast, breaststroke and butterfly are known as short-axis strokes 

[1] and do not feature this rotation. Overall recognition accuracy across all strokes of 

95% was reported when the data were compared to the prescribed swimming 

protocol. As such, it is not certain if there were any recognition issues due to specific 

stroke styles. Additionally, only six swimmers were included in the study so more 

rigorous testing of the algorithm would be necessary to offer a thorough evaluation 

of its reliability. That said this research did demonstrate for the first time that stroke 

type could be determined from the acceleration signal using straightforward signal 

processing and computational methods. 
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Figure 4.9. Sample acceleration output from a lower back worn sensor for each of the four 
competitive swimming strokes. Characteristic patterns of each stroke can be used to 
automatically identify stroke styles. The A/D (analog to digital) units referred to can be related 
to acceleration, such that 512 A/D units is representative of 0 g. Values greater than 512 A/D 
units are therefore positive g-values and values less than 512 A/D units are negative g-values. 
Reproduced with permissions from Davey [102]. 
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Start

Filter data using Low Pass Hamming Window 
(0.5 Hz cut-off frequency; filter length = 64 samples)

Yes
(Device pointing upwards)

No
(Device pointing downwards)

Backcrawl

X-axis >1
AND

Y-axis >3

Frontcrawl

X-axis >1
AND

Y-axis <2
AND

Z-axis <2

Breaststroke

X-axis >1
AND

Y-axis <2
AND

Z-Axis >1

Butterfly

X-axis >1
AND

Y-axis >2

Determine signal orientation 
(Z-axis, perpendicular to plane of movement)

Value > 0 g 
+5%

Input raw acceleration data for 1 lap to pool
(150 Hz Sampling Frequency)

Signal energy determined for each axis acceleration
 1. Calculate average value for axis
 2. Subtract average from each sample value
 3. Sum absolute values
 4. Divide by length of data set
 5. Round value to nearest integer
 6. Compare values for each axis to pre-determined       
thresholds to identify stroke type

  

Figure 4.10. Flowchart for a stroke identification algorithm used to distinguish between each of 
the four competitive swimming strokes. Adapted from Davey, et al. [11]. 
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Siirtola, et al. [59] utilised linear and quadratic classification methods and achieved 

comparable results to Davey, et al. [11]. The specific details of the methodology 

employed went unreported but it involved a sliding window technique to process the 

data using a window size of two seconds with an interval of half a second between 

windows. What is noteworthy about the study by Siirtola, et al. [59] is that 

comparisons were made of the accuracy of stroke identification: (i) for different 

sampling rates; (ii) between wrist and upper back worn accelerometer devices; and 

(iii) for three of the four competitive swimming strokes. The data were then 

resampled at 5, 10 and 25 Hz, to assess what effect this may have on detection 

accuracy. The results are summarized in Table 4.3 and indicate that the back worn 

sensor achieved better overall accuracy (95.3% at 25 Hz compared to 89.8% for the 

wrist). This was true at each of the sampling frequencies tested and for all three 

swimming styles included in the study. It is well established that the pattern of hand 

movement during swimming shows considerable variances owing to various factors 

including individual anthropometric and technique differences, skill level, swimming 

speed and fatigue [38, 100, 103]. It is possible that these variations are affecting the 

results of the wrist location. It was also found that sampling rates as low as 5 Hz can 

be used to accurately distinguish between styles and similar recognition rates were 

reported for each of the three strokes tested [59].  

Table 4.3. Results of automatic stroke style identification, comparing different sensor locations 
and sampling frequencies. The back worn device produced more accurate results for all styles 
and sampling frequencies. Note that the results provided for the three swimming styles relate to 
data calculated at 5 Hz. Adapted from Siirtola, et al. [59]. 

Comparison Measure Recognition Accuracy 

 Wrist Upper Back 

Sampling Frequency   

5 Hz 88.5% 95.1% 

10 Hz 88.9% 95.4% 

25 Hz 89.8% 95.3% 

   

Swimming style   

Frontcrawl 90.8% 96.1% 

Backstroke 88.8% 97.1% 

Breaststroke 92.6% 96.7% 
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A recently published conference paper also using classification methods for 

automatic stoke identification was based on data mining procedures (neural network 

and decision tree) [93]. Using a chest mounted tri-axial accelerometer, descriptive 

information including the mean; variance and skewness of the acceleration data for 

all axes were examined to establish thresholds and used to distinguish between 

strokes (Figure 4.11). Results indicated an overall accuracy (91.1%) and this 

approach does warrant further examination as a much larger data set was involved 

than in previous studies discussed. It appears that the torso offers a more accurate 

location for stroke style identification compared with the wrist, but with a trade-off 

in terms of usability and user comfort. However additional investigation is warranted 

due to the limited research currently available. Other body locations, such as the 

head for example, may offer an alternative solution and convenient location.  

 

Figure 4.11. Stroke identification classification model based on descriptive statistical features of 
all three axes of the acceleration signal from a chest worn device. Thresholds were set to the 
data from each of the three axes (values in m∙s-2) in order to classify stroke styles. Reproduced 
with permissions from Ohgi, et al. [93].  
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Much of the patent literature also features automatic stroke identification 

functionality and this is certainly an acknowledgement of the importance of this for 

applied use of inertial sensors in swimming settings [32, 38, 49, 67, 91]. 

Unfortunately, the accuracy of the approaches in the patent literature is untested and 

there is often insufficient information related to the specific system specifications 

and signal processing techniques. For example, Yuen [49] describes a method of 

distinguishing strokes that replicates that of Davey, using the polarity of the Z-axis 

channel to distinguish backstroke and then comparing the same individual axes to 

further distinguish between the other styles. However, the specifics regarding the 

threshold values employed are not described and no data are presented to explore the 

accuracy of the approach. Furthermore, in most instances, several embodiments may 

be suggested within a given patent, providing several potential methodologies. 

 

One such example of this ambiguity is provided in Figure 4.12 [38], which describes 

the process of determining stroke type from a wrist worn tri-axial accelerometer 

device. In part (a), the raw acceleration signal is recorded at 30 Hz. A low-pass filter 

is applied with a cut-off of 1 Hz (b). In part (c) a peak detection algorithm is used to 

isolate maxima and minima along the X-axis, representing acceleration in the 

direction of swimming. This is achieved using a moving window technique with a 

window size of 1.5 s. Individual strokes are identified in part (d), using heuristic 

techniques, such as determining a sequence of maxima-minima-maxima. It is 

suggested that a threshold of greater than 1 g (9.81 m∙s-2) in total acceleration within 

a three second duration is used, but it is not clear if these same sequences and values 

may be applied to all stroke types. Finally, in part (e), recognition models are applied 

to determine which of the competitive swimming types is involved. However, 

various possible options for conducting this process are mentioned, including linear 

discriminants, hidden Markov models and neural networks, but with no data 

presented to test any of these approaches. 

 

Where reported, automatic stroke type identification algorithms appear to show good 

levels of accuracy and can be readily incorporated into embedded systems for 

applied use. However, this feature is not included in most research designs. This 
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could be because the majority of studies are concentrated solely on frontcrawl and as 

such, no detection algorithm is necessary. Even where multiple strokes are included, 

study protocols are prescribed in advance so the sensor output can be manually 

attributed to a specific stroke [57, 76, 86, 101]. Whilst this may be expected of early 

exploratory research work in this area, it does call into question the robustness of 

these devices for use in applied settings, where all four strokes are used 

interchangeably, even for elite swimmers with specific stroke specializations. The 

requirement for the end user to manually input the swimming stroke completed for a 

given lap or training interval severely hampers the functionality of these systems. 

Additionally, without clear details of the methodology employed, it is difficult for 

researchers to fully assess the merits of any given approach or to arrive at a best-

practice methodology for identifying stroke type. 
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Figure 4.12. The process of determining stroke type from a wrist worn tri-axial accelerometer 
device: (a) raw acceleration signal; (b) low-pass filter with a cut-off of 1 Hz; (c) peak detection 
algorithm used to isolate maxima and minima; (d) individual strokes are identified; (e) 
recognition models applied to determine stoke type. Adapted from Anthony and Chalfant [38]. 
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Lap Time 

The ability to record lap times during swimming allows for the intensity of effort to 

be monitored closely. Measuring lap time requires the detection of events when the 

swimmer makes contact with the pool walls. Bächlin and Tröster [62] filtered the 

acceleration signal from the longitudinal axis of a wrist worn device using a low-

pass 2nd order Butterworth filter with a cut-off frequency of 0.01 Hz. The resultant 

filtered data were used to determine events at the pool walls (Figure 4.13). A push-

off was registered at the point of the first falling slope in acceleration, whereas a 

large impact peak and rising slope signified that a wall strike had occurred. The 

authors reported that values were within ±0.3 s of the criterion measure. 

Unfortunately, significance was not reported and the criterion used was a manual 

method using a stopwatch which itself is prone to human error. 

 

Davey, et al. [11] describe algorithms for detecting two distinct types of wall push-

off events with an accelerometer worn on the lower back, those following the 

commencement of swimming and those after turns (Figure 4.14). As the swimmer 

commences swimming from a standing start, a change in orientation from vertical to 

horizontal can be recognised. A turn can be detected using a zero-crossing algorithm 

about the perpendicular axis as the swimmer rotates in the water [11, 57]. 

Additionally, the wall push-off is characterised by a rapid increase in acceleration 

over a short interval, such as a 1 g rise over a 0.1 s duration. However, Davey, et al. 

[11] reported a significant difference (p < 0.01) existed in lap time calculations 

between the video and that of the accelerometer device (mean difference -0.32 ±0.58 

s). Further analysis revealed that this was as a result of errors in the part of the 

algorithm that was used for the detection of the commencement of swimming as 

opposed to the algorithm used to detect turns or the end of the final lap. Lap time 

differences for the first 100 m of a 200 m swimming trial averaged -0.38 ±0.23 s 

(significantly different at p < 0.01) whilst no significant differences reported for the 

second 100m of the trial (0.05 ±0.45 s). The authors also reported that the offset was 

consistent, with the accelerometer tending to underestimate lap times [11].  
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An additional concern with the detection of wall contact is that the arms or legs will 

absorb the majority of the impact [11, 59], causing difficulty in setting threshold 

values for automatic detection of turns and the end of a swimming interval, 

especially with a sensor positioned on the torso. Furthermore, some have reported 

issues with detecting peaks during turns owing to individual differences in turning 

technique, such as gliding into the wall on approach [59]. Impact accelerations will 

be more clearly visible from wrist worn sensors at the end of a swimming interval 

[62] and during butterfly and breaststroke turns but the opposite is true during 

frontcrawl and backstroke as the arm will not make wall contact when performing 

flip turns. 

 

It appears that the accurate determination of lap times using inertial sensors remains 

an area of ongoing research. Further empirical testing is necessary to ensure 

accuracy of this important parameter. The ability to detect wall contact events, and 

thus record lap times, is paramount, not just from a coaching point of view but also 

as many other variables are derived from this parameter such as average speed, 

stroke count, stroke rate and stroke length. 
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Figure 4.13. Lap times can be determined by identifying events at the pool walls. Both push-off 
and wall strike events result in rapidly changing slopes and a corresponding signal amplitude 
that exceeds that observed during mid-pool swimming. Reproduced with permissions from 
Bächlin and Tröster [62]. 
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Locate sudden positive lasting for 5 successive samples

Locate maxima and minima of slope 

Determine absolute values and timings (to check for valid wall push-off)

Determine difference between slope maxima and slope minima

Detection of wall push-off events

Value >1 g No. False positive registered

Yes. Wall push-off event registered

Mean of Pre & Post Push off events compared (2 second window)

Zero-crossing of Z-axis (perpendicular to 
body) as body rotates

Change in orientation from vertical 
(-1 g) to horizontal (0 g)

TurnStanding start

Difference in timing of events

Lap Time
 

Figure 4.14. Flowchart for a lap time detection algorithm based on detection of wall push-off 
events. Adapted from Davey, et al. [11]. 

 

Swim Distance 

The same methodology described above for identifying events at the pool walls to 

measure lap times can also be used in a more simple fashion to register that a lap has 

occurred. Subsequently, by knowing the length of the pool, swim distance is readily 

calculated by utilizing a lap counter function that is not dependent on determining 
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the exact instant of wall contact or push-off. For example, Le Sage, et al. [57] 

described a lap counter algorithm that tracks when turns have been registered. Figure 

4.15 shows how this was achieved. The raw acceleration data from the Z-axis 

(perpendicular to the plane of movement) was filtered using a low-pass Butterworth 

filter with a cut-off frequency of 2 Hz for frontcrawl swimming. The filtered data 

show clear local minima which are indicative of the swimmers transverse rotation 

during the flip-turn. A simple threshold was applied to these data to facilitate 

automatic counting of the laps performed [40, 57]. This process appears to be quite 

robust due to the clear amplitude difference observed during the turn but data were 

only provided for four consecutive laps of swimming so this requires further 

verification. Others did report an 88.9% accuracy in detecting that a turn had 

occurred using a similar process and using a slightly larger data set comprising of 12 

swimmers each completing 400 m of swimming in total [78]. However, it could be 

argued that an error rate of greater than 10% is too high for this parameter given that 

coaches will typically prescribe the distance to be performed in a training session.  

 

Figure 4.15. Turns performed during frontcrawl can be automatically detected by thresholding 
of the filtered acceleration signal from the axis perpendicular to the plane of movement as this 
undergoes a rapid change in acceleration as the swimmer rotates during the tumble. 
Reproduced with permissions from Le Sage, Bindel, Conway, Justham, Slawson and West [40]. 
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Interestingly, Wright and Stager [84] recently reported an alternative method of 

recording swimming distance that does not rely on determining when events at the 

pool walls have occurred or prior knowledge of the pool length. Using a regression 

technique, the authors reported a statistically significant relationship between raw 

accelerometer output and actual swim distance completed (R2 = 0.9608, p < 0.05), 

using a combination of wrist and ankle worn devices. This promising technique 

requires further study as the effects of different swimming styles are unknown but 

one drawback is that it cannot be used to determine lap times. 

 

Swim distance is also probably of little importance in an elite swimming 

environment whereby training distances are prescribed by the coach in advance as 

part of the training plan. However it may have a useful application in open water 

swimming as an alternative to GPS tracking. Additionally, swimming distance is a 

more important functional consideration for sensor-based systems designed for 

recreational swimmers. This cohort do not have the benefit of a coach to monitor 

their training. In fact, a swim distance function may be used by some users as the 

primary determinant of whether training goals have been achieved, in much the same 

way as a recreational runner will wish to know the distance completed during a run 

without necessarily wanting to know any other information about the activity. Hence 

there is a greater prevalence of lap counter and swim distance functions in the patent 

literature [30, 32, 36, 39, 60, 65, 90, 91, 104]. 

 

Stroke Count and Stroke Rate 

The most commonly calculated variables from inertial sensor devices are stroke 

count and stroke rate [11, 19, 26, 28, 32, 38, 39, 57, 59, 62, 65, 71, 77, 83, 85, 86], 

both key performance indicators in competitive swimming [1]. The back and wrist 

are the most prevalent locations and Table 4.4 shows that a similar approach to 

stroke count measurement can be taken at both body sites and this approach typically 

involves the detection and summation of acceleration peaks for a given lap. 

 

Davey, et al. [11] isolated the medio-lateral acceleration signal (Y-axis) of a back 

worn device and identified peaks and troughs in the signal (Figure 4.16). This 
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characteristic waveform is representative of the roll of the body about that axis and 

as such the strokes completed can be determined. The authors programmed their 

device to find the first peak and not count another peak until a trough had been 

registered. The results show very high recognition rates for stroke counts within one 

stroke of the criterion data [11, 71]. This suggests that the body roll action used may 

not always be indicative of an arm action, especially at the beginning and end of 

laps. Anthony and Chalfant [38] argue that similar issues may also arise from a 

single wrist worn device as the sensor will have to make an assumption regarding the 

movement of the other arm. 

 

Raw 
accelerometer data

Filtered data

Hamming 
window

0.5 Hz cut-off 

frequency

Isolate Y-Axis
(medio-lateral 

channel)

Detect local 
maxima & 
minima in 

signal

Stroke count 

 

Figure 4.16. The regularly repeating pattern of swimming exhibited allows for a stroke count 
algorithm based on tracking peaks and troughs in the acceleration signal. Reproduced with 
permissions from Davey, Anderson and James [11]. 
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Table 4.4. Details of various methods used for the detection of stroke count using inertial sensor devices, with validation methods and reported detection accuracy. 

Ref. Stroke Count Detection Method 
Sensor 
Location 

Protocol Accuracy 

[11] Peak detection of medio-lateral acceleration signal Lower back 
N = 6; 4 × 50 m intervals  
(164 data sets analysed) Video and 
manual data used for comparison 

All strokes: 90% ± 1 of actual. Frontcrawl: 65% 
accuracy, 100% ± 1 of actual. 

[26] 
Peak detection of anterio-posterior acceleration 
signal and zero-crossing of longitudinal signal 

Lower back 
N = 4; 4 × 25 m intervals of butterfly 
Video used as criterion measure 

97.6% accuracy 

[59] 
Peak detection of acceleration signal with different 
threshold levels for each stroke. Different axes used 
for different strokes 

Wrist & 
upper back 

N = 11; Intervals completed at various 
speeds (up to 1053 data sets); 
Validation method not reported 

All strokes: >99% accuracy 

[25] Peak detection of forward acceleration signal Wrist 
N = 8; 7 × 50 m frontcrawl intervals; 
Video and manual data used for 
comparison 

Not reported 

[62] 

Zero crossing of acceleration signal with 
thresholding. Medio-lateral axis for frontcrawl and 
backstroke. Forward axis for breaststroke and 
butterfly 

Lower back N = 2; 4 × 25m each stroke All strokes: 56% accuracy, 100% ± 1 of actual. 

[71] 
Peak detection of acceleration signal; GPS 
integration necessary 

Head 
N = 21; 3 × 100 m swims (1 each of 
butterfly, breaststroke & frontcrawl); 
Video data used for comparison 

Butterfly: r = 1.00 (p < 0.05); Breaststroke: r = 
0.99 (p < 0.05); Frontcrawl: stroke count was 
“not discernible” due to sensor location 
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Subsequently, some researchers chose to use multiple acceleration channels in an 

attempt to improve recognition accuracy [26, 59, 71]. Figure 4.17 describes the steps 

in this process used in one example for butterfly swimming [26]. The anterio-

posterior axis signal is filtered using a 4th order low-pass Butterworth filter with a 

10 Hz cut-off frequency. Local minima of this filtered signal are determined to create 

an envelope. The maxima of this envelope are then used to approximate the location 

of each stroke on the longitudinal axis and a zero-crossing algorithm of this axis is 

completed to identify the exact instant when each stroke begins. The authors 

reported an accuracy of 97.6% for strokes recorded by four swimmers each 

performing 100 m butterfly swimming. 

 

Figure 4.17. Stroke count detection method using back worn accelerometer: (a) raw vertical 
axis acceleration; (b) raw anterio-posterior axis acceleration; (c) filtered vertical axis 
acceleration; (d) filtered vertical axis acceleration with envelope applied; (e) stroke detection on 
anterio-posterior axis using peaks in envelope. Reproduced with permissions from Daukantas, 
Marozas and Lukosevicius [26]. 

 

Recent attempts to determine stroke count using a head mounted device have also 

been made [86]. Again a peak detection method was used to automatically count 
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strokes completed, although the actual axis used for analysis was unspecified. 

Excellent accuracy was reported for butterfly and breaststroke swimming (Table 

4.4). However, during frontcrawl and backstroke, swimmers will aim to keep their 

heads as static as possible and consequently the signal output did not demonstrate the 

patterns of repeated peaks and troughs to facilitate accurate stroke count recognition. 

Additionally, swimmers will use different breathing patterns which may not be 

synchronous with arm actions, further complicating this approach. The study was 

exploratory in nature and further investigation of a head worn device is warranted, 

including a thorough analysis of all three acceleration axes, to attempt stroke 

counting for all four swimming strokes. The inclusion of a gyroscopic signal may 

also aid this investigation. A head-mounted position has clear advantages for ease of 

positioning and is found to be quite unobtrusive to the swimmer in comparison to 

other locations. 
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Figure 4.18. Flowchart of a stroke rate detection and transmission algorithm used to provide 
real-time feedback to a swimmer. Stroke rate is detected using a wrist worn accelerometer and 
information is provided to the swimmer via an LED based receiver system located in the 
goggles. Reproduced with permissions from Hagem, O’Keefe, Fickenscher and Thiel [77]. 

 

One study evaluated the accuracy of a zero-crossing algorithm for measuring stroke 

rate by comparing the performance of the algorithm against manually digitized video 

footage [71]. Differences with the criterion measure ranged from -0.25 strokes per 
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minute (breaststroke) to +0.19 strokes per minute (backstroke). Within-subject 

reliability testing also showed positive results, although with low subject numbers. 

The interclass correlation coefficient for butterfly ranged from +0.74 to +0.91, with 

standard error of the mean of 1.2% to 1.6%. Finally, stroke rates over four lengths of 

frontcrawl were compared. The overall average was the same for both automatic and 

manually derived data (33.5 strokes per minute) although small differences were 

observed when each length was compared in isolation. Hagem, et al. [77] suggested 

that this approach is overly complex, in comparison to peak detection methods, 

requiring additional processing owing to signal offset and the fact that the signal may 

cross the zero point in either direction. Figure 4.18 provides an overview of their 

alternative methodology which involved the transmission of stroke rate values from 

a wrist worn accelerometer device to a receiver in the swimmers goggles to facilitate 

real-time feedback on performance [77]. However a thorough evaluation of the 

accuracy of this algorithm is not reported. Earlier work had investigated the accuracy 

of a peak detection based stroke rate measurement algorithm, comparing with both 

manually counted and video derived data, albeit for frontcrawl only [11]. Results 

showed a magnitude and spread of error similar to reference values. The stroke rate 

algorithm was accurate to within one stroke of the manually collected data for 90% 

of data sets. 

 

At present, these algorithms all appear to determine stroke rate over the full lap of 

swimming, whereas the common convention in applied practice would be to 

calculate this parameter over three stroke cycles performed mid-pool to better reflect 

actual stroke rate during free-swimming [1]. An algorithm could be derived to 

facilitate a similar approach to bring these methodologies in line with coaching 

practices. 

 

Swimming Velocity 

Swimming velocity is a key performance indicator that has recently become the 

focus of attention in several studies [62, 64, 83, 86, 97], with a range of 

methodologies for its calculation previously reported (Table 4.5). In one study, mean 

velocity was calculated using the time taken to swim a known pool length of 50 m 
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[62]. The authors compared this automatic parameter extraction method against a 

standard manually calculated protocol involving repeated 50 m frontcrawl intervals 

with increasing velocity [105], with analogous results. However, manually calculated 

velocity was found to be lower than the automatic method. A possible explanation 

for this lies in the effects of increased velocity following the wall push-off when 

measured over the full 50 m pool length. An alternative approach negates this by 

only measuring velocity over a shorter mid-pool distance, thus the influence of the 

wall push-off is excluded. Hagem, et al. [76] calculated velocity by dividing stroke 

length by stroke rate. In this instance, the velocity measurement is more reflective of 

the speed achieved during the free-swimming phase. 
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Table 4.5. Details of various methods used for the detection of swimming velocity using inertial sensor devices and reported detection accuracy. 

Ref. Swimming Velocity Detection Method 
Sensor 
Location 

Accuracy 

[62] 
Average speed determined as time taken to cover known pool distance, recorded 
with accelerometer. 

Wrist 
1.67% upper bound error in velocity calculations  
1.33% upper bound error in stroke duration calculations 

[64] 
Trapezoidal integration of forward acceleration. Geometric moving average 
change detection algorithm to account for integration drift. Determined both 
instantaneous and average velocity. 

Lower back 
Instantaneous velocity: RMS error = 11.3 cm·s−1  

Average velocity: Spearman’s Rho 0.94 (p < 0.001) 

[72]  Gaussian process framework Lower back RMS error = 9.0 cm·s−1, r = 0.95 (p < 0.001) 

[83] 
Integration of acceleration signal with correction based on swimmers height. 
Five points on different axes and resultant acceleration determined 

Lower back 
1.08 m·s−1: bias 0.01 m·s−1; limits of agreement: −0.26 to 0.29 m·s−1 (94.75% of data points inside 
limits of agreement) 1.01 m·s−1: bias 0.02 m·s−1; limits of agreement: −0.17 to 0.20 m·s−1 (96.25% 
of data points inside limits of agreement) 

[84] 

 

Regression analysis and predictive equations based on output of two 
accelerometers 

Wrist & 
ankle 

r = 0.76, R2 = 0.57, SEE = 0.14 m·s−1 (p < 0.001) 

[86] 
GPS positioning. 5 point moving average to smooth. Exclusion criterion 
included for manual inspection of velocity data. 

Head 
Butterfly: SEM = 0.18, 95% CI = 0.14-0.27 (Sig. difference with criterion, p < 0.05)  
Frontcrawl: SEM = 0.13, 95% CI = 0.10-0.19 (No sig. difference)  
Breaststroke: SEM = 0.12, 95% CI = 0.09-0.17 (No sig. difference) 

[97] 

 

Bayesian linear regression (BLR) compared against Linear least square 
estimator (LLS) and Gaussian process regression (GPR) 

Lower back 
LLS: RMS error = 17.7%, 14.4 cm·s−1, r = 0.56 (p < 0.001)  
GPR: RMS error = 9.2%, 6.1 cm·s−1, r = 0.91 (p < 0.001)  
BLR: RMS error = 9.7%, 6.2 cm·s−1, r = 0.91 (p < 0.001) 
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Another recently described method for calculating swimming velocity involves 

integration of the acceleration signal. Studies have attempted to validate this 

approach using back worn sensors and a tethered speed-meter as reference [27, 64, 

83]. In one study, mean velocity was determined using peak detection algorithms for 

specific channels to identify five key data points in the acceleration signal [83]. 

Results of a Bland-Altman analysis indicated that mean velocity recordings were 

within 4% of the reference values and integration error was determined to be non-

significant (0.002 m·s-1). Nonetheless, others have questioned the repeatability of 

this approach due to issues associated with resolving the sensors orientation with 

respect to gravity [97]. 

 

Instantaneous and mean velocity has also been determined using a geometric moving 

average change detection algorithm to account for integration drift – whereby errors 

in acceleration and angular velocity outputs are integrated into larger errors in 

velocity and position data. A two-fold validation procedure was completed and 

similar mean velocity accuracy to Stamm, et al. [83] was reported (3.5%). 

Instantaneous velocity displayed an RMS difference of 0.113 m·s-1, a relative error 

of 9.7% compared to the reference value [64]. The authors noted that some of the 

error may have been attributed to movement artefact owing to the modified swim 

suit design employed (Figure 4.19). Interestingly, the determination of instantaneous 

velocity allowed for intra-cycle velocity variations (IVV) to be assessed and the 

authors demonstrated that this variation is visible on the acceleration trace and can 

distinguish between elite and non-elite swimmers. 

 

Recently, the same authors extended their investigations and compared different 

mathematical regression models for the determination of swimming velocity as an 

alternative to integration [72, 97]. Results for both Gaussian and Bayesian regression 

methods are comparable with a relative error of 9.2% and 9.7% respectively, 

suggesting that further development work is required before implementation in an 

applied setting. In contrast to earlier methods, these models do not require prior 

knowledge of the pool length, extending their applicability in real-world settings. 

Additionally, Bayesian regression can be performed without requirements for the 

inclusion of constraints related to the swimming stroke performed [97]. For example, 
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the Gaussian method was tested during frontcrawl swimming and the algorithm 

assumes that the sacrum will roll about the longitudinal axis in a uniform manner so 

modifications would be necessary for other swimming strokes [72]. 

 

Figure 4.19. A modified swim suit design allows for accurate positioning of the sensor device but 
may result in unwanted sensor movement. Reproduced with permissions from Dadashi, et al. 
[97]. 

 

Much of this work has to date used a tethered speedometer as the criterion measure 

so results are only verified over a single lap of swimming at present [64, 72, 83, 97]. 

Tethered systems may also interfere with kicking action, further complicating the 

procedure. Two additional approaches have been reported for velocity measurement 

which overcome this constraint, but both have other disadvantages [84, 86]. A recent 

study described using accelerometry as a means of quantifying training load in 

competitive swimmers [84]. The algorithm involved the summation of raw 

accelerometer output from both wrist and ankle worn sensors, which were found to 

correlate positively with swim velocity and distance. Predictive equations were 

validated following linear regression analysis and showed a significant correlation 

between actual and predicted values for both distance and velocity, indicating that 

this approach may offer a sound method of quantifying velocity in applied settings. 

However, the authors note that there is a necessity for specific regression equations 

to be customised for individual swimmers, which would be essential for accurate 

measurements, requiring future experimental investigation. The other approach used 

GPS, rather than an accelerometer, for velocity measurements [86]. However, 

measurements were taken in an outdoor swimming pool, thus severely limiting the 

practical applicability of this approach except in warmer climates.  
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Kick Count and Kick Rate 

Quantifying a swimmer’s kicking pattern is a relevant concern for coaches as the 

action of the lower limbs helps to maintain body position, aids streamlining and 

contributes to propulsion [106]. Moreover, kicking patterns can be difficult to 

observe, even with underwater video, as the movements are rapid and water 

turbulence can obscure a coach’s view. One author argued that kicking patterns may 

be observed on the medio-lateral axis of a back worn accelerometer [85]. However, 

no evidence was presented and it is unclear how the distinction would be made 

between the actions of the arms and legs in this instance. A more plausible approach 

to investigating leg action is to position the inertial sensor directly to the lower limb.  

 

Fulton, et al. [33] utilised a gyroscope for this purpose, as opposed to analysing the 

acceleration signal, and assessed the reliability and validity of the process. Angular 

velocity of the lower limb was found to fluctuate in the range of approximately ±600 

rad·s−1 during the upbeat and downbeat phases of the frontcrawl kicking action and a 

zero-crossing algorithm was used to detect each kick (Figure 4.20). The results 

indicated that the kick count measurements during frontcrawl swimming were 

correlated positively with the criterion values (r = 0.96, 90% confidence interval 0.95 

to 0.97) and that the standard error of the estimate (SEE) for kick count, expressed as 

a coefficient of variation, was 5.9 ± 0.5%.  

 

However, a single inertial sensor placed on the anterior or lateral sides of the 

swimmer’s lower limb was found to be both uncomfortable and to interfere with 

streamlining [33]. A posterior placement on the leg however did not inhibit kicking 

movements and also allowed for clearer signal transmission. Researchers therefore 

positioned sensors on the calf of the dominant kicking leg in subsequent studies, but 

the effect of location on the subjects’ comfort went unreported [51]. 

 

Fulton, et al. [34] next quantified kick count and kick rate in Paralympic swimmers 

and found that decreases of almost 11% in kick rate owning to fatigue were 

associated with diminished overall swimming times. Meanwhile, another study by 

the same research group aimed to optimise kicking patterns and found that a kick 

rate of approximately 150 kicks per minute was associated with peak swimming 
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speed in a similar cohort of swimmers [51]. This study additionally evaluated the 

inclusion of inertial sensor technology as part of a combined, integrated performance 

monitoring system for use in elite swimming, which has been described elsewhere 

recently by others [53, 71]. Notwithstanding the fact that kicking patterns were only 

investigated for frontcrawl swimming, it is likely that a similar algorithm could be 

used to accurately examine kicking in other strokes. 

 

   

Figure 4.20. Process flowchart for detecting kick count and kick rate from angular velocity 
signals. Reproduced with permissions from Fulton, et al. [33]. 

 

Joint Angular Kinematics 

The ability to measure joint angles during swimming is important to ensure that the 

correct movement patterns are performed; to monitor streamlining and to maximise 
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propulsive forces [107, 108]. Important angle measurements include the elbow, 

shoulder and knee joints, as well as the pitch, roll and yaw angles of the torso. For 

example, Figure 4.21 compares the elbow angle of two swimmers during the in-

sweep phase of frontcrawl. Previous research has shown that this elbow angle is 

important for maximising force production. It is suggested that elbow flexion of 

about 105° is optimal during this phase [107]. Therefore, whilst both of the 

swimmers in Figure 4.21 have an elbow angle greater than 105°, reducing the 

effectiveness of their stroke, the swimmer on the left has an elbow flexion much 

closer to what a coach would consider ideal. It can be difficult for a coach to observe 

these movements appropriately as they occur underwater and are fast moving so 

methods for obtaining these data are likely to be of significant interest to the 

coaching community. 

 

 

Figure 4.21. Comparison of different elbow angles produced during the insweep phase of 
frontcrawl swimming. Measuring these angles allows coaches to optimise technique and 
maximise propulsive force generation [109]. 

 

A limited number of examples of using inertial sensor technology to measure joint 

angles can be found in the literature [22, 44, 50, 94, 95]. Single sensor units have 

been used to determine the pitch and roll angles of the swimmer using positions on 

the head [44] and back [50] (Figure 4.22). These may be calculated from the 

measured acceleration signal using trigonometric functions as shown. The pitch 

angle is important as it relates to the swimmers streamlining in the water. 
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Additionally, the roll angle has been used to examine the effects of different 

breathing patterns [44]. Interestingly, Daukantas, et al. [50] used complementary 

filters in their algorithm to determine pitch angle. The acceleration signal was low-

pass filtered, whilst the gyroscopic data were high-pass filtered. Validation methods 

suggest that errors in pitch angle estimation were less than 2° at a cut-off frequency 

of 0.6 Hz. 

 

 

Figure 4.22. Determination of pitch and roll angles using a head mounted sensor. Reproduced 
with permissions from Pansiot, et al. [44]. 

 

Other studies have used multiple sensors to measure joint angles [94, 95]. Processes 

typically involve methods to represent the three dimensional orientations and 

rotations of the swimmers’ limbs, including a rotation matrix [44]; Euler angles [94] 

or quaternions [95] and these methods have been used to analyse human movement 

in other sporting and health related contexts [110-114]. Seifert, et al. [95] 

demonstrated how this approach could be used to enhance the coaching process by 

assessing different patterns of limb coordination. Using four inertial sensors, the 

authors extracted knee and elbow angles during breaststroke swimming (Figure 

4.23). The data were sampled at 100 Hz and filtered using a low pass Fourier filter 

with an 8 Hz cut-off frequency. Unfortunately the specific axes orientations of the 

sensors used was not reported. It can be seen that the less proficient swimmer (on the 

left in Figure 4.23) displays almost simultaneous knee and elbow flexion and 

extension, whereas a more competent performer (on the right) has near maximum 

extension of the elbow when the knees are at full extension, allowing for swimming 

speed to be better maintained throughout the stroke cycle. Seifert, et al. [95] reported 

a variation of between 0.09 rad and 0.15 rad from the criterion measure using this 

method. Phillips, et al. [94] also used four sensor locations to measure joint angles, 
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focusing on butterfly kicking technique. Using a similar method to Seifert, the 

results showed a very high accuracy for the knee joint (0.0019 rad accuracy) but less 

so for the hip joint (0.071 rad). It has been suggested that an error of 0.034 rad  or 

less can be deemed acceptable but that errors of between 0.034 rad and 0.087 rad 

may require consideration when interpreting results [115]. 

 

 

Figure 4.23. Comparison of changing joint angles produced during breaststroke stroke cycles 
measured using a multi-sensor system. The ideal pattern at the start of each cycle is for the knee 
joint (dashed line) to be at maximum flexion when the elbow joint (solid line) is near maximum 
extension. This is demonstrated on the right hand graph with data from an elite performer. The 
graph of the left hand side would be characteristic of a beginner who demonstrates near 
simultaneous knee and elbow movement patterns. In this example, joint angles have been 
normalised between −1 (maximum flexion) and +1 (maximum extension). Reproduced with 
permissions from Seifert, et al. [95]. 

 

Interestingly, the movement of the shoulder joint during swimming has not been 

investigated in the reviewed literature. This is surprising given the importance of 

shoulder kinematics for optimum stroke technique. A previous study did investigate 

the action of the shoulder using two inertial sensors to study the tennis serve [111]. 

Sensors were positioned on the upper arm and chest and comprised of a tri-axial 

accelerometer with a range of ±2 g (±19.62 m∙s-2) and uni-axial gyroscope (±5.2 
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rad∙s-1 range). Angular velocity was measured about the vertical axis and used to 

record shoulder abduction. A similar process could readily be applied in a swimming 

context although it is likely that a tri-axial gyroscope would be most appropriate in 

order to fully analyse all possible shoulder movements. 

 

It is worth noting that the studies described that have measured angles are all from 

conference proceeding, where the level of detail is limited. Therefore, this avenue of 

research remains underdeveloped and it would not be advisable to draw conclusions 

regarding the merits or demerits of these approaches based on the limited 

information available. Certainly, the use of inertial sensors for measuring joint 

angular kinematics is commonplace in other sporting situations and high levels of 

accuracy have been achieved [111, 113, 116-118]. 

 

Kinetic Variables 

Acceleration and deceleration signals are due to the forces exerted by the swimmer 

as well as the swimmer’s interaction with the environment. However, none of the 

reported studies in this review use accelerometers for any kinetic analysis. This is 

unusual, given that acceleration directly relates to force production and kinematic 

swimming data can be used for kinetic analysis [119]. Additionally, previous work 

in related fields has shown that acceleration correlates positively with peak impact 

force (r = 0.85, p < 0.05); average resultant force (r = 0.82, p < 0.05); and peak 

loading rate (r = 0.63, p < 0.05) in adults for either hip or wrist worn accelerometers 

[120]. Others have found a similar association, with peak ground reaction force 

calculated from accelerometer counts during walking and running in children [121]. 

This relationship has also been acknowledged in other sporting situations [117, 118, 

122-124]. Meamarbashi and Hossaini [118] measured kinetic parameters such as 

force, torque and angular impulse with an inertial sensor system to study kicking 

techniques in soccer and to compare dominant and non-dominant legs, drawing clear 

parallels with symmetry assessment in swimming. However, force plates and 

pressure sensors remain the most commonly used tools for kinetic analysis in pool 

swimming, even for systems that employ inertial sensors [71].  
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It is likely that the kinetic analysis potential of sensor-based systems will become 

more prevalent in future swimming research. Anthony and Chalfant [38] proposed 

that a “force-score” may be determined, for example to represent the force produced 

by the arm during the propulsive phase of the stroke. The process involves first 

determining the total acceleration (atotal) from each axis of a tri-axial accelerometer 

(Equation 4.1). 

 

�total =  ��� + �� + ��  

[Equation 4.1] 

 

Next, Newton’s second law of motion is used to determine the force produced, F, 

(Equation 4.2), where m is the mass of the swimmer’s arm and Fd is the drag force 

experienced as the arm is pushed through the water. 

 

� = (� ∙ �total) + ��  

[Equation 4.2] 

 

Fd is derived from the drag equation (Equation 4.3), where ρ is the mass density of 

the fluid; v is the velocity; CD is the drag coefficient and A is the surface area of the 

arm. 

 

�� =
1

2
� ∙ �� ∙ �D ∙ �  

[Equation 4.3] 

 

Whilst this approach appears theoretically sound, it has not been empirically tested 

in a swimming context and it remains unclear if such an approach would prove 

accurate. One area of concern is how an automatic feature detection algorithm could 

account for the changing anthropometric characteristics of individual swimmers. 

That said, should future research work validate this method of kinetic analysis, it 

would offer an exciting alternative to existing practices. Current methods of 

measuring propulsive forces generated by the action of the arms, such as 3D video 
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analysis or the MAD system (Measurement of Active Drag) [119] require complex 

and expensive equipment that is not accessible to the majority of coaches. 

 

4.4.2 Parameters for Analysing Starts 

As the technology of inertial sensors continues to develop, more detailed analysis of 

other aspects of swimming performance, such as starts and turns, should be possible 

but are currently quite limited. Findings of video-based studies with elite swimmers 

[125-127] suggest that the most statistically significant starting performance 

variables, based on correlation with overall start time, are block time; flight time; 

peak horizontal velocity at take-off and peak horizontal force, and it is recommended 

that swimmers and coaches focus on improving these variables during training to 

improve overall starting performance [128]. These key variables have been measured 

by only one group [41, 68, 129]. 

 

 

Figure 4.24. The acceleration signals from a back worn sensor device can be used to identify 
different phases (block, flight, glide, swim) of starts. Additional video input is necessary to 
determine the end of the start phase at 15 m. Reproduced with permissions from Le Sage, et al. 
[68]. 
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For example in Figure 4.24 different phases of the start such as block, flight and 

glide phases were identified from the raw acceleration signal but this was only 

possible when the data were synchronised with video images [68], allowing for key 

performance related information to be extracted. Automatic detection of positional 

information, such as the determination of when the starting phase is completed 

(defined as the 15 m mark), is postulated by the authors through double integration 

of the acceleration signal using a Kalman filter and prior knowledge of the pool 

length but no empirical data have yet been published to verify this method. Another 

potential solution that requires further investigation is to include a photoelectric 

sensor to determine positional information and to help account for integration drift  

error [42]. Additionally, it is not clear how the phases of the start could be 

distinguished from these back-work sensor signals if treated in isolation. For 

example, there appears to be no obvious features in any of the three axes of 

acceleration to determine the point of entry at the end of the flight phase, based on 

the evidence presented thus far. 

 

4.4.3 Parameters for Analysing Turns 

In addition to starts, turns are also a vital aspect of competitive swimming 

performance and have been shown to be significantly related to overall performance 

[16]. As a consequence, much research using video-based systems has investigated 

the various turning techniques [16, 130, 131] and coaches will spend a considerable 

amount of time working on turns during training. Turns are usually assessed within 

specific set distances, such as from 5 m before the wall to 10 m after the wall. When 

analysing a swimmer’s performance during a turn, it is also typical to break the turn 

down into specific phases to facilitate detailed assessment of a swimmers strengths 

and weaknesses and also to allow different turning techniques to be compared 

(Figure 4.25). 

 

 

Figure 4.25. Swimming turns can be broken down into phases to facilitate a detailed 
quantitative analysis. 
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Only a small number of researchers have used inertial sensors to study turns in 

swimming, all using sensors positioned on the lower back [47, 56, 68, 69, 82]. One 

study demonstrated that key features of the frontcrawl flip turn such as the instant of 

wall push-off and rotation can be detected using an accelerometer [56]. It is 

suggested in the coaching literature that longitudinal rotation should occur after the 

wall push-off, in order to avoid reductions in angular velocity [1]. The researchers 

found that these features can be detected from a tri-axial acceleration signal sampled 

at 100 Hz, using the same system developed by Davey & colleagues [11] and 

compared the performances of two swimmers with marked differences in technique 

by way of example (Figure 4.26) [56]. The sensor was orientated such that the X-

axis channel was representative of the direction that the swimmer was travelling in 

and was deemed to be most appropriate for recording the wall push-off. 

Additionally, the Z-axis (anterior-posterior direction) was chosen for analysing the 

rotation of the swimmer during the turn. This was a proof of concept approach to 

analysing turns and so no further assessment was conducted, such as breaking the 

turn down into phases or examining if the parameters could be detected 

automatically using software. 
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Figure 4.26. The analysis of swimming tumble turns is possible through examination of the 
acceleration signal. In this example, two swimmers rotation following the wall push-off are 
compared. In (a), it can be seen that the swimmer has rotated by 1.57 rad (90°) before the wall 
push-off whilst in (b) the push-off occurs before the swimmer reaches 1.57 rad (90°) of rotation. 
Reproduced with permissions from Lee, et al. [56]. 

 

Researchers at Loughborough University described a method by which these 

different phases of the frontcrawl turn can be extracted from accelerometry signals 

[41, 45, 68, 69, 132]. The accelerometer was positioned and orientated in a similar 
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manner to Lee, et al. [56] (Figure 4.27). By using both peak detection and zero 

crossing methods, it was possible to automatically isolate the turn during each lap by 

marking the point when arm movements stop and resume again. This algorithm 

advanced the examination of turns using sensor-based systems as a temporal analysis 

of the different phases of a turn was now possible, albeit without the corresponding 

distance measurements. Variables such as time to rotation, wall contact time, glide 

time and stroke initiation time were measured with a high degree of accuracy, with 

an average difference from criterion measures of under 0.15 s [132]. Lacking from 

these works however is an examination of the features for other turn styles for the 

remaining swimming strokes, and with large groups of swimmers, as well as a lack 

of feature extraction methodologies to determine relevant parameters such as speed 

or distance. 
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Figure 4.27. Flowchart of the process used to distinguish the approach, rotation and glide 
phases of the frontcrawl turn. Reproduced with permissions from Slawson, et al. [69]. 

 

Vannozzi, et al. [47] took an alternative approach and utilized the angular velocity 

signal from a tri-axial gyroscope to identify the rotation, glide and stroke resumption 

phases for turns performed during all four strokes. The algorithm was based on peak 
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detection methods of analysing the signal from each of the three axes of rotation. 

The authors demonstrated that different signal features are indicative of different 

turns and also provided indicative angular velocity values for each stroke (Table 

4.6). 

Table 4.6. Angular velocity during turns. Sample data adapted from Vannozzi, et al. [47], 
providing indicative values of peak angular velocity (Pω) during turns performed for each of 
the four competitive swimming strokes. 

Angular Velocity 
(rad·s−1) 

Frontcrawl Backstroke Breaststroke Butterfly 

     

Pωx −4.21 −6.14 −3.58 −4.01 

Pωy 9.86 6.00 −6.61 −5.60 

Pωz −1.94 −0.31 −5.76 −4.54 

     

 

Unfortunately, the authors did not provide any verification of their approach and 

there was insufficient detail regarding the signal processing methods involved. That 

said, the study does highlight some challenges that need to be overcome before 

automatic feature detection of turning performance may be possible. The signal 

output appears to be specific to individual turning techniques. For example, the sign 

of the angular velocity peak (Pω) in the X and Z axes depends on the direction of 

rotation. If a swimmer is performing backstroke and leads the rotation with the right 

arm, then Pωx will be negative. However, Pωx will be positive if the swimmer leads 

with the left arm. As seen in data in Table 6 above, Pωx for backstroke for males was 

−6.14 rad·s−1. The corresponding value was +6.18 rad·s−1 for females in the study. 

This is not due to any gender differences but solely because the male participants 

happened to turn in one way and the females in the other direction. Furthermore, the 

representative peak values provided are also individually specific and will depend on 

other factors such as approach speed and as such no consistent pattern was 

discernible. This raises further challenges to setting threshold values for automatic 

detection. The study also highlights the importance of the Y-axis rotation in the 

analysis and identification of variables related to the turn as it shows a consistent 

pattern and will always be positive for the flip turn (performed during frontcrawl and 
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backstroke) and negative for open turn (performed during breaststroke and butterfly). 

Moreover, the corresponding Pωx will occur prior to Pωy in backstroke and ideally 

after Pωy in frontcrawl, further aiding automatic detection and temporal analysis. 

 

Stamm, et al. [82] offered a novel methodology to provide a more specific analysis 

of aspects of the turn, using an acceleration signal to detect push-off velocity. In this 

study, the sensor was orientated such that the Y-axis represented the direction of 

travel and the total acceleration was also determined as part of the velocity 

determination process, which involved integration of the acceleration data (Figure 

4.28). The researchers did highlight the potential for error using this integration 

method however, including issues with accumulated errors and gravitational 

concerns due to the changing sensor orientation, but the results provided correlated 

well with the gold-standard video measurements. This investigation could be 

extended to examine how the velocity fluctuates during other phases of the turn, such 

as on approach and also how the velocity can be maintained through rapid butterfly 

leg kicks following the glide phase. 

 

Due to the central importance of starts and turns to overall performance it is expected 

that this research will become more prominent in the coming years and will focus on 

feature extraction methods for key performance related variables. For example, a 

recent video-based biomechanical study provided an extensive investigation of the 

most statistically significant variables related to the performance of turns during 

frontcrawl swimming [133]. Analysing a total of 51 temporal, kinematic and kinetic 

variables for correlation with total turning time, the authors found that the three most 

statistically significant variables were (i) maximizing the distance between the 

swimmers head and wall at the start of transverse rotation; (ii) a slower horizontal 

velocity at peak force production; and (iii) minimizing the turn distance, or 3D 

length of the path covered during the turn. These conclusions have also been backed 

up by other researchers [125, 134]. The collective of studies in these sections on 

starts and turns has thus far been largely exploratory in nature but does demonstrate 

that much of this important information may possibly be extracted using sensor-

based systems. It is likely also that the combination of signals from accelerometers 
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and gyroscopes represents the most sensible way forward, as has been found for the 

determination of free-swimming parameters. 

 

 

Figure 4.28. Method of determination of push-off velocity and wall contact time that utilizes all 
three acceleration signals and the resultant total acceleration. The raw unfiltered signal output 
is used to automatically determine the start and end of wall contact whilst the filtered signal was 
used to determine velocity during the push-off phase. Adapted from Stamm, et al. [82]. 

 

4.4.4 Commercially Available Swimming Sensor Devices 

A number of commercially available swimming performance monitors have recently 

become available (examples include AvidaMetrics, AvidaSports LLC, Harper 

Woods, MI.; FINIS SwimSense, FINIS USA, Livermore, CA.; Garmin Swim, 

Garmin International Inc, Olathe, KS. and Swimovate PoolMatePro, Swimovate 

Ltd, Middlesex, UK. [135-138]). Wrist-worn designs are a common feature and 

allow for user interaction with the devices (Figure 4.29). These systems all feature 

similar processing methods; data are stored on-board for immediate review or later 

downloaded to system specific software for analysis. It is seen that some of the 
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general performance related variables such as stroke count and stroke rate found in 

research studies are also key features of commercially available products (Table 4.7). 

 

Figure 4.29. Commercially available swimming sensor devices: (i) FINIS SwimSense [136], (ii) 
Swimovate PoolMatePro [138]. 

 

Table 4.7. Details of system functionality provided by commercially available swimming sensor 
devices. The features described are similar to those described in research studies for the 
analysis of swimming performance. 

Measured 
Parameter 

AvidaSports 
AvidaMetrics 

FINIS 
Swimsense 

Garmin 
Swim 

Swimovate 
PoolMatePro 

Time • • • • 

Stroke 
identification 

• • •  

Stroke count • • • • 

Stroke rate • • •  

Split times • • •  

Distance per 
stroke 

• •   

Breakout •    

Average speed • • • • 

Kick count •    

Kick rate •    

Lap counter  • • • 

Efficiency    • 

Intervals  • •  

Distance  • • • 

Calories  • • • 
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The Garmin, FINIS and Swimovate products are geared towards a single user who 

wishes to gather useful performance related information when no coach is available. 

They would appear to be well suited to the task, especially for recreational 

swimmers, with their wrist worn design and interface. AvidaMetrics offers the 

potential to monitor activity of up to 25 athletes at one time, which is certainly 

attractive for gathering large scale training information and is more suited to 

competitive swim training. AvidaMetrics is the also the only commercially available 

system that featured a measure of lower limb activity. This system incorporates five 

sensors, two which are worn on the swimmers ankles, allowing this information to 

be gathered.  

 

Certainly there is a growing interest in the commercialization of sensor-based 

methods of analysing swimming performance, as evident from the number of patent 

applications that have emerged in recent years [23, 24, 32, 36, 38, 39, 42, 49, 65, 67, 

88, 90, 91]. Unfortunately, no published research material is currently available that 

investigates the accuracy, reliability or validity of these products. Additionally, only 

limited information regarding the feature detection algorithms is available for these 

devices. Future research is warranted to fully assess the merits/demerits of these 

systems and their applicability for real-world settings.  

 

4.4.5 Sensor Attachment Locations 

In selecting a sensor attachment location, it is important to have regard to the 

potential effects of that location on the desired measure of interest and on the quality 

of movement [139], as different measures are possible using different locations. 

Although the method of attachment is often unreported, attachment solutions include 

taping or strapping [62, 70, 83], wrist-watch style designs [12, 15, 32] or sensors 

incorporated into swim wear clothing [60, 64]). Sensor movement may be inevitable 

and result in measurement inconsistencies, affecting the ability of sensor algorithms 

to accurately measure body motion [139]. This has implications for how sensors are 

attached to body segments.  
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For research purposes, it seems reasonable to use taping or a flexible medical plaster 

to attach sensors to body segments, ensuring accurate positioning that can be 

individually adjusted to suit a subject’s physique. In applied settings however a more 

convenient approach may be desired to ensure minimal set-up delay whilst also not 

significantly interfering with stroke mechanics. This is a key advantage of a wrist-

watch styled approach; hence its popularity in commercially oriented monitors [32, 

38, 91].  

 

Unfortunately only a small number of papers discuss the relationship between 

comfort and sensor location or make attempts at quantifying the magnitude of 

measurement error introduced by sensor movement. An early prototype swim sensor 

described in 2008 by  Davey, et al. [11] was attached to the lower back using a belt 

but swimmer feedback indicated that it was unsuitable and caused excessive 

movement, especially during tumble turns. Bächlin and Tröster [62] used multiple 

sensors and aimed to minimise the risk of sensor slippage by using a belt with elastic 

stretch bands, Velcro fasteners and additional harnesses for individual sizing. It is 

unclear if this approach was successful or otherwise. A custom designed swimming 

suit with the sensor located inside a sealed pocket offers an interesting alternative 

attachment solution [64].  

 

Participants in this study included a mixture of male and female, elite and 

recreational swimmers (N = 30), with a diverse range of body size and stature 

reported. However, it was unclear if the same suit was used for all subjects. Such an 

approach would clearly affect the exact location on the sacrum that the sensor was 

located [64]. Moreover, whilst no negative drag as a result of the suit was reported, 

no objective measure of this was provided and importantly the majority of subjects 

were recreational swimmers who may not adequately perceive drag effects. A variety 

of housing solutions have also been discussed. Clearly the main feature is that the 

device is watertight, and a variety of rubberised or plastic casings have been used. 

However, as much of the published work is based on prototype designs, this area 

remains underdeveloped, with many housing options lacking consideration for drag 

effects. Prototype designs may be bulky by nature and the intention of this work has 

been on algorithm development so it is not appropriate to be critical of such designs. 
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However these clearly will impact on performance and it is a valid consideration for 

future development work.  

 

For research purposes, it seems reasonable to use taping or a flexible medical plaster 

to attach sensors to body segments, ensuring accurate positioning that can be 

individually adjusted to suit a subject’s physique. In applied settings however a more 

convenient approach may be desired to ensure minimal set-up delay whilst also not 

significantly interfering with stroke mechanics. This is a key advantage of a wrist-

watch styled approach; hence its popularity in commercially oriented monitors [32, 

38, 91].  

 

Unfortunately only a small number of papers discuss the relationship between 

comfort and sensor location or make attempts at quantifying the magnitude of 

measurement error introduced by sensor movement. An early prototype swim sensor 

described in 2008 by  Davey, et al. [11] was attached to the lower back using a belt 

but swimmer feedback indicated that it was unsuitable and caused excessive 

movement, especially during tumble turns. Bächlin and Tröster [62] used multiple 

sensors and aimed to minimise the risk of sensor slippage by using a belt with elastic 

stretch bands, Velcro fasteners and additional harnesses for individual sizing. It is 

unclear if this approach was successful or otherwise. A custom designed swimming 

suit with the sensor located inside a sealed pocket offers an interesting alternative 

attachment solution [64]. Participants in this study included a mixture of male and 

female, elite and recreational swimmers (N=30), with a diverse range of body size 

and stature reported. However, it was unclear if the same suit was used for all 

subjects. Such an approach would clearly affect the exact location on the sacrum that 

the sensor was located [64]. Moreover, whilst no negative drag as a result of the suit 

was reported, no objective measure of this was provided and importantly the 

majority of subjects were recreational swimmers who may not adequately perceive 

drag effects. A variety of housing solutions has also been discussed. Clearly the main 

feature is that the device is watertight, and a variety of rubberised or plastic casings 

have been used. However, as much of the published work is based on prototype 

designs, this area remains underdeveloped, with many housing options lacking 

consideration for drag effects. Prototype designs may be bulky by nature and the 
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intention of this work has been on algorithm development so it is not appropriate to 

be critical of such designs. However these clearly will impact on performance and it 

is a valid consideration for future development work. 

 

Upper Limb Locations 

Swimming is an upper body dominant activity, with the majority of propulsion 

derived from the action of the upper limbs and the phases of arm movement result in 

changes in the acceleration of the entire body [1]. Therefore, in many of the 

reviewed studies, the authors chose to select locations on the arm, forearm or wrist 

[12, 15, 52, 53, 56, 62]. This location has been particularly useful in studies 

investigating the various acceleration patterns exhibited by different swimmers. 

However, the use of a single device on the arm has some limitations which must be 

considered. For example, it has been found that wrist worn devices do not appear to 

be as accurate as sensors positioned on the torso for stroke type identification. 

Moreover, as consistent coordination between left and right arms or upper and lower 

limb actions cannot be guaranteed, the positioning of a sensor on one limb will not 

give a full and accurate picture of actual activity. Several studies have objectively 

demonstrated that variations in inter-arm coordination exist in swimming owing to 

various factors including swimming speed [99, 140]; arm dominance [141]; physical 

disability [142]; energy cost [4]; exercise intensity [143] and skill level [140]. 

Furthermore, a similar variance exists between the coordination and synchronisation 

of the arms and legs for all swimming strokes [100, 144]. All of these factors have 

implications for the accuracy of feature detection algorithms when using wrist 

mounted devices. 

 

Torso Locations 

To investigate overall body motion a torso location provides a sensible alternative to 

the wrist. The back offers a practical solution towards balancing comfort with 

function, potentially minimizing the effect of drag and is found in a number of 

published studies [11, 53, 57, 62, 64, 70, 71, 83]. As the sensor is located in close 

proximity to the body mass centre, a lower back location can detect whole-body 

accelerations and provide a good indication for overall swimming parameters such as 
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mean velocity [64]; stroke type detection [11] or stroke rate analysis [11]. The 

sacrum is most frequently chosen, resulting in minimal intrusion both to stroke 

mechanics and the effects of body roll on the acceleration direction [53, 56, 64, 70, 

71, 83]. Back worn sensors are not well suited to a thorough kinematic analysis of 

upper or lower limb activity. A recent attempt was made to measure inter-arm stroke 

dynamics using acceleration and angular velocity recorded at the sacrum [70]. 

However, arm symmetry depends on many other variables other than just temporal 

characteristics, such as propulsive forces and the angular kinematics of the wrist, 

elbow and shoulder joints [1]. Recently, chest mounted sensors were described 

which demonstrated the benefits of back worn devices for monitoring whole-body 

motion, whilst also potentially allowing for integration of physiological data by 

incorporating an ECG sensor [49, 93]. 

 

Head Locations 

Locating a sensor on the head has many advantages. Similar to back worn devices, 

measures of overall body motion can be readily determined at the head. Furthermore, 

a head mounted device will not affect drag to the same degree as other body 

locations and the issue of attachment can be overcome by using a swim cap or 

goggle strap, which can be tightly fixed and is unlikely to result in excessive 

movement. As a consequence of these potential advantages, several of the reviewed 

studies have followed this approach to measure a wide range of parameters [35, 44, 

52, 78, 86, 89]. A possible concern could be that head movements or individual 

breathing styles may affect the output and make this location unsuitable, specifically 

for assessment of frontcrawl and backstroke as the head should remain relatively 

still. Another potential disadvantage of the head location is that motion of the head 

has six degrees of freedom, which may result in difficulty when extracting specific 

position or orientation based information, especially in developing swimmers who 

often struggle to maintain a static head positioning. 

 

Multiple Sensor Locations 

Whilst the majority of systems described utilise a single sensor setup, it is a logical 

progression in the development of the technology to combine measurements from 
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multiple sensors located at two or more body segments. Multiple sensor 

configurations have been used successfully for other human motion tracking [145] 

and sports applications [146, 147]. Methods of handling large volumes of multi-

sensor athlete data have also been described [148].  The potential benefit of a whole 

body system for biomechanical analysis in swimming includes increased 

functionality over other described systems, allowing for a more detailed and 

thorough kinematic analysis of performance. For example, it has previously been 

suggested that the action of the legs can alter the trajectory of the wrist underwater, 

effectively improving the propulsive action of the arm, specifically by increasing 

stroke length and forward arm motion and also reducing backward movement in the 

sagittal plane [149, 150]. Additionally, using multiple sensors allows for joint 

angular kinematical analysis to be carried out [94, 95]. However, there is a trade-off 

that must be considered, as increasing the number of sensors will lead to increased 

drag, swimmer discomfort, altered swim mechanics and more complex signal 

processing and data transmission [53]. 

 

Swimming speed depends on maximising propulsive forces whilst also minimising 

resistive drag forces [1]. Elite swimmers routinely remove body hair and devote 

much attention to improving their streamlining. Body worn sensors may negatively 

influence drag and potentially hinder stroke dynamics. Additionally, active and 

passive drag may result in sensor artefact due to movement through the water [53], 

potentially affecting algorithm accuracy, and should influence design decisions. 

However this important concern has been largely ignored by researchers. No study 

has yet objectively investigated the effects of drag due to body-worn systems, 

although some have reported subjective perceptions [33, 57, 62, 64] and made 

attempts at low profile enclosures [53, 62, 83]. This issue will become increasingly 

significant as the move towards multiple sensor systems continues. 

 

4.4.6 Technical Specifications of Inertial Sensor Designs Used in Swimming 

A range of components has been incorporated into inertial sensor designs. Most 

common is an accelerometer [11, 12, 15, 16, 31, 48, 52, 62, 79, 82, 93], but 

gyroscopes are also found, typically when used in combination [33, 51, 53, 56, 57, 

64, 70, 71, 83, 94]. Acceleration has generally been measured along three axes for 
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kinematic investigations, whereas gyroscopic information has been variously 

collected along either one [33, 51], two [57, 71] or three axes [53, 56, 64, 70, 83]. It 

was found that system designs have evolved from early models featuring uni-axial 

accelerometers to more recent devices where tri-axial accelerometers and tri-axial 

gyroscopes are now typical [10, 53, 83, 87]. The inclusion of a magnetometer is also 

becoming more prevalent [60, 90, 91, 99], whilst a recent study validated the use of a 

combined GPS and accelerometer device for kinematic analysis of swimming [73]. 

Integration of these sensors has also been attempted for physical activity monitoring 

[151, 152] and in other sports [153, 154], but the necessity to perform analyses in an 

outdoor environment limits functionality. Additionally whilst a magnetometer may 

increase the accuracy of the signal from the accelerometer and gyroscope, whose 

signals tend to drift, pool-operating machinery may hinder the magnetometer output 

[9]. 

 

Figure 4.30 provides an example of a typical system architecture which is emerging 

as a reference design for these systems and is reflective of the most commonly 

described systems in the literature. Many of the systems described are prototype 

systems that have been developed specifically for use in swimming research [53, 74, 

83]. Additionally, various commercially available sensor devices such as Physilog 

(BioAGM, Switzerland) [64]; FreeSense (Sensorize, Italy) [47]; MinimaxX 

(Catapult Sports, Australia) [46, 86] and Shimmer (Shimmer, Ireland) [78, 94] have 

also been used. These platforms are not specifically designed for use in swimming; 

therefore various modifications to make them suitable for use in aquatic 

environments have been developed, specifically to provide waterproofing solutions. 
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Figure 4.30. Example of typical system architecture found in inertial-sensor-based devices used 
for the analysis of swimming. 

 

The selection of components should be dependent upon the desired output variable 

or the specific algorithm employed [139]. Whilst certain stroke mechanics may be 

analysed using only acceleration data [15, 62], orientation information may also be 

required for analysing other skills, such as turns, for example [56]. The raw signal 

generated must undergo processing procedures to allow interpretation and analysis. 

Typically post-processing is conducted following data download to an external 

computer but recently on-board, real-time data processing has been described [57, 

71]. 

 

Measurement Range 

An essential feature of any sensor is that it provides an accurate measurement of the 

frequency and amplitude of human movement. Therefore, knowing these ranges for 

a given activity is important and will inform the sensor selection process. Human 

movement is in general considered to be at the lower end of the range of possible 

accelerations, with values of between −0.3 g to 0.8 g (-2.94 m∙s-2 to 7.85 m∙s-2) 

reported for walking and between 0.8 g to 4.0 g (7.85 m∙s-2 to 39.24 m∙s-2) for 

running [155]. Human body acceleration due to swimming falls between these 

activities, with values less than 2 g (19.62 m∙s-2) typical [57]. The measurement 
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range of accelerometers reported in reviewed studies appears to cover this range 

appropriately, although agreement has not been reached on an optimum range and 

also outliers can be found [12, 15, 52]. The range of the gyroscope sensors varies 

between 8.7 and 26.2 rad·s−1, where reported. Measurement range may be influenced 

by sensor location, with more distally attached sensors requiring a greater range 

[139]. This is typical of gait analysis studies, whereby trunk worn devices have 

smaller ranges than those worn on the lower limbs [156, 157]. However in the 

swimming studies reviewed it appears that this recommendation is not followed, 

with no consistency between the range selected and the attachment location whilst 

studies involving multiple sensors had a fixed range [53, 62]. 

 

Sampling Frequency 

There appears to be little consensus in the extant literature as to the optimal sampling 

rate to record swimming variables, with a wide range of sampling frequencies 

described. This disparity may be due to sensor locations of selected studies; however 

a lack of justification for sampling rates chosen is evident from the literature. Very 

high sampling rates have the benefit of increased reproduction fidelity but increase 

computational power, storage capability and energy demands. In some instances, 

higher rates may be required to extract specific movement characteristics [158]. The 

Nyquist Sampling Theorem states that the recording frequency should be at least 

twice bandwidth of the signal being recorded. Early studies suggested that the lowest 

sampling frequency advisable for the accurate recognition of human motion was 20 

Hz [159, 160] although higher frequencies could be expected during limb 

movements [161]. By down-sampling accelerometer data originally sampled at 150 

Hz, researchers have attempted to reduce the complexity of signal processing 

algorithms [162]. Although lower sampling rates achieved similar results in some 

cases, in general the lowest frequency (15 Hz) performed worst and accuracy and 

resolution decreased along with sampling frequency [162]. 

 

Signal filtering 

Signal filtering processes are required as the signal to noise ratio can be low in a 

swimming setting [57]. Spectral analysis has revealed that a power peak frequency 
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of approximately 6 Hz represents the movement of the arms and legs during a 

complete stroke cycle [163] and that frequencies in excess of 10 Hz are insignificant 

[164]. Butterworth and Hamming window filters are both commonly used in the 

extant literature. Butterworth filters provide a very flat frequency response in the 

passband and a key advantage over alternatives is that they do not require strict 

tolerances, unlike Chebyshev or Bessel filters [165].  Butterworth filters are also 

commonly used in other human movement related studies [122, 166, 167]. Some 

considered using a Chebyshev filter [57] but instead opted for a low pass 

Butterworth filter to avoid ripple voltages in the passband. A cut-off frequency of 2 

Hz was applied to frontcrawl and backstroke, but this was deemed to smooth the data 

excessively for other strokes so higher frequencies (6 Hz for breaststroke; 8 Hz for 

butterfly) were chosen [57]. A Fourier filter has been shown to be accurate and 

effective for determining three dimensional orientations from a gyroscope in walking 

studies [168]. This method was also proposed for usage in swimming and one study 

followed this approach [95]. 

 

A common theme in the literature is that low pass filtering is conducted as the first 

stage of signal processing to remove unwanted noise components, owing to various 

factors including sensor movement, drag effects and skin wobble. However, it is 

important to note that there is a potential for valuable data to be lost if inappropriate 

filtering is adopted. Researchers should be aware of this fact and careful 

consideration should be given to the cut-off frequency employed as there is not a 

“one size fits all” solution to handling the raw data input. For example signals 

recorded from the back would have a much lower usable frequency content than 

those recorded from the arm and thus different cut-off frequency values would be 

used in a low-pass filter employed in these two cases. 

 

Data Storage and Transfer 

Advances in data storage technology allow for increasingly compact solutions, 

offering capacities that are more than sufficient for recording swimming data in 

training environments. A 1 GB microSD card will allow for over 200 hours of 

recording at 100 Hz [53]. For real-time systems, on-board storage is still required 

due to the volume of raw signal generated. One study incorporated 4 MB storage 
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buffer, facilitating real-time implementation of data processing algorithms [57]. 

Interestingly though, raw acceleration signal was also transmitted along with the 

processed data, as both may be of relevance when a coach or sport scientist analyses 

performance. Real-time feedback is an exciting new area of research and will further 

enhance the standing of inertial sensor-based systems within coaching communities. 

Rapid feedback on performance is vital to skill acquisition and has been found to 

improve technical performance in swimming [169]. 

 

However, the range of transmission is quite low, less than two meters in one study 

using Radio Frequency (RF) [53] and just 0.7 m for an optical wireless link when 

operated in turbulent water [52], thus feedback can only be provided to the swimmer 

and not the coach. This setup may be appropriate for recreational swimming analysis 

but is unsuited to elite swimming environments. This is a limitation of the majority 

of the data transmission options described. One paper did report a tested RF 

transmission range of 35 m at 0.25 m water depth, but unfortunately without 

providing additional methodological details [57]. 

 

Power Supply 

Power consumption of wearable sensor devices is an on-going area of investigation 

within the research community and as multiple sensor designs become more 

commonplace, so too will the requirement for balancing power consumption to avoid 

overload [170]. It has been suggested that the main constraint on the size and mass of 

MEMS systems is the power source, highlighting the requirement for low power 

signal processing methods [162].  Eight hours of battery life can be achieved using a 

high density lithium polymer cell incorporating sleep states and variable clock rates 

[53]. One system is capable of 48 hours of continuous recording across multiple 

sensors using a 250 mAh 3.7 V rechargeable battery [62]. Lithium ion batteries are 

not without limitations for use in aquatic environments due to the fire risk associated 

with damage or leakages. An alternative solution may include super-capacitors or 

carbon-nanotube based energy stores. Another potential lies in energy harvesting in 

the surrounding electromagnetic environment, but further research is required in 

these areas [170-174].  
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4.5 Conclusions 

This paper aimed to provide a systematic and critical review of inertial sensor use 

within swimming, focusing on methods that have been described for extracting key 

performance related variables for different phases of swimming and the 

consequences of different sensor attachment locations. Of the 87 papers included in 

this review, 62 of them (71.3%) have been published since 2010. Consequently, this 

field of study is relatively new and rapidly expanding. The development of this 

technology has advanced from early prototype models capable of simple stroke 

recognition to more recent systems that have provided for temporal; kinematic; 

kinetic and physiological analyses. Systems have been described that are capable of 

analysing starts; turns and free swimming parameters for a range of swimming strokes. 

 

Much of the work has focused on extracting variables using relatively simple 

processing techniques, such as peak detection and zero-crossing. This requires an 

understanding of the features of the raw acceleration and angular velocity signals and 

their relevance to swimming performance as well as an appreciation for individual 

differences in stroke mechanics. Detecting other variables requires more complex 

solutions. The accurate determination of swimming velocity, for example, is a 

current area of much research, with different methods being explored including 

integration and regression techniques. It remains to be seen which process will prove 

to be most appropriate. This is perhaps expected for a growing field of research but 

such inconsistency will undoubtedly result in confusion amongst coaches and sports 

scientists and also makes comparisons between studies difficult. It is important that 

best practice approaches to analysing swimming performance using inertial sensors 

are developed to ensure a greater adoption of the technology in applied settings and 

increased confidence in the accuracy of specific designs. Perhaps the greatest 

challenge at present when considering algorithm development is ensuring that the 

systems can robustly handle the individual movement characteristics of different 

swimmers and with high accuracy. It could be argued that the research community as 

a whole needs to move beyond low level signal processing techniques such as peak 

detection and move towards more complex signal processing and data analysis 

techniques in order to achieve solutions to these ongoing issues and to provide a 

greater depth of analysis potential to swimming coaches and practitioners. 



Robert Mooney PhD Thesis – Chapter 4 

 

182 

It has also been found that many different sensor locations have been used to date. 

Advantages of choosing a single site include ease of use and reduced cost but with 

limitations on the depth of analysis possible. Moreover, many algorithms described 

are specific to the location chosen and once selected should not be used 

interchangeably [139]. Multiple sensors mounted on various body segments offer 

increased analytical potential as reflected in recent studies. Certainly, the selection of 

an appropriate location or locations must be related to the measurement variable of 

interest due to the specific mechanics and coordination patterns of the four 

competitive strokes. The same function, such as stroke count, cannot always be best 

measured for different strokes using the same location. 

 

As would be expected in a new area of research, there remains a large number or 

directions for future work to exploit. The variety of system specifications described 

is vast but with little consideration for the potentially negative effects of drag owing 

to their design. The accuracy of some feature detection algorithms may be 

questioned, such as those for lap time and stroke count. There remains a need for 

more thorough validation of systems and processes as much work to date has 

involved low participant numbers and insufficient detail regarding validation 

procedures that have been carried out. The lack of statistical analysis performed in 

some of these studies to determine the significance of the findings is also a concern. 

For example, Siirtola, et al. [59] reported accuracy levels of greater than 99% for 

their stroke count algorithm but did not provide any statistical analysis and details of 

the method of validating the sensor data were not properly reported. 

 

Several aspects of swimming analysis are largely unexplored but are vital from a 

coaching point of view. These include increasing the array of variables that can be 

measured, not just for free-swimming but also for the analysis of starts and turns 

which remains underdeveloped. Joint angular kinematics have not received sufficient 

research attention and to date no study has attempted to describe the action of the 

shoulder joint, which is paramount in swimming. Developing the kinetic potential of 

sensor-based technology would open up a new avenue for many coaches. 
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Future work also needs to focus on applied studies to demonstrate how this 

technology can be used to influence coaching practice. The work of Fulton & 

colleagues [33, 34, 51] into kicking patterns is important as they are utilising sensor-

based technology to optimise performance in an elite coaching setting. Similar 

examples are lacking in the research literature. Future applied research investigating 

other swimming strokes and involving elite able-bodied swimmers as participants 

are warranted, in order to convince the coaching population that sensors have a place 

in swimming training. Currently, the awareness and usage of sensor-based 

technology in applied swimming programmes is very low [8]. 

 

Commercial systems appear to be more geared for a recreational swimmer and lack 

sufficient depth of analytical potential, as well as operational validity, to be of 

relevance currently in elite swimming. Additionally, research should look to include 

all four competitive strokes when validating feature detection algorithms in order to 

increase the applicability of this technology for real-world settings. 

 

The evidence presented to date would suggest that inertial sensor technology has 

enormous potential to influence swim coaching practice in the coming years. Due to 

the difficulty in obtaining accurate data in aquatic environments, there is a strong 

demand for sophisticated analysis tools to quantify key performance related variables 

such as acceleration and velocity. MEMS based technology has the potential to 

deliver the required accuracy, precision and speed of feedback. Ultimately, however, 

this technology is competing against video-based analytical tools and researchers 

should continue to strive towards providing sufficient evidential basis of the merits 

of inertial sensors. Until such time, it is likely that coaches will continue to rely on 

traditional approaches for the analysis of swimming performance. 
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The systematic literature review of inertial sensor-based analysis of 

swimming performance, presented in Chapter 4, highlights several areas of interest 

and potential research development. It is apparent that the growth of interest in this 

area suggests that there is also significant commercial opportunity for new systems 

aimed at providing coaches with a means of analysing their swimmers’ performance 

using sensor-based systems. However, before any effort can be made towards 

developing new technology, it is prudent to make a comprehensive assessment of 

currently existing commercially available swimming sensors. This assessment will 

help to identify areas of strength and weakness with existing technology and allow 

the opportunity to develop an important reliability testing protocol for use in aquatic 

settings that can be used in later stages of this research project. The findings are 

presented here as the next chapter of the thesis.  

 

5.1 Introduction 

Swimming ranks amongst the most popular leisure activities worldwide [1, 2]. The 

general health benefits of regular swimming are well established and swimming is 

one of the few sports that can be enjoyed during all stages of life [3]. Individuals 

who swim as a recreational activity for health and fitness can benefit from 

monitoring some basic indices of their performance. Parameters may include the 

time or distance completed; in much the same fashion as a recreational runner will 

use a stopwatch or GPS device. Indeed, research evidence suggests that better health 

outcomes can arise when levels of physical activity are quantified [4]. 

 

Additional benefits of quantifying swimming performance for health may include 

assisting with goal-setting, as an activity diary, as a means of monitoring trends in 

performance over time or as a motivational tool. In aquatic settings such variables 

would typically be measured using manual methods such as a stopwatch. However, 

manual methods are prone to inconsistencies and inaccuracies. Furthermore, 
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recreational swimmers do not typically have the availability of a coach or other 

observer who can record this information for them, using video for example [5].  

 

Wearable sensor technologies have gained popularity in many sporting settings and 

commercially available products have been validated for use across a range of 

physical activities [6-8]. With advances in MEMS-based kinematic sensing, 

swimmers can also now monitor their own activity in their normal training 

environment using wearable technologies [9]. Several prototype designs have been 

described and validated in the swimming literature [10-13]. Additionally, 

commercially available swimming activity monitors have gained prominence, 

including the Finis Swimsense® (FINIS USA, Livermore, CA, USA.) and Garmin 

SwimTM (Garmin International Inc, Olathe, KS, USA.).  

 

These commercial activity monitors include features such as stroke counting and 

swim speed measurements and can identify the different strokes performed 

automatically. Feedback is provided either instantly on the wrist worn interface or by 

downloading the data to custom designed websites for a more detailed analysis once 

the swimming session has been completed. These devices are marketed directly at 

the swimmer and are primarily aimed for recreational, self-coached and amateur 

swimmers or triathletes as opposed to elite swimmers. These systems are seldom 

used by swim coaches for competitive swimming training and performance analysis 

[14]. These activity monitors offer significant potential in recreational swimming 

settings by providing swimmers with a method of quantifying and analysing their 

own training in the pool. However, to the author’s knowledge, these devices have not 

yet received objective scrutiny to validate their performance. The activity monitors 

are designed for people who train in order to achieve personal swim training goals.  

 

The aim of this paper is to assess the accuracy of the Finis Swimsense and the 

Garmin Swim activity monitors in providing accurate feedback on a range of 

swimming performance parameters for each of the four competitive swimming 

strokes.  
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5.2 Methods 

5.2.1 Participants 

Ten national level competitive swimmers were recruited to take part in the study (5 

male, 5 female; 15.3 ±1.3 years; 164.8 ±12.9 cm; 62.4 ±11.1 kg; 425 ±66 FINA 

points (Fédération internationale de natation)). Competitive athletes were chosen 

over recreational swimmers in order to ensure that the participants would be fully 

competent in performing all four competitive swimming strokes in a highly 

consistent manner over the protocol distance. In doing so, it was expected to achieve 

the absolute best estimate of accuracy that could be attained from the activity 

monitors in a recreational setting. The study received approval (reference number 

13/NOV/08) from the institutional ethics committee, NUI Galway Research Ethics 

Committee (REC), and followed the terms of the Declaration of Helsinki. The 

protocol was explained to the swimmers and their parents. Parental written consent 

was obtained and the participants provided written informed assent. 

 

5.2.2 Procedures 

Data collection took place in a temperature controlled 25 m indoor swimming pool 

(water temperature 29 °C), which was within the normal operating temperature for 

both swim monitors. Participants were fitted with a monitor on each wrist, which 

were allocated at random. Both devices feature tri-axial accelerometers to 

automatically track the acceleration of the wrist as the swimmer moves through the 

water. Pool length can be readily adjusted on both devices and was programmed to 

suit the 25 m environment. Settings were configured for each individual user (height, 

mass, age, wrist used) and the participants completed a self-directed warm up of 15 

minutes duration to prepare physically and to habituate to wearing the devices whilst 

swimming.  

 

Participants were instructed to complete a swimming session totalling 1,500 m (60 

laps) comprising each of the four competitive swimming strokes, completed in 

individual medley order (i.e. butterfly, backstroke, breaststroke, frontcrawl). 

Butterfly was swum in 50 m intervals followed by 45 s rest, repeated six times. The 
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other strokes were swum in 100 m intervals, again followed by 45 s rest, repeated 

four times. Two minutes of rest was included when transitioning between strokes, 

during which swimmers were instructed to remain still with their forearms resting on 

the pool deck. In total, 15,000 m of swimming were completed, generating 600 laps, 

or data sets, for statistical analysis. Swimming speed was self-selected during all 

trials. 

 

Trials were simultaneously captured at 50 Hz using two fixed underwater cameras 

(GoPro Hero3+) positioned to record all events occurring at the pool walls in order 

to identify wall contact events and one panning video camera on the pool deck to 

record the participants throughout each lap (Sony Handycam HDR-XR550). Images 

from the three cameras were synchronised by interpolating the data according to the 

time lag between cameras using a blinking light source [15]. Video footage was 

subsequently used as the criterion measure to assess the performance of the swim 

activity monitors.  

 

5.2.3 Data Processing & Analysis 

Video files were stored on a portable hard drive and analysed with the use of 

Dartfish Video Software (ProSuite version 5.5; Dartfish, Fribourg, Switzerland) to 

allow for criterion measures of all variables to be determined through manual 

observation of the video footage.   

 

Inter-operator and intra-operator reliability testing was carried out by calculating the 

intra-class correlation coefficient (ICC) on a segment of the video data for lap time 

and stroke count. ICC is used to interpret the relationship between two variables that 

record the same measurement [16]. This was a necessary step in order to ensure the 

accuracy of the criterion measure. The other variables measured in the study can be 

derived from these variables so this was deemed sufficient for reliability assessment 

of the criterion measure. Intra-operator reliability for lap time (ICC = 0.999) and 

stroke count (ICC = 0.972) were found to be excellent. Inter-operator reliability for 

lap time (ICC = 0.993) and stroke count (ICC = 1.000) were also found to be 
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excellent [17]. These results indicate that the video footage is a valid criterion 

measure from which to compare the performance of the activity monitors. 

 

Data from each activity monitor were downloaded and exported to Microsoft Excel 

(2010 version; Microsoft, USA) for collation and processing. Stroke type, swim 

distance, lap time, stroke count, and average speed were measured on both activity 

monitors. Additionally, stroke rate and stroke length were also recorded for the Finis 

Swimsense. These were not available features on the Garmin Swim. 

 

Descriptive statistics (mean, standard deviation) were determined for all variables. 

The Kolmogorov-Smirnov test was used to assess if the data were parametric or non-

parametric. Stroke identification data were categorical in nature and a Pearson’s chi-

square test was used to assess for agreement between values [16]. Wilcoxon signed-

rank tests were conducted to compare the relationship between non-parametric data. 

The standard error of the mean was calculated to determine the standard deviation of 

the sample means. 95% limits of agreement were determined as the mean difference 

±1.96 times the standard deviation of the difference. ICCs were determined as a 

measure of the reliability of the devices. A linear mixed model was used to generate 

limits of agreement for each set of comparisons for the lap time and stroke count 

data which account for the (linked) replicates within individuals across devices [18, 

19]. These data (lap times and stroke counts) are the most critical and fundamental 

parameters measured here as these values are used in the determination of many of 

the other reported parameters. Data analyses were performed using Statistical 

Package for the Social Sciences for Windows (Version 21, SPSS Inc., Chicago, IL). 

A p-value of 0.05 was set for all statistical analyses.  

 

5.3 Results 

Table 5.1 compares the sensitivity and specificity of the stroke type identification 

function for both activity monitors. Sensitivity is a measure of the proportion of 

positives that are correctly identified (i.e. lap recorded by monitor as frontcrawl 
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when actually performing frontcrawl), whilst specificity measures the proportion of 

negatives that are correctly identified (i.e. lap not recorded by monitor as frontcrawl 

when not actually performing frontcrawl). The Garmin Swim correctly identified 

which of the four competitive swimming strokes was performed for a given lap with 

95.4% overall sensitivity rate whilst the Finis Swimsense was slightly more sensitive 

at 96.4% overall. It was also found that there was a significant correlation in stroke 

type identification between the activity monitors and video for each of the four 

strokes (Garmin: Х2 (3) = 31.292, p < 0.05; Finis: Х2 (3) = 33.004, p < 0.05). Taking 

each stroke in isolation, a sensitivity of 94% or greater was achieved in all but two 

cases; namely breaststroke when recorded with the Garmin (86.0%) and backstroke 

when recorded by the Finis monitor (88.9%). This is also reflected in the slightly 

lower specificity values for these two strokes. 

 

The total distance recorded by each sensor was compared to the actual total distance 

completed. Both activity monitors performed with very high accuracy when 

measuring the total distance completed for all four swimming strokes. A cumulative 

total of 15,000 m was completed by the participants. The Garmin monitor registered 

a total of 14,925 m (99.5% detection accuracy), which was 75 m, or three laps, short. 

These missed laps were all for the frontcrawl stroke. The Finis registered exactly 

15,000 m correctly,  however inspection of the results showed small variations 

within strokes (-1 lap butterfly; -3 laps backstroke +1 lap breaststroke; +3 laps 

frontcrawl, giving an adjusted detection accuracy of 98.7%). 

 

Table 5.2 and Table 5.3 provide a comparison of performance of the activity 

monitors for other variables in the study. Lap times; stroke count; average speed, 

stroke rate and stroke length were statistically significantly different from the 

criterion measure in the majority of cases for both activity monitors and for all four 

strokes.  
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Table 5.1. Sensitivity and specificity of stroke identification for Finis Swimsense and Garmin 
Swim. The actual stroke completed for each lap was compared against the success of the sensors 
to correctly identify each lap. For both devices, a significant association was found with the 
actual stroke completed. Sensitivity is a measure of the proportion of positives that are correctly 
identified, whilst specificity measures the proportion of negatives that are correctly identified. 
(Fly = Butterfly; Bk = Backstroke; Brs = Breaststroke; Fc = Frontcrawl; Miss = no lap 
registered). 

    Sensitivity   Specificity 

                  

Garmin   Fly Bk Brs Fc Miss   
 Fly   94.9% 0% 0.8% 4.2% 0%   100.0% 

Bk   0% 98.8% 0% 1.3% 0%   95.8% 

Brs   0% 13.2% 86.0% 0.7% 0%   99.8% 

Fc   0% 0% 0% 98.3% 1.7%   98.1% 

          
  

    

Finis   Fly Bk Brs Fc Miss   
 Fly   97.2% 0% 0% 0.9% 1.9%   100.0% 

Bk   0% 88.9% 10.4% 0% 0.7%   99.8% 

Brs   0% 0.8% 99.2% 0% 0%   96.5% 

Fc   0% 0% 0% 100.0% 0%   99.7% 
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Table 5.2. Comparison of results for lap time and stroke count. Mean score, standard deviation (SD), standard error of the mean (SE), 95% confidence intervals, 
interclass correlation coefficient (ICC), limits of agreement (LOA), mean absolute percentage error (MAPE) and the error range are presented for both Finis 
Swimsense and Garmin Swim monitors and compared with the criterion measures extracted from video footage. Values denoted with an asterisk (*) indicate that a 
significant difference exists between the sensor device and the criterion (p < 0.05).  
 

 Lap time 
(s) 

       Stroke 
count 

      

  Mean ±SD SE 95% CI ICC LOA 
MAPE 

(%) 
Error Range 

(%)   
Mean ±SD SE 95% CI ICC LOA 

MAPE 
(%) 

Error Range 
(%) 

  
 

 
  

    
 

 
  

  

Butterfly 
 

 
 

  
    

 
 

  
  

Video 20.31±2.46   (19.87-20.75)   
   

12.2±1.8  (11.9-12.5)   
  

Garmin 23.33±3.49* 0.321 (22.70-23.96) 0.357 -8.293 – 5.199 17.2 (-13.6-114.5) 
 

10.9±2.0* 0.183 (10.5-11.3) 0.295 -3.537 – 2.262 15.6 (-46.2-27.3) 

Finis 23.30±5.28* 0.518 (22.29-24.31) 0.131 -7.046 – 4.521 20.6 (-20.7-117.7)  
11.3±1.9* 0.186 (10.9-11.7) 0.758 -2.773 – 3.254 9.3 (-46.2-20.0) 

  
 

 
  

    
 

 
  

  

Backstroke 
 

 
 

  
    

 
 

  
  

Video 22.38±1.38  (22.17-22.59)   
   

8.9±1.1  (8.7-9.1)   
  

Garmin 23.93±3.24* 0.256 (23.43-24.43) 0.153 -8.293 – 5.199 11.6 (-22.4-74.1)  
9.5±1.4* 0.110 (9.3-9.7) 0.453 -3.537 – 2.262 14.1 (-33.3-57.1) 

Finis 23.64±2.91* 0.244 (23.16-24.12) 0.225 -7.046 – 4.521 9.7 (-18.6-69.4) 
 

8.6±1.3 0.106 (8.4-8.8) 0.361 -2.773 – 3.254 12.0 (-40.0-62.5) 

  
 

 
  

    
 

 
  

  

Breaststroke 
 

 
 

  
    

 
 

  
  

Video 25.23±2.05  (24.89-25.57)   
   

9.9±1.6  (9.6-10.2)   
  

Garmin 26.59±3.10* 0.266 (26.07-27.11) 0.044 -8.293 – 5.199 11.2 (-28.1-48.9) 
 

11.3±1.8* 0.152 (11.0-11.6) 0.542 -3.537 – 2.262 18.9 (-20.0-71.4) 

Finis 26.48±3.07* 0.271 (25.95-27.01) 0.317 -7.046 – 4.521 9.7 (-20.7-47.3) 
 

11.3±1.6* 0.145 (11.0-11.6) 0.650 -2.773 – 3.254 18.6 (-16.7-50) 

  
 

 
  

    
 

 
  

  

Frontcrawl 
 

 
 

  
    

 
 

  
  

Video 21.24±1.76  (20.98-21.50)   
   

9.3±1.2  (9.1-9.5)   
  

Garmin 22.33±5.18* 0.390 (21.56-23.10) 0.117 -8.293 – 5.199 8.4 (-24.2-50.6) 
 

9.4±2.5 0.192 (9.0-9.8) 0.169 -3.537 – 2.262 11.4 (-50.0-58.3) 

Finis 21.82±2.68* 0.202 (21.42-22.22) 0.635 -7.046 – 4.521 7.7 (-40.3-57.3) 
 

9.8±1.3* 0.096 (9.6-10.0) 0.062 -2.773 – 2.262 14.4 (-44.4-62.5) 
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Table 5.3. Comparison of results for stroke rate, stroke length and average speed. Mean score, standard deviation (SD), standard error of the mean (SE), 95% 
confidence intervals, interclass correlation coefficient (ICC), mean absolute percentage error (MAPE) and the error range are presented for both Finis Swimsense 
and Garmin Swim monitors, where applicable and compared with the criterion measures extracted from video footage. Values denoted with an asterisk (*) indicate 
that a significant difference exists between the sensor device and the criterion (p < 0.05).  

 
  Stroke rate 

(str/min) 
  

 
      Stroke length 

(m) 
  

 
      Average 

speed (m/s) 
 

       

  
Mean 
±SD 

SE 95% CI ICC 
MAPE 

(%) 
Error Range 

(%)   
Mean ±SD SE 

95% 
CI 

ICC 
MAPE 

(%) 
Error Range 

(%)  
 Mean ±SD SE 95% CI ICC 

MAPE 
(%) 

Error 
Range 

(%) 

  
 

 
 

    
 

 
 

  
       

Butterfly 
 

 
 

 
    

 
 

 
  

       

Video 46.1±5.4  
(45.1-
47.1) 

 
   

1.64±0.18  
(1.61-
1.67) 

 
  

 1.24±0.14  
(1.21-
1.27) 

   

Garmin N/A N/A N/A N/A N/A N/A  N/A N/A N/A N/A N/A N/A  1.09±0.15* 0.014 
(1.06-
1.12) 

0.327 13.2 
(-53.5-
16.5) 

Finis 36.0±9.2* 0.903 
(34.2-
37.8) 

0.135 
20.8 (-73.0-6.2)  

2.29±0.47* 0.046 
(2.20-
2.38) 

0.127 
40.9 (0.9-138.9) 

 1.12±0.20* 0.020 
(1.08-
1.16) 

0.068 
16.4 

(-53.8-
31.5) 

  
 

 
 

    
 

 
 

  
       

Backstroke 
 

 
 

 
    

 
 

 
  

       

Video 29.5±3.7  
(28.9-
30.1) 

 
   

2.31±0.22  
(2.27-
2.35) 

 
  

 1.12±0.07  
(1.11-
1.13) 

   

Garmin N/A N/A N/A N/A N/A N/A  N/A N/A N/A N/A N/A N/A  1.06±0.13* 0.011 
(1.04-
1.08) 

0.198 
10.0 

(-42.5-
29.2) 

Finis 24.0±4.1* 0.346 
(23.3-
24.7) 

0.168 
18.0 

(-60.8-4.5) 
 

2.95±0.46* 0.038 
(2.87-
3.03) 

0.093 
30.4 

(-51.9-
119.8) 

 1.08±0.12* 0.010 
(1.06-
1.10) 

0.286 
8.2 

(-40.9-
22.9) 

  
 

 
 

    
 

 
 

  
       

Breaststroke 
 

 
 

 
    

 
 

 
  

       

Video 29.6±3.2  
(29.0-
30.2) 

 
   

2.04±0.28  
(1.99-
2.09) 

 
  

 1.00±0.08  
(0.99-
1.01) 

   

Garmin N/A N/A N/A N/A N/A N/A  N/A N/A N/A N/A N/A N/A  0.95±0.12* 0.011 
(0.93-
0.97) 

0.076 
10.4 

(-73.0-
39.1) 

Finis 27.1±3.3* 0.288 
(26.5-
27.7) 

0.608 
9.0 

(-45.8-9.3) 
 

2.26±0.33* 0.029 
(2.20-
2.32) 

0.702 
13.1 

(-13.5-42.9)  0.97±.011* 0.010 
(0.95-
0.99) 

0.286 
8.6 

(-31.1-
36.2) 

  
 

 
 

    
 

 
 

  
       

Frontcrawl 
 

 
 

 
    

 
 

 
  

       

Video 33.4±4.4  
(32.7-
34.1) 

 
   

2.15±0.21  
(2.12-
2.18) 

 
  

 1.19±0.10  
(1.17-
1.21) 

   

Garmin N/A N/A N/A N/A N/A N/A  N/A N/A N/A N/A N/A N/A  1.10±0.20* 0.015 
(1.07-
1.13) 

0.258 
7.3 

(-33.7-
30.7) 

Finis 28.9±3.9* 0.296 
(28.3-
29.5) 

0.455 
12.9 

(-50.4-10.3) 
 

2.59±0.39* 0.029 
(2.53-
2.65) 

0.292 
21.2 

(-11.2-
117.1) 

 1.17±0.17* 0.013 
(1.14-
1.20) 

0.613 
7.4 

(-36.2-
68.2) 
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A comparison was performed of laps performed at the beginning of an interval (i.e. 

the first lap of four in a 100 m swim interval) to those performed during the middle 

of an interval and those performed at the end of an interval. The butterfly trials were 

omitted from this analysis as butterfly was completed in 50 m intervals and thus did 

not include a middle lap for comparison. Both activity monitors demonstrated a 

similar pattern of error in lap times, with a statistically significant difference found 

for laps performed at the beginning and end of an interval but no statistical 

difference found for those performed in the middle of an interval. For example, the 

average front crawl mid interval lap time was 21.03 ±4.27 s. The Garmin Swim 

averaged 21.53 ±2.17 s (+2.4%) and the Finis Swimsense averaged 20.91 ±4.48 s (-

0.6%). However for laps performed at the start and end of an interval, the reported 

error was much larger, ranging from -13.4% to +33.5%.  

 

The results showed that mid interval lap times were accurately recorded, the Garmin 

Swim showed a bias of -0.065s, a lower limit of agreement of -3.828s and an upper 

limit of agreement of 6.920s. For the same laps, the Finis Swimsense demonstrated a 

bias of -0.02s, a lower limit of agreement of -3.095s and an upper limit of agreement 

of 3.142s. For starting laps, the results for Garmin showed a bias of 4.608s (-4.855s 

– 14.070s limits of agreement) and for Finis showed a bias of 3.84s (-5.199s – 

12.871s). Finally, for end laps, the results for Garmin showed a bias of 1.382s (-

4.157s – 6.920s) and for Finis showed a bias of 0.77s (-5.679 – 7.217s). 
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Figure 5.1. Comparison of overall frequency of error in the measurement of lap times for both 
Finis Swimsense and Garmin Swim.  

 

Figure 5.2 highlights the results of the stroke count measurements, demonstrating an 

overall overestimation of stroke count for both activity monitors. Taking all four 

strokes combined, the Finis monitor correctly registered the stroke count to within 

0

10

20

30

40

50

60

70

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

12
+

N
o.

 o
f 

oc
cu

re
n

ce
s

Lap time error per lap

Garmin Swim

Butterfly Backstroke Breaststroke Frontcrawl

0

10

20

30

40

50

60

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

12
+

N
o.

 o
f 

oc
cu

re
n

ce
s

Lap time error per lap

Finis Swimsense

Butterfly Backstroke Breaststroke Frontcrawl



Robert Mooney PhD Thesis – Chapter 5 

 

216 

one stroke of the actual stroke count in 62.2% of laps. Similarly, the Garmin monitor 

was within one stroke of the actual stroke count in 62.5% of laps. Looking at each 

stroke in isolation, the trend towards overestimation of stroke count was observed in 

all strokes except butterfly, which showed a tendency towards underestimation for 

both activity monitors. The results for stroke count were statistically significantly 

different from the criterion measure in all but two instances; in backstroke for the 

Finis monitor and in frontcrawl for the Garmin monitor.  

 

The highest level of accuracy for the Garmin monitor was found for frontcrawl, with 

the stroke count within one stroke of the actual stroke count in 75.6% of laps. With 

the Finis monitor, the highest level of accuracy was found in the backstroke (73.4% 

±1 of actual). Breaststroke demonstrated the lowest stroke count accuracy for both 

devices (Finis 40.6% ±1 of actual; Garmin 50.0% ±1 of actual). For the Garmin 

monitor, the long axis strokes performed better than the short axis strokes, but this 

was not observed in the Finis monitor. 
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Figure 5.2. Comparison of overall frequency of error in the measurement of stroke count for 
both Finis Swimsense and Garmin Swim. The results indicate a significant overestimation of 
stroke count for both devices for all strokes except butterfly. 
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5.4 Discussion 

The aim of this study was to assess the accuracy of the Finis Swimsense and the 

Garmin Swim activity monitors and to assess the validity of using these devices in 

recreational settings.  It is well established that the pattern of hand movement during 

swimming shows considerable variances owing to various factors including 

anthropometrics, skill level and fatigue [20-22]. With recreational swimmers, there 

can be a very wide variation in skill level and fatigue, with consequent high levels of 

variation in swim performance in this group of swimmers. Conversely, competitive 

athletes display more consistent patterns of movement [23] and thus these athletes 

were used for testing in order to minimize variation in swimming performance. Thus 

the results obtained in this study would represent expected best case findings for 

these devices and it would be reasonable to expect that there would be a significant 

deterioration in the activity monitors’ performance when used by recreational 

swimmers.  

 

When assessing the performance of these activity monitors it is important to consider 

carefully what can be regarded as an acceptable performance level for different 

categories of users. Whilst some findings in the present study suggest that some 

parameters were statistically significantly different from the criterion measures, these 

differences, in a sporting context, may or may not be at a scale to be of concern to 

the intended users of these activity monitors [24]. A table of proposed system 

requirements for swimming activity monitors when used by either recreational or 

competitive swimmers is presented in Table 5.4, showing that these two groups will 

have very different requirements for the accuracy of feedback information provided 

to them on their swimming performance.  
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Table 5.4. The system requirements of recreational and competitive swimmers will differ and 
have an impact on the level of accuracy required of the swimming monitors. 

 System 
Parameter 

Recreational Swimmer Competitive Swimmer 

Lap time Accuracy required to within ±2 seconds 
to monitor trends over time. A variance 
of 2 seconds over a lap time of 30 
seconds equates to a 6.7% error 

Accuracy required to within ±0.3 seconds 
in order to be comparable with a 
stopwatch (current standard) 

Stroke count Accuracy within ±2 strokes sufficient to 
monitor trends over time 

Accuracy required to no more than ±1 
stroke per lap 

Swim distance Key determinant of training 
progression, accuracy required to within 
±5% of actual (i.e. no more than 2 
missed/additional laps included per 
1,000 m completed in a 25 m pool)  

Not applicable to user, training distances 
pre-prescribed and monitored by coach 

Swim speed Not applicable to user, lap times 
provide a sufficient metric 

Accuracy within ±0.01 m/s required to 
relate to required lap time accuracy and 
also to compare with other reported 
methods. More concerned with 
instantaneous speed or speed during 
different race segments 

Stroke rate Not applicable to user, stroke counts 
provide a sufficient metric 

Accuracy within ±5% adequate (i.e. ±2 
str/min). More concerned with 
instantaneous stroke rate or stroke rate 
during different race segments 

Stroke length Accuracy within ±0.2 m sufficient and 
related to accuracy of stroke count 
measure 

Accuracy close to 100% required (i.e. 
errors of no more than 0.1 m) and related 
to stroke rate measure. More concerned 
with stroke length during different race 
segments 

Stroke 
identification 

100% accuracy  required as errors will 
be very apparent 

100% accuracy required as errors will be 
very apparent 

 

For example, a competitive swimmer or coach may require a lap time measure to be 

precise to within three tenths of a second in a training environment. This level of 

performance would effectively bridge the gap between the performance capabilities 

of a stopwatch and those of a video-based analysis system. The Garmin device 

registered the lap time to within 0.3 seconds on 18% of laps recorded. The Finis also 
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showed a similar performance level (15%). The same could not be said for a 

recreational athlete, who would require a much less stringent level of lap time 

accuracy. Based on our experience working with both elite and recreational 

swimmers, lap time values of within one to two seconds of the actual time for a 

given lap would be appropriate for a recreational swimmer in order for them to 

gauge their performance level and to monitor gross improvements in performance 

over an extended period of time. In the present study, both devices registered the lap 

time within two seconds of the actual lap time on 67% of occasions.  

 

Moreover, when measuring stroke count, recreational swimmers are likely to be 

more interested in monitoring the trends over a period of time, as opposed to 

monitoring the exact stroke count for each lap, in order to assess if training goals are 

being achieved and if swimming efficiency has improved. It was found that both 

devices registered the stroke count to within one of the actual stroke count on over 

62% of laps recorded. In this context, both the Finis Swimsense and the Garmin 

Swim activity monitors would appear to provide recreational swimmers and 

triathletes a way of keeping a record of their training and progression. Without these 

types of devices, this would not be possible. Conversely, a competitive swimmer 

would have developed a consistent stroke count pattern through extensive training. 

These swimmers would have greater awareness of their stroke count for given laps 

and may deliberately make minor adjustments to their stroke count during training 

sets, in order to practice specific racing strategies for their different events, for 

example. As such, the stroke count accuracy would need to be very high for 

competitive swimmers.  

 

The ability of such activity monitors to correctly identify the swimming stroke used 

in a given lap is a fundamental performance characteristic for monitoring both 

recreational and competitive activities. Notwithstanding the fact that the frontcrawl 

stroke may reasonably be assumed to be the most prevalent stroke in the majority of 

training settings, all four strokes may be used interchangeably during training, even 

for elite swimmers with specific stroke specializations. The results of the present 

study demonstrate that the Finis Swimsense performed slightly better than the 
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Garmin Swim, but both sensors reported very high overall sensitivity and specificity 

for stroke identification (Table 1), which is comparable with previous research [10, 

25, 26].  

 

Closer inspection of the results in the present study suggests that where errors did 

occur these errors appear to be attributable to individual swimmers. For example, the 

Finis monitor registered an entire backstroke set for one swimmer as breaststroke, 

whilst the Garmin monitor incorrectly recorded breaststroke as backstroke on 14 of 

the 16 laps for another swimmer. However, as backstroke is performed in a supine 

position, in contrast to other strokes, it should be possible to correctly identify when 

this is being performed. It is conceivable that the misidentification issue could be 

linked to clockwise and counter-clockwise movements about the shoulder joint. 

Backstroke arm pull is opposite in direction to frontcrawl and butterfly, whilst 

breaststroke swimming has a more backward and forward movement of the wrist. 

Another possible explanation is that activity during rest periods, such as slight arm 

movements when standing at the pool wall, may lead to errors in the algorithm for 

stroke type identification.  

 

This large level of misidentification could be due to individual variances in stroke 

technique. It is reasonable to expect that this level of misidentification would 

increase when the devices are used by recreational swimmers rather than elite 

swimmers. 

 

Both activity monitors measured swim distance with excellent accuracy across all 

strokes. The swim distance is derived in both devices by multiplying the number of 

laps completed by the length of the pool. Therefore, swim distance is a function of 

the accuracy of the lap counter algorithm, which relies on accurate detection of wall 

contact events. Three types of wall contact events can be detected; those at the start 

and end of a swimming interval and those after turns. Data from a wrist worn 

accelerometer can be used to determine these events as a large impact acceleration 

peak will signify that a wall strike has occurred [27]. From a practical point of view, 

accurately recording the distance completed during a training activity is a 
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fundamental function for recreational swimmers. In fact, this function may be used 

along with the total time spent swimming by some users as the primary determinant 

of whether their training goals have been achieved.  

 

The ability to record lap times during swimming allows for the intensity of effort to 

be monitored closely during training and to assess progression. Statistically 

significant differences in lap time measurements were found for all of the four 

swimming strokes for both the Finis and the Garmin monitors, with the devices 

overestimating the time to complete laps (Table 5.2). Ultimately, statistically 

significant differences in lap times may not be very relevant to a recreational 

swimmer, who may be satisfied with a close approximation. A two second error over 

a typical lap time of 25 seconds would represent an error of 8%. Both activity 

monitors were found to perform within these limits for frontcrawl swimming. 

However, this was not found to be the case for the other three strokes. The average 

error in frontcrawl lap time was 0.58s and 1.09s for the Finis and Garmin monitors, 

respectively, over an average lap time of 21.24s (i.e. 7.7 % and 8.4 % error). The 

maximum lap time error was found for the butterfly stroke (20.6 %). Additionally a 

large range of errors was found for all strokes.  

 

By examining laps at the start, middle and end of intervals, it was found that 

statistically significant errors, found for the Finis and Garmin monitors could be 

attributed to the an overestimation in the time taken to complete the first and last laps 

in a given interval, whilst the middle laps were found to accurately reflect the actual 

lap time (Fig 2). This finding is consistent with previous research [10].  

 

There are several factors which may help to explain the errors found in the lap times, 

which averaged over three seconds in some cases (Table 5.2). A strong push-off and 

finish are required to detect these events in order to maximise the accelerometer 

amplitude at impact [27]. Movement that occurs prior to wall push off may have 

caused the sensor to begin recording a new lap before it had actually begun. For 

example, a swimmer may position themselves underwater with their feet against the 

wall before initiating hip and knee extension, resulting in an overestimated lap time. 
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A similar scenario may also occur during rest intervals. Another legitimate concern 

is that these issues and resultant errors would be further exacerbated when the 

activity monitors are used by recreational swimmers. Finis’ documentation 

recommends that the swimmer should remain static during rest intervals and that rest 

should be at least three to five seconds in duration to avoid the algorithm from 

registering a turn [28]. This raises an issue of practicality if the swimmer drinks from 

a bottle or adjusts their goggles during this time, for example. The Garmin monitor 

requires the user to manually pause and restart the timer to record intervals. This 

may result in an inevitable overestimation of first and last laps. The Finis monitor 

features automatic interval detection, but this was not found to lead to improved 

accuracy, but clearly is more convenient for the swimmer.  

 

It should be noted that if the test protocol had included longer intervals then a greater 

proportion of the laps performed would have been mid swimming laps, which were 

found to be accurately registered by both activity monitors. This would have reduced 

the impact of the starting and ending laps on the overall statistical results. For 

example, in a 100m interval swim, half of the laps performed are mid swim laps. 

However, in a 400m interval, these laps would comprise 87.5% of the total laps 

performed. For recreational swimmers who chose to swim in a continuous manner, 

without taking frequent rest intervals, this would greatly improve the performance of 

the activity monitors during their swim. Swimming strokes can be identified from an 

accelerometer output as regularly occurring peaks in the signal signature, with local 

maxima and minima tracked and counted [10, 13]. The activity monitors tested in the 

present study were found to perform quite similarly for the stroke count measure 

(Figure 5.2). Both monitors showed significant differences from the criterion in 

stroke count on all but two occasions. The Finis was found to be significantly related 

to the criterion measure during backstroke only, whilst the Garmin monitor was 

significantly related for frontcrawl only. Outliers increased the spread of stroke count 

errors considerably for both activity monitors. Additionally, both activity monitors 

tended towards overestimation of the stroke count in all strokes except butterfly. The 

maximum reported error was found to be -7 strokes for the Finis and +7 strokes for 

the Garmin. That said, both monitors reported the stroke count to within one of the 

actual stroke count on over 62% of instances. 
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Previous studies have determined stroke count from either the back, wrist  or head 

[9]. The tendency towards over estimation of the stroke count may be explained by 

an analysis of the action of the arm on which the sensor is placed. It is standard 

practice to only record full stroke cycles when determining stroke count. In 

frontcrawl and backstroke swimming, this means that both the left and right arms 

must complete a stroke for a cycle to be counted. However, the algorithms used by 

these devices record the movements of only one arm and multiply this by two to 

arrive at the stroke count [29]. Therefore, the activity monitors may report an 

incorrect stroke count depending on which arm is used for the first and last strokes of 

a given lap.  

 

This would not explain the results for the short-axis strokes however. One possibility 

for the overestimation in breaststroke stroke count is that the arm action during the 

push-off and glide phase were erroneously counted as stroke cycles. Variations may 

also be due to action of the arms before and after a turn. It has previously been 

suggested that the first and final strokes of a given length can be difficult to record 

and are more prone to error than strokes performed mid-pool [27]. In butterfly, a 

swimmer will aim to finish the final stroke with their arms at full extension and as 

close to the wall as possible. This action may interfere with the stroke count 

algorithm as the signal may be distorted with the accelerations produced by the 

turning action of the swimmer. Again like other parameters, it would be expected 

that these errors would be greater when the devices are used by recreational 

swimmers. 

 

Some of the issues with accuracy may arise from the wrist worn position of these 

devices. Consistent coordination between left and right arms or upper and lower limb 

actions cannot be guaranteed. Several studies have objectively demonstrated that 

variations in inter-arm coordination exist in swimming owing to various factors 

including swimming speed [22, 30]; arm dominance [31]; physical disability [32]; 

energy cost [33]; exercise intensity [34] and skill level [30]. Furthermore, a similar 

variance exists between the coordination and synchronisation of the arms and legs 
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for all swimming strokes [23, 35]. All of these factors have implications for the 

accuracy of feature detection algorithms when using wrist mounted devices. 

In the present study the average speed over a given length of the pool was 

determined by both the Garmin and Finis monitors by dividing the pool length (25m) 

by the time taken to complete each lap. Consequently it is unlikely that this 

parameter would be of interest to a recreational user as the lap time data would 

provide a sufficient metric. Ultimately, as a consequence of both activity monitors’ 

inaccuracies in recording lap times; the results for speed are also significantly 

different (Table 5.2). This approach has been evaluated previously and found to 

overestimate speed [27]. An explanation for this lies in the effects of increased speed 

following the wall-push off when measured over the full pool length. It is more 

common in coaching practice for swimming speed to be measured over shorter 

distances to remove the influence of increased speed during wall push-off. This 

approach has been found to produce measures of average speed within 3.5% – 4.0% 

of the criterion values using inertial sensor-based systems [12, 36]. In the present 

study the mean absolute percentage error was found to be higher than this, ranging 

from 7.3 % to 16.4 %. This can be explained by the issues with the method of 

determining speed and also by the influence of poorly timed starting and ending laps 

in a given interval. Again like other parameters, we would expect that these errors 

would be greater when the devices are used by recreational swimmers. 

 

Stroke rate is the number of strokes a swimmer takes per minute. A typical stroke 

rate during frontcrawl swimming would be between 35 – 50 strokes per minute. In 

comparison to the criterion measure, it was found that the Finis Swimsense 

significantly underestimated stroke rates for all four strokes (Table 5.3). The average 

differences ranged from -2.5 strokes per minute (breaststroke) to -9.9 strokes per 

minute (butterfly), resulting in a maximum expected error of 9.0 % and 20.8 % error, 

respectively.  

 

Although specific details of the Finis algorithm are unclear, one possibility is that 

stroke rate is derived from the stroke count measurements, using the time taken to 

complete all strokes for a given lap. If this is the case, stroke rate can fluctuate 
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during a lap so is highly dependent on when and how it is measured. In the present 

study, stroke rates were calculated from the video data using the standard method of 

measuring the time taken to complete three mid-pool stroke cycles [37]. This 

difference may go some way towards explaining the underestimated stroke rates 

registered by the Finis Swimsense. Secondly, the accuracy of stroke rate 

determination depends on the accuracy of the stroke count algorithm, which was 

found to be error prone. Additionally, small discrepancies in stroke count can lead to 

large changes in derived stroke rate. For example, if a lap of frontcrawl is completed 

in 21 seconds and the swimmer completed nine strokes in this lap then the stroke rate 

would be calculated as 25.7 strokes per minute. However, if the stroke count was 

overestimated by just one stroke to ten, then the stroke rate would be increased to 

28.6 strokes per minute.  

 

Garmin’s documentation suggests that stroke rate is a built-in function of the device 

but the data provided were the average strokes per minute for the entire swimming 

session [38]. This information may be of benefit if swimming the same stroke 

throughout the entire session but not if changing strokes frequently and so is of little 

value in competitive settings.  

 

The Finis activity monitor determines stroke length by dividing the length of the 

pool by the stroke count completed by the swimmer in one lap. However this method 

will overestimate the actual stroke length for the swimmer due to the influence of the 

wall push off and glide and has been recognised as an unsuitable methodology for 

some time [39, 40]. To illustrate, if ten strokes were completed in a given 25m lap, 

then the stroke length would be calculated as 2.5m using the Finis algorithm. 

However, it is typical that the swimmer would have pushed off from the wall and 

glided for several metres before initiating arm movements. As a result those ten 

strokes would actually be completed over a shorter distance. If, for example, the 

swimmer glided for five metres then the actual stroke length would be two metres. 

This has shown to be the case as the Finis result revealed a statistical difference with 

actual stroke length.  
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A more typical method of calculating stroke length (SL) is to using the formula SL = 

V/(SR/60); thus relating it to the speed (V) and stroke rate (SR) measures [27, 41]. 

However, even had a direct comparison been made to calculate the stroke length 

from video footage using the Finis method, poor accuracy would still have occurred 

as the stroke count results for Finis were in themselves significantly different. 

 

5.5 Conclusion 

This is the first study to assess the accuracy of two commercially available 

swimming activity monitors; the Finis Swimsense and Garmin Swim. Both monitors 

were found to operate with a relatively similar performance level. However, as 

previously noted, with recreational swimmers there can be a very wide variation in 

skill level and fatigue, with consequent high levels of variation in swim performance 

in this group of swimmers. Conversely, competitive athletes display more consistent 

patterns of movement [23] and thus the results obtained in this study would represent 

expected best case findings for these devices and it would be reasonable to expect 

that there would be a significant deterioration in the activity monitors’ performance 

when used by recreational swimmers.  

 

Stroke identification and swimming distance were determined with high accuracy. 

This feedback alone is likely to be suitable for the majority of recreational swimmers 

seeking health benefits from swimming. For a recreational user, high precision in lap 

time measurements is not necessary. It is also important to note that issues with lap 

time measures are specific to laps performed at the beginning and end of a 

swimming interval and that lap times performed in the middle of an interval (i.e. 

during a lap that involves two turns) were measured accurately by both devices. 

Moreover, issues related to the accuracy of the lap time function are skewed due to 

the short intervals performed in this study. Improved overall accuracy in lap time 

measurements can be expected for longer distance swimming intervals.  
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These activity monitors are designed to be used by swimmers who do not have any 

means of recording this information or for monitoring trends in performance over 

time. Consequently, whilst this study has revealed statistical issues related to their 

performance, both devices offer the recreational user a new way of comprehensively 

monitoring their physical activity whilst swimming. Future research could aim to 

evaluate the performance of these devices with this specific cohort of swimmers, to 

assess how increased variability in stroke mechanics would affect the results. 

Ongoing developments by the manufacturers of both of these monitors are likely to 

address these issues, in what is a rapidly expanding area of both research and 

commercial exploration. Rigorous testing is also necessary to ensure that the devices 

offer a valid and reliable means of monitoring swimming performance. Such 

improvements would also increase their applicability for competitive swimming 

environments. 
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There are a range of options available to sports scientists and coaches when 

choosing equipment for analysing athletic performance. However, dissatisfaction 

with a number of the most prominent systems currently available for the quantitative 

assessment of sports performance is limiting the extent to which quantitative analysis 

is taking place in applied settings, as highlighted in Chapters 2 and 3 of this thesis. 

Additionally, it was found in Chapter 5 that some commercially available swimming 

sensor devices cannot be regarded as being suitable for use in elite settings due to 

design choices made in the creation of those devices. Reflecting on these issues, it is 

proposed that a User Centred Design (UCD) methodology could be utilised for the 

development of a novel system for performance analysis in elite swimming.  In doing 

so, it is hoped that many of the identified issues may be addressed, thus aiding a 

more widespread adoption of the technology with the intended user group. A Use 

Case was developed that details the concept for a new performance analysis system 

and describes how the intended end users (sports scientists, coaches and athletes) 

will interact with the system during the various stages of its operation. The findings 

of this study are presented here. 

 

6.1 Introduction 

Competitive swimming is considered to be highly technically demanding. It requires 

the coordinated and synchronized actions of all body parts in order to produce the 

movements necessary to perform each of the four competitive swimming strokes. 

The efficient performance of these strokes that is required to achieve elite status 

involves considerable technical expertise on the part of swimmers, coaches and their 

support teams. Coaches are highly reliant on the assessment of key indices to 

monitor athletic progression, affect change and to critique performance. Swimming 

can be broken down into specific segments to facilitate such analysis (Figure 6.1). 

These segments include starts, turns and finishes in addition to free swimming 

components. During each of these race segments, different categories of analyses are 

appropriate and can be undertaken through the measurement of temporal, kinematic 

and kinetic variables.  
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Figure 6.1. Swimming can be broken down into different segments to facilitate technical 
analysis and different categories of performance related variables can be selected for 
measurement.  

 

Turns are a very important area of swimming performance, accounting for between 

20-40% of the total racing time, depending on event and race distances [1, 2]. 

Moreover, coaches have confirmed that turns are an important aspect of their 

training plans [3] and much previous research has concentrated on examining this 

phase of swimming [1, 2, 4, 5]. Studies have shown that improving a swimmer’s 

ability to effectively perform turns can reduce swim time by up to 0.2 s per lap [6] 

and that turning performance can be the difference between winning and losing in 

Olympic finals [7].  

 

There are many variations of the turn in swimming, based on different swimming 

strokes and individual preferences. Flip turns are performed during frontcrawl and 

backstroke events, whilst open turns are used in breaststroke and butterfly [6]. 

Additionally, individual medley events involve different variations of these turns, in 

order to transition between strokes (from backstroke to breaststroke, for example). 

Therefore it is important for coaches to be able to fully understand what their 

swimmers are doing and how best to maximise improvements in their technique. As 

a consequence, a considerable coaching effort is required in order to improve the 

competency of their swimmers when performing these complex movements. This 

can be difficult to achieve with large squad numbers and limited resources.  

 

Turns may be defined differently depending on coaches’ requirements and can 

involve varying distances on approach to and leaving the wall after each lap. For 

example, competition analysis performed at major international competitions has 

defined this segment as being from 5m before the wall to 5m after the wall [8]. 
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Irrespective of the distances used, turns themselves are comprised of separate phases 

for detailed analysis (Figure 6.2).  

 

 

Figure 6.2. Swimming turns can be broken down into phases to facilitate a detailed quantitative 
analysis. 

 

Traditionally, parameters of interest are measured using manual methods such as a 

stopwatch or by using video analysis [9]. However, manual methods are prone to 

inconsistencies and inaccuracies whilst video-based methods often require expensive 

equipment and involve significant time delay in providing feedback and are 

disruptive to regular training schedules. Furthermore, neither approach is well suited 

for monitoring large groups of swimmers. This is a problem, as these barriers have 

been found to limit the quantitative analyses being performed by elite swimming 

coaches, who consequently rely heavily on qualitative approaches [3]. This has led to 

efforts to provide alternative quantitative solutions for coaches and sports scientists.  

 

Advances in the development of microelectromechanical systems (MEMS) facilitate 

a new approach to swimming coaching and technique analysis [10]. Kinematic swim 

sensor technology has emerged as a new method for facilitating the analysis of 

stroke mechanics; enabling an efficient means of providing quantitative information 

to inform coaching practices. This has led some to suggest that this technology may 

offer significant advantages over traditional video-based approaches [11] and several 

commercially available systems have recently gained prominence.  

 

Feature detection algorithms for many important parameters have been described in 

the extant literature [12-14]. These algorithms mainly relate to free swimming 

components and include temporal and kinematic parameters such as lap times, stroke 

rates and swim speed. However, swimming turns have yet to receive the same level 

of attention in this research domain. Some early work has suggested the possibility 

of using sensor based technologies for the study of swimming turns [15, 16], but the 
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accuracy and application of these approaches remains unexplored. This gap in the 

research is hindering coaches’ ability to perform quantitative data analysis on 

swimming turns using inertial-sensor based systems.  

 

Furthermore, it has been found that sensor based technologies are not in common use 

in elite coaching environments and that there is poor familiarity with these systems 

amongst the coaching community [3]. It could be argued that this is because 

currently available commercial systems do not adequately meet the needs of elite 

coaches who wish to perform quantitative data analysis [17]. Moreover, there 

remains a lack of research evidence that sensor based technologies can be used to 

change existing coaching practices, as the majority of research to date has focused on 

validation of new designs and extraction of new parameters, as opposed to field 

based implementation of the technology that takes into account the requirements of 

the end users of the system or product during the design phase and the context within 

which the technology is intended to be used. This has been acknowledged by others 

also as an essential area for future development [18].  

 

An important consideration in the design of devices is the usability of those devices 

[19]. Usability is defined by the ISO (International Organization for Standardization, 

Geneva) as “the extent to which a user can use a product to achieve specific goals 

with effectiveness, efficiency and satisfaction in a specified context” (ISO 9241-11) 

[20]. The present study follows a User Centred Design (UCD) approach to the 

development of a sensor based system to be used for analysing swimming turns. 

UCD is defined as an “approach to systems design and development that aims to 

make interactive systems more usable by focusing on the use of the system and 

applying human factors/ergonomics and usability knowledge and techniques” (ISO 

9241-210) [21]. Once a system or device concept has been proposed, various 

methodologies can be used to define user requirements and establish context of use. 

From these requirements, design solutions are generated and then tested to assess 

whether it these meet these user requirements (Figure 6.3).  These steps can be 

repeated using an iterative process until the desired outcome is achieved. 
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Figure 6.3. Standard User Centred Design (UCD) methodology [22].  

 

A Use Case is a dynamic document which can be viewed by various stakeholders 

and is an effective way of gathering and defining user requirements and establishing 

the context of use. By providing the reader with a detailed description of the use and 

function of a device, the Use Case facilitates an exploration of individual views and 

gauges reaction to aspects of the design. This should ultimately lead to a final system 

that facilitates a user to achieve his/her goals in an efficient and effective manner and 

with satisfaction.  

 

Use Cases have been used frequently, in particular during the development of 

medical devices for connected healthcare [23-26], or for assessing various computer 

applications  [27, 28]. However, its use is less frequently reported for the design of 

sporting technology, with only limited examples of usability testing available in the 

extant literature [29-31] and none describing the application of the Use Case for this 

purpose. Salmon, et al. [32] discussed the importance of incorporating usability 

testing into sports technology device design, but unfortunately no relevant examples 

have been published. van Heek, et al. [33] reported that the context of use is a key 

component of UCD. Therefore, in a swimming context, the aquatic environment 
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places significant challenges on users of technology and the process of analysing 

swimming performance when using these technologies. Several potential problems 

may result if system usability is not addressed, with the most relevant issue being 

that the system will not gain acceptance from end users who will subsequently be 

unlikely to incorporate the system into their coaching practices to any great extent.  

 

The aim of this study is to describe the development of a Use Case document. This 

Use Case, which details the concept for a new system of analysing elite swimming 

performance, is specifically focused on quantifying swimmers’ turns in a pool. The 

objectives of this study are to answer the following questions: 

1. Is a system that is designed for the quantitative analysis of swimming turns of 

interest to coaches? 

2. Is there agreement from potential end users that the head is an acceptable 

location for this system? 

3. Can a list of quantitative feedback parameters be defined that are appropriate 

for the analysis of swimming turns? 

The ability of the Use Case to accurately define user requirements and context of use 

will be examined and the implications of these findings will be considered, with an 

emphasis on future product development.  

 

6.2 Methods 

6.2.1 Participants 

The primary potential end user of the swimming sensor device is the swim coach. 

The system is designed to support them in their work and thus coaches were the 

main participants in this study (N = 36, 22.6 ±12.7 years coaching experience). 

However, it is also important to get views of other potential groups who may interact 

with the system. Therefore, the participants used in this study also included a small 

number of sports scientists (N = 3, 11.7 ±11.0 years involvement in swimming) and 

competitive swimmers (N = 2, 13.0 ±1.4 years swimming experience). Sports 

scientists were included as it is important to get expert opinion from those regularly 
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working with coaches and swimmers and skilled with using different technologies 

for collecting and interpreting data. Sports scientists may also be regarded as having 

a high level of appreciation for the value of quantitative data and the key 

performance related parameters that need to be improved in order to maximise 

swimming performance.  

 

Competitive swimmers can provide insight into how they perceive the importance of 

data analysis for improving their own performance. Also, as the wearers of the 

device, it is vital to gauge opinion regarding the proposed location of the device and 

other related comfort issues. Table 6.1 provides further details regarding the 

participants in this study. 
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Table 6.1. Descriptive information for the participants of the study (N = 41), including gender breakdown, role, years of swimming experience, coaching 
qualifications (Based on ASCA system, if applicable), highest world ranking of athletes coached (if applicable) and location. 

Gender N= Role N= 
Swimming 
Experience 

N= 
Coaching 

Qualifications 
N= 

Highest Swimmer 
World Ranking 

N= Location N= 

      

Male 34 Coach 36 0-4 years 2 Level 2 7 Top-25 9 USA 24 

Female 7 Sport scientist 3 5-9 years 3 Level 3 13 Top-50 3 IRL 10 

  Swimmer 2 10-14 years 10 Level 4 9 Top-100 3 UK 4 

  
  15-19 years 7 Level 5 7 Top-250 5 CAN 2 

  
  20+ years 19 N/A 5 > Top-250 16 ITA 1 

        N/A 5   
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6.2.2 Use Case 

A Use Case was constructed in several phases, with input from coaching, 

engineering and scientific expertise. Multiple scenarios were explored and evaluated 

before arriving at an agreed version for use in data collection. The Use Case was 

created as an interactive, scenario driven, descriptive document. This facilitated a 

common platform for all project stakeholders to communicate their vision for the 

swimming sensor device and the interactions they would have with it during various 

stages of the use of the devices including (i) setup and configuration; (ii) pool-side 

preparation; (iii) data collection during swimming and (iv) data analysis. The concise 

and structured nature of the Use Case assessment allowed all participants to assess 

potential usability issues on a task-by-task basis. From this analysis a set of user 

requirements could be established to inform future development work. The full Use 

Case document is included in Appendix A of this PhD thesis. 

 

6.2.3 Components of the system 

It was proposed as a first iteration that the components of the swimming sensor 

device system would include the sensor unit, a tablet computer (such as an iPad) and 

an App to visualise and interact with the data (Figure 6.4). The sensor unit is 

designed to be waterproof, low profile and light weight, to minimize drag effects and 

interference with the swimmer. Conceptually, it weighs 30 g and has dimensions of 

40 mm x 20 mm x 15 mm. The unit is designed to be positioned at the back of the 

head. It is held in position using the swimmer’s own goggles and cap. Inside the unit 

are various electronic components, including an accelerometer, gyroscope, SD 

memory card, battery and a wireless Bluetooth connection. This sensor device is 

capable of measuring 3D acceleration and angular velocity, thus allowing for a 

swimmer’s movement in the water to be recorded. The sensor unit has some external 

features including (i) a power button for turning the device on and off and (ii) an 

LED status light.  
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    Sensor Unit         Tablet Computer                  Analysis App 

Figure 6.4. Description of the swimming sensor device system components. 

 

A tablet computer is used to communicate with the sensor unit via Bluetooth. Data 

that are collected by the sensor during a swimming session can be uploaded to a 

tablet for processing and analysis. The sensor unit uses a custom software 

application that is used to visualise the data that are recorded. Feedback is designed 

to suit the coach’s needs and includes both graphical and numerical data 

presentation.  

 

6.2.4 Procedures 

The Use Case involved both formative and summative phases. The formative phase 

comprised of two parts. Firstly, a pilot study was completed to finalise the first draft 

of the Use Case (N = 5). This was done to ensure clarity of instructions and to get 

some preliminary feedback on the overall satisfaction with the system. Modifications 

were made in an attempt to improve the overall satisfaction and level of agreement 

with the proposed functionality of the system.  Subsequently, a second round of 

interviews was completed (N = 7) and some additional modifications to the Use Case 

were made. The modifications took many forms, including amendments to 

definitions of terms, changes to the actors involved and alterations to the system 

design. A detailed discussion of these changes is provided in the discussion section 

of this chapter. This led to the final version of the Use Case which was used for 

subsequent interviews as part of the summative phase of the process (N = 29).  
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Interviews with participants were conducted via video call using Skype (Skype 

Communications SARL, Luxembourg). Audio recordings of interviews were 

performed using Callnote (Kanda Software, Newton, MA) so that the interviews 

could be transcribed in order to clarify what was said and to collate opinions on a 

thematic basis. Figure 6.5, Figure 6.6 and Figure 6.7 below provide a sample of the 

storyboard images that were included at various stages of the Use Case.  

 

 

Figure 6.5. Sample storyboard image demonstrating the use of the sensor device and the 
interaction of the actors with the device. In this example, the coach is helping the swimmer to 
position the sensor unit correctly before use. 
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Figure 6.6. Sample storyboard image demonstrating the communication protocol between the 
sensor and the App on the tablet computer, which is achieved using a wireless connection.  

 

 

Figure 6.7. Sample storyboard image demonstrating the use of a tablet computer to visualise the 
data that have been collected by the sensor device.  

 

After each scenario has been described, questions are put to the participant regarding 

their level of agreement with those aspects of the Use Case, using Likert type items. 
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A sample is provided in Table 6.2. Participants provided their level of agreement 

with the various statements and these responses were used to assess areas of the Use 

Case than need to be improved or altered. These questions related to various aspects 

of the Use Case, including the perceived importance of turns to swimming 

performance; aspects of system design, setup and use as well as an assessment of the 

relevance of the feedback that it was proposed to be provided. At each stage, an 

opportunity was provided for participants to talk freely, allowing them to expand on 

ideas and allowing the investigators to seek clarification on any aspect of the 

responses.  

 

 

Table 6.2. Sample of the statements used to assess level of agreement after each stage of the Use 
Case.  

Having read Section 7, please indicate your level of agreement with the following statement(s) by 

placing an X in the box which reflects your response to each statement. 

 Strongly 

disagree 

Disagree Neutral Agree Strongly 

agree 

I understand the procedures 

involved when collecting data 

during swimming using the sensor 

units  

     

Using the devices would not hinder 

my ability to carry out my normal 

training session with my entire 

swimming squad 

     

I would be comfortable carrying out 

these procedures myself and 

without any assistance  

     

Please wait for further instructions before reading any further. 

 

6.2.5 Data analysis 

Data analysis was performed using Statistical Package for the Social Sciences for 

Windows (Version 21, SPSS Inc., Chicago, IL). A p-value of 0.05 was set for all 

statistical analyses. Data from the Likert type items were scored from 0 (strongly 

disagree) to 4 (strongly agree) for each question and collated to produce the 
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descriptive statistics for each question. The System Usability Scale (SUS) was also 

included at the end of the Use Case [34]. The SUS includes ten statements, to which 

respondents provide a level of agreement on a five-point Likert scale. Responses are 

scored on a range from zero to one hundred, with a higher score indicating a higher 

agreement [34]. This is an established process for measuring subjective assessments 

of usability [35] and provides a benchmark from which to compare results in the 

present study with other devices. Data for Likert items are presented using diverging 

stacked bar charts, as recommended by Robbins and Heiberger [36] as the most 

appropriate way of presenting the results of rating scales such as Likert scales. Using 

this method, positive and negative responses can readily be distinguished and the 

responses for different statements easily compared using the layout and colour 

scheme.  

 

6.3 Results 

The average score that was achieved for all statements included in the final revision 

of the Use Case was 3.4 ±0.2 (N = 29). This is on a five point Likert scale from 0 

(strongly disagree) to 4 (strongly agree), indicating a very high overall level of 

agreement from respondents to the concepts outlined in the Use Case. 92.9% of total 

responses across all areas were ranked as either agree or strongly agree and on only 

12 occasions (1.5%) did a respondent disagree or strongly disagree with a statement. 

The overall median score was 3.5 and the mode score was 3.6. The minimum 

average score received for an individual statement was 2.8, which related to the 

statement “I currently have a method for measuring the quality of my swimmers’ 

turns”. The maximum average score of 3.9 was achieved for the statement “Turns 

are a very important aspect of overall swimming performance”.  

 

A summary of the changing level of agreement amongst study participants to each 

revision of the Use Case is provided in Figure 6.8. It can be seen that the overall 

level of agreement was quite high at all stages, but that the spread of scores reduced 
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for the final version of the Use Case. Additionally, higher maximum and minimum 

scores were also achieved due to revisions that were made.  

 

Figure 6.8. Box plot summarising the changing level of agreement amongst study participants to 
each revision of the Use Case. The formative stage comprised of revisions 1 and 2 whilst the 
summative phase comprised of revision 3.  

 

6.3.1 Importance of turns 

It is a fundamental consideration for the design of this system that the analysis of 

turns is considered to be a key area of interest to coaches. This is necessary in order 

to back up the findings in the literature and to provide justification in the system 

concept. Figure 6.9 provides a summary of the level of agreement of respondents to 

statements related to their perception of the importance of turns; the value of 

analysing turns and the methodologies used for such analyses. The results indicated a 

very strong level of agreement that the analysis of turns is important to coaches and 

that a system that can be used for this purpose would be of interest to them.  

 

“I always tell my kids that 60% of a race is swimming, the other 40% is 

starts, turns and finishes – with turns being the main one.” 

[Male, 35 years’ experience; swimmer ranked in top-25 in world]  
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Figure 6.9. Respondents’ level of agreement related to the importance of turns in swimming. All numerical values reported are percentages. 
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Some disagreement was found with statements related to current coaching practices, 

which indicates a level of dissatisfaction with currently available systems and 

methods for quantitative analysis of swimming performance. This was confirmed 

through follow up questioning, with coaches citing the time required to complete 

quantitative analysis as the major limiting factor. An additional reason, common to 

some coaches of younger age-group swimmers, for not conducting this type of 

analysis was that their squad of athletes was not at a sufficient level to warrant that 

level of analytical detail into their performance.  

 

6.3.2 Description of system utilization 

The system was described to respondents at various points throughout the Use Case. 

Figure 6.10 provides the level of agreement with various statements related to the 

proposed components of the system. The results appear to indicate that the system 

design as proposed would meet the coach’s requirements in terms of the physical 

components involved for data collection, visualisation and analysis, with only 

limited neutral or negative responses received. Three respondents indicated neutral 

agreement with the proposed head-mounted positioning of the sensor device. 

Additional commentary from respondents regarding the head location elicited two 

categories of response. Firstly, many respondents remarked that a head position is 

suitable from the point of view of comfort and wearability issues, such as the 

convenience for swimmers and the minimal interference with normal swimming that 

would be expected with this sensor location. Other respondents focused on the 

technical aspects associated with a head-mounted device, such as how the flip turn is 

initiated from the head and how the movement of the head during a turn would be 

representative of the movement of the whole body during rotation. Respondents’ 

level of agreement with how the system would be used can be further explored by 

analysing the questions related to (i) their understanding of the procedures involved 

in using the device; (ii) how comfortable they would be in carrying out these 

procedures themselves and (iii) their perception regarding how much of a hindrance 

to normal training use of the system would represent. These results are summarised 

in Figure 6.11.  
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Figure 6.10. Respondents’ level of agreement related to the description of the components of the system. All numerical values reported are percentages. 
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Figure 6.11. Respondents’ level of agreement related to the system utilization and their perception of how they would feel when using the system in their own 
training environments. All numerical values reported are percentages. 
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It can be seen in Figure 6.11 that there is a high level of agreement regarding the 

respondents’ understanding of the procedures required to use the device as they were 

described in the Use Case (98%) and their confidence in carrying out these 

procedures without assistance (93%). 81% agreement was reached that the system 

would not hinder the ability of a coach to carry out their coaching role. This was 

further explored and the reasons for this are that any form of analysis is deemed to be 

inherently distracting during a normal training session. Additionally, it was felt by 

some coaches that if large swimmer numbers were involved there may be time lost in 

setting up the devices for use.  

 

“It’s going to take time away from your job; you can’t get away from that 

fact. But if it is important to you…then I will prioritise what I do.” 

[Male, 40+ years’ experience; swimmer ranked in top-25 in world] 

 

6.3.3 Quantitative feedback 

Figure 6.12 provides the results of coaches’ feedback to statements which explored 

the respondents’ perceptions of the appropriateness of the quantitative performance 

related parameters included in the system concept which they can use to analyse 

turns performance. The results indicate a high level of confidence that the proposed 

system would provide the type of data that are of interest to coaches (96%). 82% of 

respondents felt that the proposed device does offer an advantage, largely because of 

its capacity to provide this quantitative data. Some negative opinion was received for 

the statement “I believe that the swimming sensor unit offers an advantage over 

other methods of analysis”, with four respondents neutral to this statement and one 

respondent strongly disagreeing. When further explored, a common perception from 

these respondents was that the quantitative data provided by the sensor unit must be 

taken in context and that a large emphasis should be put on the coaches’ own 

subjective opinion of what is considered optimal technique based on their experience 

and observations.  
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“[The] data needs [sic] to mean something to me. So I think that rather 

than just having the data it would be very important to understand how 

that data [sic] correlated with what I have observed.”  

[Male, 10 years’ experience; swimmer ranked outside top-250 in world] 

 

The overwhelming majority (26 of 29 respondents) were also in agreement that an 

accuracy of one tenth of a second (0.1 s) would be sufficient for their needs.  

 

“I am happy with the accuracy [of 0.1 s]. To me it is well within the 

parameters of what you are looking for.” 

[Male, 40+ years’ experience; swimmer ranked in top-25 in world] 

 

“I know that times are being measured to [0.01 s], but we’re not going to 

be able to make a visual or a coaching change beyond a tenth of a second 

(0.1 s) with a swimmer.” 

[Male, 20+ years’ experience; swimmer ranked outside top-250 in world] 
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Figure 6.12. Respondents’ level of agreement related to the parameters recorded by the device for providing quantitative feedback on a swimmers performance 
during turns. All numerical values reported are percentages. 
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6.3.4 Concerns raised  

Respondents were prompted to highlight any concerns that they had with the 

procedures to use and interact with the proposed system as described in the Use 

Case. The concerns were recorded as open-ended questions to allow the respondents 

to express themselves fully and expand on any aspects that had been discussed 

during each stage of the Use Case. The results of this process are presented in Table 

6.3. Concerns were collated, categorised and sub-categorised in order to determine 

common themes between respondents and assess the frequency of response for each 

category.  

 

It can be seen in Table 6.3 that common concerns exist, which can be grouped into 

five categories. The main concern relates to time, which previous research has shown 

is a major issues for coaches [3]. These time-based issues can be related to the time 

required to carry out the various processes to obtain data and provide feedback as 

well as a concern regarding the need for real-time feedback to be incorporated into 

the system. Other categories of concern include various issues related to the value of 

quantitative data as part of the coaching process; specifics around the context of use 

for the system; technical issues and financial concerns. 
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Table 6.3. All areas of concern as highlighted by the survey respondents. Responses were categorised into five thematic areas and further sub-categorised as 
necessary in order to evaluate the frequency of response for different aspects of the system. 

Category Sub-category Issue(s) raised 

Time 

Time involved to use the system 

 

“I would have a question about realistically how much time for setup and retrieval of the unit with or from the 
swimmer…we talked about how it becomes kind of an analysis session that is separate from training that you have 
to kind of take a break from the flow of what you are doing to get it setup.”  

“It might take a long time to do the analysis and to review the data. The configuration process might take a while 
too.”  

“Maybe the only thing I don’t know yet is how quickly I can give them the information back – it looks like it is 
pretty quick.”  

“I guess the only other thing I would say is the time involved, it sounds like it is quick, but I have been told that by 
other people too with certain things. Until I would see it, I would need to see it in action before I would feel 
comfortable with it, if it is definitely faster than some of the other things that I have tried.”  

“Let’s say I have ten [swimmers] and I am going to take all that data and then I am going to spend the rest of my 
day analysing it – am I going to be able, am I going to have the time to do that?”  

Real time capability 

 

“Related to [another concern raised regarding time] would be the fact that it’s not real time.”  

“If I could look at this information live…I am buying the product tomorrow.”  

“In my opinion the primary weakness of the product is the lack of real-time feed-back to the swimmer while 
wearing the device (e.g. vibration to indicate slowing velocity during Glide Time to help the swimmer learn the feel 
for the point where forward velocity starts to decrease indicating it is time to initiate underwater work (kicks or 
hand separation).  By providing real time feedback the swimmer could use the device daily and thereby increase 
return on investment.”   
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Quantitative 
data 

Over-reliance on quantitative 
analysis practices 

“[The] data needs [sic] to mean something to me. So I think that rather than just having the data it would be very 
important to understand how that data [sic] correlated with what I have observed.”  

“I would have a concern about using the system in isolation, putting too much emphasis on the data if you know 
what I mean. I really like that it gives such detailed quantitative information, but that information would need to be 
put in context, like if it was integrated with some footage for example.”  

“I do like technology, but I don’t want to just coach numbers, I do want to rely a little on the qualitative side of 
things as opposed to just quantitative – I mean I would personally pair it with video from a race or from that 
training session.  

“It just so happens that I am working on using video to focus on turns – particularly flip turns.  This will help 
analysing the techniques used.”  

Context of use 

Swimmer skill level 

 

 

“The value of the system really depends on the swimmer’s level. I don’t see this being a device that would have 
relevance for a younger, developing swimmer. I see it more as a tool for more elite athletes”  

“It’s just trying to figure out who is going to use it.”  

“I think to review like we have mentioned, if you are going to use this device to measure turns typically one day out 
of two weeks, [swimmers] are automatically going to try to do better turns.”  

Incorporating the system into 
current coaching practices 

 

“My only concern is - is it like a gadget that someone is going to get…and they don’t use it properly so they…use it 
for the first six sessions and then they are not really using the data.”  

The [concern] would be to actually measure it during a race or race pace major competition which you can’t really 
on a major scale.”  

Initial training required to 
understand how to use system 

“I would need to use the system myself early on, to be sure that I am comfortable using the system, before I would 
let my swimmers use it.”  
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“I don’t know the method used to collect all the data.”  

Data protection 
“There wasn’t really anything that concerned me at all – it was just, the information staying in safe hands and 
things like that – that would be all.”  

Technical 

 

Sensor design 

“The clip. It really comes down to the stability of it. If I could see that it securely stayed on there. In looking at the 
way the clip is designed…it looks similar to the Tempo-trainer from Finis and I know placing that on the cap had 
issues- that it slips around and it comes undone because of tight streamlining.”  

“[Swimmers] having electronic devices on deck! Dropping them, you know. That would probably be the biggest 
thing of everything that I have seen up there is that durability of that device. If I had to say anything - that would be 
my primary concern.”  

Accuracy and reliability of data 

“I think just verifying the accuracy and making sure that there is accurate information”  

“The only concern that I would have is… is the information we are getting valid and reliable.”  

Sensor location “I am not sure about the head position and if how movement of the head relates to movement of the body.”  

Wireless connectivity “It would just be with the Bluetooth sync’ing and things that are down the road from here.”  

Parameter definitions  “The [concern] would be the three stroke [definition] that we talked about.”  

Financial Cost “The only thing that would ever concern me, if this thing was ever commercialised, would be the price.”  
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6.3.5 Key advantages 

Understanding the perceived key advantages of the system is important as it can help 

to inform design decisions at a later stage and ensure that the device delivers in these 

key areas. These can also confirm that the key features proposed in the Use Case are 

of interest to the potential end users. As shown in Table 6.4, the advantages can be 

categorised in a similar way to the concerns, with four of the five categories 

replicated. It is interesting to compare these perceived advantages with the concerns 

raised. The most frequently perceived advantage that was provided related to the 

appeal of being able to measure quantitative data for analysis, with 13 respondents 

highlighting this area. Four respondents had noted that this quantitative information 

alone was a concern and would not be sufficient to perform a full analysis of turns 

and that the context of the analysis is also very important, which can be best 

achieved through video recording of the swimming.  

 

Interestingly, the comments of seven respondents pointed to the time involved to use 

the system and provide feedback to swimmers as being a positive aspect of the 

system and was considered adequate to suit their needs. It may also have been 

reasonably assumed that similarly grouped coaches would have the same opinion, for 

example that the very elite and successful coaches would be the ones who prefer real 

time features. However, this was not borne out in the data. A broad consensus of 

opinion was found across all respondents; with a very closely matched level of 

satisfaction with the various system design features and the procedures involved with 

using the system. 
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Table 6.4. Aspects of the system that were highlighted by the survey respondents as the main advantages of the system. All responses were categorised into four 
thematic areas and further sub-categorised as necessary in order to evaluate the frequency of response for different aspects of the system. 

Category Sub-category Issue(s) raised 

Quantitative 
data 

Appeal of quantitative data for 
analysis 

“The quantitative recording of data components that comprise the individual and collective pieces of swimming 
motions is very nice to have for comparison, analysis, training and coaching. If we can get this quantitative 
information about the specifics of the mechanics of what is going on, that would be wonderful; how great to be able 
to take the coaching up to that level.”  

“The idea of having hard data rather than just observation is very appealing.”  

“I am strongly interested in analysing the details and the data.”  

“The level of detail provided would be great – that really appeals to me as a swimmer as I like to know this 
information.”  

“I can collect data for quantitative analysis.”   

“I like the idea of learning how to analyse and measure swimmers very accurately.”  

“Just the amount of data that is there would absolutely immediately appeal to me because I like numbers, and it is 
things that I can show the athletes.”  

“I just think the ability to look at hard data and say look, this is the time of your turn when you do it this way, this is 
the time of your turn when you are doing it that way and this is something that you need to consider.”  

“I think the timing of the turns throughout the course of the event, seeing the second turn compared to the fourth 
turn or something like that is going to be the major difference because for example in a 200 [yard event in a 25 
yard pool] it is often laps 5 and 6 that are going to be the slowest and to prove that with this data [sic] would help a 
lot.”  

“I think probably breaking down the timing for each of those actions into the wall. Those specific parameters that 
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are being measured on the wall.”  

“For me I think the appeal would be to have measureable standards for each athlete… It sounds like you are able 
to collect a lot of data points with, frankly, not a lot of effort.”  

“Timing the various parts of the turn is important – it will let me know where to focus changes with each 
swimmer.”  

“It is the breaking down of the turns into all of those segments, because it is not just a single element – I love being 
able to say ok, how many kicks, how long was that glide, what was that turn rotation – all of those add up and some 
[swimmers] might be really good at the rotation but really terrible on their push-off or their kick.”  

Time Time involved to use the system 

“I think it is the real fast turnaround time of the data; it’s the greater accuracy than a coach’s stopwatch. For me 
the greatest limiting factor [with existing practices of analysis] is that I can do things accurately but it is making 
sure the feedback has the impact and by the time the swimmer has left the building it is too late.”  

“There is no requirement for video to be setup so I can get the information faster.”   

“The fact that I can get this information so much easier than I would be able to using video. I can get the 
information faster and with less effort on my part.”  

“I think just the ease in response time to be able to give instant feedback. I think as a society we are all about 
instant feedback these days, nobody has patience to wait and so being able to have that access is really intriguing 
to me.”  

“The immediate feedback – you know being able to take that data and within a very short period of time being able 
to pull that swimmer out and show them immediate results, I would call that immediate results versus me having to 
take a video like I do now with race analysis it’s very cumbersome to do multiple swimmers and then supply that 
information with them. Immediate feedback is absolutely critical.”  

“This is great as it would save me a lot of time because now if we are doing timed turns now it has to be one person 
at a time and it is very tedious so this would be fantastic and I could do it in combination with video and we can 
learn a lot in a very quick period of time and actually make changes in the same session.”  
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“It seems to be timely… it is so important now to give feedback as soon as possible and so I think with that, with the 
information is uploaded and you can look at it pretty quickly and you could talk to [the swimmer] on the side of the 
pool-deck if you wanted to.”  

Context of use 

 

Ease of use 

“It seems to be user friendly and would be good to have.”  

“It seems like it is a turn-key [device]… we give [the swimmers] the sensor and off we go.”  

“It sounds great and it sounds simple enough for most coaches to be able to follow along and do. It kind of appeals 
to me in general because I could just give it to my assistants and just say here do this and I could continue coaching 
or videoing or something else.”  

“The ease of use, for the amount of technical data that it appears that you can get.”  

Specific to analysis of turns 

“What I like about it is that it is doing something very specific [to the analysis of turns] which is, especially 
swimming [in a short course pool], is very important.”  

“The breakdown of the turn. I love that there is all those different components…because I don’t have a way to do 
that easily, currently. This lets me tell [a swimmer] which specific parts of their turn are good and which specific 
parts we can improve”  

“I think the breakdown of the different segments of a turn definitely appeals to me – that is something that I do quite 
often and sometimes I have been told that I over analyse by doing that but I don’t feel like it is, I feel like it’s just 
like a stroke technique – you are breaking it down to what’s the hand doing at the top, what’s the hand doing at the 
bottom and in between – it’s the different components that make it up.”  

“The opportunity to improve, especially for short course swimming. I mean any turn is important but we swim short 
course yards over here and short course metres a lot – and [turns] can be 60% of the race, so I am so excited to see 
that we can tackle in a very scientific manner how to improve.”  

Comparison between swimmers “I can get an accurate and fast representation of how a swimmer is doing relative to other swimmers and more 
importantly…there is an historical analysis that can be done…so I can demonstrate to [a swimmer] that he is or is 
not improving in his turn capability as well as looking within a particular swim to the decrement of turns or to the 
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fact that they are staying static and that has a tremendous amount of value.”  

“I think the other very appealing part for us and for our team would be that competition aspect between, you know, 
this is what your team mates are able to do, where do you stand compared to your peers.”  

Involvement of different people in 
analysis 

“The fact that the information gets sent to other people at the same time like your scientists…so they can all 
measure it and see it as well as the swimmer.”  

Multi swimmer analysis 
“I like the fact that you, be able [sic] to monitor multiple [swimmers] and then have that information quickly so 
that.”  

Training tool versus analysis tool “It would make a good training tool if it was used on a regular basis.”  

Technical User interface 

“The presentation in graph form and the visual evidence that you can see and show it to the swimmer”  

“I really like the read-out after the session.”  

“The ability to use a tablet or laptop is very appealing.”  
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6.3.6 System Usability Scale 

The System Usability Scale (SUS) was included as part of the Use Case in order to 

get an overall satisfaction rating for the design concepts presented. The SUS is 

scored on a scale, with 100 the maximum score achievable. The SUS allows for the 

current system design to be compared against benchmark values achieved from a 

range of different products and areas of industry. The final version of the Use Case 

achieved an average SUS score of 79.4 ±12.3. The average SUS score also increased 

between formative and summative phases (Figure 6.13). McLellan et al. (2012) 

suggested that a score of less than 65 can be considered as “not acceptable”, between 

65 and 84 is “acceptable” and 85 or greater is “excellent”.  This would suggest that 

the current system design has performed well, albeit with a caveat that this is a 

concept Use Case so users do not have hands on experience of the procedures and 

interactions involved. Therefore other potential issues that may arise when 

physically using the device are not taken into account which could affect the overall 

result. That said, the SUS score achieved for the concept device could be directly 

compared with the score achieved after a prototype device was used by coaches, 

providing directly comparable results of the concept and physical product and could 

serve to highlight specific areas of concerns for end users and technical limitations of 

the system.  

 

Figure 6.13. Summary of the changing scores achieved on the System Usability Scale for each 

revision of the Use Case.  
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6.4 Discussion 

The aim of this paper was to describe the development and evolution of a Use Case 

that details the concept for a system for the analysis of swimming turns. The results 

presented show a positive level of agreement with the system concepts, the system 

design and a good understanding of the procedures and interactions involved with 

using this system. This would appear to indicate that the multiple iterations of the 

Use Case that have evolved as part of this process have adequately responded to the 

views of potential end users of the system and that the system concepts do meet user 

requirements and that the context of use has been established and verified by the 

respondents of this study. Three specific objectives were also established in order to 

focus the research effort on important system concepts that will ultimately inform 

future development work. The objectives are discussed below and changes that were 

made to the Use Case in an attempt to achieve these objectives are also examined. 

 

Objective 1: Is a system that is designed for the quantitative analysis of 

swimming turns of interest to coaches? 

It has been confirmed that coaches do regard turns as important, they do focus on 

improving their swimmers’ turns frequently and they are interested in using 

technology for quantitative analysis of turns (Figure 6.9). This finding is critical as it 

provides justification for the system concept presented in this Use Case. At a 

fundamental level, it is an essential user requirement that the user is interested in 

what the system does, irrespective of how it looks or how it is operated.  

 

It is well established that existing technology, such as video-based methods, are not 

adequately servicing the needs of coaches and that this is limiting the extent to which 

quantitative practices are being performed [3, 9]. As a consequence, current methods 

employed are mainly focused on the use of a stopwatch, observational techniques or 

the use of video for qualitative analysis. This would suggest that a need exists in the 

swim coaching community but this need is not currently being adequately addressed 
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using existing technologies. Therefore, a system that can be used for quantification of 

key parameters related to the performance of turns may be relevant to coaches, but 

this system must overcome the limitations of other technologies – which mainly 

relate to the time involved in gathering meaningful data. 

 

As shown in Figure 6.11, respondents were asked to state their level of agreement 

with how well they understand the procedures involved in using the proposed 

system; how comfortable they would be carrying out these procedures themselves 

and if they feel that using the system would hinder normal training activities. These 

questions were repeated after different points of the Use Case in order to isolate 

issues to specific stages of use. Although there is a perception that any form of 

analysis is inherently disruptive to normal training, the responses obtained were very 

positive for these areas. This is an important point in relation to the intended context 

of use of the device. Should the system be designed so that it can be deemed as a 

training tool, as opposed to an analysis tool, then it is postulated that this would 

increase usage rates.  

 

Changes were made to enhance the system usability during the evolution of the Use 

Case. An early revision of the Use Case described how the system would be operated 

with one coach working with a squad of swimmers. This was done as it was initially 

envisaged that the processes involved could be managed by a single person. 

However, a poor level of agreement was received on this point. Coaches suggested 

that they are likely to include additional personnel when analysing performance in 

their own environments, such as an assistant coach or a sports scientist. It is 

important to note that this question was put to respondents prior to describing the 

current system so this negative feeling may be a response to current methods of 

analysis, such as video, which will often require additional personnel due to the time 

and logistical constraints involved. However a change to the Use Case was made to 

include two coaches and this resulted in an increased level of agreement; with an 

average score of 3.6 ± 0.7 achieved (Figure 6.10).  
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There would appear to be a perception that any form of quantitative analysis is 

inherently time consuming and will distract from normal training procedures. As a 

result of which, a coach will need extra support in order to be able to conduct data 

collection. An additional consideration is that the size of the swimming squad may 

dictate the numbers of coaches/support personnel required. The Use Case describes a 

system that is intended to be used by multiple swimmers simultaneously and in this 

case a coach may perceive that this would require more than one individual in order 

to manage the process. 

 

Further changes were made related to the way that devices are allocated to the squad 

of swimmers. In an early iteration, the devices were largely handled by the coach as 

part of the poolside setup, with the coach heavily involved in turning the unit on, 

attaching the device to the goggles and ensuring the devices were correctly 

positioned before data collection commenced. Several coaches commented on this, 

with concerns about dealing with large squad numbers and how this would effect a 

training session. Consequently, changes were made to involve the swimmers more in 

getting the devices ready to be used. It may also be possible to carry out these 

procedures without the requirement for the swimmers to exit the pool, thus further 

speeding up the process and helping to integrate the system into normal training 

activity.  

 

Finally, a change was made to increase the functionality of the system so that in 

addition to having devices pre-allocated to squad members, devices could also be 

used interchangeably between swimmers. This issue was raised as a concern 

regarding the costs associated with needing to purchase multiple devices. In this 

context, additional steps would be involved as the coach would be required to keep 

track of which device is used by which swimmer and when data are synchronised 

with the App the coach would then need to assign the data retrospectively to a 

particular swimmer. However, this issue was not raised again by subsequent 

respondents once the change had been made. 
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Objective 2: Is there agreement from potential end users that the head is an 

acceptable location for this system? 

Various body locations were considered for the positioning of the sensor unit, with 

advantages and disadvantages associated with each. These include the head, chest, 

upper back, lower back, wrist and ankle. The most frequently described locations in 

the extant literature include the wrist and lower back [10]. For the analysis of turns, 

the wrist can be excluded as the movement of the arms is not representative of the 

rotational movements involved. The lower back can be considered a good option as 

it is located close to the centre of mass. However attachment solutions that involve a 

swimmer wearing a belt will cause unwanted drag effects. A custom designed swim 

suit with a pocket for the sensor unit would alleviate this issue, but interestingly 

comments from some coaches raised concerns regarding inappropriate physical 

contact between the coach and swimmer if assistance were needed when positioning 

the units at this location. Additionally, a custom designed suit would also add 

additional complexity to the system and reduce its universality.  

 

When considering the best location, it is important to balance comfort issues with 

technical concerns. From a comfort point of view, positioning the device at the back 

of the head, under the swim cap is an ideal location as it is unobtrusive and will not 

interfere with the swimmers movements in any way. Additionally, coaches remarked 

that a flip turn is initiated from the head, and the head is also used by coaches when 

timing a turn using a stopwatch or video. It is unsurprising therefore, that 90% of 

respondents agree or strongly agree that the head is a good location for the device 

(average score 3.4 ± 0.7) (Figure 6.10). Interestingly, coaches’ remarks highlighted 

both the comfort and technical issues when further questioned, although the majority 

leaned towards comfort as the main issue. This location also resonates with coaches 

who are familiar with other devices such as the Tempo Trainer (FINIS USA, 

Livermore, CA, USA) which is head mounted.  

 

A change was made to the attachment method of the device as part of the iteration 

process of the Use Case. Initially, the device featured two guide holes through which 
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the goggle straps would be fed (Figure 6.14a).  In response to user feedback 

regarding the ease of use and time required to do this, it was changed to a clip-on 

device (Figure 6.14b). 

 

Figure 6.14. Changes to the sensor unit attachment method.  

 

Objective 3: Can a list of quantitative feedback parameters be defined that are 

appropriate for the analysis of swimming turns? 

The parameters that the sensor unit will measure are important to define and will 

have clear implications for algorithm development. It is vitally important to 

understand what can be regarded as a suitable range of feedback parameters, from a 

coaching point of view, and how these parameters should be defined.  The results 

presented in Figure 6.12 show a positive level of agreement to the parameters 

included. However, several amendments to the Use Case were necessary to achieve 

this result, as outlined in Table 6.5. These changes were based directly on 

respondents’ feedback to the Use Case. 

 

The most important change made was to the Turn Time parameter. This is defined as 

the time from the start of the third last arm stroke on approach until the end of the 

third arm stroke after push-off. Originally only one arm stroke on either side of the 

wall was included in this definition. However, additional strokes were deemed 

necessary as respondent feedback suggested that these arm strokes are important to 

thoroughly assess the quality of a swimmer’s technique. Another change to the 

parameters was the inclusion of a new variable, Kick Time, which was added during 
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the evolution of the Use Case. The number of kicks performed after push-off and 

before stroke resumption is a key parameter for developing fast turns. However, it is 

not just the number of kicks that are performed but also how long it takes to perform 

them that are relevant.  

 

Table 6.5. Revisions made to the definition of terms for each of the feedback parameters. 

Parameter Original Definition Revised Definition 

Turn time Time from last arm stroke on approach 
to first arm stroke after push-off 

Time from the start of the 2nd 
(Breaststroke / Butterfly) or 3rd 

(Frontcrawl / Backstroke) last arm 
stroke on approach until the end of the 
2nd or 3rd arm stroke after push-off 

Approach time Time from last arm stroke on approach 
to wall contact 

Time from the start of the 3rd last arm 
stroke on approach to wall contact 

Rotation time Time from initiation of rotation with 
head to wall contact 

Time from start of last arm stroke to 
wall contact (Frontcrawl / Backstroke) 

Wall contact time Time from first contact with wall to 
push-off 

No change 

Hands to feet 
contact time  

Time from first contact with wall with 
hands to first contact with feet 
(Breaststroke/ Butterfly) 

No change 

Glide time Time from push-off to first dolphin 
kick 

No change 

Kicks off wall Number of dolphin kicks performed 
after push-off and before stroke 
initiation 

No change 

Kick time This parameter was not originally 
included 

Time taken for the dolphin kicks after 
push-off from the wall to be performed 

Breakout time Time from push-off to first arm stroke No change 

Length time 

 

Time to complete each lap performed “Lap time” changed to “Length time” 
as a lap could be considered as 2 
lengths of the pool.  

Average speed 
per length 

Average speed of swimmer (m/s) to 
complete each length of the pool 

No change 
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No distance related parameters are included in the system design. This is because the 

unit is designed to monitor the movements of the swimmer but not those movements 

relative to any fixed point such as the pool wall. As such, it cannot be stated with any 

level of confidence that accurate measures of a swimmer’s displacement can be 

made using this device. Surprisingly, this did not cause any issue for the respondents 

of the survey and no respondent referred to this as a gap in the feedback potential of 

the system.  

 

A level of accuracy of one tenth of a second (0.1 s) is deemed satisfactory for this 

system. This can be regarded as more accurate than a stopwatch, which anecdotally 

is accurate to two tenths of a second (0.2 s). The sensor unit has an additional benefit 

of also being able to monitor multiple swimmers at the same time, which can be 

difficult when using stopwatches for timing turns. A 50 Hz video camera can provide 

a maximum resolution of two hundreds of a second (0.02 s), far greater than the 

proposed system. However, the key advantage of the proposed system is that this 

information is provided much quicker than would be possible using video and 

without the requirement for much processing of the data on the part of the user. 

Therefore the sensor unit, as described in this Use Case, would appear to alleviate 

the main shortcomings of the current most commonly used methods for quantitative 

analysis of swimming turns.  

 

6.5 Conclusion 

Turns are an important component of competitive swimming performance but the 

analysis of turns is difficult to implement in applied settings, largely owing to the 

limitations of existing methods. Wearable sensor based technologies offer a 

potentially new approach to allow coaches to conduct in-depth quantitative analysis 

of their swimmers turns. However, this remains an unexplored area in both research 

and commercials domains.  
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A User Centred Design approach has been followed based on the principles of ISO 

9241-210 [21]. This has proven to be an effective framework for conducting a 

thorough assessment of the proposed system. The Use Case provided a common 

methodology for various potential end users, including coaches, sports scientists and 

swimmers, to provide input into the design of the different aspects of the system. 

These respondents were able to identify potential design problems regardless of 

explicit experience with the proposed technology or with usability analysis. The use 

of Likert scales allowed for constraints to be placed on specific aspects of the 

scenarios and interfaces that required feedback from respondents. Meanwhile, the 

use of open-ended questions allowed for expansion of respondents’ thinking 

regarding key areas. Important user requirements have been elicited and the 

preferred context of use has been established following an iterative evaluation-driven 

process informed by end users.  

 

The Use Case analysis has proven to be effective for a number of reasons. The 

analysis did not require any prototype development or specialised equipment to be 

used. This is important as there were some key concepts that required confirmation 

from potential end users, specifically the focus on turns; the head positioning used 

for the sensor unit and the range of feedback parameters to be included. These 

concepts were tested out and fully considered without the requirement for extensive 

development work to be carried out in advance. It is recommended that future sports 

technology development would continue to follow this UCD methodology in order 

to maximise end user satisfaction and increase the likelihood of the adoption of new 

technology into existing practices of analysing sports performance in applied 

settings.  

 

This study has produced a proposed system design concept which has gained a 

sufficiently high level of agreement from potential end users to confidently state that 

the main objectives of this study have been achieved. This also provides justification 

for the development and validation of feature detection algorithms for the analysis of 

swimming turns from a head worn inertial sensor device. Full implementation of the 

proposed system has a high level of complexity, involving various components that 
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need to be optimised for use in aquatic environments; a wireless interface; multiple 

signal inputs and a custom designed user interface.  

 

Despite the efforts made to ensure a high quality and detailed presentation of the 

system concepts, the Use Case document remains limited by the fact that it is 

essentially a paper prototype and not a physical entity that a respondent can fully 

examine and interact with in a real world setting. This raises some limitations as to 

how a respondent can perceive the various stages of system utilisation. Additionally, 

despite the positive results reported, there remain a number of key concerns from 

potential end users. The main issue is one of time and it is imperative for wide scale 

acceptance of the system that the time required for using the device and obtaining 

feedback is minimised. It would be necessary to repeat the Use Case analysis with a 

functioning prototype system in an applied training setting in order to be confident 

that these issues have been adequately addressed and to re-assess end user 

satisfaction.   
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The work described in Chapter 6 of this thesis has demonstrated that a 

wearable, inertial-sensor based system focused on the analysis of swimming turns is 

of interest to elite coaches. Following multiple iterations of the Use Case, it was 

found that the final version received widespread acceptance from the study 

participants. There are various key components of this system that are of most 

importance in terms of delivering such a system. Of central importance is the 

capacity of the system to break down a swimmer’s turns into various component 

parts for detailed examination – thus extending the use of sensor based technology 

beyond the generic, high-level feedback capabilities of existing systems (such as 

those described in Chapter 5) and moving towards a system that is of greater 

relevance in an elite setting. These component parts constitute the key performance 

parameters necessary for a thorough evaluation of a swimmer’s performance of 

turns in each of the four competitive swimming strokes. However, existing systems 

described in the extant literature lack such performance capabilities. Therefore, the 

next stage of this process was to develop a prototype swimming analysis system 

which closely replicates the design and functionality described in the Use Case. The 

work completed in developing a prototype hardware platform is described below in 

Chapter 7 of this PhD thesis.  

 

7.1 Introduction 

MEMS based inertial sensor technologies have been incorporated into a number of 

analysis systems for use in aquatic environments [1-3]. A key advantage of this 

technology is that it has the capability of providing quantitative feedback to the 

coach and swimmer far quicker than traditional video-based methods, thus driving 

the recent expansion of research and commercial interest in this area of study.  The 

majority of these systems are based on the use of accelerometer and gyroscope 

sensors and a range of swimming parameters have been reported and validated in the 

literature, such as stroke counts and lap times [4]. Consequently, many of the key 

hardware design considerations that are relevant for using these technologies in 
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aquatic environments have already been well described in the extant literature [4]. 

The aim of this study is to leverage this existing knowledge in order to describe the 

development of a suitable hardware platform that can determine quantitative 

parameters related to the analysis of swimmers’ movements, and specifically the 

analysis of swimming turns. This prototype device is intended to store the raw output 

signal recorded from a head-mounted position on a swimmer as they complete 

successive laps of a swimming pool.  

 

As a starting point in the development of this prototype system, it is necessary to 

identify the important features to be included. These features are based primarily on 

the results of the User Centred Design study described in Chapter 6 of this thesis, as 

well as the in-depth knowledge gained from thoroughly investigating prior research 

literature in this area. The features relate to the technical specifications, positioning, 

size and attachment of the system itself, in addition to the functionality of the system 

and the output information provided. The specifications of the prototype system were 

developed from this list of features in addition to consultation with swim coaches 

and swimmers. A system that can meet all of the user requirements identified will 

provide detailed quantitative feedback to the end user about a swimmer’s 

performance of turns in a swimming pool, information that is not currently available 

using a sensor based system. This chapter will focus on providing a comprehensive 

description of the functionality of a prototype sensor, in order to assess the suitability 

of the hardware platform for use in experimental data collection for swimming 

applications.  

 

7.2 Prototype Hardware System Development 

A prototype hardware platform was developed in order to record the swimmers’ 

movements in the pool. The platform closely resembles many reported system 

designs used in research studies and available commercially [4]. The microcontroller 

used was the small but powerful Teensy 3.0 (PJRC LLC, Sherwood, OR, USA). The 

Teensy 3.0 is provided with a Freescale microprocessor (MK20DX128VLH5) that 

has a 32-bit ARM architecture. Specifically, it is a Cortex-M4 with DSP, 128 KB of 
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program flash memory and 50 MHz of maximum CPU frequency. There are two 

types of communication integrated, the I²C and the SPI, that are used to manage the 

sensors and micro SD Card. Both communication protocols are used by 

microcontrollers for communicating with one or more peripheral devices rapidly 

over short distances. However, whilst I²C allows multiple masters and slaves on the 

bus, SPI can only work with one master device controlling multiple slaves. In 

addition, there is a MINI54TAN that is a small microprocessor used to support the 

USB communication, running up to 24 MHz with an ARM Cortex M0. By 

integrating both Teensyduino and Teensy Loader software packages into the Arduino 

IDE, it is possible to program the MK20DX128VLH5 using the micro USB 

connection. Moreover, the Teensy 3.0 has a total of 34 digital I/O and some of them 

have specific specializations, including 14 analog inputs, ten PWM (Pulse Width 

Modulation, used for obtaining analog results with digital methods), three UART 

units (ports for serial communication), one SPI, one I²C, one USB, and others 

functionalities. At the end of the board, there is a LED in the pin 13, and a reset 

button.  

 

The microcontroller connects to various other hardware components as part of the 

prototype system design. The Inertial Measurement Unit (IMU) comprises of a tri-

axial accelerometer and a tri-axial gyroscope. Raw, tri-axial acceleration and angular 

velocity data that are read by the sensors are stored in a buffer and transferred to an 8 

GB microSD Card when the buffer is full. Data are then retrieved using a USB 

connection for post processing. A rechargeable polymer lithium ion battery (280 

mAh, 3.7 V) is used to power the device. A MicroSD adapter has been used as the 

mount for the SD Card. Figure 7.1 provides a block diagram with an overview of the 

system configuration. Table 7.1 provides details of the specifications for both sensor 

components of the IMU, including resolution, range and sensitivity.  
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Figure 7.1. Block diagram of system hardware components. 

 

Table 7.1. System specifications for the MEMS accelerometer (ADXL345) and gyroscope (ITG-
3200) used in the prototype system.  

Parameter Accelerometer 

(ADXL345) 

Gyroscope 

(ITG-3200) 

Axes 3 3 

Resolution 10-bit 16-bit 

Range ±2 g ±2000 °/s 

Operating Temperature  -40 – +85 °C -40 – +85 °C 

Sensitivity 256 LSB/g at ±2 g range 0.1°/s/g 

Scale Factor 3.91 mg/LSB at ±2 g range 14.375 LSB/(°/s) 

Nonlinearity ±0.5% 0.2% 

Offset v. Temperature ±0.8 mg/°C -13,200 LSB 

0g Bias Level 

 

±40 mg (X axis & Y axis) 

±80 mg (Z axis) 

 

   

 

The system is housed in a low-profile plastic enclosure (Figure 7.2) with dimensions 

of 70mm x 51mm x 21mm (New Age Enclosures S1A-272008). The device is to be 

placed at the back of the swimmers head, under their swimming cap. For data 

collection purposes in a swimming pool, the prototype device is waterproofed using 
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a re-sealable dry bag (LOKSAK Inc., Naples, FL). Testing of the device was also 

carried out using an electronics breadboard, with the same hardware configurations 

and specifications as described above. This allowed for rapid diagnostics of issues 

for debugging purposes.  

 

 

Figure 7.2. Image of the prototype enclosure. 

 

7.3 Microcontroller Code Overview 

The code for the microcontroller was written in C programming language using the 

Arduino IDE. The process is comprised of a setup stage to initialise and configure 

the sensor components and to call functions which have been declared as part of the 

program and a loop which continuously reads the tri-axial acceleration and angular 

velocity, and saves the values to an SD Card at intervals, as determined using an 

interrupt timer function. The loop continues indefinitely until the device is switched 

off. Testing of the device’s functionality is achieved using the serial monitor that is 

built into the Arduino IDE, with additional testing using Visual Studio with the 

VisualMicro add-on to allow for Arduino programs to be run in the Visual Studio 

environment. A process flowchart for the data logging function of the prototype 

system is presented in Figure 7.3, as an overview of the process. Further detailed 

description of each stage of this process follows. A complete version of the 

microcontroller programming code is included in Appendix B of this PhD thesis. 
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Figure 7.3. Process flowchart describing the data logging capability of the prototype device.  

 

7.3.1 Initialisation Procedures 

The first step in the programming code involves three steps, as summarised in Figure 

7.4. Standard libraries that are needed for the correct functioning of the 

microcontroller must be included in the program, in addition to defining the size of a 

data storage buffer and creating an LED status indicator.  
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Include standard 
precompiled Arduino 

libraries (Wire library, SD 
library)

Define the size of the buffer 
used to hold data values

Allocate microcontroller pin 
for use as LED status 

indicator

 

Figure 7.4. Initialisation procedures flowchart.  

 

A number of libraries come installed with the Arduino IDE, including the Wire 

library and the SD library. The Wire library allows for communication with I2C 

devices. The SD library allows for reading from and writing to SD Cards. The library 

supports FAT16 and FAT32 file systems on standard SD Cards. The communication 

between the microcontroller and the SD Card is via an SPI protocol.  

 

A data buffer is required in order to allocate a portion of the physical memory 

storage to temporarily store data that are recorded from the IMU before the contents 

of the buffer are saved onto the SD Card. The size of this buffer is defined as a 

constant value (2,628 bytes) before the program is compiled. The buffer itself will be 

created later in the programme as part of the SD Card initialisation. When data are 

stored, there will be six gyroscope bytes, six accelerometer bytes, two control 

characters and four time characters, giving a total of 18 bytes. Therefore, 146 

readings (2,628/18 = 146) will be stored in the buffer. The size of the memory that is 

allocated for this buffer capacity has implications for the amount of memory that is 

used and memory that is available for the program to run. When the program is 

compiled with the buffer size set to 2,628 bytes a total of 20,848 bytes (15%) of 

program storage space is used. The maximum available is 131,072 bytes. Global 

variables use 8,904 bytes (54%) of dynamic memory, leaving 7,480 bytes for local 

variables. Therefore, although the buffer size can be adjusted to suit the application, 

this needs to be considered carefully in order to allow for optimal performance of the 

prototype.  

 

The final part of this stage in the process is to allocate a pin on the microcontroller 

that can be used as a status indicator during various stages of the device’s function. 
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This LED will be used at various stages during the program and can be useful as a 

status indicator and also to highlight if errors have occurred.  

 

7.3.2 Accelerometer Initialisation 

Accelerometers, such as the ADXL345, measure acceleration and deceleration that is 

applied to the device in three dimensions. These MEMS devices operate on the 

principle of a suspended spring mass, such that when acceleration is applied, a small 

mass within the accelerometer responds by applying a force to a spring, resulting in 

compression or stretching. The displacement of the spring can be measured and used 

to calculate applied acceleration. The output voltage is proportional to the 

acceleration that is experienced [5, 6]. MEMS accelerometers such as the ADXL345 

have been used frequently in swimming applications. During the accelerometer 

initialisation stage, various registers need to be defined in order to determine how the 

sensor will behave and hold data that represents the measured acceleration that is 

experienced. A summary of this process is provided in Figure 7.5, with details of the 

specific registers that are defined in the program subsequently discussed.  

 

 

Figure 7.5. Accelerometer initialisation flowchart. 
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The first register that is defined is the accelerometer address during the I²C 

communication (Register 0x53). The microcontroller must be directed to 

communicate with either the accelerometer or the gyroscope when communicating 

with the IMU and this sets the address for the accelerometer. It supports standard 

(100 kHz) and fast (400 kHz) data transfer modes if the timing parameters are given 

in and are met. Single- or multiple-byte reads/writes are also supported.  

 

Register 0x31 is used to control the presentation of data to Registers 0x32 to 0x37 

(representing the tri-axial acceleration data, discussed below), as well as being used 

for setting the range of the accelerometer. The specific settings will be selected in the 

accelerometer configuration function and discussed further in that section. The range 

of the accelerometer can be set to different values according to the desired 

application. This will be done as part of the accelerometer configuration function.  

 

Register 0x2D allows for power saving features of the device to be selected. This 

register is used to put the accelerometer into measurement mode when required. This 

will be completed in the accelerometer configuration function.  

 

Register 0x32 through to Register 0x37 inclusive are six bytes which are eight bits 

each and hold the output data for each axis of acceleration, with two bytes associated 

with each axis. The output data are in two’s complement format, which is binary 

format that is used to represent signed integer values. Register 0x32 and Register 

0x33 hold the output data for the x-axis. Register 0x34 and Register 0x35 hold the 

output data for the y-axis. Register 0x36 and Register 0x37 hold the output data for 

the z-axis. This is the end of the accelerometer initialisation step. The next part of the 

process is the gyroscope initialisation.  
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7.3.3 Gyroscope Initialisation 

Gyroscopes, such as the ITG-3200, measure the angular rate of change, or angular 

velocity. The angular velocity is measured in reference to each of three axes, namely 

pitch, yaw and roll. The operating principle of MEMS gyroscopes is that a vibrating 

element is contained within a frame of reference. Rotation causes the element to 

vibrate out of plane, and this motion is sensed using a capacitor, with the output 

voltage proportional to the angular velocity experienced [6, 7]. MEMS gyroscopes, 

such as the ITG-3200, have been used frequently in swimming applications. During 

the gyroscope initialisation stage, various registers need to be defined in order to 

determine how the sensor will behave and hold data that represent the measured 

angular velocity that is experienced. A summary of this process is provided in Figure 

7.6, with details of the specific registers that are defined in the program subsequently 

discussed.  

 

 

Figure 7.6. Gyroscope initialisation flowchart. 

 

The first register that is defined is the gyroscope address during the I²C 

communication (Register 0x68). I2C is a two wire interface comprised of the signals 

serial data (SDA) and serial clock (SCL). With I2C communication, attached devices 

can act as either a master or a slave. The ITG-3200 always operates as a slave device 
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when communicating to the system processor, which thus acts as the master. The 

maximum bus speed is 400 kHz. Register 0x15 is used to determine the sample rate 

of the gyroscope. The gyroscope outputs are sampled internally at either 1kHz or 

8kHz. These samples are then filtered digitally and delivered into the sensor registers 

after the number of cycles, which are determined by this register. The specific 

sample rate used in this program will be selected in the gyroscope configuration 

function. Register 0x16 is required in order to set different configurations that are 

related to how the data are acquired from the gyroscope, including the scale range 

and low pass filter configuration. The specific settings used in this program will be 

selected in the gyroscope configuration function and discussed further in that section.  

 

Register 0x1D through to Register 0x22 inclusive are six bytes which are eight bits 

each and hold the output data for each axis of angular velocity, with two bytes 

associated with each axis. In a similar manner as for the accelerometer, the output 

data are in two’s complement format. Register 0x1D and Register 0x1E hold the 

output data for the x-axis. Register 0x1F and Register 0x20 hold the output data for 

the y-axis. Register 0x21 and Register 0x22 hold the output data for the z-axis axis. 

This is the end of the gyroscope initialisation step. The next part of the process is the 

SD Card initialisation for data storage.  

 

7.3.4 SD Card Initialisation 

The next stage in the program involves the initialisation of variables that will be used 

for the SD Card function, in order to facilitate the transfer of data to the SD Card 

from the microcontroller’s memory buffer. A summary of this process is provided in 

Figure 7.7. 

 

The first part is to configure the physical hard wired connection. The name of a 

control line on the SD Card used to facilitate the microcontroller to select and 

communicate with the SD Card in order to write data to the card is slave select (SS). 

A buffer variable is created (called buf). This buffer will hold values taken from the 
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sensor devices, along with the time stamp of each reading, before they are written to 

the SD Card. The size of the buffer has already been allocated above in the initial 

step in this program. Another buffer variable is next created (called bufTemp). This 

is a temporary buffer that will be used to hold values taken from the sensor devices 

during the time when a write to the SD Card occurs, to avoid any loss of data during 

this stage of the program. An integer variable (count_buf) is created and is going to 

be used to know how much the buffer (buf) capacity has been used up. In the loop, 

count_buf will increment by one every time a reading from the sensors is taken. The 

size of count_buf can then be checked against the overall capacity of the buffer, to 

determine if a write to the SD Card is required or if the buffer has capacity remaining 

to accept further sensor readings.  

 

Figure 7.7. SD Card initialisation flowchart. 
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File system classes for the SD library are defined. These are required in order to start 

and stop transmission to the SD Card so that data can be written to the card. They are 

also required to create, open, close and write to a file on the SD Card. The output of 

the program will be a text file (file_name.txt), which is created next. The time of 

each sensor reading must be recorded to allow for analysis of the signal output and 

also in order to verify that the desired sampling rate has been achieved. A variable 

time is created in order to hold this temporal information. A pointer is used to 

manipulate the time data and will be described further in a later section of the 

program code, when it is implemented. This is the end of the SD Card initialisation 

step. The next part of the process is the function that will be used to configure the 

accelerometer for data logging. 

 

7.3.5 Accelerometer Configuration Function 

A function is created that will be called as part of the setup and is used to configure 

the accelerometer and establish the various operating settings, such as the range and 

data format. A summary of this process is provided in Figure 7.8. 

 

Declare function to 
configure accelerometer 

operational settings

Set the accelerometer range 

(±2 g)

Set the accelerometer to 
measurement mode

 

Figure 7.8. Accelerometer configuration function flowchart. 

 

As part of this function the register addresses that were previously defined are 

configured to suit the desired application. This is done in order to set the range of the 

sensor. The range can be set to either ±2 g, ±4 g, ±8 g or ±16 g. Previous research 

has shown that a range of ±2 g is appropriate for swimming related activities [4, 8]. 

The accelerometer operates with 10-bit resolution, therefore the full scale range is 

210 = 1,024 levels. This is divided by two as acceleration can have both positive and 

negative values within its measurement range. Therefore the maximum positive 

value is 511 (+2 g) and the maximum negative value is -512 (-2 g). Consequently, 1 



Robert Mooney PhD Thesis – Chapter 7 

 

294 

g (9.81 m/s2) corresponds to 256 bits. Finally the accelerometer is put into 

measurement mode. By default, the sensor is already in 100 Hz sample rate giving a 

bandwidth of 50 Hz.  

 

7.3.6 Gyroscope Configuration Function 

A function is created that will be called as part of the setup and is used to configure 

the gyroscope and establish the various operating settings, such as the range, digital 

low pass filter and sampling rate. A summary of this process is provided in Figure 

7.9. 

 

 

Figure 7.9. Gyroscope configuration function flowchart. 

 

Once the function has been declared a command instructs the microcontroller to set 

the gyroscope to full scale range, which is ±2,000 º/sec. This command will also 

configure the digital low pass filter, setting the low pass filter bandwidth to 42 Hz 

and the internal sample rate to 1 kHz. The gyroscope operates with 16 bit resolution; 

therefore the full scale range is 216 = 65,536 levels. This is divided by two as angular 

velocity can have both positive and negative values within its measurement range. 

Therefore the maximum positive value is 32,767 (+2,000 º/sec) and the maximum 

negative value is -32,768 (-2,000 º/sec). The next command determines the sample 

rate of the gyroscope. The gyroscope outputs are sampled internally at 1 kHz. These 

samples are then filtered digitally and delivered into the sensor registers after a 

number of predetermined cycles, according to the sample rate. For this application, 

the sample rate is set to 100 Hz to match the accelerometer.  
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7.3.7 Communication Protocol Functions 

The communications protocol between all components is achieved using an I²C 

digital connection. In order for this protocol to correctly operate, two functions are 

required, one to instruct the microcontroller to write information to the sensors and 

one to instruct the microcontroller to read information from the sensors. The specific 

instructions within these functions are all part of the Wire library described earlier. A 

summary of these processes are provided in Figure 7.10. 

 

 

Figure 7.10. Communication protocol functions flowchart. 

 

First, the function to control writing to the IMU sensors is created. The function will 

output the address of either the accelerometer or gyroscope, the address of the 

specific register to be accessed and the numerical value that is to be set in the 

register. This function is called in both the accelerometer and gyroscope 

configuration functions that were described above. Another function is created in 

order for the microcontroller to be able to read data from the two sensors. This 

function can return one or more bytes of information, depending on what data are 

available within the registers that are accessed. However, it is expected that only one 

byte will ever be available within the sensor registers under normal functionality of 
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the program. The function returns the device and register address that has been 

accessed. A Boolean operator is used to check if data are available or not and the 

number of bytes that will be requested from the device. A buffer is used to 

temporarily store data from the sensors in the event that the Boolean condition is not 

met and there is not one byte of data available. This would be considered to be an 

abnormal condition for the code and is included as a test condition in order to notify 

the operator if an error has occurred.  

 

7.3.8 Setup 

In the Arduino IDE, the setup() function is called when a program starts. It is used 

for tasks such as initializing variables, pin modes and in-built libraries. The setup 

function will only run once, after each power up or reset of the Arduino board. A 

summary of this process is provided in Figure 7.11. In order to be able to test the 

program is functioning correctly at different stages of operation; it is useful to use 

the inbuilt LED on the microcontroller. The LED is turned on and set to stay on for a 

period of 5 seconds (5,000 ms). This is performed as a visual indictor that the setup 

has begun. Next the serial transmission is setup. Serial is used for communication 

between the Arduino board and a computer or other devices. This is required in order 

to be able to communicate with the SD Card and can also be used to output to the in-

built Serial Monitor within the Arduino IDE, for testing of the program’s 

functionality and performance. The I2C communication is used for communication 

with the sensor devices and is also started. Next the two functions that were declared 

in order to configure the IMU sensors are called. A description of these functions 

and their operation was provided earlier. 
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Figure 7.11. Setup function flowchart. 

A test is completed in order to check that communication with the SD Card is 

working correctly and that a file has been created to store the sensor data. This is 

necessary in case there is an issue, for example if the SD Card is not inserted 

correctly. The test will instruct the microcontroller to stop the setup and produce an 

error message to the user if a fault has occurred. At this stage, the LED is set to blink 

to provide a visual indicator that the setup process is complete and that the loop is 

about to begin. Finally, an interval timer is created. This timer uses interrupts to call 

a function at a precise timing interval and will be used in order maintain the desired 

sampling frequency of 100 Hz. The timer is started and is scheduled to increment 

every 10 ms. This is the end of the Setup phase of the program. 

 

7.3.9 Interrupt Timer Function 

An interrupt timer function is now created. This function will be used for reading 

values from the sensors and is programed to run as long as there is capacity in the 

buffer to continue reading values. This function is called before the loop and will run 
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continuously for the duration of the program. A summary of this process is provided 

in Figure 7.12. 

 

Figure 7.12. Interrupt timer function flowchart. 

 

To ensure that the sampling rate is accurately recording at 100 Hz, all data within 

each iteration of the loop must be recorded in time windows of 10 ms. To make sure 

that the frequency is precise, a function called millis() is used. This function returns 

the time in milliseconds since the beginning of the program. This value will be 

assigned to the variable time that was initialized as part of the SD Card initialisation 

stage described earlier.  

 

Data are saved in the buffer in a specific sequence. It starts with two delimiter 

characters and after that the data from both sensors and finally the time. As a result, 

the bytes are organized in the file following a defined logic which is important to 

have in order to secure and fast data acquisition. This logic can be described as 

CCD1D2D3D4D5D6D7D8D9D10D11D12TTTT, which represents the binary 

combination that data are registered in the file. CC are the delimiters characters, used 

in order to be able to distinguish each line of data within the resulting .txt file. The 

twelve DX values are the data from the sensors, whereby D1D2 = Gyroscope x-axis; 

D3D4 = Gyroscope y-axis; D5D6 = Gyroscope z-axis; D7D8 = Accelerometer x-axis; 

D9D10 = Accelerometer y-axis and D11D12 = Accelerometer z-axis. The four T values 

together form the time given in ms. After each byte is written in the buffer, it is 

necessary to increase a counter to move along the buffer to continue to write the data 
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from the sensors. This interrupt function will run continuously for the duration of the 

program, storing values from the sensors into the buffer. The loop function, 

described below, will be used in order to control this interrupt and configure the 

saving of data to the SD Card when necessary.  

  

7.3.10 Loop 

After the interrupt timer function has commenced, the loop() function starts and 

loops consecutively, allowing the program to change and respond once sensor data 

are started to be recorded. This is used to actively control the microcontoller. A 

summary of this process is provided in Figure 7.13. 

 

 

Figure 7.13. Loop function flowchart. 

 

An if/else statement is used in order to determine the program flow. This statement is 

based on the remaining capacity of the data buffer. If there is remaining capacity, 

then the data from the sensors will continue to be stored in the buffer, as described in 

the interrupt timer function above. Otherwise, if the buffer has no remaining 

capacity, then the instructions to save the data to the SD Card will be carried out and 
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the buffer counter is reset. The value of the incremental buffer counter is reset to 

zero, so that once the data in the buffer have been cleared, it is ready to be used 

again. 

 

Prior to writing to the SD Card, the contents of the buffer (buf) will be copied to the 

temporary buffer (bufTemp). This command allows for the sensor readings to 

continue to be taken from the sensor devices whilst writing to the SD Card, thus 

avoiding any loss of data during the SD Card write. The time required for the SD 

Card write contains a latency of approximately 30-40 ms. Therefore, approximately 

three to four samples would be missed every time a write to the SD Card is 

completed. This could have unwanted consequences for the accuracy of the 

prototype device when used for analysing swimming performance, as key events 

may occur during these missed samples. However, with the inclusion of the interrupt 

timer function, the sampling frequency of 100 Hz can be maintained even when 

writing to the SD Card. 

 

A representative output of the program can be seen in Figure 7.14. The values 35 and 

64 are repeated at the start of each sample reading. These are ASCII characters 

representing the two delimiters that are used at the start of each sample so that each 

sample can be distinguished. 35 is the ASCII character for “#”, whilst 64 is the 

ASCII character for “@”. In this figure, the device is lying flat. It can be seen that 

the acceleration z-axis values (in the two rightmost columns) are close to 255 in the 

low byte, indicating that the value is close to 1 g. Additionally, the values for the 

acceleration x-axis and y-axis are both close to 0 (0 g). These values are not exactly 

1 g and 0 g, but the slight offsets experienced will be determined and eliminated in 

post-processing. The angular velocity values are all close to zero as the device is 

static at this point. Two’s complement format is followed. For example, the gyro z 

axis values are 255 (high) and 248 (low). As the values can have both positive and 

negative numbers, which are stored in a two’s complement format, this number is 

actually a small negative number. The values are actually -256 + 248 = -8. Again, 

the gyroscope offset will be determined during post-processing.  
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Figure 7.14. Sample output from the prototype device, showing the time in ms of each sample 
taken (every 10 ms), the delimiter characters and the values recorded for both sensors, 
including three axis gyroscope data and three axis accelerometer data. 

 

Finally, in Figure 7.15 below, a similar sample output can be seen, this time with the 

device experiencing movements. The values for each of the sensor registers can be 

seen to be dynamically changing as the samples are recorded every 10 ms.  

 

 

Figure 7.15. Sample output from the prototype device, when experiencing motion. 

 

7.4 Conclusion 

The aim of this study was to describe the development of a suitable hardware 

platform for use in experimental data collection of human swimming. A prototype 
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hardware platform was developed in order to record the swimmers movements in the 

pool. The platform closely resembles many reported system designs used in research 

studies and available commercially. A key feature of this hardware platform is the 

small size of the unit, made possible due to the components selected, leading to 

improved user comfort. The prototype system has been found to be functioning as 

intended and can be deemed suitable for data collection in applied settings. Future 

developments in the hardware platform may include the development of a custom 

designed board, as opposed to off-the-shelf components, thus leading to a smaller 

overall system size and potentially also enhanced processing power, all of which 

would improve the applicability of the system in applied settings.  

 
  



Robert Mooney PhD Thesis – Chapter 7 

 

303 

7.5 References 

[1] F. Dadashi, G. P. Millet, and K. Aminian, "A Bayesian approach for 

pervasive estimation of breaststroke velocity using a wearable IMU," 

Pervasive and Mobile Computing, vol. 19, pp. 37-46, 2015. 

[2] N. Chakravorti, T. Le Sage, S. Slawson, P. Conway, and A. West, "Design & 

implementation of an integrated performance monitoring tool for swimming 

to extract stroke information at real time," IEEE Transactions on Human-

Machine Systems, vol. 43, pp. 199-213, 2013. 

[3] Y. Ohgi, K. Kaneda, and A. Takakur, "Sensor data mining on the kinematical 

characteristics of the competitive swimming," Engineering of Sport 10, vol. 

72, pp. 829-834, 2014. 

[4] R. J. Mooney, G. Corley, A. Godfrey, L. Quinlan, and G. ÓLaighin, "Inertial 

sensor technology for elite swimming performance analysis: A systematic 

review.," Sensors, vol. 16, pp. 1-55, 2016. 

[5] M. J. Mathie, A. C. Coster, N. H. Lovell, and B. G. Celler, "Accelerometry: 

providing an integrated, practical method for long-term, ambulatory 

monitoring of human movement," Physiological Measurement, vol. 25, p. 

R1, 2004. 

[6] S. Tadigadapa and K. Mateti, "Piezoelectric MEMS sensors: state-of-the-art 

and perspectives," Measurement Science and Technology, vol. 20, p. 092001, 

2009. 

[7] R. P. Leland, Y. Lipkin, and A. Highsmith, "Adaptive oscillator control for a 

vibrational gyroscope," in Proceedings of the 2003 American Control 

Conference, 2003, pp. 3347-3352. 

[8] F. A. Magalhaes, G. Vannozzi, G. Gatta, and S. Fantozzi, "Wearable inertial 

sensors in swimming motion analysis: a systematic review," Journal of 

Sports Sciences, pp. 1-14, 2014. 

[9] M. Looney, "A simple calibration for MEMS gyroscopes," EDN Europe, pp. 

28-31, 2010. 



Robert Mooney PhD Thesis – Chapter 7 

 

304 

[10] F. Ferraris, U. Grimaldi, and M. Parvis, "Procedure for effortless in-field 

calibration of three-axial rate gyro and accelerometers," Sensors and 

Materials, vol. 7, pp. 311-330, 1995. 

[11] N. Davey, M. Anderson, and D. A. James, "Validation trial of an 

accelerometer-based sensor platform for swimming," Sports Technology, vol. 

1, pp. 202-207, 2008. 

[12] T. Le Sage, A. Bindel, P. P. Conway, L. M. Justham, S. E. Slawson, and A. 

A. West, "Embedded programming and real time signal processing of 

swimming strokes," Sports Engineering, vol. 14, pp. 1-14, 2011. 

 



 

305 

 

 

 

 

 

 

 

 

Chapter 8 – A Method for the 

Analysis of Swimming Turns using 

a Head-Worn Inertial Sensor 

 

 

 

 

 



Robert Mooney PhD Thesis – Chapter 8 

306 

 

The work described in Chapter 7 of this thesis has demonstrated that the 

prototype hardware platform is functional and provides a suitable system for the 

accurate acquisition of acceleration and angular velocity data in an aquatic 

environment. The prototype hardware system also meets many of the user 

requirements identified in Chapter 6, including factors such as the enclosure size, 

positioning at the back of the head and minimizing any interference with respect to 

the ability of the swimmer to perform their normal swimming activities. Therefore, 

the next stage of this PhD programme of research was to develop feature detection 

algorithms that can extract automatically the parameters that are of interest to elite 

coaches. Previous research has largely focused on high-level analyses of swimming 

performance, such as lap times and stroke counts. Whilst this information is of value, 

a more detailed and forensic analysis of specific components of swimming is 

regarded as being an essential evolution in the development of this technology. This 

will facilitate a more widespread acceptance in elite settings. Swimming turns are 

one such area of swimming performance that has been identified as being of vital 

importance to elite swimmers and coaches. The work described in this chapter 

therefore describes the development of feature detection algorithms for the purpose 

of analysing swimming turns, based on signals recorded with the prototype 

hardware platform described in the previous chapter of this thesis.  

 

8.1 Introduction 

The analysis of swimming turns has received much research attention as swim 

coaches and sports scientists have tried to understand the factors involved and how 

best to maximise the performance of the different variations of turns that are 

associated with competitive swimming events [1-3]. Swimming turns can be broken 

down into phases to facilitate a detailed quantitative analysis (Figure 8.1). 

Swimming coaches devote much training time to improving the quality of their 

swimmer’s turns during these phases but have expressed dissatisfaction with current 

technologies for supporting their efforts, which rely heavily on time-consuming 
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video-based systems [4, 5]. This is of concern as the needs of coaches are not being 

met and they are unable to perform their coaching roles adequately. Ultimately, 

coaches are heavily reliant on their own subjective interpretation of a swimmer’s 

turn technique. This may result in inefficiencies in training and consequently may 

delay a swimmer’s technical development and skill acquisition.  

 

 

Figure 8.1. Swimming turns can be broken down into phases to facilitate a detailed quantitative 
analysis. 

 

Emerging MEMS-based inertial sensor technologies have been incorporated into a 

number of analysis systems for use in aquatic environments [6-9]. Systems are 

largely based on the use of accelerometer and/or gyroscope sensors. A range of 

swimming parameters have been reported and validated in the literature, such as 

stroke counts and lap times [10]. A key advantage of this technology is that it has the 

capability of providing quantitative feedback to the coach and swimmer more rapidly 

than with traditional video-based methods. Consequently, this is an active area of 

ongoing commercial  and academic research activity [10, 11].  

 

As research developments in this area continue, it is likely that MEMS-based 

technologies will be utilised for ever more specific and detailed analyses of 

swimming performance. Currently, this gap in the research knowledge is hampering 

their applicability in elite settings. One such area that offers potential is in the 

analysis of turns and some preliminary studies have suggested the possibility of such 

an approach [12, 13]. Lee, et al. [13] demonstrated that key features of the frontcrawl 

turn such as the instant of wall push-off and rotation can be detected using an 

accelerometer and that differences in turning technique between swimmers of 

differing abilities can also be detected. Other research examined the potential to 

measure variables such as rotation time, wall contact time and glide time, again 

during a frontcrawl turn [14]. Lacking from these early works however was an 

examination of turns for the other swimming strokes and an objective assessment of 
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the accuracy of the algorithms through experimental testing. Importantly, recent 

research indicates that such a system would be of interest to elite coaches, who are as 

yet reluctant to adopt sensor based technologies in their own training environments 

[4]. However, to date few attempts have been made at developing feature detection 

algorithms for the purpose of quantifying variables related to the performance of the 

turn, based on the signal output of a MEMS system. Consequently, there remains  a 

knowledge gap regarding the feasibility of this approach. Therefore, the aim of this 

study is to describe the development of feature detection algorithms that can 

determine quantitative parameters related to swimming turns based on the output 

signal recorded from a head worn inertial sensor device.  

 

8.2 Post-Processing of Raw Output Signal 

Data used for algorithm development were obtained from national level competitive 

swimmers  (N=12, 8 male, 4 female; 17.8 ± 2.3 years; 1.71 ± 0.08 m; 69.5 ± 11.3 

kg). Raw data related to swimming activity were stored on the MicroSD card of the 

prototype system described in Chapter 7 of this PhD thesis. These raw data are 

imported into MATLAB for post-processing (R2013a, MathWorks Inc., Natick, MA.). 

Once these data are imported into MATLAB, further signal processing and analysis 

can take place in order to extract meaningful information from the original raw 

signal values that are measured with this prototype device.  

 

8.2.1 Calibration Procedure 

A calibration method was performed in order to determine the offset and sensitivity 

of the sensors. This procedure involved recording the voltage output on a flat surface 

under static conditions and with the device orientated sequentially about each of the 

axes, following industry standard recommendations [15, 16]. The offset is the 

voltage output when acceleration is at 0 g. The sensitivity is the relationship between 

the changes in output for a given change in input. Acceleration (m·s-2) values were 

calculated from the ADC output, with angular velocity (deg·s-1) determined using a 

similar method using a scale factor determined during the calibration process.  
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8.2.2 Filtering Procedure 

A filtering process of the raw data is necessary to remove unwanted noise 

components from the signal. During the prototype development process, different 

low-pass filter design parameters were considered through examination of various 

filter responses and power spectral density analysis, as shown in Figure 8.2. The raw 

signal was characterised by low frequency components associated with swimming 

activities. Ultimately, data were filtered using a low pass 1st order Butterworth filter 

with a cut-off frequency of 1 Hz. These filter parameters are appropriate for a head 

mounted device and are consistent with previous research [10, 17]. The filter 

removes high frequency information that may occur as a result of vibrations or other 

rapid movements, leaving only the information of interest. A comparison of the raw 

and filtered signal, for different frequencies, is presented in Figure 8.3. These filtered 

acceleration and angular velocity signals that are obtained can now be used for the 

development of feature detection algorithms, in order to obtain swimming related 

parameters of interest. The cyclical, regular and repeating pattern of movements 

found during each of the four competitive swimming strokes is a key feature that 

allows MEMS technology to offer such potential in the sport for analytical purposes. 

Researchers can exploit the regular pattern to automatically detect parameters of 

interest, as has been already documented for parameters such as lap time and stroke 

count, for example [18, 19]. It is postulated that the same is also true during the 

different types of turns that can be performed; that there is a characteristic pattern of 

acceleration and angular velocity arising from the swimmers movement during a turn 

that can be recognised from the signal output of a sensor based system.  
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Figure 8.2. Comparison of the frequency response to different low pass filter designs. 
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Figure 8.3. Comparison of the raw (blue) versus filtered (red) signal output for various filter 
options. Data were ultimately filtered using a 1st order low pass Butterworth filter with a 1 Hz 
cut-off frequency. 
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8.3 Feature Detection Algorithm Development 

Figure 8.4 illustrates the feature detection algorithm development process utilised. 

By positioning the prototype system at the back of a swimmers head, the device 

records the three dimensional acceleration and angular velocity profile of the 

swimmer as they perform multiple laps of the pool. These recordings can be 

imported into a signal processing software such as MATLAB and swimming intervals 

can be readily distinguished due to the regular and repeating nature of the signal 

signatures obtained. Each turn that is performed can be isolated from these data sets. 

Different segments of a turn, including the approach, rotation, glide and stroke 

resumption phases, can then be identified through the comparison of the output 

signals with video footage. By developing feature detection algorithms to process 

these signals, it is possible to automatically generate performance related 

information for swimmers’ turns. The software implementation required to run these 

algorithms were developed as part of this thesis specifically for this purpose. 
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Figure 8.4. Representation of the process of obtaining an output signal from a head worn 
inertial sensor device. The sensor is worn at the back of the head whilst the swimmer completes 
the swimming interval. The signal output is obtained and each turn can be extracted so that the 
phases of the turn can be distinguished through comparison with video images. Photographic 
images reproduced with permission from Slawson, et al. [12]. 

 

The algorithmic process of extracting useful performance related information from 

signals recorded using the head-worn prototype hardware platform involves several 

distinct steps and is summarised in Figure 8.5.  
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Figure 8.5. Overview of the feature detection process.  

 

The imported acceleration and angular velocity data typically involve data acquired 

over several minutes of recording, which includes both swimming and rest intervals. 

Therefore the first stage in the process is to identify and isolate the swimming 

intervals. These swimming intervals may involve several laps of swimming. For 

each interval, it is important to identify which of the four competitive swimming 

strokes is performed as subsequent signal processing steps are stroke dependent. 

Once the stroke style has been identified, the next stage in the process is to determine 

the lap time for each of the laps performed. This process is also important as the wall 

contact events that represent each turn performed are also identified using this 

algorithm. The number of strokes performed for each lap is then determined. This 

allows for the turn phases to be identified and isolated for any given swimming 
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interval. The next process involves assessing each of the identified turn phases and 

calculating key performance related parameters by breaking down the turn into its 

component parts, such as the approach, rotation and glide phases. The calculated 

parameters, with their definitions, are summarised in  

 

Table 8.1. Finally, these parameters are output from the system in a suitable format 

for review by the coach and swimmer.  

 

Table 8.1. Definition of terms for each of the feedback parameters determined using the feature 
detection algorithms. Parameters which do not relate to all four swimming strokes are 
highlighted in parenthesis.  

Parameter Definition 

Lap time Time to complete each pool length performed 

Stroke count The number of arm strokes performed for a given lap of the pool 

Turn time Time from the start of the 2nd / 3rd last arm stroke on approach until the end of 
the 2nd / 3rd arm stroke after push-off (2nd: breaststroke / butterfly; 3rd: 

frontcrawl / backstroke) 

Time in Time from the start of the 2nd/3rd last arm stroke on approach to wall contact 

Time out Time from push-off to the end of the 2nd / 3rd arm stroke 

Breakout time Time from push-off to 1st arm stroke 

Rotation time Time from start of last arm stroke to wall contact (frontcrawl / backstroke) 

Wall contact time Time from 1st contact with wall to push-off 

Hands to feet time  Time from 1st contact with wall with hands to first contact with feet 
(breaststroke / butterfly) 

Feet contact time Time from 1st contact with wall with feet to push-off  (breaststroke / butterfly) 

Turn direction Direction of the swimmers movement during rotation (backstroke / breaststroke 
/ butterfly) 

Glide time Time from push-off to first dolphin kick 

Pulldown time Time to complete the pulldown and arm recovery phase (breaststroke) 

Kick count Number of dolphin kicks performed after push-off and before stroke initiation 
(frontcrawl / backstroke / butterfly) 

Kick time Time taken for the dolphin kicks after push-off from the wall to be performed 
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8.3.1 Swimming Interval Identification 

The first stage in the feature detection process is to isolate swimming intervals from 

periods of rest or other unwanted data. This is achieved by exploiting the changing 

orientation of the swimmer as they transition from a vertical position (when standing 

or floating during rest) to a horizontal position (when swimming), as shown in 

Figure 8.6. The swimming interval identification algorithm exploits these transitions 

to get a rough estimate of the beginning and end times of each swimming interval. A 

more precise determination of the start and end points is established at a later stage 

to allow for lap times to be calculated. 

 

   

(a)           (b) 

   

(c)      (d) 

Figure 8.6. Swimming intervals can be distinguished from the changing orientation of the 
swimmers head at the start (a, b) and end (c, d) of a swimming interval.  
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The algorithm, which is described in Figure 8.7, finds the points where this 

orientation change occurs using a thresholding method applied to the X-axis 

acceleration (forward acceleration, or acceleration in the direction of movement), 

and creates an array of time stamps that approximate the start and end of each 

swimming interval.  

 

Figure 8.7. Flowchart of the swimming interval identification algorithm. 
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A 5 s moving average filter is applied to the X-axis acceleration signal prior to 

interval identification to facilitate ease of identification of these intervals. In Figure 

8.8, regular swimming action results in acceleration values repeatedly approaching 

9.81 m·s-2 (1 g). After the moving average filter is applied, the smoothing effect 

eliminates this unwanted noise (Figure 8.9).  

 

Figure 8.8. Sample X-axis acceleration data for a swimming interval. Periods of rest can be seen 
at the start and end of the interval, when the acceleration value approximates 9.81 m·s-2 (1 g), as 
the swimmer’s head is vertically orientated. Swimming activity can be readily identified by 
tracking the change in the acceleration value across a moving window.  

 

Figure 8.9. Calculating a moving average over a 5 s window creates a smoother signal, aiding 
the identification of rest periods from swimming activity. 

 

A threshold value of 8.0 m·s-2 was selected because when a swimmer is standing or 

has their head upright then the value of the X-axis acceleration will be approximately 
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1 g. This value quickly drops when a swimmer transitions to a swimming posture. 

The opposite occurs at the end of a swimming interval as the swimmer returns to a 

vertical position. The algorithm sets flags for when the threshold is crossed, with the 

flag set to 0 when the signal value is less than the threshold and the flag is set to 1 

when the value is greater than the threshold. This creates a signal shown in Figure 

8.10. Unwanted data, such as movements that occur at the beginning of data 

collection before any swimming has commenced or at the end of the activity before 

the prototype is switched off, need to be removed. This can readily be seen in Figure 

8.10 with a large number of rapid fluctuations in the signal between 0 and 1 on the 

left hand side of the image, which occurred as the swimmer entered the water and 

prepared for the swimming activity to follow.  

 

Figure 8.10. Sample output of the interval identification process, showing a large sample of the 
swimming session that was completed. A threshold value is established that can track when a 
swimmer’s head is vertical (during rest) and when the swimmers orientation changes at the 
start and end of a swimming interval. This is used to automatically track the start and end 
points of each interval. Rapid fluctuations on the left side of the image represent movement that 
occurs when the prototype is first positioned on the swimmer’s head and the swimmer first 
enters the water and readies themselves for swimming. Swimming intervals can be identifed, 
with three 100 m distance intervals first completed (in the middle of the image), followed by 
four shorter 50 m intervals (towards the right of the image).  

 

These unwanted data points are eliminated using a three stage process. Firstly, if the 

first identified end point occurs before the first identified start point, then this first 

end point is removed. Secondly, the total number of end points is compared to the 

number of start points and any additional end points are removed if necessary to 
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ensure an equal number of start and end points is achieved. Thirdly, a test for a 

minimum interval duration of 20 s is conducted and any start/end point pair that is 

not found to be of at least 20 s in duration is eliminated. This time value represents 

the minimum time that it would take a competitive swimmer to complete two lengths 

of a 25 m pool. The algorithm then tracks when the flag values are changing, with a 

change from 1 to 0 indicating an interval start point, whilst a change from 0 to 1 is 

indicative of an interval end point (Figure 8.11). 

 

Figure 8.11. Representative sample of the output of the interval identification process. 
Swimming and resting activities can be distinguished to automatically track the start (green 
circles) and end (red circles) points of a swimming interval.  

 

Finally, an array is created, called swimInterval, which contains the time stamp data 

values for all intervals performed (Figure 8.12). The algorithm then determines how 

many intervals were completed and automatically names each interval as “Interval 

1”; “Interval 2”, etc. These time stamp data are then used in subsequent stages of the 

feature detection process to extract the data of interest from the acceleration and 

angular velocity recordings (Figure 8.13). 
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Figure 8.12. An array of time stamps (in ms) that are associated with the start (left hand 
column) and end (right hand column) points of each of the detected swimming intervals. In this 
example, there were eight intervals performed by the swimmer.  

10          20 30           40           50           60           70          80         
Time (s)

10          20 30           40           50           60           70          80         

 

Figure 8.13. Values in the swimInterval array are used to extract swimming intervals from the 
filtered acceleration and angular velocity signal for all three axes. A sample of butterfly 
swimming interval is provided here, which contains four laps of swimming (100 m total). Three 
turning events can also be readily seen. 
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8.3.2 Stroke Style Identification 

The next stage in the feature detection algorithm development is to determine which 

swimming stroke has been performed for any given interval. Specific characteristics 

of the acceleration profile for the four competitive swimming strokes allow for 

swimming stroke type to be detected, as each stroke displays unique features for 

each of the three axes of acceleration (Figure 8.14).  

 

 

Figure 8.14. Sample acceleration output for each of the four competitive swimming strokes. 
Characteristic patterns of each stroke can be used to automatically identify stroke styles. 
Reproduced with permissions from Davey, et al. [20]. 

 

The developed algorithm uses a combination of established methodologies [18, 21] , 

with appropriate modifications made to reflect the different sensor placement 

position of the prototype device. Davey, et al. [18]  demonstrated that as a swimmer 



Robert Mooney PhD Thesis – Chapter 8 

323 

lies in a supine position when performing the backstroke, then consequently the Z-

axis signal (i.e., acceleration in the anterio-posterior direction) outputs a value of 

approximately +1 g (+9.81 m∙s-2) during this stroke. This is in contrast to the other 

three strokes in which the Z-axis tends towards −1 g (-9.81 m∙s-2) as the swimmer is 

in a prone position when performing these strokes and the device will be orientated 

in the opposite direction (Figure 8.15). Additionally, whilst the X and Y axes during 

all four strokes appear to show similarities, there are differences in the magnitude 

and spread of the local maxima and minima that can be recognized [18, 21]. Ohgi, et 

al. [21] determined that these differences could be exploited by calculating simple 

descriptive statistical measures, such as mean and variance. Stroke identification is 

then performed by comparing these values against pre-determined threshold values 

(Figure 8.16).  

 

 

Figure 8.15. Threshold values used in a stroke identification algorithm to distinguish between 
each of the four competitive swimming strokes. . Reproduced with permissions from Davey, et 
al. [18]. 
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Figure 8.16. Stroke identification classification model based on descriptive statistical features of 
all three axes of the acceleration signal from a chest worn device. Thresholds were set to the 
data from each of the three axes (values in m∙s-2) in order to classify stroke styles. Reproduced 
with permissions from Ohgi, et al. [21]. 

 

The algorithm developed in this thesis work combines these two approaches and the 

algorithm process flowchart is shown in Figure 8.17. Definitions for each of the 

descriptive statistical features used in the stroke style identification algorithm are 

provided in Table 8.2. 
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Figure 8.17. Flowchart of the stroke style identification algorithm. All threshold vaues shown 
are acceleration values (m·s-2). 
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Table 8.2. Definition of terms for each of the descriptive statistical features used in the stroke 
style identification algorithm. 

Feature Definition of term 

Mean The sum of the sampled values divided by the number of items in the sample. 

� =̅
�� + �� + ∙∙∙  + ��

�
 

Median The middle value of a data set, i.e., the value separating the higher half of a data sample 
from the lower half.  

Kurtosis The sharpness of the peak of a frequency-distribution curve. A measure of whether the 
data are heavy-tailed or light-tailed relative to a normal distribution. Where μ4 is the 
fourth central moment and σ is the standard deviation. 

����[�]=  
��

σ�

 

Variance Measurement of how far a set of numbers are spread out from the mean value. Where the 
variance of a random variable X is the expected value (E[X]), of the squared deviation 
from the mean of X (μ = E[X]). 

���[�]= �[(� − �)�] 

Energy Measurement of signal energy determined for each axis of acceleration. Determined by 
calculating the average value for the axis, subtracting the average from each sample 
value, summing the absolute values, dividing by the length of the data set and rounding to 
the nearest integer value. 

�� =  �
∑ (|� − �|̅)

�
� 

  

 

The mean value for the Z-axis acceleration (acceleration in the anterio-posterior 

direction) reflects the position of the swimmer in the water whilst swimming (Figure 

8.18). When the swimmer is prone, during frontcrawl, breaststroke and butterfly 

swimming, this value will be greater than 0 m·s-2. Conversely, when the swimmer is 

in a supine position during backstroke the value for the Z-axis mean will be less than 

0 m·s-2. By comparing the calculated value for the Z-axis mean for a given 

swimming interval, backstroke can readily be distinguished from the other strokes 

using this metric. 
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Figure 8.18. Comparison of Z-axis acceleration signals.  

 

The next step is to calculate and compare the other descriptive information, 

including median, kurtosis and variance. In Figure 8.19 it can be seen that the X-axis 

acceleration signal appears to be similar for frontcrawl/backstroke and also for 

breaststroke/butterfly. Moreover, the Y-axis signal for breaststroke/butterfly also 

appears to be very similar on visual inspection (Figure 8.20). However determination 

of the descriptive information for all three axes of acceleration allows for automatic 

identification to take place (Table 8.3).  
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Figure 8.19. Comparison of X-axis acceleration signals.  

 

 

Figure 8.20. Comparison of Y-axis acceleration signals.  
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Table 8.3. Descriptive statistical information (mean ±SD) related to the acceleration signal for 
all four swimming styles. Data used to set thresholds in the stroke style identification algorithm 
are underlined. All values are in m·s-2. 

  Frontcrawl Backstroke Breaststroke Butterfly 

     
Mean 

X-axis 3.9 (0.6) 5.2 (1.1) 4.3 (1.1) 3.6 (1.1) 

Y-axis 0.7 (1.1) -0.7 (1.1) 0.2 (0.5) 0.3 (0.6) 

Z-axis 5.1 (1.1) -7.0 (1.3) 6.9 (0.6) 7.3 (0.6) 

Median 

X-axis 4.5 (0.5) 6.1 (1.6) 4.6 (1.8) 3.1 (1.4) 

Y-axis 0.5 (0.3) -0.6 (1.2) 0.5 (0.5) 0.4 (0.4) 

Z-axis 7.0 (1.1) -7.2 (1.3) 8.2 (0.7) 8.2 (0.5) 

Kurtosis 

X-axis 13.6 (4.0) 18.8 (5.7) 2.7 (0.3) 2.4 (0.2) 

Y-axis 3.9 (0.7) 17.2 (5.9) 23.7 (7.9) 17.4 (2.4) 

Z-axis 4.0 (1.4) 11.6 (2.6) 4.0 (0.9) 4.9 (1.0) 

Variance 

X-axis 11.7 (0.5) 11.1 (2.5) 14.6 (3.4) 11.4 (3.2) 

Y-axis 16.0 (3.7) 2.0 (0.5) 2.7 (0.6) 3.0 (0.6) 

Z-axis 21.2 (6.2) 6.5 (1.8) 13.8 (5.1) 15.1 (1.8) 

Energy 

X-axis 1.0 (0.0) 1.0 (0.0) 0.4 (0.5) 0.4 (0.5) 

Y-axis 2.3 (1.5) 2.0 (1.7) 0.8 (0.4) 0.6 (0.5) 

Z-axis 1.3 (0.6) 14.0 (2.0) 0.2 (0.4) 0.0 (0.0) 
          

 

For example, by collating data for multiple swimmers during the development phase, 

it was found that the X-axis kurtosis averaged 13.6 ±4.0 m∙s-2, 18.8 ±5.7 m∙s-2, 2.7 

±0.3 m∙s-2 and 2.4 ±0.2 m∙s-2, for frontcrawl, backstroke, breaststroke and butterfly, 

respectively. Furthermore, the average value for the Y-axis kurtosis was found to 

exceed 17.0 m∙s-2 in all strokes except for frontcrawl, which had an average Y-axis 

kurtosis value of 3.9 ±0.7 m∙s-2. These differences allow for thresholds to be 

established. Ohgi, et al. [21] had previously also determined the signal skewness. 

However, in this thesis work, this was not found to provide a sufficiently stable and 

unique level of measurement to be used in this algorithm.  

 

The signal energy, previously described by Davey, et al. [18], was not used in the 

decision making process for determining butterfly or breaststroke swimming as it 
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was not found to improve the distinction between these strokes, possibly owing to 

the head mounted sensor position. Instead, the signal median was determined and 

used as a method of differentiating breaststroke from butterfly. The signal energy 

was however successfully used in the determination of both frontcrawl and 

backstroke.  

 

It has been found that a head worn sensor device can be used to determine swimming 

styles by adapting existing methodologies to this sensor location and through the 

modification of threshold values. The correct determination of stroke style is 

important as all subsequent processes are tailored to suit the identified style. The 

next stage in the feature detection algorithm development process is to determine lap 

times.  

 

8.3.3 Lap Time Detection 

Several procedures for determining lap times have been described in the literature 

and typically involve detecting peaks in the acceleration signal that correspond to 

wall contact events [10]. These peaks can be seen readily in Figure 8.18, for 

example, with three visible peaks representing the three turns performed during a 

100 m swimming interval. A similar process for determining lap times has been 

followed in this thesis work, albeit with modifications to allow for lap times to be 

determined for all four swimming strokes. The process flowchart is illustrated in 

Figure 8.21. The algorithm involves three stages; (i) identification of the precise start 

of a swimming interval; (ii) identification of the wall contact events that are 

associated with turns during a swimming interval and (iii) identification of the 

precise end of a swimming interval when a swimmer returns to contact the wall. 
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Figure 8.21. Lap time algorithm overview flowchart. 

 

As described, the start of the first lap is characterised by a changing orientation of 

the swimmer as they commence swimming activity. Stage 1 of the lap time 

algorithm determines a more precise time for this event compared with the earlier 

approximation that was determined in the swimming interval identification 

algorithm. The algorithm process flowchart for Stage 1 is illustrated in Figure 8.21.  
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The algorithm first isolates a 40 s window in the X-axis acceleration signal where the 

start occurs (Figure 8.23). This window begins 10 s prior to the time stamp value 

associated with the close approximation, as determined by the interval identification 

algorithm (shown in Figure 8.12 above). Therefore, the window also includes 30 s of 

data after this approximation.  

 

 

Figure 8.22. Flowchart describing Stage 1 of the lap time algorithm.  
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Figure 8.23. A 40 s window in the X-axis acceleration data is isolated to determine where the 
start of the first lap in a swimming interval occurs. The red line indicates the point where the 
close approximation of the lap start was originally determined as part of the swimming interval 
identification algorithm. 

 

Next the slope of the data during this window is calculated. The slope values are 

determined over three sample points and rounded to the nearest integer in order to 

eliminate rapid local slope fluctuations that naturally occur in the signal, as can be 

seen by comparing Figure 8.24 and Figure 8.25. The rounding process isolates only 

the most rapidly changing slope values. The algorithm selects the first such 

occurrence when the slope value is -1. This can be seen in Figure 8.25 at 10.2 s.  

 

Figure 8.24. Values for the slope of the X-axis signal without rounding of the data values.  
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Figure 8.25. Values for the slope of the X-axis signal with rounding of the data values. The first 
occurance of a slope value dropping below 0 to -1, at 10.2 s, is the point of interest. 

 

Once the rapidly falling slope is found, the algorithm then finds the largest local 

acceleration peak that occurs within the preceding 1 s of this point, which is then 

determined to be the start of the first lap. In this representative example, this yields a 

start point of the first lap that is different from the close approximation determined 

earlier by 0.46 s, as seen in Figure 8.26.  

 

Figure 8.26. The location of the start of the first lap is identified as the local maximum in the X-
axis acceleration signal that preceeds the rapid fall in acceleration that is associated with the 
changing orientation of the swimmer. This occurs at 9.54 s (red circle) 
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The second stage of the lap time detection algorithm involves the identification of 

wall contact events that occur as a swimmer performs a turn at the end of a lap. 

These wall contact events are readily detected using a peak detection algorithm, 

identifying the minimum peaks in the signal that represent the rapidly changing 

orientation of the swimmer as they rotate during a turn (Figure 8.27). This approach 

has been described frequently in the extant literature [14, 22]. Adaptations to the 

algorithm are required for specific strokes. The algorithm flowchart for Stage 2 is 

illustrated in Figure 8.28 below. 

 

Figure 8.27. Wall contact events (circled in red), which are representative of turns that are 
performed during a swimming interval, can be identified using a peak detection algorithm. In 
this example, seven wall contact events (or turns) were detected during this 200 m frontcrawl 
interval performed in a 25 m pool. 
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STAGE 2:
Identify the wall contact event(s)

Set Minimum separation distance 
between peaks (15 s)

Isolate X-axis acceleration

Find peaks that are less than threshold

End

IF

Isolate Z-axis acceleration

Set threshold value as 75% of min value

Check values against minimum separation distance 
and remove unwanted values

Find peaks that are less than threshold
(wall push-off)

Set threshold value as 75% of min value

Isolate Y-axis acceleration

Hand contact with wall

Find last zero-crossing (from negative to 
positive) prior to wall push-off

Feet contact with wall

Frontcrawl
Backstroke

Breaststroke
Butterfly

 

Figure 8.28. Flowchart describing Stage 2 of the lap time algorithm.  

 

A minimum separation distance of 15 s is first defined to ensure that only wall 

contact events related to turns are identified and so that in the instance of a local 

maximum occurring as a result of normal swimming activity it is eliminated. For 

frontcrawl and backstroke the X-axis signal is used to identify the instant that the 

swimmers feet make contact with the wall (Figure 8.27). The maximum value is 

found, which represents the largest peak in the signal, and a threshold value is set to 

75% of this maximum. This is completed in order to identify only those peaks 

associated with turning events and not local peaks of smaller magnitude that are 
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associated with regular swimming activity. The values are also compared against the 

minimum separation distance to ensure that they are valid wall contact events. In the 

case of frontcrawl and backstroke, this will be the instant of feet making contact with 

the wall.  

 

In contrast, butterfly and breaststroke swimming involve open turns during which 

the swimmer touches the wall with the hands first and then the feet. It is the instant 

of wall contact with the hands that marks the end of the lap for timing purposes. 

Therefore a modification to the previously described process is required. For these 

swimming strokes, peak detection along the Z-axis acceleration is employed. Again, 

the maximum value is found and used to establish a threshold. Peaks with a 

magnitude value exceeding 75% of this maximum are detected. These peaks mark 

the incidences of wall push-off. The algorithm then works back from this point to 

find the location of hand contact. This is achieved using a zero-crossing algorithm 

applied to the Y-axis acceleration signal for the 5 s that precedes the wall push-off. 

The zero-crossing process identifies when the acceleration changes from negative to 

positive, with the last such change that occurs prior to the wall push-off determined 

to be the instant of hand contact with the wall (Figure 8.29).  

 

Figure 8.29. For breaststroke and butterfly turns, the identification of wall contact first requires 
the identification of the push-off using peak detection along the Z-axis. From this point, it is 
possible to work back to the zero-crossing event on the Y-axis that corresponds to the hand 
contact with the wall. 
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Stage 3 of the lap time detection algorithm involves locating the end of the final lap 

of swimming. The algorithm process flowchart is illustrated in Figure 8.30. The end 

of an interval is determined in a similar fashion to the identification of the interval 

start. Firstly, a window is examined where the event is likely to have occurred. This 

window starts 10 s after the final turn event identified in Stage 2 and continues until 

the end of the interval. The slope of the signal is again determined, using the same 

process as described earlier. The only change in this case is that it is the rising slope, 

not the falling slope, which is of interest. Once this is located, the next local 

maximum in the signal that exceeds the 8.5 m·s-2 threshold is determined to be the 

final wall contact event as the swimmer’s head orientation changes after wall contact 

is made (Figure 8.31). Subsequent to this the X-axis value returns to a relatively 

steady state output of approximately 9.81 m·s-2, as the swimmer’s head returns to a 

vertical position. 

 

Figure 8.30. Flowchart describing Stage 3 of the lap time algorithm.  
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Figure 8.31. Identification of the end of a swimming interval, which is characterised by a rapid 
change in acceleration about the X-axis as the swimmer changes their orientation in the water. 
The peak in the signal following this orientation change is highlighted with the red circle.  

 

Once the data for these three stages of wall contact events have been determined, the 

time stamps for these data are put into an array and then the time between each of 

these events is calculated. A sample of the output of the lap time algorithm is 

provided in Figure 8.32 below. An array of times is created, representing the 

calculated lap time for each lap performed in the swimming interval that was 

selected. The average speed is also calculated and reported. This is determined by 

dividing the pool length (25 m in this study) by the time taken to complete each lap.  

 

Lap Times                Average Speed

Lap 1 Time = 15.9 s     1.57 m/s

Lap 2 Time = 17.6 s     1.42 m/s

Lap 3 Time = 18.35 s     1.36 m/s

Lap 4 Time = 19.11 s     1.31 m/s

Lap 5 Time = 18.94 s     1.32 m/s

Lap 6 Time = 19.36 s     1.29 m/s

Lap 7 Time = 19.51 s     1.28 m/s

Lap 8 Time = 18.29 s     1.37 m/s

 

Figure 8.32. The output of the lap time algorithm. An array of lap times for each lap performed 
during the selected swimming interval is produced. The swimmer’s average speed is also 
reported for each lap.  
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8.3.4 Stroke Count Detection 

Stroke counts are not a primary objective in this study but rather are required in 

order to define the turn phase. During the development of the use case, described in 

Chapter 6, swim coaches agreed that a definition of a turn that is based on a set 

number of strokes performed both before and after the turn itself is acceptable. This 

definition is required as it is not possible to accurately determine a swimmer’s 

position in the pool or the distance they have travelled during a given lap using the 

prototype system. Consensus was reached that three strokes be used in the case of 

frontcrawl and backstroke, whilst two strokes were appropriate for breaststroke and 

butterfly. Interestingly, this also is perceived by coaches to provide an approximation 

of five metres from the wall on approach, equating well with a standard definition of 

the turn phase based on distance. The time of the breakout stroke is also included as 

it is another important parameter to evaluate with analysing turn performance. 

Similar to the lap time, accurate detection methods for determining stroke count are 

well described in the literature [18, 23, 24]. Stroke counts are important coaching 

parameters and methods may involve either a zero-crossing approach [25, 26] or the 

detection and summation of acceleration peaks for a given lap [18, 24]. The majority 

of previous studies have focused on frontcrawl stroke count methods, typically 

involving the medio-lateral acceleration signal [18, 26] (Figure 8.33). However, this 

axis is not suitable in all cases and for all sensor locations and therefore different 

acceleration axes are required for the other three swimming strokes [25, 27]. A 

similar approach has been taken in this PhD work by selecting the most suitable axis 

for a given swimming style. The algorithm process flowchart is illustrated in Figure 

8.34. 

 

Figure 8.33. The regularly repeating body roll during frontcrawl swimming allows for a stroke 
count algorithm based on tracking peaks and troughs in the medio-lateral acceleration signal. 
Reproduced with permissions from Davey, Anderson and James [18]. 
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Figure 8.34. Stroke count detection algorithm. This process determines the number of strokes 

performed during each lap and is also used to define the turn phase based on when a set 

number of strokes are performed both before and after the wall contact event. For frontcrawl 

and backstroke, the turn phase is from the 3rd last stroke on approach to the 3rd stroke after the 

push-off. For breaststroke and butterfly, two strokes are used.  
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The algorithm takes inputs from the previous lap time detection algorithm, using the 

identified wall contact events to create an array of the start and end points of each lap 

that were performed in the selected swimming interval. Two further arrays are also 

defined. The first is created to store the number of strokes completed for each lap, 

once determined. A second array is created that will hold the time stamps for the 

start and end point of each turn. These time stamps are determined based on the 

number of strokes for each lap. For example, if a swimmer completes two laps of 

frontcrawl and performs ten strokes for each lap, then the turn phase is defined as 

being from the third last stroke in lap one to the third stroke in lap two.  The 

algorithm involves a zero-crossing calculation in the case of frontcrawl or peak 

detection methods for the other three strokes. If frontcrawl swimming is detected, the 

Y-axis acceleration signal is analysed. In the case of the other strokes, it is the X-axis 

acceleration that is used. Once the stroke style has been checked, the data is 

smoothed out using a moving average filter across a 0.5 s window. This is necessary 

as the initial signal contains small local fluctuations that make identification of each 

peak, representing the arm strokes, difficult, as seen in Figure 8.35. In contrast, the 

filtered version of the same data signal demonstrates a smoother pattern in Figure 

8.36. Each peak, which is representative of individual strokes, can then be more 

readily determined and counted.  

 

Figure 8.35. Stroke count detection involves the identification of peaks in the X-axis acceleration 
signal that occur during each lap of the swimming interval.  
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Figure 8.36. The detection of each peak in the X-axis acceleration signal for stroke count 
determination is made easier by using a moving average filterover a 0.5 s window to smooth out 
the signal.  

 

Once the filtered signal has been obtained, each lap performed is processed in turn, 

using the appropriate method based on the stroke style. The process for three of the 

strokes (butterfly, breaststroke, backstroke) involves peak detection of the X-axis 

acceleration. Different thresholds were used for each stroke. The threshold was set to 

10% of the maximum value in butterfly as the peak amplitude alternates between a 

large peak and a small peak (Figure 8.37). This occurs as a result of the requirement 

for swimmers to lift their head to breathe, usually every two strokes. The algorithm 

detects the number of peaks that exceed the threshold. Any peaks that occur as a 

result of the turn are removed. Dolphin kicks performed following the push-off can 

also be identified but do not produce the amplitude of signal necessary to exceed the 

threshold.  
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Figure 8.37. Peak detection is performed on the X-axis acceleration signal to determine the 
number of strokes performed during a lap of butterfly swimming. The strokes performed are 
highlighted in the red circles, whilst unwanted data (blue circles) at the start and end of the lap 
are identified and removed.  

 

For breaststroke, the threshold was 60% of the maximum value as the peak 

amplitude is more consistent owing to the fact that swimmers breathe following 

every stroke performed (Figure 8.38). The pulldown stroke can also be recognised in 

the signal, occurring following the push-off from the wall. The amplitude of this 

signal feature was not found to be sufficient to exceed the 60% threshold. 
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Figure 8.38. Peak detection is performed on the X-axis acceleration signal to determine the 
number of strokes performed during a lap of breaststroke swimming. The strokes performed 
are highlighted in the red circles, whilst unwanted data (blue circles) at the start and end of the 
lap are identified and removed.  

 

In the case of backstroke the threshold was not established in relation to a maximum 

value. Instead, the threshold was set to 4.0 m·s-2. The reason for this is that because 

the swimmer aims to keep the head steady the signal output for the head worn 

prototype is relatively stable and consistently greater than this threshold (Figure 

8.39). Additionally, dolphin kicks that are performed do not produce this amplitude 

of signal.  
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Figure 8.39. Peak detection is performed on the X-axis acceleration signal to determine the 
number of strokes performed during a lap of backstroke swimming. The strokes performed are 
highlighted in the red circles, whilst unwanted data (blue circles) at the start and end of the lap 
are identified and removed.  

 

For frontcrawl, rather than performing peak detection, a zero-crossing detection 

algorithm on the Y-axis acceleration is performed. The reason for not using the X-

axis can readily be seen in Figure 8.40 as no discernible pattern related to specific 

arm strokes can be distinguished.  
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Figure 8.40. X-axis acceleration signal during a lap of frontcrawl swimming.  

 

The Y-axis acceleration is affected by the longitudinal rotation of the swimmer as 

they move from side to side during frontcrawl (Figure 8.41). This signal output 

therefore provides a more stable method of determining the number of strokes 

performed. It could be possible to count the peaks in this signal using a similar 

methodology described above except for the fact that the signal magnitude is altered 

depending on whether a breath is taken. As shown in Figure 8.41, when a swimmer 

takes a breath the signal amplitude is magnified. Additionally, the direction of this 

signal (either positive or negative) depends on which side the swimmer turns to 

breathe. As a consequence, a zero-crossing approach was deemed more appropriate. 

Tracking the zero-crossing events should also prove more accurate, as this relates to 

the point when the swimmer is flat in the water, which should correspond to the 

point of hand entry. The algorithm counts the number of times the Y-axis 

acceleration value crosses the 0 m·s-2 acceleration line. This initial count is then 

modified if any of the zero-crossings were deemed to occur within the first 3 s of a 

lap or the last 1 s of a lap as this would indicate that the event is part of a turn as 

opposed to a stroke. Once the final stroke count is established, the time stamps 

associated with the first stroke (breakout), third stroke (end of turn) and the third last 

stroke (start of the next turn) are determined and used to define the turn phase.  
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Figure 8.41. Zero-crossing detection is performed on the Y-axis acceleration signal to determine 
the number of strokes performed during a lap of frontcrawl swimming. The strokes performed 
are highlighted in the red circles, whilst unwanted data (blue circles) at the start and end of the 
lap are identified and removed.  

 

A sample of the output of the stroke count algorithm is provided in Figure 8.42. An 

array of stroke count data is created, representing the calculated number of strokes 

performed for each lap of the swimming interval that was selected. These values can 

be compared to the manually recorded stroke count values from the video footage to 

check for accuracy. The time stamps for each stroke are also recorded, so that the 

turn phase can be determined in the next stage of the feature detection process.  

 

Figure 8.42. The output of the stroke count algorithm is an array of strokes performed for each 
lap performed during a selected swimming interval.  
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8.4 Turn Phase: Algorithm Development 

The final stage in the algorithm development is to quantify the performance related 

parameters that can be used by a coach and swimmer to conduct a detailed analysis 

of each turn. To reach this stage in the process, the development work has focused 

largely on the use of previously described techniques, such as the calculation of 

stroke style, lap times and stroke counts, with appropriate modifications made to suit 

the head worn position of the prototype device. This work has facilitated the 

detection and timing of the turn phase. Moreover, once the turn phases are identified, 

the potential for a detailed quantitative analysis of each turn may be explored. 

 

8.4.1 Turn Time Detection 

Once the lap time and stroke count have been calculated for each lap, it is 

straightforward to determine the turn time for each turn, along with other parameters 

that make up this turn, namely time in, time out and breakout time. Figure 8.43 

provides a schematic representation of the process that will be carried out. In this 

example four laps are completed. Therefore three turns will be performed. The turn 

phase is determined using the stroke counts already identified for each lap. For 

example, the start of Turn 1 is the second/third last stroke performed in Lap 1. The 

end of Turn 1 is the second/third last stroke performed in Lap 2. The breakout stroke 

is the first stroke performed in each lap. The wall contact events that were identified 

as part of lap time detection are also input to the algorithm. 

 

Figure 8.43. Schematic representation of the turn phase detection within a swimming interval. 
The interval contains four laps and three turns. The end of each lap is identified by the wall 
contact events (red circles). Each turn is defined according to a set number of strokes 
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performed both before (purple circles) and after (blue circles) each wall contact event. The 
breakout stroke is also identified (green circles).  

The algorithm process flowchart for determining these parameters is illustrated in 

Figure 8.44.  The algorithm takes inputs from the previous stages to create an array 

of time stamp values for the turnStart, turnEnd, breakOut and wallContact 

parameters. Next, a simple arithmetic is performed to calculate the turn times for all 

turns performed in the swimming interval. Finally, the results are displayed for 

review, as shown in Figure 8.45.  

 

Figure 8.44. Turn time detection algorithm. The process takes inputs from the lap time 
algorithm and the stroke count algorithm and outputs the temporal turn phase variables based 
on these values.  
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Figure 8.45. The output of the turn time detection algorithm. Total turn time, along with time 
in, time out and breakout times are determined for each turn performed in an interval. 

 

Once the turn phase has been identified, the acceleration and angular velocity signals 

can be visually inspected and compared with the corresponding video footage to gain 

an understanding of how the signal outputs relate to the movements of the swimmer. 

Temporal information related to the analysis of the turn, including parameters such 

as wall contact time, rotation time and glide time can be determined once the time 

stamps of each of these key events are known. The parameters included in this study 

are listed in Table 8.4. Whilst some of the parameters are relevant to all four 

swimming strokes, others are specific to certain strokes, such as transverse rotation 

time for example, which is a parameter of interest in backstroke and frontcrawl 

swimming only.  

 

The specific algorithm that is performed depends on the type of turn that is executed. 

In pool swimming, there are two main types of turns that can be performed, open 

turns and flip turns. An open turn, performed during breaststroke and butterfly 

swimming, involves the swimmer touching the wall first with their hands and then 

rotating in a tuck-like position to bring their legs up to touch the wall. The swimmer 

then turns on the wall to face the opposite end of the pool and pushes off to begin a 

new lap. A flip turn (also known as a tumble turn) is performed during frontcrawl 

and backstroke. As the swimmer approaches the pool wall they perform a tuck and a 

forward flip, touching the wall with their feet, before pushing off to begin the next 

lap.  
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Table 8.4. Parameters that are measured using the prototype system for each of the four 
competitive swimming strokes. Items that are listed as not applicable (N/A) signify parameters 
that are not relevant to the analysis of turns during that particular swimming stroke. 

 Open Turns  Flip Turns 

 Parameter Breaststroke Butterfly  Frontcrawl Backstroke 

Lap time • •  • • 

Stroke count • •  • • 

Turn time • •  • • 

Time in • •  • • 

Time out • •  • • 

Breakout time • •  • • 

Transverse rotation time N/A N/A  • • 

Longitudinal rotation time N/A N/A  N/A • 

Wall contact time N/A N/A  • • 

Hands to feet time • •  N/A N/A 

Feet contact time • •  N/A N/A 

Turn direction • •  N/A • 

Glide time • •  • • 

Pulldown time • N/A  N/A N/A 

Kick time N/A •  • • 

Kicks count N/A •  • • 

 

8.4.2 Open Turns (Breaststroke and Butterfly) 

The sequence of actions during an open turn can be seen in Figure 8.46. During 

breaststroke and butterfly swimming, swimmers must touch with two hands [28], 

then one arm is dropped into the water to begin the turn while the other arm moves 

over the head to complete the turnaround from the wall. At the same time, the 

swimmer gets into a tuck position and rotates to get their feet to contact the wall 

[29]. The swimmer will then push-off into a streamlined position and glide until 

initiation of the dolphin kick (butterfly) or pulldown stroke (breaststroke) occurs.  
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

 

Figure 8.46. Open turn sequence, performed during breaststroke and butterfly. (a) approach, 
(b) hand contact, (c) tuck and rotation, (d) feet contact, (e) push-off, (f) glide, (g) kick. 

 

Key features of the open turn that determine successful performance in a competitive 

setting include the time taken from touching the wall with the hands (Figure 8.46b) 

to touching with the feet (Figure 8.46d). This is known as hands to feet time and a 

time of 0.7 s is considered to be of an elite standard [30]. Information such as this is 

used by coaches in order to assess technical proficiency.  

 

The next step is to examine what the turn signal looks like, in order to determine if 

the parameters of interest can be identified. Figure 8.47 provides a representative 

example of the acceleration and angular velocity signal output for one swimmer 

performing an open turn. Rotational events corresponding to the movements during 

the turn can be seen in the centre of these plots and are distinguishable from the 

swimming activity performed at the start and end of the turn phase. The point of wall 

push-off, which was identified earlier as part of the lap time detection algorithm, 

corresponds to the minimum peak found in the Z-axis acceleration.  
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Figure 8.47. Acceleration and angular velocity signal output for an open turn. 

 

Before algorithm development can be commenced it is vital to ensure that the signal 

output shown in Figure 8.47 is repeatable between subjects and within subjects. This 

will help ensure that feature detection is based on repeatable and reproducible signal 

features, thus improving the likelihood of accurate detection in a broad range of 

competitive swimmers. The repeatability/reproducibility of this signal output for the 

open turn is shown in Figure 8.48, featuring the signal output from multiple turns 

performed by different swimmers. Both breaststroke and butterfly turns are included 

and all turns are centred on the point of wall push-off. 
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Figure 8.48. Repeatability of acceleration and angular velocity profiles for the open turns 

performed during the breaststroke and butterfly turn phase.  

 

It can be seen that there are several common features in the various signal profiles as 

well as some inconsistent features. The X-axis acceleration appears to display a very 

inconsistent signal profile during the entire turn phase. However, a consistent feature 

is a positive peak in the signal during the wall contact phase (occurring at 

approximately 4 s), which appears to be common between swimmers. The signal 

before and after the wall contact phase is considerably influenced by the duration of 

the entire turn phase and by the timing of the arm strokes in relation to the turn itself.  

 

 The Y-axis acceleration displays a very consistent signal profile. Before and after 

the turn, the signal output centres on 0 m·s-2 as the swimmer does not rotate from 

side to side during breaststroke or butterfly. During the turn, a small positive (or 

negative) peak is observed, relating to the initial body actions from the point of hand 

contact with the wall. A zero-crossing detection algorithm was used in Section 8.3.3 

during lap time detection to determine wall contact with the hands. This signal 

feature corresponds with the head lifting out of water to breath and starting to rotate 

to the side. The value of this initial peak is approximately 6 m·s-2. Next a second, 

larger peak, approximating to 12 m·s-2 occurs in the opposite direction. This peak is 
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related to the longitudinal rotation occurring as the swimmer prepares for and 

executes the push-off. The Y-axis acceleration appears to show enough consistency 

to allow for feature detection algorithms to be based on this signal output. The 

direction of the Y-axis acceleration peaks (either positive or negative) is related to 

the direction that the swimmer turns. If the larger peak is positive, the turn is to the 

right. If the larger peak is negative, the turn is performed to the left side.  

 

The Z-axis acceleration also displays a very regular pattern around the wall contact 

phase of the open turn. This large negative acceleration peak has already been 

identified at the instant of wall push-off as part of the lap time detection algorithm. 

Actions before and after the wall contact events display significant variability 

between subjects, owing to contrasting stroke timings during the turn phase. 

However, as will be described later, the Z-axis acceleration does prove useful for 

examining the dolphin kicks performed during butterfly turns and the pulldown 

stroke performed during breaststroke.  

 

Inspection of the angular velocity profiles also displays both similarities and 

differences between trials. Examination of the X-axis angular velocity shows that the 

rotation of the swimmer during the turn can be observed as the signal deviates and 

returns to the 0 deg·s-1 seen during swimming. What is different between subjects is 

how the timing of this rotation relates to the push-off event, with some swimmers 

fully returning to a prone position before push-off, whilst others will push-off whilst 

still on their side. The Y-axis and Z-axis angular velocity profiles do appear to 

display a small degree of commonality between subjects in the signal characteristics, 

but this level of consistency is not as high as for other axes described above.  

 

By zooming in on the wall contact events (Figure 8.49) it is possible to relate the 

signal output to the video images more clearly. Key distinguishable features in these 

signals are highlighted, together with associated video images, allowing for 

performance related parameters to be determined. As discussed, the push-off is the 

determined from the Z-axis acceleration. The points of hand contact and feet contact 

are identified using the Y-axis acceleration (Figure 8.50).  



Robert Mooney PhD Thesis – Chapter 8 

357 

        0.2    0.4          0.6           0.8          1.0          1.2          1.4      
                                               Time (s)

Angular Velocity (Open Turn)

Acceleration (Open Turn)

  
 A

n
g
u
la

r 
V

e
lo

ci
ty

  
(d

e
g
·s

-1
)

  
 A

cc
e
le

ra
tio

n
 (

m
·s

-2
)

        0.2    0.4          0.6           0.8          1.0          1.2          1.4      
                                               Time (s)

Hand contact

Feet contact

Push-off

 

Figure 8.49. Wall contact phase of open turn. 
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Figure 8.50. Hand and feet contact can be identified in the Y-axis acceleration using a zero-
crossing algorithm. The shaded area represents the initial movement of the swimmer as they lift 
their head to breathe and rotate towards feet contact.  

 

The process involves tracking the zero-crossing events that immediately precede the 

push-off from the wall. It was necessary to identify hand contact earlier as part of the 

lap time algorithm. A zero-crossing process identifies when the acceleration changes 

from negative to positive, with the last such change that occurs prior to the wall 

push-off determined to be the instant of hand contact with the wall. Feet contact is 

then identified as the next zero-crossing event in the opposite direction (from 

positive to negative in this example). Once these three points are known, hands to 
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feet contact time, feet contact time and wall contact time can all be readily 

determined. 

 

Turn direction can be identified using the X-axis angular velocity signal. In Figure 

8.51, a large negative angular velocity peak is shown. This indicates that the turn is 

performed to the left side. If the peak were a positive value, the turn would be to the 

right.  
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Figure 8.51. The X-axis angular velcoity signal is used to identify turn direction. A large 
negative peak indicates the turn is performed to the left side.   

 

Following push-off from the wall, the sequence of movements differs between 

butterfly and breaststroke swimming. In butterfly, the swimmer performs a number 

of dolphin kicks whilst in a streamlined position. In contrast, in breaststroke a 

pulldown and arm recovery stroke is performed, during which a single dolphin kick 

is permitted [28].  This leads to a different signal output. However the process of 

determining some of the key parameters has common features.  

 

The first dolphin kick in butterfly can be identified by first isolating a window in the 

Z-axis acceleration signal (Figure 8.52). This window is from the point of push-off 

to the breakout stroke. During this window the swimmer glides for a period and then 

initiates the dolphin kicking action. Peak detection during this window facilitates the 
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kick count to be determined. Glide time is calculated as the time from the push-off to 

the time of the first kick. Kick time is therefore the time from the first kick until the 

breakout stroke. 
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Figure 8.52. The Z-axis acceleration signal is used to identify the glide time and the number of 
dolphin kicks performed prior to the first arm stroke in butterfly. Six kicks (red circles) are 
identified in this example.   

 

In breaststroke swimming a window in the Z-axis acceleration signal from the point 

of push-off to the breakout stroke is again determined (Figure 8.53). During this 

window the swimmer glides for a period and then initiates the pulldown and arm 

recovery action. Peak detection during this window facilitates the determination of 

the point where the pulldown stroke commences. Glide time is calculated as the time 

from the push-off to the time of the pulldown stroke. Pulldown time is the time from 

this action until the breakout stroke. 
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Figure 8.53. The Z-axis acceleration signal is used to identify the glide time and pulldown time 
prior to the first arm stroke in breaststroke.  

 

All of the key features required for the analysis of open turns are now identified and 

can be provided to the coach and swimmer as feedback. A summary of the algorithm 

process flowchart is illustrated in Figure 8.54.  
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Figure 8.54. Turn phase analysis algorithm process flowchart, highlighting the feature detection 
process for open turns performed duing breaststroke and butterfly swimming.  
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8.4.3 Flip Turns (Frontcrawl and Backstroke) 

The sequence of actions during a frontcrawl flip turn can be seen in Figure 8.55. As 

the swimmer approaches the pool wall they perform a tuck and transverse rotation. 

This is followed by touching the wall with the feet, before pushing off in a 

streamlined position and performing dolphin kicks until swimming is resumed [29]. 

The push-off is typically, although not always, performed when the swimmer is on 

their side (Figure 8.55d), with the swimmer then rotating to a prone position during 

the glide phase. 

 

(a)

(b)

(c)

(d)

(e)

(f)
 

Figure 8.55. Flip turn sequence, performed during frontcrawl. (a) approach, (b) transverse 
rotation, (c) feet contact, (d) push-off, (e) glide, (f) kick. 

 

The sequence of actions during a backstroke flip turn can be seen in Figure 8.56. As 

the swimmer approaches the wall in a supine position, a longitudinal rotation must 

first be performed immediately prior to the tuck and transverse rotation. Following 

push-off, a swimmer will remain in a supine position when gliding, dolphin kicking 

and resuming their arm action. 
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(a)

(b)

(c)

(d)

(e)

(f)

 

Figure 8.56. Flip turn sequence, performed during backstroke. (a) approach, (b) transverse 
rotation, (c) feet contact, (d) push-off, (e) glide, (f) kick. 

 

Figure 8.57 provides a representative example of the acceleration and angular 

velocity signal output for one swimmer performing a flip turn. Similarly to the open 

turns, rotational events corresponding to the movements during the turn can be seen 

in the centre of these plots and are distinguishable from the swimming activity 

performed at the start and end of the turn phase.  
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Figure 8.57. Acceleration and angular velocity signal output for a flip turn. 

 

The repeatability/reproducibility of this signal output for the flip turn is shown in 

Figure 8.58, featuring the signal output from multiple turns performed by different 

swimmers. Both frontcrawl and backstroke turns are included and all turns are 

centred on the point of wall contact. 
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Figure 8.58. Repeatability of acceleration and angular velocity profiles for the flip turns 

performed during the frontcrawl and backstroke turn phase. 

 

The point of wall contact, which was identified earlier as part of the lap time 

detection algorithm, corresponds to the minimum peak in the X-axis acceleration. 

The movements during the turn are represented on the X-axis acceleration as the 

swimmer tucks and rotates before wall contact is made, leading to a rapid negative 

acceleration peak. The X-axis acceleration appears to display a very consistent signal 

profile during the entire turn phase. The acceleration signal before and after the wall 

contact phase is relatively stable and consistently positive. This represents the 

forward acceleration of the swimmer as they progress down the pool. The increasing 

acceleration following push-off can also be seen as they transition to swimming after 

the glide phase.  

 

The Y-axis acceleration profile is influenced by the side to side movements of the 

swimmer as they perform arm strokes. This signal does not display a level of 

consistency required during the turn phase to be of value for algorithm development. 

However, what can be seen in this signal is whether the swimmer is performing the 

glide phase on their back or on their side. The value will approximate 0 m·s-2 when 

in a prone or supine position. If the swimmer is on their left or right side during the 
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glide this can be determined as the Y-axis acceleration value approaches +10 m·s-2 if 

the swimmer is on their right side (right hip closer to the pool floor than left hip) or -

10 m·s-2 if the swimmer is on the opposite side. This can be seen at approximately 4 

s on the Y-axis acceleration plot (Figure 8.58). Whilst not used in this study for 

feature detection purposes, this does represent interesting information for qualitative 

analysis.  

 

The point of push-off from the wall following a flip turn can be determined by 

tracking the minimum peak in the Z-axis acceleration signal, just as for open turns. 

Additionally, the rotational events during the flip turn display a strong consistency 

and are useful for feature detection. The pattern of the Z-axis acceleration signal 

differs between frontcrawl and backstroke. The differences are due to the opposite 

orientation of the swimmer between these strokes. In the Z-axis acceleration plot, the 

value increases to approach +10 m·s-2 post push-off during frontcrawl but will 

approach -10 m·s-2 post push-off during backstroke.  

 

The X-axis angular velocity is of value for feature detection as it is influenced 

heavily by how still the swimmer keeps their head when swimming and, like the Y-

axis acceleration, can be of use in determining the direction of rotation. Positive 

angular velocity values before wall contact events indicate a turn to the right side 

whilst negative values indicate a turn to the left side. The Y-axis angular velocity 

displays a very consistent pattern during flip turns and can be used to assess the 

transverse rotation of the swimmer when performing the flip. This signal can also be 

used to determine the dolphin kicks performed post push-off. In contrast the Z-axis 

angular velocity signal is dependent on the head movements of individual swimmers. 

Ideally there should be little or no movement about this axis during the turn. The 

negative peaks sometimes seen in the Z-axis angular velocity plot prior to wall 

contact represent unwanted head movements and are not of use for feature detection.   

 

By zooming in on the wall contact events it is possible to relate the signal output to 

the video images more clearly (Figure 8.59). Key distinguishable features in these 
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signals are highlighted, together with associated video images, allowing for 

performance related parameters to be determined. As discussed, the transverse 

rotation can be identified in the Y-axis angular velocity. Wall contact with the feet is 

represented by the negative peak in the X-axis acceleration and the Z-axis 

acceleration can be used to identify the wall push-off. Wall contact time is the time 

difference between the negative peaks in the Z-axis acceleration (push-off) and X-

axis acceleration (wall contact) values. In competitive swimming, a value of 0.3 s is 

regarded as adequate [30] in order to both minimise the time spent in contact with 

the wall whilst also generating impulse to maximise push-off velocity.  
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Figure 8.59. Wall contact phase of flip turn. 

 

Transverse rotation time can be determined using a peak detection method on the Y-

axis angular velocity signal. All peaks in this signal that are greater than 0 deg·s-1 

that occur prior to the wall contact event are identified. The final identified peak is 

then regarded to be the point of the start of the transverse rotation (Figure 8.60). 

 



Robert Mooney PhD Thesis – Chapter 8 

368 

               2.0                4.0               6.0                8.0              10.0              12.0      
                                                           Time (s)

Y-Axis Angular Velocity (Flip Turn)

Start of transverse rotation

  
 A

n
g

u
la

r 
V

e
lo

c
it
y 

 (
d
e

g
·s

-1
)

 

Figure 8.60. Start of transverse rotation during a flip turn. 

 

In backstroke swimming, the longitudinal rotation time on approach to the wall can 

also be identified. This is commonly known as the “turnover stroke” in coaching and 

represents the movement of the swimmer from a supine position to a prone position 

as they prepare for the flip turn. This can be identified on the X-axis angular velocity 

using a zero-crossing method (Figure 8.61). The direction of the longitudinal rotation 

can also be identified using the same signal. A large negative angular velocity 

indicates that the turn is performed to the left side whilst a positive peak value 

indicates that the turn is to the right.  
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Figure 8.61. Start of longitudinal rotation during a backstroke flip turn. 

 

The first dolphin kick in frontcrawl or backstroke can be identified by first isolating 

a window in the Y-axis angular velocity signal (Figure 8.62). This window is from 

the point of push-off to the breakout stroke. During this window the swimmer glides 

for a period and then initiates the dolphin kicking action. Peak detection during this 

window facilitates the kick count to be determined. Glide time is calculated as the 

time from the push-off to the time of the first kick. Kick time is the time from the 

first kick until the breakout stroke. A large peak can be seen initially in this signal. 

This peak is associated with the rotational movements of the swimmer and is not a 

kicking action. Therefore, this first peak is not included in the kick count calculation.  



Robert Mooney PhD Thesis – Chapter 8 

370 

Kick timeGlide time

  5.0                6.0                 7.0               8.0                 9.0              10.0 
                                                           Time (s)

Y-Axis Angular Velocity (Flip Turn)

  
 A

n
g

u
la

r 
V

e
lo

c
it
y 

 (
d
e

g
·s

-1
)

First kick

 

Figure 8.62. The Y-axis angular velocity signal is used to identify the glide time and the number 
of dolphin kicks performed prior to the first arm stroke in frontcrawl and backstroke. Five 
kicks (red circles) are identified in this example.   

 

Once all of the key features required for the analysis of flip turns are identified then 

quantitative feedback can be provided to the coach and swimmer. A sample of the 

output that is produced by this algorithm is shown in Figure 8.63. These data can be 

used by the coach and swimmer to analyse the swimmers performance. A summary 

of the algorithm process flowchart is illustrated in Figure 8.64.  

 

Figure 8.63. Sample output of the turn phase breakdown algorithm. Results for each  turn 
performed are provided in a list wise fashion and can be used to analyse the swimmers 
performance. 
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Figure 8.64. Turn phase analysis algorithm process flowchart, highlighting the feature detection 
process for flip turns performed duirng frontcrawl and backstroke swimming. 
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8.5 Conclusion 

The aim of this study was to assess the feasibility of using MEMS technology to 

develop feature detection algorithms that can determine parameters related to the 

analysis of swimming turns. The prototype system described in Chapter 7 was used 

to record swimmers’ movements in the pool. These recordings provided acceleration 

and angular velocity signals for analysis in MATLAB. Examination of these signals 

highlights both common and unique characteristics associated with each stroke style 

and each turn type.  

 

No previous research work has attempted to incorporate MEMS inertial sensor 

technology for the purpose of quantifying and automatically measuring parameters 

related to the analysis of swimming turns. It has been found that a large number of 

parameters related to the performance of turns during each of the four competitive 

swimming strokes appear to be possible to identify in a repeatable and reproducible 

manner. Moreover, it is likely to be possible to provide rapid quantitative feedback 

to both coach and swimmer with this system, overcoming a major limitation of 

existing analytical methods. The implications of the findings suggest that such an 

approach offers real potential for application in an applied coaching environment. 

However, further work is required in order to experimentally validate the accuracy of 

these feature detection algorithms. This will be discussed in the Chapter 9 of this 

PhD work. 
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The work described in Chapter 8 of this thesis has demonstrated that the 

acceleration and angular velocity profiles recorded during swimming turns display a 

consistency between swimmers. Importantly, it has also been determined that key 

performance related parameters may be extracted based on these signal features. 

The ability to rapidly and accurately obtain these performance related parameters in 

an applied setting would represent a significant advance in the analytical potential 

of elite swimming coaches. Such an approach, if proven feasible to implement, would 

also overcome many of the issues associated with traditional methods of analysis. 

Therefore, the final stage of this PhD was to experimentally assess the accuracy of 

the feature detection algorithms that were described in Chapter 8. Additionally, the 

implications of the findings obtained will be discussed with regard to their 

applicability in an elite coaching environment.  

 

9.1 Introduction 

Swimming races are comprised of various segments, including starts, turns and 

finishes. Turns are a very important segment of the race, contributing approximately 

one third to the overall race time and have a large influence on overall performance, 

especially in longer events and in short course pools [1]. Therefore, it is essential for 

elite and competitive swimmers to be proficient in performing swimming turns 

during pool swimming. A recent relevant example that serves to highlight the critical 

importance of the turn phase can be found in the Men’s 400 m individual medley 

final at the 2016 Olympic Games [2]. A difference of 0.7 s separated the gold and 

silver medal winners in this race, with a winning time of 4 minutes 6.05 seconds. An 

analysis of the respective performances of these two swimmers revealed that the 

second placed swimmer consistently had a higher average swimming speed 

throughout each lap of the race. However, this swimmer’s turns were performed 

slower than his rival and as a consequence of this, he was unable to capitalise on his 

superior swimming speed. Other similar examples are also frequently found at both 

international and national level competitions.  
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Traditional methods of analysing swimming turns involve the use of video-based 

systems [3]. However, there are inherent disadvantages to this approach and 

alternative solutions are warranted [4]. The application of MEMS based inertial 

sensor technologies offers a potential solution to the analysis of turns. By recording 

and analysing the acceleration and angular velocity profile of swimmers as they 

perform turns in a swimming pool, it has been possible to develop novel feature 

detection algorithms that can automatically extract key performance related 

parameters. However, it is essential that the accuracy of this novel approach is 

examined experimentally in order to prove that the concept is of merit in an applied 

setting. If such a solution were to prove successful, this may lead to positive 

implications for elite coaches and swimmers, who would be able to rapidly obtain 

important quantitative data related to their technique and performance. The aims of 

this study were to determine the accuracy of the prototype system and to discuss the 

implications of the findings with regards to their applicability in an elite coaching 

environment. 

 

9.2 Methods 

9.2.1 Participants 

A total of seven national level competitive swimmers were recruited to take part in 

the study (6 male, 1 female; 16.9 ± 1.8 years; 1.76 ± 0.11 m; 72.0 ± 11.1 kg). The 

study received approval from the NUI Galway Research Ethics Committee and 

followed the terms of the Declaration of Helsinki. The protocol was explained to the 

swimmers and the parents of those participants under 18 years of age. Parental 

written consent was obtained and the participants also provided written informed 

assent.  

 

9.2.2 Procedures 

Data collection took place in a 25 m indoor swimming pool. Following a self-

directed warm up, Participants were instructed to complete a swimming session 

totalling 400 m comprising each of the four competitive swimming strokes. 100 m of 
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each stroke was performed in individual medley order (i.e. butterfly, backstroke, 

breaststroke, frontcrawl), with a minimum rest interval of one minute included 

between intervals. This resulted in 16 lengths of the pool per swimmer, with a total 

of 112 lengths and 84 turns that could be used in order to test the accuracy of the 

feature detection process. Participants were fitted with the prototype sensor device, 

positioned at the back of the head and held in place with the swimmer’s goggle 

straps and swimming hat, following the concept developed as part of the Use Case. 

Swimmers wore two swimming hats in order to minimize the possibility of any 

unwanted sensor movement. Trials were simultaneously captured at 50 Hz using two 

fixed underwater cameras (GoPro Hero3+) positioned to record all events occurring 

at the pool walls in order to identify wall contact events and one panning video 

camera on the pool deck to record the participants throughout each lap (Sony 

Handycam HDR-XR550). Images from the three cameras were synchronised by 

interpolating the data according to the time lag between cameras using a blinking 

light source [5]. Video footage was subsequently used as the criterion measure to 

assess the performance of the swim activity monitors.  

 

9.2.3 Data Processing & Analysis 

Video files were stored on a portable hard drive and analysed using Dartfish Video 

Software (ProSuite version 5.5; Dartfish, Fribourg, Switzerland) to allow for 

criterion measures of all variables to be determined. Data from each activity monitor 

were saved on a MicroSD card and these comma separated values (.csv) files were 

imported into MATLAB (R2013a, MathWorks Inc., Natick, MA.) for post-processing 

and feature detection. Table 9.1 provides a list of parameters that were determined 

from both the criterion and prototype systems along with definitions of all terms.  
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Table 9.1. Definition of terms for each of the feedback parameters that will require feature 
detection algorithms.  

Parameter Definition 

Lap time Time to complete each pool length performed 

Stroke count The number of arm strokes performed for a given lap of the pool 

Turn time Time from the start of the 2nd / 3rd last arm stroke on approach until the end of 
the 2nd / 3rd arm stroke after push off (2nd: breaststroke / butterfly; 3rd: 

frontcrawl / backstroke) 

Time in Time from the start of the 2nd/3rd last arm stroke on approach to wall contact 

Time out Time from push-off to the end of the 2nd / 3rd arm stroke 

Breakout time Time from push-off to 1st arm stroke 

Rotation time Time from start of last arm stroke to wall contact (frontcrawl / backstroke) 

Wall contact time Time from 1st contact with wall to push-off 

Hands to feet time  Time from 1st contact with wall with hands to first contact with feet 
(breaststroke / butterfly) 

Feet contact time Time from 1st contact with wall with feet to push-off  (breaststroke / butterfly) 

Turn direction Direction of the swimmers movement during rotation (backstroke / breaststroke 
/ butterfly) 

Glide time Time from push-off to first dolphin kick 

Pulldown time Time to complete the pulldown and arm recovery phase (breaststroke) 

Kick count Number of dolphin kicks performed after push off and before stroke initiation 
(frontcrawl / backstroke / butterfly) 

Kick time Time taken for the dolphin kicks after push-off from the wall to be performed 

 

Descriptive statistics were determined for all variables. The Kolmogorov-Smirnov 

test was used to assess whether the data were parametric or non-parametric. Stroke 

identification data were categorical in nature and a Pearson’s chi-square test was 

used to assess for agreement between values [6]. Data were found to be non-

parametric and the Wilcoxon signed ranked test was used to assess for differences 

between data sets [6]. Agreement between variables were assessed through the use of 

Bland-Altman plots [7] and 95% limits of agreement were determined as the mean 

difference ±1.96 times the standard deviation of the difference. Data analyses were 

performed using Statistical Package for the Social Sciences for Windows (Version 

23, SPSS Inc., Chicago, IL). A p-value of 0.05 was set for all statistical analyses. 
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9.3 Results 

Swimming intervals were identified with 86% accuracy. The algorithm tracks the 

changing orientation of the swimmer at the beginning and end of the swimming 

interval. This represents 24 out of 28 intervals performed by the participants in the 

study. There were no missed intervals for butterfly, one missed interval for both 

backstroke and frontcrawl and two missed intervals for breaststroke. Additionally, on 

two occasions a false positive was registered, whereby movement of the sensor 

during an activity other than a swimming interval was incorrectly registered as an 

interval.  

 

It was found that there was a significant correlation in stroke type identification 

between the prototype and the actual stroke performed for each of the four strokes 

(Х2 (3) = 19.802, p < 0.05). Overall, 89% accuracy in stroke identification was 

achieved. Table 9.2 provides specific detail of the sensitivity and specificity of this 

algorithm on a stroke by stroke basis. Frontcrawl and backstroke were readily 

identified and easily distinguished from one another owing to the different 

orientation of the swimmer during these stroke styles. Conversely, the signal output 

descriptors for butterfly and breaststroke swimming were found to be quite similar, 

leading to reduced sensitivity of the algorithm performance for these strokes. This is 

also reflected in the slightly lower specificity values for these two strokes. 

Table 9.2. Sensitivity and specificity of stroke identification algorithm. The actual stroke 
completed for each swimming interval was compared against the ability of the prototype sensor 
to correctly identify each interval. A significant association was found with the actual stroke 
completed. Sensitivity is a measure of the proportion of positives that are correctly identified, 
whilst specificity measures the proportion of negatives that are correctly identified. (Fly = 
Butterfly; Bk = Backstroke; Brs = Breaststroke; Fc = Frontcrawl; Error = no stroke registered).  

    Sensitivity   Specificity 

    Fly Bk Brs Fc Error     

Butterfly   71% 0% 29% 0% 0%   95% 

Backstroke   0% 100% 0% 0% 0%   100% 

Breaststroke   14% 0% 86% 0% 0%   90% 

Frontcrawl   0% 0% 0% 100% 0%   100% 
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Table 9.3 provides an overall summary of the results for the performance related 

parameters included in this study. Values for the mean, standard deviation and 95% 

confidence intervals are provided for both the criterion measure (video) and the 

prototype system. Additionally, the average difference is presented, both in temporal 

terms and as a percentage. Of the 15 parameters measured using the prototype 

system, 11 were found to be determined accurately, with no significant difference 

with the criterion measure. Those that were found to have a significant difference 

were lap time; kick time; kick count and longitudinal rotation time. Six of the 

parameters were measured to within 0.1 seconds of the actual value, identified by 

coaches as being important for use in an applied setting. A further five parameters 

were measured to within 0.3 seconds of the actual value. 
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Table 9.3. Summary of results for parameters measured in the study, including values for mean, standard deviation and 95% confidence intervals. All values are in 
seconds, with the exception of stroke count and kick count. Parameters marked with an asterisks (*) were found to be significantly different from the criterion 
measure (p < 0.05). The average difference and percentage difference to the criterion value are also reported.  

  
Criterion 

  
Prototype 

  
    

  Mean ±SD 95% CI 
 

Mean ±SD 95% CI 
 

Difference 
Difference 

(%) 

       
  

Lap Time 19.81 ±2.37 (18.36 to 20.25) 
 

20.05 ±2.64 (19.55 to 20.54) * 0.24 1.2 

Stroke Count 11.22 ±3.00 (10.66 to 11.79) 
 

11.12 ±2.96 (10.56 to 11.67) 
 

0.10 0.9 

Turn Time 12.12 ±2.07 (11.67 to 12.57) 
 

12.06 ±2.47 (11.52 to 12.60) 
 

0.06 0.5 

Time In  4.63 ±0.97 (4.42 to 4.85) 
 

4.79 ±1.16 (4.53 to 5.03) 
 

0.16 3.5 

Time Out  7.41 ±1.49 (7.08 to 7.73) 
 

7.21 ±1.82 (6.82 to 7.61) 
 

0.20 2.7 

Breakout Time 4.90 ±1.42 (4.59 to 5.21) 
 

5.05 ±1.88 (4.64 to 5.46) 
 

0.15 3.1 

Hands to Feet Time 1.10 ±0.12 (1.07 to 1.14) 
 

1.12 ±0.85 (0.86 to 1.39) 
 

0.02 1.8 

Feet Contact Time 0.30 ±0.09 (0.28 to 0.32) 
 

0.37 ±0.29 (0.30 - 0.43) 
 

0.07 23.3 

Wall Contact Time 1.45 ±0.12 (1.42 to 1.49) 
 

1.53 ±0.88 (1.26 to 1.81) 
 

0.08 5.5 

Glide Time 1.18 ±0.57 (1.06 to 1.30) 
 

1.39 ±1.25 (1.11 to 1.66) 
 

0.21 17.8 

Pulldown Time  3.03 ±0.87 (2.64 to 3.43) 
 

3.10 ±1.33 (2.49 to 3.71) 
 

0.07 2.3 

Kick Time 3.37 ±1.01 (3.11 to 3.62) 
 

2.66 ±1.44 (2.30 to 3.02) * 0.71 21.1 

Kick Count 3.65 ±1.17 (3.36 to 3.94) 
 

3.06 ±2.02 (2.51 to 3.52) * 0.59 16.2 

Longitudinal Rotation Time 0.84 ±0.18 (0.76 to 0.92) 
 

1.28 ±0.79 (0.92 to 1.64) * 0.44 52.4 

Transverse Rotation Time 1.39 ±0.42 (1.26 to 1.52) 
 

1.51 ±0.62 (1.32 to 1.70) 
 

0.12 8.6 
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Bland-Altman plots were constructed for each parameter, highlighting the variance 

between the criterion and measured scores. These plots, together with the remaining 

results of this study, are presented from Figure 9.1 through to Figure 9.9, inclusive. 

The results show that the prototype recorded lap times were found to be significantly 

different from the criterion, when all laps for all strokes are assessed together. In 

order to understand what factors are resulting in these issues with detection accuracy, 

the lap times were split into those performed at the start/end of an interval and those 

performed in the middle of an interval (Figure 9.2). For example, in a 100 m 

swimming interval performed in a 25 m pool, laps one and four are considered to be 

start/end laps, whilst laps two and three are the middle laps. When this distinction is 

made, it was found that there was no significant difference in laps performed in the 

middle of an interval but that there was a significant difference for the start/end laps. 

Lap time data are also presented on a stroke by stroke basis (Figure 9.3), showing the 

error in measurement per lap performed. It was found that that the algorithm 

performed with a similar level of accuracy for all four strokes, with a tendency 

towards overestimation of the lap times recorded. Data for the stroke count measures 

are also presented on a stroke by stroke basis (Figure 9.5), showing the error in 

measurement per lap performed. The algorithm performed best for butterfly and 

breaststroke, with the number of laps with the stroke count recorded to within one of 

the actual stroke count found to be 85.7% for butterfly and 92.9% for breaststroke. 

The corresponding values for backstroke and frontcrawl were 60.7% and 67.9%, 

respectively. 

 

 

 

 

 

 



Robert Mooney PhD Thesis – Chapter 9 

 

386 

Mean

D
if

fe
re

nc
e

Lap time

  

Figure 9.1. Bland-Altman plots for lap time data, showing the level of agreement between video 
and the data obtained from the prototype sensor. The results show the mean difference and 
95% limits of agreement between the algorithm performance and the criterion measure.  
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Figure 9.2. Bland-Altman plots for lap time data, separating out (a) laps performed during the 
middle of a swim interval and (b) laps performed at the start or end of an interval. The level of 
agreement between video and the data obtained from the prototype sensor is displayed and the 
results show the mean difference and 95% limits of agreement between the algorithm 
performance and the criterion measure.  
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Figure 9.3. Comparison of the overall frequency of error in the measurement of lap times. 
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Figure 9.4. Bland-Altman plots for stroke count data, showing the level of agreement between 
video and the data obtained from the prototype sensor. The results show the mean difference 
and 95% limits of agreement between the algorithm performance and the criterion measure.  
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Figure 9.5. Comparison of the overall frequency of error in the measurement of stroke count. 

 

No significant differences were found in the measurement of any of the key turn 

phase parameters, namely turn time; time in; time out and breakout time (Figure 9.6). 

Additionally, parameters measured during the  wall contact phase  (wall contact 

time; feet contact time; hands to feet time) were all found to be recorded accurately, 

with no significant difference from the criterion measures (Figure 9.7). The 

rotational parameters displayed contrasting accuracy. Longitudinal rotation time, 

performed only during a backstroke turn, was found to be significantly different 

from the actual. In contrast, transverse rotation time, performed during backstroke 

and frontcrawl, displayed no significant difference with the criterion values (Figure 

9.8). Following wall push-off, four further parameters were recorded (glide time; 

kick time; kick count; pulldown time). Of these, glide time and pulldown time were 

measured accurately (Figure 9.9). Finally, the turn direction was identified with 

100% accuracy. 
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Figure 9.6. Bland-Altman plots for of turning phase parameters, including turn time; time in; 
time out and breakout time, showing the level of agreement between video and the data 
obtained from the prototype sensor. The results show the mean difference and 95% limits of 
agreement between the algorithm performance and the criterion measure.  
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Figure 9.7. Bland-Altman plots for of wall contact phase parameters, including wall contact 
time; feet contact time and hands to feet time, showing the level of agreement between video and 
the data obtained from the prototype sensor. The results show the mean difference and 95% 
limits of agreement between the algorithm performance and the criterion measure.  
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Figure 9.8. Bland-Altman plots for of rotational parameters, including longitudinal rotation 
time and transverse rotation time, showing the level of agreement between video and the data 
obtained from the prototype sensor. The results show the mean difference and 95% limits of 
agreement between the algorithm performance and the criterion measure. 
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Figure 9.9. Bland-Altman plots for of post-push-off parameters, including glide time; kick time; 
kick count and pulldown time, showing the level of agreement between video and the data 
obtained from the prototype sensor. The results show the mean difference and 95% limits of 
agreement between the algorithm performance and the criterion measure.  

 

9.4 Discussion 

The primary aim of this study was to determine the accuracy of the prototype system 

for the accurate determination of key quantitative measures related to the analysis of 

swimming turns. It has been found that the developed algorithms have performed 

well for many of the parameters defined in this study. The swimming interval 

identification process was found to be highly accurate. The process is based on a 

simple concept of tracking the change in the swimmers orientation from standing at 

rest to a horizontal position when swimming, with a threshold value used to monitor 

this change. A key component of this algorithm is the determination of the moving 

average over a five second window and this smoothing of the signal removes 
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instances where the threshold is crossed owing to swimming. Although many studies 

have previously used similar experimental protocols involving multiple swimming 

intervals, none has reported the inclusion of an automatic method for identifying 

these or documented the accuracy of such an approach. Therefore, there are no 

available data with which to compare these findings. However, in an applied training 

environment, coaches design training sessions around repeated swimming intervals 

and rest periods. As a consequence, it is important that these intervals can be 

identified automatically as this reduces the requirement for manual identification of 

intervals from the output signal. 

 

Similarly, a very high accuracy was achieved for the stroke style identification 

algorithm. This level of accuracy is comparable with previous research. Davey, et al. 

[8] reported a 95% recognition accuracy when stroke type was identified with a back 

worn accelerometer device. Unfortunately this was an overall result so therefore it is 

not certain if there were any recognition issues due to specific stroke styles. A chest 

mounted accelerometer location has been found to achieve overall accuracy levels of 

91.1% [9], with recognition issues related mainly to backstroke and breaststroke, 

similarly to the findings of a more recent study [10]. Siirtola, et al. [11] reported that 

a back worn sensor achieved better overall accuracy (95.3%) compared to a wrist 

worn sensor location (89.8%). In the present study, issues that arose were related to 

the similarity of signal profiles for both breaststroke and butterfly. This has been 

acknowledged previously [8, 9] and leads to difficulties in establishing threshold 

values that can fully distinguish between these strokes.  

 

The measurement of lap times is not a central aim of this project as many other 

research studies have investigated this area [8, 12]. However, the detection of wall 

contact events, which are used to determine lap times, is important as these lap times 

are needed in order to segment swimming intervals into each lap performed. 

Additionally, when a coach analyses a swimmer’s performance during a turn, they 

often do so in the context of the entire lap or series of laps that were performed. For 

example, a coach may be interested in understanding what percentage of the lap time 

was taken up by the turn phase. The average lap time recorded by the video was 
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19.81 ± 2.37 s, with the average value by the prototype of 20.05 ± 2.64 s. As 

previously highlighted [8, 10], issues with the identification of the start and end of an 

interval can lead to inaccurate measurements. This is mainly due to the individual 

variances in swimmers movements during this time. There can be unwanted 

movement that will result in difficulties in ensuring that the identified peak really 

relates to the instant of wall push off. However, it cannot be expected that a 

swimmer working in an applied setting would keep themselves perfectly still during 

this time and as such the algorithm has to account for these movements. As the 

present study was focused on the analysis of turn events, inaccuracies with the 

timing of the first and last lap of swimming intervals was not found to negatively 

affect the performance of other feature detection algorithms.  

 

Similarly to the measurement of lap times, there are many previously reported 

studies that have described the development and accuracy of stroke count algorithms 

[11, 13-15]. The methods used in the present study reflect those previously reported 

methods and as such the stroke count algorithm was found to work with high 

accuracy. Swimming strokes can be identified from an accelerometer output as 

regularly occurring peaks in the signal signature, with local maxima and minima 

tracked and counted [8, 16]. In the context of analysing the turn phase, the accurate 

identification of strokes performed during each lap is very important as the accuracy 

of this will have direct influence on the accuracy of the timing of the turn phase. This 

is because the turn phase is defined according to a set number of strokes performed 

both before and after wall contact. For frontcrawl and backstroke this is the time 

taken from the start of the third last stroke before wall contact to the end of the third 

stroke after wall contact. For butterfly and breaststroke swimming, the turn is 

defined according to two strokes before and after the wall, following consultation 

with coaches. This is because the overall numbers of strokes performed during 

butterfly and breaststroke may be as low as five to six strokes in a 25 m pool for an 

elite performer. Furthermore, the use of two or three strokes for different swimming 

styles closely corresponds to distances of five metres before the turn and ten metres 

after the turn; which relates well with how a turn is typically defined using a distance 

measurement.  
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Accuracy issues could potential have arisen from the head worn position of the 

device. During backstroke and frontcrawl a swimmer will aim to keep their head 

steady as they complete their strokes, which could result in difficult in peak 

detection. One previous study determined stroke count from head worn sensor [16]. 

Beanland, et al. [16] reported a strong relationship in stroke count calculation for 

breaststroke (r = 0.99, p < 0.05) and butterfly (r = 1.00, p < 0.05), but reported that 

no clear pattern could be discerned for frontcrawl. These researchers did not include 

backstroke in their study protocol. However, this was not found to be the case in the 

present study, with a zero-crossing algorithm was used for frontcrawl as an 

alternative to peak detection.  

 

The determination of turn times based on the use of a MEMS inertial sensor device 

has never been reported previously so there are no results available to allow for a 

comparison of the accuracy found in the present study. This process is highly reliant 

on the correct identification of wall contact and the end of each lap, in addition to 

accurately recording the number of strokes performed by the swimmer. It has been 

found that this system can record turn time; time in; time out and breakout time with 

a high degree of accuracy, as shown in Table 9.3 and Figure 9.6. For example, the 

average turn time, as recorded with the video system, was found to be 12.13 ± 2.07 s. 

The average turn time, recorded by the prototype system, was 12.06 ± 2.47 s. 

Positive results such as these points to the potential of using MEMS devices in 

applied coaching settings in order to monitor key performance parameters related to 

turns. By way of comparison, a typical frontcrawl turn time at international level 

(defined as the time from when the swimmers head passes from five meters before 

the wall to ten meters after the push-off) would be approximately eight seconds for 

male competitors and nine seconds for female swimmers [17].  

 

In addition to the dearth of research exploration in this area, no commercially 

available swimming sensor system provides features to allow for an analysis of turns 

that would be suitable for competitive swimmers. One slight exception is the 

TritonWear system (TritonWear Inc., Kitchener, ON, Canada). This device features 

a head worn sensor unit and provides a “Turn Time” variable as part of its suite of 
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features, which it defines as the time from the initiation of rotation to the point of 

wall contact (comparable with the transverse rotation time parameter of this present 

study). However, this parameter alone would not be sufficient for a thorough 

analysis of the full turn phase. This parameter is also not relatable to turns performed 

during breaststroke and butterfly. Furthermore, no objective evaluation of the 

accuracy of the TritonWear device has yet been made available.  

 

The final stage of the feature detection process involves analysing each turn that was 

performed and providing detailed feedback on the performance of that turn through 

the measurement of nine further parameters. Typical values for some of these 

parameters can be very small. For example the average values for feet contact time 

was found to be 0.30 ± 0.09 s in duration, whilst the average hands to feet time was 

recorded as 1.10 ± 0.12 s. It has been reported that a world class standard for hands 

to feet time is 0.80 s or less [3, 18]. Despite such short durations, many of these 

parameters were found to be recorded with no significant difference from the 

criterion, including hands to feet time, feet contact time, wall contact time, glide 

time, pulldown time and transverse rotation time (Table 9.3). 

 

This is the first study to attempt to derive these variables using MEMS devices. 

Therefore there is a lack of findings upon which to compare these results. Events that 

occur during wall contact are important parameters for generating force in order to 

produce high velocity at the push-off [19]. These data were found to be accurately 

measured with the prototype device. It would be interesting to match the time spent 

on the wall with the peak force produced, in order to determine the impulse 

generated by the swimmer, for a more in-depth analysis. However, the determination 

of such kinetic parameters has yet to be explored using inertial sensor technology 

[20].  

 

There were issues found in determining the number of kicks performed after wall 

push-off, as well as the time taken to perform these kicks. Often the last dolphin kick 

may occur at or very close to the breakout stroke and this transition to swimming can 
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cause additional peaks in the signal which may be interpreted as a kick. Furthermore, 

some swimmers begin their dolphin kicks with vigorous leg action whilst others 

have a tendency towards a less powerful leg action, and thus are more difficult to 

identify in the acceleration signal. Previously Fulton, et al. [21] had described an 

algorithm for counting the number of kicks performed during a length of the pool but 

this did not include dolphin kicks performed after wall push-off.  

 

Transverse rotation time is recorded during backstroke and frontcrawl and was found 

to be accurately determined. However, there were issues found in the determination 

of longitudinal rotation time, which is performed only during a backstroke turn. This 

may be a consequence of this smaller data set but is was found that the point where 

the swimmer completes the longitudinal rotation, which is defined as the point of the 

last hand entry into the water, may occur when the swimmer has not yet fully rotated 

onto their front, hence leading to issues in pinpointing this instant on the signal 

output (Figure 9.10). Another parameter which incorporated a smaller data set is the 

pulldown time, as this is related to breaststroke only. Additionally, there are different 

styles of pulldown that can be performed, with some swimmers opting to kick first 

whilst others will move their arms first. Both of these styles were seen by the 

participants in this study, although this did not have a negative impact on the results 

on this occasion.  

 

Figure 9.10. Differences in body position at the end of the longitudinal rotation during 
backstroke led to issues with algorithm accuracy. 
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9.5 Conclusion 

The feature detection algorithms performed well for the analysis of swimming turns, 

with the majority of the parameters included in this study being identified with a 

high level of accuracy. This would appear to confirm that such an approach is 

feasible and warrants further research examination. However, this study represents a 

starting point towards fully exploring this area and validating the approach. It is 

likely that future work is required, to test the algorithms on larger groups of athletes, 

including swimmers with different levels of ability. That said, this study included a 

larger data set than can be found in the large majority of previous work in this area, 

involved multiple strokes and attempted to validate a large number of performance 

related parameters. Future work could also test other body locations, such as the 

lower back, to assess if accuracy could be improved. However, a head worn sensor is 

likely to be the most suitable location due to the ease of positioning, the stability and 

of the device which is held securely by the goggle strap and swim hat and also the 

preference from swimmers and coaches alike for this location as it is out of the way 

an does not interfere with normal swimming activity. 

 

The use of sensor based technologies in swimming is rapidly advancing and offers 

clear advantages over video-based approaches. In the present study, only a matter of 

minutes was required to extract the data from the prototype sensor once the swimmer 

exits the pool. This includes the post processing methods involved in converting and 

importing files into MATLAB and running through the various algorithms. This 

compares very favourably to the time it take to get this information from video-based 

systems, which was approximately three and a half hours per study participant in this 

instance in order to edit, process and interrogate footage from multiple above and 

underwater cameras. Further development work could reduce the sensor processing 

time further, potentially offering a real time solution for coaches on pool side. This 

would represent a significant advancement in the analytical potential of elite 

swimming coaches when working with swimmers in a training environment. This 

faster dissemination of information affords coaches more time to spend interpreting 

the data in order to maximise the performance gains and better understand their 
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swimmers’ activities. The implications of this study are that inertial sensor 

technology does have the potential to provide accurate quantitative analysis of 

swimming turns, therefore strengthening the claim for the increased incorporation of 

this technology in elite settings to inform the coaching process.  
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10.1 Discussion 

Swimming is a complex human activity. Significant technical proficiency is required 

on the part of the swimmer to be successful in the sport. Consequently, elite 

swimming coaches continually strive towards improving their swimmers’ ability. At 

the elite level, performance gains through technical development will be small but 

yet still can have a dramatic impact on competitive performance, as fine margins will 

decide the outcome of competition. Central to this process of technical development 

is the requirement to quantify various aspects of a swimmer’s performance in their 

training environment in order to determine the athlete’s readiness for competition.  

 

Elite swimming relies more and more on technology to make these small gains. 

Analyses have traditionally been conducted using video-based methods. However, 

the limitations of these traditional methods are hindering elite coaches in their ability 

to perform the extent of quantitative analysis that is warranted at this level of 

competition. Consequently, alternative technologies are required to ensure that the 

needs of coaches can be better met in the future. Ideally, performance testing should 

be completed in a swimmer’s natural training environment. Advancements in 

technology allow for new methods of testing in aquatic settings, specifically through 

advances in MEMS inertial sensor technology. This approach offers many potential 

benefits that may help to overcome the limitations of video-based approaches, 

allowing for more in-depth analysis and more rapid quantitative feedback on 

performance. Key factors that make this approach so attractive for sports scientists 

and coaches alike include the potential for reduced data processing time; the ability 

to monitor multiple swimmers simultaneously; the capacity for monitoring 

performance over multiple laps; the reduced complexity of using the technology and 

the likely reduced cost of the equipment that is required.  

 

The thesis outlined the potential contribution of inertial sensor technologies to 

the analysis of swimming performance. A specific focus was placed on the 

feasibility of applying the principles of inertial sensor technology in elite settings, to 

facilitate a detailed quantitative analysis of swimming performance. To achieve this 
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aim a number of studies were carried out. This chapter summarises the main findings 

of each of the studies conducted and provides suggestions for future avenues of 

research. 

 

The first investigative step involved a comprehensive survey of elite swimming 

coaches internationally. This survey was facilitated by the American Swim Coaches 

Association (ASCA). The primary motivation for conducting this study was to 

quantify, for the first time, the practices of elite coaches working at the highest levels 

of the sport worldwide. This study, which is described in Chapter 2, served as an 

important starting point for this thesis as it determined exactly what equipment swim 

coaches use and what factors are important to them when attempting to improve or 

review their swimmers’ performance capabilities. This study revealed that a disparity 

exists between the perceived importance of quantitative biomechanical analysis and 

existing practices that largely employ qualitative methods of analysis. The 

implications of these findings are that existing technologies, which typically involve 

video-based methods, may not be adequately serving the needs of elite coaches. The 

major limiting factors were found to be time, cost and the availability of suitable 

equipment that is required to conduct quantitative analysis. Moreover, the survey 

also revealed a very poor awareness of inertial sensor technology amongst elite 

swimming coaches, indicating that despite the purported advantages of this 

technology, it has not gained much traction in elite settings. The comprehensive 

nature of this survey is such that it makes a strong contribution to the field and this 

chapter has been published in the Journal of Sports Sciences (2016;34:997-1005) 

and has received significant interest in the research and coaching community.   

 

Following the survey, it was considered prudent to fully explore the state of the art of 

video-based methods for the analysis of competitive swimming performance, 

through a systematic review of the literature. This review contributes to the research 

domain as it provides an exploration of the use of video-based methods in 

swimming, specifically in aquatic environments, for the first time. The review, 

presented in Chapter 3, highlighted that the process of using video in aquatic settings 

is complex, with little consensus amongst coaches regarding a best-practice 
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approach, potentially hindering usage and effectiveness. This uncertainty 

surrounding the most appropriate methodologies to be adopted and the value of 

video in swimming helps to understand the reasons for the disparity in perception 

and practice. An additional novel contribution of this work was that different 

methodologies were assessed and recommendations for coaches, sport scientists and 

clinicians were provided. It was concluded that video is an extremely versatile tool. 

In addition to providing a visual record, it can be used for qualitative and 

quantitative analysis and has applications in both training and competition settings. 

Cameras can be positioned to gather images both above and below the water. 

Ongoing advances in automation of video processing techniques and the integration 

of video with other analysis tools suggest that video analysis will continue to remain 

central to the preparation of elite swimmers. However, due to the limitations of 

video-based systems, most notably the time required to conduct quantitative 

analyses, it is likely that the primary purpose of video will remain to be the provision 

of the visual image, and that alternative analysis tools will serve to provide the 

quantitative data analysis to complement these images. This chapter makes an 

important contribution to the field and has been published in the Sport and Exercise 

Medicine Open Journal (2015;1:133-150). 

 

Novel methods of analysis, incorporating body worn inertial sensors have received 

much attention recently from both research and commercial communities as an 

alternative to video-based approaches. A systematic review aimed at exploring the 

application of inertial sensor technology for the technical analysis of swimming 

performance was conducted and is presented in Chapter 4 of this thesis. This work 

provides an important contribution to the research domain as it delivered the first 

comprehensive systematic review of this technology in swimming, following 15 

years of research activity in the area. The review focused on providing a detailed 

evaluation of the accuracy of different feature detection algorithms described in the 

literature for the analysis of different phases of swimming, specifically starts, turns 

and free-swimming. The primary conclusion of this study was that this technology 

may allow for improved analysis of stroke mechanics, race performance and energy 

expenditure, as well as providing real-time feedback capabilities to the coach, 

potentially enabling more efficient, competitive and quantitative coaching. However, 
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many important areas of research investigation remain unexplored. The consequence 

of this is that this technology may not currently offer the level of functionality to be 

of relevance in elite settings. Furthermore, it was concluded that there was a lack of 

objective validation of existing sensor based systems and a clear need to thoroughly 

evaluate existing technology to assess its suitability in elite swimming. This work 

provides a valuable contribution to this field, has received significant interest in the 

research community and has been published in Sensors (2015;16:1-18).  

 

In Chapter 5, an assessment of prominent, commercially available swimming activity 

monitors was conducted. The primary aims of this study were to evaluate the validity 

of these monitors for quantifying temporal and kinematic swimming variables. This 

work provides an important contribution as these monitors had not previously been 

subjected to independent scrutiny, despite being available for sale and marketed as a 

suitable training aid for the swimming community. It was concluded that both 

monitors operate with a relatively similar performance level and appear suited for 

recreational use. However, issues with feature detection accuracy may be related to 

individual variances in stroke technique. It was postulated that this level of error 

would increase when the devices are used by recreational swimmers rather than elite 

swimmers. Therefore, further development to improve accuracy of feature detection 

algorithms, specifically for lap time and stroke count, was recommended. Such 

improvements were also deemed essential in order to increase their suitability within 

elite settings. Additionally, it was felt that current systems lack the depth of analysis 

required by coaches and swimmers operating at the highest levels of the sport. This 

study also proved beneficial in providing a means of establishing a robust, peer-

reviewed, experimental testing protocol that would ultimately be used for the 

validation of a new prototype design at a later stage in this project. Additionally, the 

work provided an opportunity to explore the context of use of this technology in 

swimming and design considerations for future development work. This chapter has 

been published in PLoS ONE (2017;12:1-17).  

 

The next step in the project was to attempt to address some of the issues that had 

been raised. Specifically, was it feasible to use inertial sensor technology for 
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conducting the depth of analysis necessary that would make this approach relevant in 

an elite setting? One such gap in the research knowledge, with major relevance to 

elite swimming, was the analysis of turns. This area became the next focus of the 

programme of research. The aim of the next study in this thesis, described in Chapter 

6, was to describe how a User Centred Design (UCD) methodology was used for 

conceptual development of novel system of performance analysis in elite swimming. 

UCD is a framework of iterative processes, which facilitates the design of a product, 

service or method in a powerful manner to ensure that the usability of the device is 

maximised and that it satisfies user requirements. Incorporating a UCD methodology 

into this thesis helped to maximise potential end user satisfaction and increase the 

likelihood of the adoption of the new technology into existing practices of analysing 

swimming in applied settings. This work provides an important contribution as UCD 

methodologies are seldom reported in the extant literature for the development of 

technology for use in sport. What was learned from this study was that the proposed 

concept had merit. Important design and functionality considerations were also 

established, such as what body location on the swimmer was deemed most suitable 

and importantly, what variables are coaches interested in reviewing when analysing 

turns. The findings presented in Chapter 6 showed the clear potential of MEMS 

inertial sensor technology if properly applied for the benefit of elite swimmers and 

coaches and brought the project onwards to the subsequent implementation phase 

with increased clarity regarding the key design requirements of the proposed system.  

 

Chapter 7 described the development of the prototype system, including both 

hardware and software components. The prototype is based on off-the-shelf 

hardware components and the software incorporates a data logging algorithm 

designed to obtain acceleration and angular velocity measurements from a swimmer. 

This chapter is important in the context of the thesis for several reasons. Firstly, it 

was vital that the hardware components and enclosure were developed and tested 

such that the prototype could be worn comfortably when swimming and not 

encumber the swimmer in performing their normal activities in the pool. 

Additionally, several technical specifications related to the design required careful 

consideration in light of the end user requirements elicited as part of Chapter 6. 

Finally, it was essential that the performance of the prototype device was adequately 
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tested to ensure that the data logging capabilities were functioning correctly and that 

the acceleration and angular velocity signal obtained represented a true reflection of 

the swimmers movements. Each of these aims was successfully achieved, providing 

confidence that the prototype system could prove suitable for experimental data 

collection.  

 

In Chapter 8 of this thesis the development of novel feature detection algorithms for 

the analysis of swimming turns was described. The algorithms were developed such 

that turns performed when swimming each of the four competitive swimming strokes 

could be analysed. The features chosen for detection were based on the key 

performance related parameters identified by coaches, including turn time, wall 

contact time, glide time and breakout time. The prototype system described in 

Chapter 7 was used to record swimmers’ movements in the pool. These recordings 

provided acceleration and angular velocity signals for post-processing and analysis. 

A specific aim of this development work was to focus on isolating the features of the 

acceleration and angular velocity signals that are common between swimmers. It was 

demonstrated that the signal profiles when performing turns are consistent and it has 

also been determined that key performance related parameters may be extracted 

based on these signal features. A number of important research contributions are 

described in this chapter. These include adaptations and improvements to methods of 

detecting lap time, stroke identification and stroke count. Furthermore, several novel 

feature detection algorithms for the detailed quantitative analysis of turns are 

described.   

 

The final aim of this thesis was to test the feasibility of incorporating these novel 

feature detection algorithms for the analysis of swimming turns in an applied 

environment. A particular emphasis was placed on ensuring that the level of 

accuracy achieved in feature detection was sufficient to allow for data to be used for 

feedback and analysis purposes and in agreement with coaches’ requirements. It was 

found that the majority of the parameters included were identified with no 

statistically significant difference, when compared to the criterion measure. 

However, from a practical point of view, several issues with accuracy do remain. 



Robert Mooney PhD Thesis – Chapter 10 

 

409 

Notably, the coaches’ requirement for an accuracy level of 0.1 s has not been met. 

Ultimately, this area of research remains a complex and challenging issue as the time 

intervals comprising the various components of a turn are so small. However, the 

study would appear to confirm that such an approach is feasible and does warrant 

further research examination. This study has developed a framework for this future 

work, including both development and testing methodologies, as well as identifying 

the parameters of interest and confirming end user requirements. The implications of 

this study are that inertial sensor technology does have the potential to provide 

accurate quantitative analysis of swimming turns, therefore strengthening the claim 

for the increased incorporation of this technology in elite settings to inform the 

coaching process.  

 

10.2 Limitations  

There is one main limitation to the work presented in this thesis. Crucially, the needs 

of coaches clearly focus on real-time data analysis. This was confirmed and repeated 

by coaches involved in this project at all stages. Whilst there may be some confusion 

amongst coaches about the exact meaning of “real-time” and some debate in the 

extant literature regarding the efficacy of real-time feedback for eliciting 

performance gains in sporting activity it remains clear that any novel technological 

solution that is to be successfully incorporated into elite swimming environments 

must be capable of providing quantitative feedback rapidly to the coach. The 

prototype system developed as part of this project does not currently provide this 

functionality. Instead, the prototype is based on post-processing techniques 

following a manual data transfer process between the hardware and a laptop 

computer. Furthermore, analysis and feedback are completed using technical 

software as opposed to a custom designed software application specific to the 

purpose. The reasons for this is that a key component of the project was in 

understanding if the feature detection algorithms had any merit for analysing 

swimming turns. Once it has been confirmed that such an approach is feasible, future 

work can focus on ensuring that all end user requirements, including real-time 
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feedback, custom designed software applications and a smaller system architecture 

are incorporated into future iterations of the system.  

 

10.3 Closing Remarks and Future Work 

In summary, this thesis described a series of studies that aimed to investigate the role 

of MEMS inertial sensor technology in swimming. It was intended to demonstrate 

the feasibility and the practicality of this approach for use in elite environments. By 

applying MEMS technology to this area, it has been shown that there are several 

potential advantages of this approach over traditional methodologies. Ultimately, in 

order for wearable sensor-based systems to become more widely accepted by 

swimming coaches working in elite environments as a suitable analysis method for 

their own use, additional research work is necessary. Future work should focus 

specifically on applied studies, demonstrating the use of the technology in coaching 

settings. Although confident that the experimental validation of the feature detection 

algorithms was rigorous, it is suggested that a larger sample and a repeated measures 

design would confirm this hypothesis. It is envisioned that future research would 

extend the work described in Chapter 9 of this thesis by applying MEMS technology 

in other applied swimming studies, with focus on different levels of swimmer ability 

and longitudinal study designs to provide additional evidence of the validity of the 

methods and the embedded algorithms. Modifications to the algorithms should also 

allow for turns performed during individual medley swimming to be analysed. 

Additional work could also focus on further developing the hardware and software 

components, including the provision of a more streamlined low-profile design, 

multiple user capability, real-time feedback potential and custom designed software 

applications for data visualisation and interrogation by end users. Indeed it is not just 

the analysis of turns that requires further research consideration. Several other areas 

of research were identified as being underdeveloped and are fundamental to the 

advancement of this area of research. These include the analysis of starts, for 

example, which is another key area of elite swimming performance that has received 

little attention in the extant literature. Ultimately it is intended that future studies 

would establish effective methods of analysing swimming performance in elite 
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swimming environments, based on MEMS technology, thus providing the 

foundation to increase use beyond current levels. 

 

The analysis of swimming technique remains a complex issue, with performance 

outcomes decided by fractions of seconds. However, despite this challenge, 

performance gains continue to be made by swimmers and their coaches, often with 

the aid of technology. It is intended that work presented in this thesis will provide a 

strong basis for the development of a highly effective new system for the analysis of 

elite swimming in the future. In conclusion, the studies described in this thesis 

demonstrates the practical application of inertial sensor technology as a suitable tool 

for use in elite swimming analysis. Furthermore, it is believed that this work lays the 

foundation for future meaningful and exciting work in this field. 
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1. General background  

A Use Case is an interactive system analysis tool which can be viewed by various stakeholders and is an 
effective way of gathering and defining user requirements. The purpose of this Use Case document is to 
provide the reader with a detailed description of the use and function of a new Swimming Sensor device that is 
currently under development at the National University of Ireland, Galway. This new technology is intended to 
be used in competitive swimming training environments to provide a swim coach with a new method for 
quantifying a swimmers performance specifically during the various types of turns performed in a pool.  

Currently, the most common method for analysing swimming performance is to use underwater video 
cameras. In order to obtain detailed quantitative data, it is necessary to digitize this footage using specialised 
software. This process has been found to be costly, complex and labour intensive and therefore may not fully 
meet the needs of a swim coach who has limited time and resources available and who has to ensure that the 
needs of the group are addressed as well as those of individual swimmers. This has led to efforts to provide 
alternative solutions for coaches and sports scientists. 

A recently completed survey of swim coaches based in the United States found that turns are regarded as an 
important aspect of swimming performance. Both open and flip turns are highly technical skills, with variations 
based on different swimming strokes and individual preferences. Therefore it is important for coaches to be 
able to fully understand what their swimmers are doing and how best to maximise improvements in their 
technique. This can be difficult to achieve with large squad numbers and limited resources.  

The researchers involved in developing this new technology are following a procedure known as “User Centred 
Design”. User Centred Design is a framework of iterative processes in which the needs, wants, and limitations 
of end users of a product, service or method are given extensive attention at each stage of the design process. 
Changes or suggestions made by one potential end user may be used to update the use case before presenting 
it to another end user. In this context, the end users may represent a swimming coach, swimmer or sports 
scientist. 

This Use Case document is intended to explore your views as a coach and to gauge your reaction to aspects of 
the design. This may ultimately lead to a final system that should best facilitate a coach to achieve his/her 
goals in an efficient and user-friendly manner.  

Please note that the information contained in the document is confidential in nature and the reader is 
referred to the signed Confidential Disclosure Agreement for details of their responsibilities under this 
agreement.  

Having read Section 1, please indicate your level of agreement with the following statement(s) by placing an X 
in the box which reflects your response to each statement. 
 
 Strongly 

disagree 
Disagree Neutral Agree Strongly 

agree 
Turns are a very important aspect of 
overall swimming performance 

     

I currently focus on improving my 
swimmers’ turns as part of the weekly 
training schedule 

     

I would be interested in finding out 
more about a system that I can use to 
further analyse turn performance 

     

I currently have a method for measuring 
the quality of my swimmers’ turns 

     

Please wait for further instructions before reading any further. 
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2. The swimming sensor device system 

The components of the swimming sensor device system include the sensor unit, the coaches tablet computer 
or laptop, and an App to visualise the data.  

Sensor Unit 
The sensor unit is designed to be waterproof, low profile and light weight, to minimize drag effects and 
interference with the swimmer. It weighs 30g and has dimensions of 40mm x 20mm x 15mm. The unit is 
designed to be positioned at the back of the head. It is clipped to the goggle straps and held in position using 
the swimmers goggles and hat. Inside the unit are various electronic components, including an accelerometer, 
gyroscope, SD memory card, battery and a wireless Bluetooth connection. This sensor device is capable of 
measuring acceleration and angular velocity, thus allowing for a swimmer’s movement in the water to be 
recorded. The sensor unit has some external features including (i) a power button for turning the device on 
and off and (ii) an LED status light. For the purposes of this Use Case, please assume that the device is capable 
of running continuously for several months without any requirement to change or recharge the battery.  

 

 

Figure 1: Sensor unit design, highlighting sensor dimensions and positioning on a swimmer’s goggles.  

Tablet computer/laptop 
A tablet computer (such as an iPad) is used to communicate with the sensor unit via Bluetooth. Data that are 
collected by the sensor during a swimming session can be uploaded to an iPad for processing and analysis.  

App 
The sensor unit uses a custom software application that is used to visualise the data that are recorded. 
Feedback is tailored to suit the coach’s needs and can include graphical, visual and numerical data 
presentation. The software also allows for video images to be synchronised with the sensor data. 

 

 

 (Sensor Unit)                     (Tablet Computer)                     (Analysis App) 

Figure 2: Description of the swimming sensor device system components. 
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Having read Section 2, please indicate your level of agreement with the following statement(s) by placing an X 
in the box which reflects your response to each statement. 
 
 Strongly 

disagree 
Disagree Neutral Agree Strongly 

agree 
I understand the components of the 
system and how they interact with each 
other 

     

I think that this is a sensible 
arrangement for a system to be used to 
analyse swimming performance 

     

Please wait for further instructions before reading any further. 
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3. Role naming & description 

The Use Case will contain a number of people who interact with the Swimming Sensor device. These people 
are all referred to as actors. Each actor has a varying degree of interaction with the system. They have been 
given names to make it easier to follow the story and a brief description of each actor is provided below.  
 
 

 
 

John 
John is a swimming coach. He holds a Level 3 qualification from the 
American Swim Coaches Association and has been coaching for 15 years. 
He is the Head Coach at Laser Swimming Club and works with his senior 
squad of 30 athletes. 
 

 
 

 
 

Andrea 
Andrea is the Assistant Coach at Laser Swimming Club and supports Head 
Coach John. She is also a qualified Sports Scientist and often helps John 
with data collection for technique analysis. 
 

 

Max  
Max is a senior squad member at Laser Swimming Club and is coached by 
John. He has been swimming competitively for 10 years.  
 
 

  

 

Other squad members 
Max is part of a squad of multiple swimmers who train with him on a daily 
basis.  
 

 
 
Having read Section 3, please indicate your level of agreement with the following statement(s) by placing an X 
in the box which reflects your response to each statement. 
 
 Strongly 

disagree 
Disagree Neutral Agree Strongly 

agree 
I understand the roles of each of the 
actors described above 

     

The actors represent all the people who 
may be involved in analysing swimming 
performance in my own training 
environment 

     

Please wait for further instructions before reading any further. 
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4. Description of system utilisation 

At a recent swim meet Max unexpectedly failed to make the final in the 200m frontcrawl event and was 3% off 
his personal best time. John suspects that the swimmers turns were a major factor for this poor performance. 
John decides to analyse the video footage of the race to check.  

John’s suspicions were correct. The time taken for Max to complete his turns were significantly longer in 
duration than his competitors and this was the difference that kept him from the final. John concludes that 
there is a technical issue with Max’s frontcrawl turns that needs to be rectified.  

John contemplates on the best course of action and decides to use a new Swimming Sensor device, which can 
collect quantitative data regarding Max’s performance and can be used to analyse Max’s technique. John also 
feels that multiple swimmers in his squad could benefit from such an analysis. 

The following week, as part of the annual training plan for his squad, John has planned a swimming session 
that he feels is a good opportunity for collecting some data from his swimmers. 

 
Having read Section 4, please indicate your level of agreement with the following statement(s) by placing an X 
in the box which reflects your response to each statement. 
 
 Strongly 

disagree 
Disagree Neutral Agree Strongly 

agree 
The scenario described above closely 
resembles situations that I have had in 
the past with my swimmers 

     

I often look to using technologies in 
order to better understand how a 
swimmers technique is affecting their 
performance 

     

I believe that it is important to use 
technology in training for the analysis of 
swimming performance 

     

Please wait for further instructions before reading any further. 
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5. Device setup and configuration 

A1 John has purchased multiple swimming 
sensor units and is ready to complete 
the system setup. 
 
The units have arrived already engraved 
with individual identification markings, 
which were chosen by John when 
making his purchase. 
 
 
 
 
 
 
 
 
 

 

A2 John downloads the App from the App 
store. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

A3 Once downloaded John launches for the 
App for the first time and is prompted 
to create his own personal account. 
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A4 John is able to configure the App to his 

regular training location and set the 
pool size. He can add additional training 
locations at a later stage, for example if 
he were to use a 50m pool for some 
training sessions. 
 
He is now ready to add some sensor 
units to his account. 
 
 
 

 
 

A5 John configures each of the units 
separately. He turns the first device on 
and a green LED flashes. John brings it 
close to the iPad with the App running. 
The sensor unit is recognised from its 
serial number via Bluetooth. 
 
John allocates the first device to Max 
and enters some personal information.  
 
 

  

 
 

 
A6 

 
John allocates the next device to 
another swimmer, and so on in a similar 
fashion until all devices have been 
configured for swimmers in his squad. 
 
This allows for a log of data to be built 
up for each user and reviewed over 
time.  
 
If he wishes, John can re-allocate a 
device to another swimmer in the 
future if necessary. 
 
John could also have configured the 
devices so that a sensor unit could be 
used interchangeably between different 
swimmers.  
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Having read Section 5, please indicate your level of agreement with the following statement(s). 
 
 Strongly 

disagree 
Disagree Neutral Agree Strongly 

agree 
I am familiar with the process of 
downloading and using Apps on a tablet 
device such as an iPad 

     

I understand the procedures involved in 
configuring the sensor units for use 

     

I would be comfortable carrying out 
these procedures myself and without 
any assistance 

     

Please wait for further instructions before reading any further. 
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6. Pool-side preparation 

B1 It is 8AM on Monday morning and 
training has gotten underway. John is 
on poolside and the squad of swimmers 
are warming up in the pool.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
B2 When the warm-up is over the 

swimmers exit the pool and remove 
their hats. 
 
John hands out the units to the 
swimmers. The swimmers turn the units 
on by pressing the power button and a 
green LED light blinks to indicate 
initialization. When the LED stops 
blinking and remains solidly lit green 
the device is ready to use. 
 
 
 
 
 
 
 
 

 

 

B3 The swimmers clip the unit into their 
swimming goggles, using the goggle 
straps to hold the unit in place.  
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B4 The swimmers put back on their hats.  

 
John and Andrea can supervise this and 
help the swimmers if required to ensure 
a secure, comfortable fit with the 
sensor unit correctly positioned under 
the swimming cap. 
 
The setup of the devices has taken only 
a couple of minutes for the entire 
squad. 
 
 
 
 
 
 
 

  

 
 
 

 
 
B5 

 
 
The swimmers return to the pool and 
John issues instructions to the entire 
squad on the swimming training to be 
completed. On this occasion, the main 
set will comprise of 10 x 100m intervals, 
with each swimmer swimming their 
best stroke.  
 
 
 
 
 

 
 

 
 
 
Having read Section 6, please indicate your level of agreement with the following statement(s). 
 
 Strongly 

disagree 
Disagree Neutral Agree Strongly 

agree 
I understand the procedures involved 
when setting up the sensor unit for use 

     

I would be comfortable carrying out this 
setup procedure myself and without 
any assistance 

     

I believe that the head is a good 
location for this device 

     

Please wait for further instructions before reading any further. 
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7. Data collection 

C1 Before starting to swim, The swimmers 
must stand upright and remain relatively 
still for approximately 15 seconds. This is 
done whilst the instructions from the 
coach about the training set are 
provided and ensures that the sensor 
units can detect when swimming activity 
is commenced. 
 
 
 
 
 
 
 
 
 
 
 

 

 

C2 The swimmers complete the set. Max 
completes the 10 x 100m intervals whilst 
swimming frontcrawl. Other swimmers 
swim different strokes based on their 
preference. As they are swimming in a 
25m pool, they each complete 30 turns 
in total.  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

C3 When finished, the swimmers again 
stand in an upright stationary position 
for approximately 15 seconds so that the 
sensor unit can register that the 
swimming phase has been completed.  
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C4 The swimmers then exit the pool so that 

the devices can be removed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

C5 John and Andrea can help the swimmers 
to remove the sensor units from the 
goggles. Andrea then pats the units dry 
with a cloth to remove excess water. 
 
The swimmers are now free to continue 
with the training session.  
 
 
 
 
 
 
 
 
 

 

 

C6 As John continues with the training 
session, Andrea gets the iPad and 
launches the App. She then positions the 
sensor units in the vicinity of the iPad.  
 
The devices are recognised and data 
synchronization starts automatically for 
each unit. The LED light blinks blue 
during this time. This is completed in 
less than 1 minute. 
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C7 Once the data has been transferred for 
all devices, Andrea powers off the 
sensor units by pressing and holding the 
power button until the LED light goes 
out. The units can now be stored until it 
is next required.  
 
 
 
 
 
 
 
 
 
 
 

 

Having read Section 7, please indicate your level of agreement with the following statement(s) by placing an X 
in the box which reflects your response to each statement. 
 
 Strongly 

disagree 
Disagree Neutral Agree Strongly 

agree 
I understand the procedures involved 
when collecting data during swimming 
using the sensor units  

     

Using the devices would not hinder my 
ability to carry out my normal training 
session with my entire swimming squad 

     

I would be comfortable carrying out 
these procedures myself and without 
any assistance  

     

Please wait for further instructions before reading any further. 
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8. Data analysis 

D1 Once the data synchronisation is 
complete John is able to start 
analysing the data. 
 
John selects the Training Log tab to 
view a list of saved swimming 
sessions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D2 John selects the data for Max and 
some summary information about 
the session is displayed.  
 
John is also able to manually input 
some notes about the session for 
future reference. 
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D3 John now selects the Analyze tab in 
order to get a detailed breakdown of 
Max’s performance.  
 
The information provides the 
average scores for a range of 
performance related variables, such 
as total turn time and times for 
different turn phase components.  
 
The unit also provides information 
on lap times and the average 
swimming speed during each lap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D4 John selects the Turn Time in order 
to further assess Max’s performance. 
John can now review the results for 
each turn individually and get details 
of the time spent during different 
phases of the turns such as 
approach, rotation and glide. 
 
John can scroll across and down the 
screen to get information for all 
turns performed during the session. 
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D5 John hits Back to return to the 
summary results screen  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D6 Next, John views the Wall Contact 
Time results. These results are 
presented in a similar format to the 
Turn Time.  
 
John can see that the times for this 
variable started to increase as the 
session progressed, possibly due to 
swimmer fatigue. 
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D7 John decides to compare two of 
Max’s turns side by side. He opens 
the drop-down menu and makes his 
selections. 
 
On this occasion he selects the 
fastest and slowest turns from 
swimming session, to see what 
differences there may be. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D8 The data is presented for him to 
review. John could also have chosen 
to compare against turns during a 
previous session, or those performed 
by a different swimmer in his squad. 
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D9 John goes back to the Training Log 
and repeats the process described 
above to look at the individual 
results for some other swimmers. 
 
John then decides to compare the 
results of the group. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D10 John selects the Analyze tab and is 
prompted to select which athletes he 
would like to include in his group 
analysis. He can also filter by 
swimming stroke and is also able to 
select a date range if he wanted to 
include historical data. 
 
On this occasion, John wants to 
compare only the swimmers who 
performed frontcrawl during the 
morning session and makes the 
appropriate selections. 
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D11 John is presented with the data he 
wants and can now assess the 
performance of his swimming squad. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D12 After the swimming session, John 
meets with his squad and discusses 
the results.  
 
They examine the information and 
decide how this can be used to 
inform future training and they 
discuss drills that can be practiced 
that will help to improve the 
performance of turns.  
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D13 Finally, John emails the reports to his 
swimmers directly from the App so 
that they can review a summary of 
their performance themselves in 
their own time.  
 
John can also access the data himself 
later on that day if he wishes to 
spend more time analyzing the 
information.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Having read Section 8, please indicate your level of agreement with the following statement(s) by placing an X 
in the box which reflects your response to each statement. 
 
 Strongly 

disagree 
Disagree Neutral Agree Strongly 

agree 
I understand the procedures involved 
when downloading data and extracting 
information  

     

I think that the system would not 
interfere with my ability to do my job as 
a swim coach 

     

I am interested in analysing swimming 
turns in detail, collecting quantitative 
data to fully understand the mechanics 
of my swimmers’ technique 

     

I believe that the swimming sensor unit 
offers an advantage over other methods 
of analysis 

     

Please wait for further instructions before reading any further. 
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The swimming sensor unit is designed to provide data for the following list of parameters for analysing 
turns: 

 Turn time (Time from the start of the 3rd last arm stroke on approach until the end of the 3rd 
arm stroke after push off) 

 Approach time (Time from the start of the 3rd last arm stroke on approach to wall contact) 
 Rotation time (Time from start of last arm stroke to wall contact; Frontcrawl/Backcrawl) 
 Wall contact time (Time from first contact with wall to push-off) 
 Hands to feet contact time (Breaststroke/Butterfly) 
 Glide time (Time from push-off to first dolphin kick) 
 Number of dolphin kicks after push off 
 Breakout time (Time from push-off to first arm stroke) 
 Lap time 
 Average speed per lap 

 
 

 Strongly 
disagree 

Disagree Neutral Agree Strongly 
agree 

I believe that the list of parameters 
included is sufficient for me to consider 
using the swimming sensor device for 
analysing turns 

     

I agree with the definitions used for all 
of the parameters provided by the 
sensor unit 

     

I would be satisfied for these 
parameters to be accurate to within one 
tenth of a second (0.1s) 

     

Please wait for further instructions before reading any further. 
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9. Conclusion 

The information that was generated in the scenario described above has revealed that Max and the other 
swimmers have some technical areas to work on in order to improve their turns. John designs subsequent 
training sessions that allow for them to work on their turns regularly in an effort to improve performances. Six 
weeks later, John does a follow up analysis, again using the Swimming Sensor device to collect data. The 
results revealed a significant improvement in many key areas.    

Max performs well at the next competition, qualifying for the 200m frontcrawl final and improving is personal 
best time in the process. After analysing the race performance, it was found that Max’s turn times accounted 
for the majority of the improvement in his race time. Many other swimmers in the squad also showed similar 
improvements.  

 
Having now read through this Use Case, are they any aspects of the procedures and interactions described that 
immediately appeal to you? 
 
 
 
 
 
 

Additionally, are they any aspects of the procedures and interactions described that immediately concern you? 
 
 
 
 
 
Please wait for further instructions before reading any further.
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Having now read through the full Use Case, place an X in the box which reflects your response to each 
statement below. Don’t think too long about each statement. Please respond to every statement. 

 
 

Strongly 
disagree 

Disagree Neutral Agree Strongly 
agree 

I think that I would like to use this 
system frequently 
 

     

I found the system unnecessarily 
complex 
 

     

I think this system would be easy to use 
                     
   

     

I think that I would need the support of 
a technical person to be able to use this 
system  

     

I found the various functions in this 
system were well integrated 
 

     

I thought there was too much 
inconsistency in this system 
 

     

I would imagine that most people would 
learn to use this system very quickly 
 

     

I think this system would be 
cumbersome to use  
 

     

I would feel very confident using the 
system 
 

     

I would need to learn a lot of things 
before I could get going with this system 
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//The Wire library is used for I2C communication 

#include <Wire.h>                                              

 

//standard SD libraries are used to control SD card function 

#include <SdFat.h>                                                  

#include <SdFatUtil.h>                                              

 

//Define the size of the buffer. There will be 6 gyroscope, 6 
accelerometer, 2 control characters and 4 time characters, giving a total 
of 18 x 292 = 5256 

#define BUF_SIZE 5256                         

 

//Allocate a Pin out to use the LED as a status indicator  

#define PIN_OUT 13                                                   

 
 
///////////////////////////////////////////////////////////////////////////                                                                                                             
//             // 
//               ACCELEROMETER INITIALISATION                 // 
//                            // 
/////////////////////////////////////////////////////////////////////////// 
 
 
//Accelerometer address during the I²C communication. The microcontroller 
must be directed to communicate with either the accelerometer or the 
gyroscope when communicating with the IMU and this sets the address for the 
accelerometer (Refer to page 10 of ADXL345 datasheet for further 
information) 

#define ACCELEROMETER_ADDRESS 0x53       

 

//Register for the data range. DATA_FORMAT also controls the format of the 
data output from registers 0x32-0x37 (Refer to page 17 of ADXL345 datasheet 
for further information) 

#define ACCELEROMETER_DATA_FORMAT 0x31       

 

//Management of the power attributes of the accelerometer. This is need to 
set the accelerometer into measurement mode (Refer to page 16 of ADXL345 
datasheet for further information) 

#define ACCELEROMETER_POWER_CTL 0x2D       

 

// include the six bytes needed to hold the output for the x, y and z axes. 
The output is 2’s complement, DATAx0 is least significant byte and DATAx1 
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is most significant byte (Refer to page 18 of ADXL345 datasheet for further 
information) 

//Low part of the x axis 

#define ACCELEROMETER_XOUT_L 0x32       

//High part of the x axis 

#define ACCELEROMETER_XOUT_H 0x33       

 

//Low part of the y axis 

#define ACCELEROMETER_YOUT_L 0x34       

//High part of the y axis 

#define ACCELEROMETER_YOUT_H 0x35       

 

//Low part of the z axis 

#define ACCELEROMETER_ZOUT_L 0x36       

//High part of the z axis 

#define ACCELEROMETER_ZOUT_H 0x37       

 

///////////////////////////////////////////////////////////////////////////                                                                                                             
//             // 
//                GYROSCOPE INITIALISATION                 // 
//                            // 
/////////////////////////////////////////////////////////////////////////// 
 

//Registers are parameters that determine how the sensor will behave and 
can hold data that represent the sensors status. 

//Gyroscope address during the I²C communication. The microcontroller must 
be directed to communicate with either the accelerometer or the gyroscope 
when communicating with the IMU and this sets the address for the gyroscope  

#define GYRO_ADDRESS 0x68       

 

//Define the sample rate divider register so that the required sample rate 
can be configured.  

#define GYRO_SAMPLERATE_DIVIDER 0x15       
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//Define the register that will be used to set the scale range and low pass 
filter configurations. 

#define GYRO_SCALERANGE_DIGITALFILTER 0x16       

 

//include the six bytes needed to hold the output for the gyroscope output. 
(Registers 29-34 p27) 

//High part of the x axis 

#define GYRO_XOUT_H 0x1D       

//Low part of the x axis 

#define GYRO_XOUT_L 0x1E       

 

//High part of the y axis 

#define GYRO_YOUT_H 0x1F       

//Low part of the y axis 

#define GYRO_YOUT_L 0x20       

 

//High part of the z axis 

#define GYRO_ZOUT_H 0x21       

//Low part of the z axis 

#define GYRO_ZOUT_L 0x22       

 

///////////////////////////////////////////////////////////////////////////                                                                                                             
//             // 
//                SD CARD INITIALISATION                 // 
//                            // 
/////////////////////////////////////////////////////////////////////////// 

 

//SD chip select pin, Pin 10 on Teensy 3.0 

const uint8_t chipSelect = SS;                                      

 

//Buffer for storing sensor values. The size of the buffer has already been 
allocated above 

unsigned char buf[BUF_SIZE];                                        
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//Temporary buffer for writing to the SDcard. The size of the buffer has 
already been allocated above 

unsigned char bufTemp[BUF_SIZE];                                        

 

//A variable called count_buf is created and is going to be used to know 
how much the buffer capacity has been used up 

int count_buf = 0;                                                  

 

//SDcard management 

SdFat sd;                                                           

 

//File management 

SdFile file;                                                        

 

//Create a file name for saved data. The file name must be 10 characters 

char file_name[10] = {'T','R','N','0','0','1','.','T','X','T'};     

 

//Time from the beginning of the program 

unsigned long time = 0;                                             

 

//Converting the unsigned long into four unsigned char  

unsigned char *pt, byte_t0, byte_t1, byte_t2, byte_t3;              

 

///////////////////////////////////////////////////////////////////////////                                                                                                             
//             // 
//               ACCELEROMETER CONFIGURATION                 // 
//                            // 
/////////////////////////////////////////////////////////////////////////// 

 

//This function will be called as part of the Setup and is used to 
configure the accelerometer and establish the various operating settings 

void configuration_of_accelerometer(void){ 
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// setting the Data format register to 00 will put the device into +-2g 
range (01 for +-4g; 10 for 8g and 11 for 16g). (Refer to page 17 of ADXL345 
datasheet for further information). 

write_to_device(ACCELEROMETER_ADDRESS, ACCELEROMETER_DATA_FORMAT, 00);       

 

// setting the power control to 8 (binary = 0000 1000) sets the D3 bit 
high, turning on measurement mode (p16)  

// By default, the sensor is already in 100 Hz sample rating giving a 
bandwidth of 50 Hz. This can be changed in Register 0x2C-BW_RATE if 
necessary (p16 of datasheet) 

write_to_device(ACCELEROMETER_ADDRESS, ACCELEROMETER_POWER_CTL, 8);          

 

//delay just for precaution 

delay(1000);                                                                 

} 

 

///////////////////////////////////////////////////////////////////////////                                                                                                             
//             // 
//                GYROSCOPE INITIALISATION                 // 
//                            // 
/////////////////////////////////////////////////////////////////////////// 

 

//This function will be called as part of the Setup and is used to 
configure the gyroscope and establish the various operating settings 

void configuration_of_gyro(void) {   

 

//Set the gyroscope scale for the outputs to +/-2000 degrees per second and 
the digital low pass filter to 42 Hz. The output is 16 bits, the max value 
for positive value is 32767, and the max negative value is -32768 

// setting this to 27 (binary = 0001 1011) sets the gyro to Full Scale 
select and the filter in one Register (Refer to page 24 of the datasheet 
for further information) 

write_to_device(GYRO_ADDRESS, GYRO_SCALERANGE_DIGITALFILTER, 27);       
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//Fsample = Fint / (divider + 1) where Fint is 1kHz, so sample rate 
(Fsample) =  1kHz (Fint) / (9+1), giving 100 Hz operation. (Refer to page 
23 of the datasheet for further information). 

write_to_device(GYRO_ADDRESS, GYRO_SAMPLERATE_DIVIDER, 9);              

 

 

//delay just for precaution 

delay(1000);                                                            

} 

} 

 

///////////////////////////////////////////////////////////////////////////                                                                                                             
//             // 
//               COMMUNICATION PROTOCOLS      // 
//                            // 
/////////////////////////////////////////////////////////////////////////// 

  

//This function will be used to transfer data to the SD card. This method 
is available in a library for different types of Arduino boards. 

//It is necessary to include the device and register address and the value 
to be returned. 

void write_to_device(uint8_t device_address, uint8_t register_address, 
uint8_t value){ 

 

//start a transmission with one of the sensors. 

Wire.beginTransmission(device_address);                                   

 

//select the register to be written to. 

Wire.write(register_address);                                             

 

//write data to the selected register. 

Wire.write(value);                                                        
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//end the transmission. 

Wire.endTransmission();                                                   

} 

 

 

//This method is flexible and can be used to return one or more bytes, 
depending on the available data 

unsigned char read_from_device(uint8_t device_address, uint8_t 
register_address, boolean with_return = true, uint8_t num_bytes = 1, 
unsigned char buffer[] = {0}) { 

 

//data is zero, if still zero then this may be a signal that a problem has 
occurred 

unsigned char data = 0;                             

 

//start transmission to the device 

Wire.beginTransmission(device_address);             

 

//sends address to read from 

Wire.write(register_address);                       

 

//end transmission 

Wire.endTransmission();                             

 

//start transmission to device 

Wire.beginTransmission(device_address);             

 

//request num_bytes bytes from device 

Wire.requestFrom(device_address, num_bytes);        

 

//if just one byte is available; data is going to receive a value from the 
device 

if(with_return) {                                
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//if the device has some data to return 

if(Wire.available()) {                             

               

//save the data sent from the I²C device 

data = Wire.read();                             

}   

} 

 

//if there is more than one byte, keep in the loop 

else {                                               

 

// device may send less than requested (but not expected to occur) 

int i = 0; 

 

 

// device may send less than requested (but not expected to occur) 

while(Wire.available()) { 

 

//receive a byte 

buffer[i] = Wire.read();                        

 

//increase the counter 

i++;                                            

 

 

//if this is more than was requested, there is a problem so stop the 
operation 

if(i > num_bytes) break;                        

} 

} 

 

//end transmission 
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Wire.endTransmission();                             

 

//return the data 

return data;                                        

} 

 

// Create an IntervalTimer object  

IntervalTimer sampleTimer; 

 

///////////////////////////////////////////////////////////////////////////                                                                                                             
//             // 
//                 SETUP                    // 
//                            // 
/////////////////////////////////////////////////////////////////////////// 

 

// create the setup function 

void setup() { 

 

//set the LED as an output 

pinMode(PIN_OUT, OUTPUT); 

   

 

//turn the LED on 

digitalWrite(PIN_OUT, HIGH);                                      

 

 

//leave the LED on for 5 seconds 

delay(5000); 

 

//turn the LED off 

digitalWrite(PIN_OUT, LOW);                                       

 

//begin the serial transmission 

Serial.begin(9600);                                                 
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//delay for 5 ms 

delay(5); 

 

//begin the I²C transmission 

Wire.begin();                                                       

 

//delay for 5 ms 

delay(5);   

 

//call the function in order to configure the accelerometer 

configuration_of_accelerometer();                                 

 

//call the function in order to configure the gyroscope 

configuration_of_gyro();                                          

 

//Check that communication has started with the SD card holder in order to 
write the information to the card 

if (!sd.begin(chipSelect, SPI_FULL_SPEED)) sd.initErrorHalt();      

 

//Create the file 

if (!file.open(file_name, O_CREAT | O_WRITE)) {               

 

//If something is wrong the LED will turn on 

digitalWrite(PIN_OUT, HIGH);                                    

 

//Stay here if an error has been detected 

while(1) { 

 

//Send an error through the serial 

Serial.write("Error in creating file\n");                    
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//delay for 1 sec 

delay(1000); 

} 

} 

 

//Synchronization of the file 

file.sync();                                                      

 

//Close the file 

file.close();                                                     

 

 

//turn the LED on 

digitalWrite(PIN_OUT, HIGH);                                      

 

//leave the LED on for 100 ms 

delay(100); 

 

//turn the LED off 

digitalWrite(PIN_OUT, LOW);                                       

 

// tick to run every 0.010 seconds  

sampleTimer.begin(tick, 10000);   

} 

 

///////////////////////////////////////////////////////////////////////////                                                                                                             
//             // 
//                INTERRUPT TIMER FUNCTION        // 
//                            // 
/////////////////////////////////////////////////////////////////////////// 

 

//start the interrupt timer function 

void tick(void) { 
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//This variable stores the time at the beginning of each sample 

time = millis();                                

 

//A pointer is declared to be used to divide the time in four bytes 

pt =(unsigned char *) &time;                    

 

//Each part receives 8 bits 

byte_t0= *(pt+0);                               

byte_t1= *(pt+1);  

byte_t2= *(pt+2);  

byte_t3= *(pt+3);  

 

//First character for initialization of the buffer 

buf[count_buf] = '#';                                                                       

 

//After each byte written in the buffer, it is necessary to  

//increase the counter to move along the buffer 

count_buf++; 

 

//Second character to check the initialization of the buffer 

buf[count_buf] = '@';                                                                       

 

//increase the counter to move along the buffer 

count_buf++; 

 

//From here is recorded the data of the gyro and accelerometer, at the 
total of 12 bytes 
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// Gyro x-axis (high) 

buf[count_buf] = read_from_device(GYRO_ADDRESS, GYRO_XOUT_H);                                                                                                                              

 

//increase the counter to move along the buffer 

count_buf++; 

 

// Gyro x-axis (low) 

buf[count_buf] = read_from_device(GYRO_ADDRESS, GYRO_XOUT_L);   

 

//increase the counter to move along the buffer 

count_buf++; 

 

// Gyro y-axis (high) 

buf[count_buf] = read_from_device(GYRO_ADDRESS, GYRO_YOUT_H);   

 

//increase the counter to move along the buffer 

count_buf++; 

 

// Gyro y-axis (low) 

buf[count_buf] = read_from_device(GYRO_ADDRESS, GYRO_YOUT_L);  

 

//increase the counter to move along the buffer 

count_buf++; 

 

// Gyro z-axis (high) 

buf[count_buf] = read_from_device(GYRO_ADDRESS, GYRO_ZOUT_H);   

 

//increase the counter to move along the buffer 

count_buf++; 
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// Gyro z-axis (low) 

buf[count_buf] = read_from_device(GYRO_ADDRESS, GYRO_ZOUT_L);   

 

//increase the counter to move along the buffer 

count_buf++; 

 

// Accelerometer x-axis (high) 

buf[count_buf] = read_from_device(ACCELEROMETER_ADDRESS, 
ACCELEROMETER_XOUT_H); 

 

//increase the counter to move along the buffer 

count_buf++; 

 

// Accelerometer x-axis (low) 

buf[count_buf] = read_from_device(ACCELEROMETER_ADDRESS, 
ACCELEROMETER_XOUT_L); 

 

//increase the counter to move along the buffer 

count_buf++; 

 

// Accelerometer y-axis (high) 

buf[count_buf] = read_from_device(ACCELEROMETER_ADDRESS, 
ACCELEROMETER_YOUT_H); 

 

//increase the counter to move along the buffer 

count_buf++; 

// Accelerometer y-axis (low) 

buf[count_buf] = read_from_device(ACCELEROMETER_ADDRESS, 
ACCELEROMETER_YOUT_L); 

 

//increase the counter to move along the buffer 
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count_buf++; 

 

// Accelerometer z-axis (high) 

buf[count_buf] = read_from_device(ACCELEROMETER_ADDRESS, 
ACCELEROMETER_ZOUT_H); 

 

//increase the counter to move along the buffer 

count_buf++; 

 

// Accelerometer x-axis (low) 

buf[count_buf] = read_from_device(ACCELEROMETER_ADDRESS, 
ACCELEROMETER_ZOUT_L); 

 

//increase the counter to move along the buffer 

count_buf++; 

 

//The time is divided in 4 bytes and they are arranged in reverse order  

//first is byte_t3 

buf[count_buf] = byte_t3;                                                                   

 

//increase the counter to move along the buffer 

count_buf++; 

 

//next is byte_t2 

buf[count_buf] = byte_t2; 

 

//increase the counter to move along the buffer 

count_buf++; 

 

//next is byte_t1 

buf[count_buf] = byte_t1; 



Page 16 of 18 
 

 

//increase the counter to move along the buffer 

count_buf++; 

 

//next is byte_t0 

buf[count_buf] = byte_t0; 

 

//increase the counter to move along the buffer 

count_buf++; 

} 

 

///////////////////////////////////////////////////////////////////////////                                                                                                             
//             // 
//                 LOOP                   // 
//                            // 
/////////////////////////////////////////////////////////////////////////// 

 

//start the loop 

void loop() { 

 

//Check the size of the buffer 

// If capacity remains, then continue to read sensor values 

if(count_buf < BUF_SIZE) {                                                           

 

 

//If all the buffer is full then the data is saved to the SD card 

else { 

 

   

//Turn the counter to zero again 

count_buf = 0;                                                                                 
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// copy contents of buffer into bufTemp 

memcpy( bufTemp, buf, BUF_SIZE*sizeof(char) );  

 

//Open the SDcard 

if (!sd.begin(chipSelect, SPI_FULL_SPEED)) sd.initErrorHalt();                             

 

 

//Now the file is going to receive more data, so appended mode is used 

if (!file.open(file_name, O_APPEND | O_RDWR)) { 

 

    

//If something is wrong the LED is turned on 

digitalWrite(PIN_OUT, HIGH);                                                             

 

 

//Stay here if an error has been detected 

while(1) { 

    

  

//Send an error through the serial 

Serial.write("Error when re-opening file\n"); 

 

 

//delay for 1 sec 

delay(1000); 

} 

} 

 

//Write all the buffer in the SDcard 

if (file.write(bufTemp, sizeof(bufTemp)) != sizeof(bufTemp)) {                                           

 

//If something is wrong the LED is turned on 

digitalWrite(PIN_OUT, HIGH);   
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//Stay here if an error has been detected 

while(1) { 

 

//Send an error through the serial 

Serial.write("Error during write to file\n"); 

 

//delay for 1 sec 

delay(1000); 

} 

} 

 

//Synchronization of the file 

file.sync();  

 

//Close the file 

file.close();                                                     

}   
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                    % 
%                       ACCELEROMETER CALIBRATION                    % 
%                                                                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clc; 
clear all; 
  
% Import raw data file 
raw_data = dlmread('CAL004.csv',';',1,0)'; 
  
% Isolate each axis (acceleration) 
Ax = raw_data(4,:); 
Ax = (Ax)'; 
Ay = raw_data(5,:); 
Ay = (Ay)'; 
Az = raw_data(6,:); 
Az = (Az)'; 
  
% convert time to sec 
time = (1:length(Ax))/100; 
  
% plot raw data 
figure; 
hold on; 
plot(Ax, 'b'); plot(Ay, 'g'); plot(Az, 'r'); 
legend('x','y','z'); 
grid on; 
  
% isolate acceleration output for each axis when orientated at +1g and -1g 
x_pos = Ax(2000:3000); 
y_pos = Ay(5000:6000); 
z_pos = Az(7000:8000); 
x_neg = Ax(9000:10000); 
y_neg = Ay(11000:12000); 
z_neg = Az(13000:14000); 
  
% calculate acceleration sensitivity 
x_sens = (mean(x_pos) - mean(x_neg)) / 2; 
y_sens = (mean(y_pos) - mean(y_neg)) / 2; 
z_sens = (mean(z_pos) - mean(z_neg)) / 2; 
  
% calculate acceleration offset 
% x-axis offset 
x_off1 = mean(Ax(5000:6000)); 
x_off2 = mean(Ax(7000:8000)); 
x_off3 = mean(Ax(11000:12000)); 
x_off4 = mean(Ax(13000:14000)); 
x_off_array = [x_off1 x_off2 x_off3 x_off4]; 
x_off = mean(x_off_array); 
  
% y-axis offset 
y_off1 = mean(Ay(2000:3000)); 
y_off2 = mean(Ay(7000:8000)); 
y_off3 = mean(Ay(9000:10000)); 
y_off4 = mean(Ay(13000:14000)); 
y_off_array = [y_off1 y_off2 y_off3 y_off4]; 
y_off = mean(y_off_array); 
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% z-axis offset 
z_off1 = mean(Az(2000:3000)); 
z_off2 = mean(Az(5000:6000)); 
z_off3 = mean(Az(9000:10000)); 
z_off4 = mean(Az(11000:12000)); 
z_off_array = [z_off1 z_off2 z_off3 z_off4]; 
z_off = mean(z_off_array); 
  
% conversion of acceleration values into m/s-2 
ax = 9.81*(raw_data(4,:) - x_off)/x_sens; % remove 9.81 to get g-values 
ay = 9.81*(raw_data(5,:) - y_off)/y_sens; 
az = 9.81*(raw_data(6,:) - z_off)/z_sens; 
  
% plot the calibrated acceleration data 
figure; 
hold on; 
plot(ax, 'b'); plot(ay, 'g'); plot(az, 'r'); 
  
% create array of  calibration variables 
% these can be passed into the filtering process 
calAccArray = [x_off x_sens y_off y_sens z_off z_sens]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                    % 
%                       GYROSCOPE CALIBRATION                        % 
%                                                                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clc; 
clear all; 
  
% Import raw data file 
raw_data = dlmread('CAL030.csv',';',1,0)'; 
  
% isolate each axis (angular velocity) 
Gx = raw_data(1,:); 
Gx = (Gx)'; 
Gy = raw_data(2,:); 
Gy = (Gy)'; 
Gz = raw_data(3,:); 
Gz = (Gz)'; 
  
% convert time to sec 
time = (1:length(Gx))/100; 
  
% plot raw data 
figure; 
hold on; 
plot(time, Gx, 'b'); plot(time, Gy, 'g'); plot(time, Gz, 'r'); 
legend('x','y','z'); 
grid on; 
  
% calculate gyroscope offset 
% rotation was about z-axis so only this required 
Gz_off1 = mean(Gz(800:1200)); 
Gz_off2 = mean(Gz(1900:2200)); 
Gz_off3 = mean(Gz(3000:3300)); 
Gz_off_array = [Gz_off1 Gz_off2 Gz_off3]; 
Gz_off = mean(Gz_off_array); 
  
% subtract offset from raw data 
Gz1 = Gz - Gz_off; 
  
% calculate angular velocity values (deg/s) 
Gz_sens = 16.384; % 16-bit (2^16=65535); +/-2000deg/s 
Gx = (Gx - Gz_off)/Gz_sens; 
Gy = (Gy - Gz_off)/Gz_sens; 
Gz = (Gz - Gz_off)/Gz_sens; 
  
% plot the angular velocity values (deg/s) 
figure; 
hold on; 
plot(time, Gx, 'b'); plot(time, Gy, 'g'); plot(time, Gz, 'r'); 
legend('x','y','z'); 
grid on; 
  
% calculate the gyroscope scale factor through integration 
% isolate the rotation phases 
Gz_int1 = Gz(1400:1800); % 1st 90 deg rotation 
Gz_int2 = Gz(2300:2700); % 2nd 90 deg rotation 
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% perform the integration 
time_int1 = (1:length(Gz_int1))/100; 
time_int2 = (1:length(Gz_int2))/100; 
  
int1 = trapz(Gz_int1, time_int1); 
int1 = 90 / int1; 
int2 = trapz(Gz_int2, time_int1); 
int2 = 90 / int2; 
G_SF = (int1 - int2)/2;     %G_SF is Gyroscope Scale Factor 
  
% create array of  calibration variables 
% these can be passed into the filtering process 
calGyroArray = [Gz_off Gz_sens G_SF]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                    % 
%                       LOW PASS FILTER                              % 
%                                                                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clc; 
clear all; 
  
% Import raw data file 
raw_data = dlmread('EGR002.csv',';',1,0)'; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                Load calibration data for RM_Prototype1             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Accelerometer calibration array 
load('calAccArray.mat'); 
x_off = calAccArray(1); 
x_sens = calAccArray(2); 
y_off = calAccArray(3); 
y_sens = calAccArray(4); 
z_off = calAccArray(5); 
z_sens = calAccArray(6); 
  
% Gyroscope calibration array 
load('calGyroArray.mat'); 
Gz_off = calGyroArray(1); 
Gz_sens = calGyroArray(2); 
G_SF = calGyroArray(3); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                Convert values to correct units                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% calculate acceleration values (m/s2) 
Ax = 9.81*((raw_data(4,:) - x_off)/x_sens); % remove 9.81 to get g-values 
Ay = 9.81*((raw_data(5,:) - y_off)/y_sens); 
Az = 9.81*((raw_data(6,:) - z_off)/z_sens); 
Ax = (Ax)'; 
Ay = (Ay)'; 
Az = (Az)'; 
  
% calculate angular velocity values (deg/s) 
Gz_sens = 16.384; % 16-bit (2^16=65535); +/-2000deg/s 
Gx = G_SF*((raw_data(1,:) - Gz_off)/Gz_sens);  
Gy = G_SF*((raw_data(2,:) - Gz_off)/Gz_sens); 
Gz = G_SF*((raw_data(3,:) - Gz_off)/Gz_sens); 
Gx = (Gx)'; 
Gy = (Gy)'; 
Gz = (Gz)'; 
  
% convert time to sec 
time = (1:length(Ax))/100; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                Apply a Low Pass Butterworth filter                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Filtered signal using 1st Order 0.02 BW filter (1 Hz Cut-off Freq) 
% Fs = 100Hz. 100/2 = 50Hz. 50x0.02 = 1Hz 
[b a] = butter(1, 0.02, 'low');          
  
% Filter acceleration data 
Ax_filtered = filter(b, a, Ax); 
Ay_filtered = filter(b, a, Ay); 
Az_filtered = filter(b, a, Az); 
  
% Filter angular velocity data 
Gx_filtered = filter(b, a, Gx); 
Gy_filtered = filter(b, a, Gy); 
Gz_filtered = filter(b, a, Gz); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                Plot to compare raw vrs filtered data               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% for acceleration 
Ax_raw = raw_data(4,:); 
Ax_filt = filter(b, a, raw_data(4,:)); 
figure; 
hold on; 
plot(time, Ax_filt, 'r'), plot(time, Ax_raw, 'b'); 
legend('Filtered','Raw'); 
title('Comparison of raw and filtered acceleration data'); 
xlabel('Time (sec)'), ylabel('Acceleration (m/s-2)'); 
grid on; 
  
% for angular velocity 
Gx_raw = raw_data(1,:); 
Gx_filt = filter(b, a, raw_data(1,:)); 
figure; 
hold on; 
plot(Gx_filt, 'r'), plot(Gx_raw, 'b'); 
legend('Filtered','Raw'); 
title('Comparison of raw and filtered angular velocity data'); 
xlabel('Time (sec)'), ylabel('Angular Velocity (deg/s)'); 
grid on; 
  
% create acceleration array of filtered values for later use  
AC = [Ax_filtered, Ay_filtered, Az_filtered]; 
AV = [Gx_filtered, Gy_filtered, Gz_filtered]; 
  
% isolate 1 length of Frontcrawl swimming for assessment of filter design 
AC_lap = AC(47000:49000, 1:3); 
AV_lap = AV(47000:49000, 1:3); 
timeLap = time(47000:49000); 
figure; 
subplot(2,1,1), plot(timeLap, AC_lap); title('Filtered acceleration data 
output for 1 length of Frontcrawl'); 
xlabel('Time (sec)'), ylabel('Acceleration (m/s-2)'); 
legend('x','y','z'); 
grid on; 
subplot(2,1,2), plot(timeLap, AV_lap); title('Filtered angular velocity 
data output for 1 length of Frontcrawl'); 
xlabel('Time (sec)'), ylabel('Angular Velocity (deg/s)'); 
legend('x','y','z'); 
grid on; 
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% plot output from filter process  
figure; 
subplot(2,1,1), plot(time, AC); title('Filtered acceleration data output'); 
xlabel('Time (sec)'), ylabel('Acceleration (m/s-2)'); 
legend('x','y','z'); 
grid on; 
subplot(2,1,2), plot(time, AV); title('Filtered angular velocity data 
output'); 
xlabel('Time (sec)'), ylabel('Angular Velocity (deg/s)'); 
legend('x','y','z'); 
grid on; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                    % 
%                  SWIMMING INTERVAL IDENTIFICATION                  % 
%                                                                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% load filtered acceleration and angular values  
AC = [Ax_filtered, Ay_filtered, Az_filtered]; 
AV = [Gx_filtered, Gy_filtered, Gz_filtered]; 
  
% isolate the x axis. When swimmer is vertical this will be approx 1g 
ACx = AC( :,1); 
  
% calculate a moving average for the data 
MA = tsmovavg(ACx,'s',500,1); 
  
% set a threshold for this moving average 
MAthreshold = 7.5; % was 7.5 - THIS MAY NEED TO CHANGE 
  
% find where data exceeds/ does not exceed threshold  
MAvalue = zeros(1,length(MA)); 
for i = 1:(length(MA)); 
    if MA(i) >= MAthreshold; 
       MAvalue(i) = 1; 
    elseif MA(i) < MAthreshold; 
       MAvalue(i) = 0; 
    end;  
end; 
  
% find where the slope of the MA changes 
MAchange = zeros(1,length(MAvalue)); 
for i = 6:1:(length(MAvalue) - 1) 
    MAchange(i) = round(MAvalue(i) - MAvalue(i-1));  
end 
  
% find where slope is increasing and decreasing 
indx_up = find(MAchange>0); 
indx_down = find(MAchange<0); 
indx_up = (indx_up)'; 
indx_down = (indx_down)'; 
  
% swim intervals will begin with an index down so if the first data point 
% is an index up then remove it 
if indx_up(1) < indx_down(1); 
    indx_up(1) = [];  
end 
  
% Also need to ensure that both indx's are the same length 
if length(indx_up) < length(indx_down); 
    indx_down = indx_down(1:length(indx_up));  
end 
  
% find difference between values 
lengthCheck = indx_up - indx_down; 
minIntervalDuration = 2500; % min time to complete 2 lengths is 25s 
  
% remove unwanted data 
unwantedData = find(lengthCheck < minIntervalDuration); 
indx_up(unwantedData) = [];  
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indx_down(unwantedData) = []; 
  
% remove noise from start of recording (1 min) 
if indx_down(1) < 6000; 
    indx_down(1) = []; 
    indx_up(1) = []; 
end 
  
% create array of the swimming intervals 
swimInterval = [indx_down indx_up]; 
disp(['Number of intervals performed: ' num2str(length(swimInterval))]); 
  
% label each swim interval 
for i = 1:length(swimInterval) 
    eval(sprintf('Interval%d = [swimInterval(i,1) swimInterval(i,2)]', i)); 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                    % 
%                    SWIMMING STROKE IDENTIFICATION                  % 
%                                                                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% select interval of interest 
 currentInterval = Interval2; 
 
% isolate the acceleration data according to the selected interval 
 strokeIdData = (AC(currentInterval(1,1):currentInterval(1,2), 1:3)); 
  
% isolate the axes of interest 
x = strokeIdData( :,1); 
y = strokeIdData( :,2); 
z = strokeIdData( :,3); 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                    DETERMINE SIGNAL FEATURES                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% calculate the Mean 
xMean = mean(x); 
yMean = mean(y); 
zMean = mean(z); 
  
% calculate the Median 
xMedian = median(x); 
yMedian = median(y); 
zMedian = median(z); 
  
% calculate the Skewness 
% (a measure of symmetry in the sginal) 
xSkew = skewness(x); 
ySkew = skewness(y); 
zSkew = skewness(z); 
  
% calculate the Kurtosis 
% (the sharpness of the peak of a frequency-distribution curve 
% a measure of whether the data are heavy-tailed or light-tailed relative  
% to a normal distribution) 
xKurt = kurtosis(x); 
yKurt = kurtosis(y); 
zKurt = kurtosis(z); 
  
% calculate the Variance 
xVar = var(x); 
yVar = var(y); 
zVar = var(z); 
  
% calculate the Max and Min values 
xMax = max(x); 
yMax = max(y); 
zMax = max(z); 
  
xMin = min(x); 
yMin = min(y); 
zMin = min(z); 
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% calculate the Signal Energy (per Davey) 
% (calculated by removing the average value from each data point, summing 
% the absolute values, and normalising against the length of the data set) 
xValue = abs(x) - xMean; 
xEnergy = round(sum(xValue) / length(x)); 
yValue = abs(y) - yMean; 
yEnergy = round(sum(yValue) / length(y)); 
zValue = abs(z) - zMean; 
zEnergy = round(sum(zValue) / length(z)); 
  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%              DETERMINE STROKE ID USING DECISION TREE               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% set markers for each of the strokes 
unknown = 0; 
Backcrawl = 1; 
Frontcrawl = 2; 
Breaststroke = 3; 
Butterfly = 4; 
currentStroke = unknown; 
  
% check data against thresholds to decide which stroke was performed and  
% display result 
if zMean < 0 && yVar < 7.5 && xKurt > 6 && zEnergy > 5 
    disp('Backcrawl'); 
    currentStroke = 1; 
elseif zMean > 0 && yVar > 7.5 && yKurt < 6 && yEnergy >= 1 
    disp('Frontcrawl'); 
    currentStroke = 2; 
elseif zMean > 0 && yVar < 7.5 && xKurt > 0 && xMedian > 3.5 
    disp('Breaststroke'); 
    currentStroke = 3; 
elseif zMean > 0 && yVar < 7.5 && xKurt < 6 && xMedian < 3.5   
    disp('Butterfly');    
    currentStroke = 4; 
else 
    disp('Error'); 
end 
  
 
  
  
  



Page 12 of 28 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                    % 
%                       LAP TIME CALCULATIONS                        % 
%                                                                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% isolate the data of interest based on the selected interval 
intervalAC = AC(currentInterval(1,1)-1000:currentInterval(1,2)+1000, 1:3); 
intervalAV = AV(currentInterval(1,1)-1000:currentInterval(1,2)+1000, 1:3); 
intervalTime = time(currentInterval(1,1)-1000:currentInterval(1,2)+1000); 
  
% isolate relevant axes of acceleration 
ACx = intervalAC( :,1); 
ACy = intervalAC( :,2); 
ACz = intervalAC( :,3); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%           PART 1: IDENTIFY THE START OF A SWIMMING INTERVAL        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% isolate a small sample of where start should occur 
startApprox = ACx(1:4000); 
  
% find the slope of the data 
for i = 4:1:(length(startApprox) - 1)  
    mTemp(i) = round(round(startApprox(i) - startApprox(i-3)) / 3);  
end 
  
% find the point on the slope where it is starting to go down 
value = find(mTemp < 0); 
closeApprox = value(1); 
  
% check back for closest previous local max in ACx 
localMaxValue = 0; 
for j = (closeApprox-100):1:closeApprox % changed -100 from -200 
    if startApprox(j) > localMaxValue 
        localMaxValue = startApprox(j); 
        lapStart = j; 
    end 
end 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                 PART 2: IDENTIFY WALL CONTACT EVENTS               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Use peak detection to find acceleration peaks corresponding to wall 
contact events 
  
% peaks can't be closer than 15s apart 
separation = 1500;  
  
% check which stroke is performed first 
if  currentStroke == 1 % Backcrawl 
    % inverse of data so min peaks can be found 
    ACInv = 1.01*max(ACx) - ACx;  
     
% establish a threshold value based on the max value associated with a turn 
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    thresh = max(ACInv)*0.75; 
    [pks,locs] = findpeaks(ACInv(1:end),'MINPEAKHEIGHT',thresh, 
'MINPEAKDISTANCE', separation); 
    feetContact = locs;  
     
    % if the last wall contact is actually the lap end then remove it       
    if length(ACInv) - feetContact(end)  < 1500  
        feetContact(end) = []; 
    end 
     
    % for backcrawl, need to hone in on the start and end of the interval     

using a zero crossing 
    p = diff(sign(ACz)); 
    indx_up = find(p>0); 
    indx_down = find(p<0); 
         

% isolate only the wall contact events of interest 
feetContact=feetContact(feetContact>=indx_down(1) & 
feetContact<=indx_up(end)); 

    wallContact = feetContact; 
     
elseif  currentStroke == 2 % Frontcrawl 
    % inverse of data so min peaks can be found 
    ACInv = 1.01*max(ACx) - ACx;  
     
    % establish a threshold value based on the max value associated with a 
turn 
    thresh = max(ACInv)*0.75; 
    [pks,locs] = findpeaks(ACInv(1:end),'MINPEAKHEIGHT',thresh, 
'MINPEAKDISTANCE', separation); 
    feetContact = locs;  
    wallContact = feetContact;   
     
elseif currentStroke == 3 % Breaststroke 
    % inverse of data so min peaks can be found 
    ACInv = 1.01*max(ACz) - ACz;  
    % establish a threshold value based on the max value associated with a 
turn 
    thresh = max(ACInv)*0.75; % was 60% 
    [pks,pushOff] = findpeaks(ACInv(1:end),'MINPEAKHEIGHT',thresh, 
'MINPEAKDISTANCE', separation); 
     
    % if the first wall contact is actually the interval start then remove 
it     
    if abs(lapStart - pushOff(1))  < 500  
        pushOff(1) = []; 
    end 
  
    % if the last wall contact is actually the lap end then remove it       
    if length(ACInv) - pushOff(end)  < 1500  
        pushOff(end) = []; 
    end 
             
    % preallocate variables to match the size of the pushOff matrix             
    handContactLoc = zeros(size(pushOff, 1),1); 
    feetContactLoc = zeros(size(pushOff, 1),1);    
      
    for k = 1:length(pushOff) 
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        % create a small window where the push off occurs for easier 
identification 
        pushOffWindow = ACy(pushOff(k)-500:pushOff(k)); 
  
        % perform the zero crossing 
        q = diff(sign(pushOffWindow)); 
        indx_up = find(q>0); % from negative to positive 
        indx_down = find(q<0); 
      
        % sort the data in cronological order 
        qData = sort([indx_up; indx_down]); 
        handContactLoc(k) = qData(end-1);        
        feetContactLoc(k) = qData(end);  
    end 
     
    % determine wall contact events (with hands) 
    handContactLoc = 501 - handContactLoc; % 501 needed to offset 
pushOffWindow 
    handContact = pushOff - handContactLoc;            
    wallContact = handContact;    
  
    % calculate wall contact events (with feet) 
    feetContactLoc = 501 - feetContactLoc;            
    feetContact = pushOff - feetContactLoc;   
  
elseif currentStroke == 4 % Butterfly 
    % inverse of data so min peaks can be found 
    ACInv = 1.01*max(ACz) - ACz;  
    % establish a threshold value based on the max value associated with a 
turn 
    thresh = max(ACInv)*0.75; 
    [pks,pushOff] = findpeaks(ACInv(1:end),'MINPEAKHEIGHT',thresh, 
'MINPEAKDISTANCE', separation); 
     
    % if the first wall contact is actually the interval start then remove 
it       
    if abs(lapStart - pushOff(1))  < 500  
        pushOff(1) = []; 
    end 
             
    % if the last wall contact is actually the interval end then remove it       
    if length(ACInv) - pushOff(end)  < 1500  
        pushOff(end) = []; 
    end 
             
    % preallocate variables to match the size of the pushOff matrix            
    handContactLoc = zeros(size(pushOff, 1),1); 
    feetContactLoc = zeros(size(pushOff, 1),1); 
  
    for k = 1:length(pushOff) 
        % create a small window where the push off occurs for easier 
identification 
        pushOffWindow = ACy(pushOff(k)-500:pushOff(k));  
         
        % perform the zero crossing 
        q = diff(sign(pushOffWindow)); 
        indx_up = find(q>0); % from negative to positive 
        indx_down = find(q<0); % am interested in these values now! 
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        % sort the data in cronological order 
        qData = sort([indx_up; indx_down]); 
        handContactLoc(k) = qData(end-1);        
        feetContactLoc(k) = qData(end);  
    end 
     
    % calculate wall contact events (with hands) 
    handContactLoc = 501 - handContactLoc;            
    handContact = pushOff - handContactLoc;            
    wallContact = handContact;            
  
    % calculate wall contact events (with feet) 
    feetContactLoc = 501 - feetContactLoc;            
    feetContact = pushOff - feetContactLoc;            
    
else 
    disp('Error in Part 2'); 
end 
  
% first peak may be close to lapStart so check and remove if needed  
if wallContact(1) - lapStart < 1000  
    wallContact(1) = []; 
    feetContact(1) = []; 
end 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%           PART 3: IDENTIFY THE END OF A SWIMMING INTERVAL          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% approximate the lap end location 
endApprox = ACx((wallContact(end)+1000):end);  
  
if  currentStroke == 1 % Backcrawl  
    threshEnd = 9; 
    separationEnd = 10; % make this separation small to ensure i get the 
first peak 
    [pksEnd,locsEnd] = findpeaks(endApprox,'MINPEAKHEIGHT',threshEnd, 
'MINPEAKDISTANCE', separationEnd); 
    lapEnd =  (wallContact(end)+1000 +locsEnd(1));  
    
elseif  currentStroke == 2 % Frontcrawl 
    threshEnd = 9; 
    separationEnd = 200; 
    [pksEnd,locsEnd] = findpeaks(endApprox,'MINPEAKHEIGHT',threshEnd, 
'MINPEAKDISTANCE', separationEnd); 
    lapEnd =  (wallContact(end)+1000 +locsEnd(1));  
         
elseif  currentStroke == 3 % Breaststroke 
    endApproxInv = 1.01*max(endApprox) - endApprox; 
    threshEnd = 6; 
    separationEnd = 50; 
    [pksEnd,locsEnd] = findpeaks(endApproxInv,'MINPEAKHEIGHT',threshEnd, 
'MINPEAKDISTANCE', separationEnd); 
    lapEndApprox = locsEnd(end); 
    [pks,locs] = 
findpeaks(endApprox(lapEndApprox:end),'MINPEAKHEIGHT',threshEnd, 
'MINPEAKDISTANCE', separationEnd); 
    lapEnd =  (wallContact(end)+1000 +lapEndApprox +locs(1));  
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elseif  currentStroke == 4 % Butterfly 
    endApproxInv = 1.01*max(endApprox) - endApprox; 
    threshEnd = 8; 
    separationEnd = 10; 
    [pksEnd,locsEnd] = findpeaks(endApproxInv,'MINPEAKHEIGHT',threshEnd, 
'MINPEAKDISTANCE', separationEnd); 
    lapEndApprox = locsEnd(end); 
    [pks,locs] = 
findpeaks(endApprox(lapEndApprox:end),'MINPEAKHEIGHT',threshEnd, 
'MINPEAKDISTANCE', separationEnd); 
    lapEnd =  (wallContact(end)+1000+ lapEndApprox +locs(1));  
      
else 
    disp('Error in Part 3'); 
end 
  
% peak may be close to wallcontact peaks so check and remove if needed 
if  lapEnd - wallContact(end) < 1000  
    wallContact(end) = []; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                PART 4: DISPLAY LAP TIME RESULTS                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% put all values into a matrix 
wallContactValues = [lapStart; wallContact; lapEnd]; % NEED TO RENAME 
PUSHOFF AS WALLEVENT 
lapTime = (diff(wallContactValues)/100); 
  
% add average speed to the matrix 
averageSpeed = 25 / lapTime; 
precision = 3; 
  
% print out the values 
disp('Lap Times                Average Speed') 
for k = 1:length(lapTime) 
    averageSpeed(k) = 25 / lapTime(k); 
    disp(['Lap ' num2str(k) ' Time = ', num2str(lapTime(k)), ' s', '     ', 
num2str(averageSpeed(k),precision), ' m/s']) 
end; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                    % 
%                     STROKE COUNT CALCULATIONS                      % 
%                                                                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% determine the number of laps in the interval 
numLaps = length(wallContactValues) - 1; 
  
% create a matrix to hold the lap start and end points 
lapMatrix = zeros(numLaps, 2); 
  
% add all lap times to the matrix 
for i = 1:numLaps 
    lapMatrix(i,1) = wallContactValues(i); 
    lapMatrix(i,2) = wallContactValues(i+1); 
end 
  
% create matrix to hold stroke count values  
strokeCount = zeros(numLaps, 1); 
  
% pre-allocation of variables to hold turn start and end points - works but 
not the correct sizes 
    turnMatrix = zeros((length(wallContactValues)-2), 2);  
    strokes_in = zeros(length(turnMatrix), 1); 
    strokes_out = zeros(length(turnMatrix), 1); 
    break_out = zeros(length(turnMatrix), 1); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%              DETERMINE STROKE COUNT BASED ON STROKE TYPE           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
     
if  currentStroke == 1 % Backstroke 
    for k = 1:numLaps 
  
% isolate each lap in turn  
  ACxLap = ACx(lapMatrix(k,1):lapMatrix(k,2));   
         
% calculate the moving average 
movingAve = tsmovavg(ACxLap,'s',50,1); % 0.5s window          
         
% perform the peak detection 
threshSC = 4; % use this to determine threshold 
separationSC = 50; % add a separation to distinguish pull from kick 
 [pksSC,locsSC] = findpeaks(movingAve(1:end),'MINPEAKHEIGHT',threshSC, 
'MINPEAKDISTANCE', separationSC); 
         
% remove first index if they are too close to the push off 
excludeValuesStart = locsSC < 400;  
locsSC(excludeValuesStart) = []; 
         
% remove last index if they are too close to end of lap 
excludeValuesEnd = locsSC > (length(ACxLap) - 150); 
locsSC(excludeValuesEnd) = []; 
% determine breakout location  
D = diff(locsSC); 
meanD = mean(D); 
break_out(k) = locsSC(1) - meanD; 
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% calculate the number of strokes performed 
strokeCount(k) = length(locsSC);  
% and the time stamps for each stroke 
strokes = locsSC; 
             
% calculate the 3 strokes in/3 strokes out times for backcrawl 
strokes_in(k) = strokes(end-3); 
strokes_out(k) = strokes(3); 
         
% output the results 
disp(['Lap ' num2str(k), ' Stroke Count = ', num2str(strokeCount(k))]); 
end 
     
elseif  currentStroke == 2 % Frontcrawl 
    for k = 1:numLaps 
        % isolate each lap in turn 
        ACyLap = ACy(lapMatrix(k,1):lapMatrix(k,2));       
        % calculate the moving average 
        movingAve = tsmovavg(ACyLap,'s',50,1); % 0.5s window  
         
        % check the max and min values to see if breathing is bi-lateral 
        if max(movingAve) > 5 && min(movingAve) < -5 
            range = (max(movingAve) - abs(min(movingAve)))/2; 
            % if breathing is bilateral then need to adjust the signal to 
suit 
            if range > 0 
                movingAve = movingAve - range; 
            elseif range < 0 
                movingAve = movingAve + range; 
            end 
        end 
         
        % perform the zero crossing 
        q = diff(sign(movingAve)); 
        indx_upSC = find(q>0); 
        indx_downSC = find(q<0); 
  
        % get the time stamps for all strokes performed 
        strokes = sort([indx_upSC; indx_downSC]); 
           
        % remove first index if it is too close to the push off 

        excludeValuesStart = strokes < 300;        
strokes(excludeValuesStart) = []; 

   
        % remove last index if it is too close to end of lap 
        excludeValuesEnd = strokes > (length(ACyLap) - 100); 
        strokes(excludeValuesEnd) = []; 
  
        % determine the number of stroke completed 
        strokeCount(k) = length(strokes); 
         
        % determine breakout location 
                break_out(k) = strokes(1); 
        
        % calculate the 3 strokes in/3 strokes out times for frontcrawl 
        strokes_in(k) = strokes(end-3); 
        strokes_out(k) = strokes(3);  
             
        % output the results 
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        disp(['Lap ' num2str(k), ' Stroke Count = ', 
num2str(strokeCount(k))]); 
    end; 
  
elseif  currentStroke == 3 % Breakstroke 
    for k = 1:numLaps 
        % isolate each lap in turn  
        ACxLap = ACx(lapMatrix(k,1):lapMatrix(k,2));   
         
        % calculate the moving average 
        movingAve = tsmovavg(ACxLap,'s',50,1); % 0.5s window  
         
        % perform the peak detection 
        lapXmax = max(movingAve);  
         

threshSC = lapXmax * 0.60; % use this to determine threshold         
separationSC = 100; % add a separation to distinguish pull from kick 

        [pksSC,locsSC] = 
findpeaks(movingAve(1:end),'MINPEAKHEIGHT',threshSC, 'MINPEAKDISTANCE', 
separationSC); 
         
        % remove first index if it is too close to the push off 

        excludeValuesStart = locsSC < 500;        
locsSC(excludeValuesStart) = [];  

         
        % determine the number of stroke completed 
        strokeCount(k) = length(locsSC); 
  
        % calculate the 2 strokes in/2 strokes out times for breaststroke 
        strokes_in(k) = locsSC(end-2); 
        strokes_out(k) = locsSC(2); 
           
        % determine breakout location       
        break_out(k) = locsSC(1);        
                  
        % output the results 
        disp(['Lap ' num2str(k), ' Stroke Count = ', 
num2str(strokeCount(k))]); 
    end; 
         
elseif  currentStroke == 4 % Butterfly 
    % use peak detection to determine number of strokes completed 
    for k = 1:numLaps 
        % isolate each lap in turn 
        ACxLap = ACx(lapMatrix(k,1):lapMatrix(k,2));    
             
        % calculate a moving average to smooth out the signal 
        movingAve = tsmovavg(ACxLap,'s',50,1); % 0.5s window          
        % perform the peak detection 
       lapXmax = max(ACxLap); % find maximum peak value 
        threshSC = lapXmax * 0.1; 
        separationSC = 100; % add a separation to distinguish pull from 
kick 
        [pksSC,locsSC] = 
findpeaks(movingAve(1:end),'MINPEAKHEIGHT',threshSC, 'MINPEAKDISTANCE', 
separationSC); 
         
        % remove first index if it is too close to the push off 
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        excludeValuesStart = locsSC < 500;        
locsSC(excludeValuesStart) = [];  
 
        % determine the number of stroke completed 
        strokeCount(k) = length(locsSC); 
                
        % calculate the 2 strokes in/2 strokes out times for butterfly 
        strokes_in(k) = locsSC(end-2); % 2 strokes in 
        strokes_out(k) = locsSC(2); % 2 strokes out 
             
        % determine breakout location       
        break_out(k) = locsSC(1);  
             
        % output the results 
        disp(['Lap ' num2str(k), ' Stroke Count = ', 
num2str(strokeCount(k))]); 
     end;  
else 
    disp('Error'); 
end; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                    % 
%                     TURN PHASE CALCULATIONS                        % 
%                                                                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% extract and arrange the relevant turn start and end points  
turnData = zeros(numLaps-1, 4);  
for n = 1:(numLaps-1) 
    turnData(n, 1) = [strokes_in(n)]; 
    turnData(n, 2) = [wallContactValues(n+1)]; 
    turnData(n, 3) = [strokes_out(n+1)]; 
    turnData(n, 4) = [break_out(n+1)]; 
end 
  
% calculate the turn times (in, out, total, breakout) 
disp('Turn    Turn Time    Time In    Time Out    Breakout') 
for i = 1:(numLaps-1) 
    lapLength(i) = wallContactValues(i+1) - wallContactValues(i); 
    timeIn = (lapLength(i)-turnData(i,1))/100; 
    timeOut = turnData(i,3)/100; 
    turnTime = timeIn + timeOut; 
    breakoutTime = turnData(i,4)/100; 
    disp(['Turn ' num2str(i) '   ', num2str(turnTime, '%.2f'), ' s', '      
', num2str(timeIn, '%.2f'), ' s', '     ',num2str(timeOut, '%.2f'), ' s', '      
',num2str(breakoutTime, '%.2f'), ' s']) 
  

% determine start and end points for each turn on the interval time 
range 

    turnStartLoc(i) = turnData(i,2) - (timeIn*100); 
    turnEndLoc(i) = turnData(i,2) + turnData(i,3); 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                    % 
%                      TURN PHASE BREAKDOWN                          % 
%                                                                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% select turn of interest 
turnNumber = 3; 
  
% determine points of interest for the turn 
startPoint = turnStartLoc(turnNumber); 
endPoint = turnEndLoc(turnNumber); 
 
% isolate relevant axes of acceleration 
ACxTurn = intervalAC(startPoint:endPoint,1); 
ACyTurn = intervalAC(startPoint:endPoint,2); 
ACzTurn = intervalAC(startPoint:endPoint,3); 
  
AVxTurn = intervalAV(startPoint:endPoint,1); 
AVyTurn = intervalAV(startPoint:endPoint,2); 
AVzTurn = intervalAV(startPoint:endPoint,3); 
  
if  currentStroke == 1 % backcrawl 
     
    % import the data that is already known 
    wallContactTurn = wallContact(turnNumber); 
    breakOutTurn = wallContactTurn + break_out(turnNumber+1); 
     
    % find push off (min peak in z-axis after wall contact) 
    ACzInv = 1.01*max(ACzTurn) - ACzTurn; 
    thresh = max(ACzInv)*0.8;  
    [pks,locs] = findpeaks(ACzInv,'MINPEAKHEIGHT',thresh); 
         
    % in case of any peaks early in the window - remove them 
    timeInTurn = (lapLength(turnNumber)-turnData(turnNumber,1)); 
    excludeValues = locs < timeInTurn;  
    locs(excludeValues) = [];  
    pushOffTurn = locs(1); 
         
    % find wallContactTime  
    wallContactTime = (pushOffTurn - timeInTurn) /100;  
         
    % determine the direction of turn and longitudinal rotation time 
    [AVxMax, locAVxMax] = max(AVxTurn); 
    [AVxMin, locAVxMin] = min(AVxTurn); 
        
    if AVxMax > abs(AVxMin) 
        turnDirection = 'Left'; 
             
        % find start of longitutinal rotation 
        % perform the zero crossing 
        qq = diff(sign(AVxTurn)); 
        indx_upRot = find(qq>0); 
                         
        % find the zeroCross of interest 
        zeroCross = (locAVxMax - indx_upRot); 
        excludeValues = zeroCross < 0;  
        zeroCross(excludeValues) = [];  
        rotationStartLong = indx_upRot(length(zeroCross));    
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        % find end of longitutinal rotation 
        [maxACy, locACy] = max(ACyTurn); 
        rotationEndLong = locACy; 
             
    elseif AVxMax < abs(AVxMin) 
        turnDirection = 'Right'; 
             
        % find start of longitutinal rotation 
        % perform the zero crossing 
        qq = diff(sign(AVxTurn)); 
        indx_downRot = find(qq<0); 
             
        % find the zeroCross of interest 
        zeroCross = (locAVxMin - indx_downRot); 
        excludeValues = zeroCross < 0;  
        zeroCross(excludeValues) = [];  
        rotationStartLong = indx_downRot(length(zeroCross));    
                         
        % find end of longitutinal rotation 
        [maxACy, locACy] = max(abs(ACyTurn)); 
        rotationEndLong = locACy; 
             
    end 
         
    % Determine longitudinal rotation time 
    rotationTimeLong = (rotationEndLong - rotationStartLong) /100; 
     
    % Determine transverse rotation time 
    rotationTimeTrans = (timeInTurn - rotationEndLong) / 100; 
                 
    % find first kick 
    AVyInv = 1.01*max(AVyTurn) - AVyTurn;  
    separation = 50; 
    thresh = 90; 
    [pksAVyInv,locAVyInv] = 
findpeaks(AVyInv(pushOffTurn+50:(pushOffTurn+break_out(turnNumber+1))),'MIN
PEAKHEIGHT',thresh, 'MINPEAKDISTANCE', separation); 
    kickData = diff(locAVyInv); 
    excludeKickValues = kickData > 75;  
    kickData(excludeKickValues) = []; 
     
    if kickData >0; 
        firstKick = locAVyInv(1)+50; 
  
        % determine number of kicks performed 
        kickCount = size(kickData);  
        kickCount = kickCount(1); 
  
        % glide time = first kick - push off 
        glideTime = firstKick /100; 
  
        % kick time = breakout - first kick 
        kickTime = (break_out(turnNumber+1) - firstKick)/100; 
                
    else 
        glideTime = break_out(turnNumber+1) /100;   
        kickTime = 0; 
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        kickCount = 0; 
    end 
     
    % determine angular velocity during transverse rotation 
    resAV = (AVxTurn .^2) + (AVyTurn .^2) + (AVzTurn .^2); 
    resAV = sqrt(resAV); 
    maxAV = max(resAV(rotationEndLong:pushOffTurn));    
     
    % display results 
    disp(['Results for Turn Number: ' num2str(turnNumber)]); 
    disp(['Longitudinal Rotation Time = ' num2str(rotationTimeLong), ' 
s']); 
    disp(['Transverse Rotation Time = ' num2str(rotationTimeTrans), ' s']); 
    disp(['Wall Contact Time = ' num2str(wallContactTime), ' s']); 
    disp(['Glide Time = ' num2str(glideTime), ' s']); 
    disp(['Kick Time = ' num2str(kickTime), ' s']); 
    disp(['Kicks off Wall = ' num2str(kickCount)]); 
    disp(['Maximum Angular Velocity = ' num2str(maxAV), ' deg/s']); 
    disp(['Turn Direction = ' num2str(turnDirection)]); 
     
    
elseif  currentStroke == 2 % frontcrawl 
  
    % import the data that is already known 
    wallContactTurn = wallContact(turnNumber); 
    breakOutTurn = wallContactTurn + break_out(turnNumber+1); 
     
    % find push off (min peak in z-axis after wall contact) 
    ACzInv = 1.01*max(ACzTurn) - ACzTurn; 
    [pks,locs] = max(ACzInv);  
    pushOffTurn = locs;  
         
    % find wallContactTime  
    timeInTurn = (lapLength(turnNumber)-turnData(turnNumber,1)); 
    wallContactTime = (pushOffTurn - timeInTurn) /100;  
     
    % Determine transverse rotation time 
    % first find all peaks in signal 
    separation = 100; 
    thresh = 0; 
    [pksRot,locsRot] = findpeaks(AVyTurn,'MINPEAKHEIGHT',thresh, 
'MINPEAKDISTANCE', separation); 
         
    % relate these peaks to the push off 
    rotData = (pushOffTurn - locsRot); 
         
    % peak prior to push off is start of rotation 
    excludeValues = rotData < 0;  
    rotData(excludeValues) = [];  
    rotationStartTrans = locsRot(length(rotData));   
         
    % peak after push off is end of rotation 
    rotData = (pushOffTurn - locsRot); 
    excludeValues = rotData > 0;  
    rotData(excludeValues) = [];  
    rotEndPoint = rotData(1); 
    rotationEndTrans = pushOffTurn - rotEndPoint;  
    rotationTimeTrans = (rotationEndTrans - rotationStartTrans) / 100; 
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    % find first kick  
    AVyInv = 1.01*max(AVyTurn) - AVyTurn;  
    separation = 50; 
    thresh = 
max(AVyInv(pushOffTurn+50:(pushOffTurn+break_out(turnNumber+1))))*0.5; 
    [pksAVyInv,locAVyInv] = 
findpeaks(AVyInv(pushOffTurn+50:(pushOffTurn+break_out(turnNumber+1))),'MIN
PEAKHEIGHT',thresh, 'MINPEAKDISTANCE', separation); 
        
    % determine number of kicks performed 
    kickData = diff(locAVyInv); 
    excludeKickValues = kickData > 75; 
         
    if kickData >0; 
        firstKick = locAVyInv(1) +50; 
        kickCount = size(locAVyInv)- sum(excludeKickValues); 
        kickCount = kickCount(1); 
  
        % glide time = first kick - push off 
        glideTime = firstKick /100; 
  
        % kick time = breakout - first kick 
        kickTime = ((break_out(turnNumber+1)) - (firstKick))/100; 
           
    else  
        glideTime = break_out(turnNumber+1) /100;   
        kickTime = 0; 
        kickCount = 0; 
    end   
         
    % determine angular velocity during transverse rotation 
    resAV = (AVxTurn .^2) + (AVyTurn .^2) + (AVzTurn .^2); 
    resAV = sqrt(resAV); 
    maxAV = max(resAV(rotationStartTrans:pushOffTurn));    
         
    % display results 
    disp(['Results for Turn Number: ' num2str(turnNumber)]); 
    disp(['Rotation Time = ' num2str(rotationTimeTrans), ' s']); 
    disp(['Wall Contact Time = ' num2str(wallContactTime), ' s']); 
    disp(['Glide Time = ' num2str(glideTime), ' s']); 
    disp(['Kick Time = ' num2str(kickTime), ' s']); 
    disp(['Kicks off Wall = ' num2str(kickCount)]); 
    disp(['Maximum Angular Velocity = ' num2str(maxAV), ' deg/s']); 
  
     
elseif currentStroke == 3 % breaststroke 
  
    % import the data that is already known 
    wallContactTurn = wallContact(turnNumber); 
    feetContactTurn = feetContact(turnNumber); 
    pushOffTurn = pushOff(turnNumber);  
    breakOutTurn = wallContactTurn + break_out(turnNumber+1); 
     
    % find wallContactTime  
    wallContactTime = (pushOffTurn - wallContactTurn) /100;  
         
    % find Feet Contact Time  
    feetContactTime = (pushOffTurn - feetContactTurn) /100;  
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    % find hands to feet contact time 
    handsFeetContactTime = (feetContactTurn - wallContactTurn) /100; 
     
    % find the start of the pull down phase 
    glideWindow = ACz(pushOffTurn:breakOutTurn); 
    [pks, locmax] = max(glideWindow); 
    pullDownStart = locmax; 
             
    % glide time = first kick - push off 
    glideTime = pullDownStart /100; 
         
    % find duration of pull down phase 
    pullDownTime = (break_out(turnNumber+1) - (wallContactTime*100) - 
pullDownStart)/100; 
                 
    % determine the direction of turn  
    [AVxMax, locAVxMax] = max(AVxTurn); 
    [AVxMin, locAVxMin] = min(AVxTurn); 
        
    if AVxMax > abs(AVxMin) 
        turnDirection = 'Right'; 
    elseif AVxMax < abs(AVxMin) 
        turnDirection = 'Left'; 
    else disp('Error'); 
    end 
        
    % determine angular velocity during transverse rotation 
    resAV = (AVxTurn .^2) + (AVyTurn .^2) + (AVzTurn .^2); 
    resAV = sqrt(resAV); 
    maxAV = max(resAV);   
  
    % display results 
    disp(['Results for Turn Number: ' num2str(turnNumber)]); 
    disp(['Hands to Feet Contact Time = ' num2str(handsFeetContactTime), ' 
s']); 
    disp(['Feet Contact Time = ' num2str(feetContactTime), ' s']); 
    disp(['Wall Contact Time = ' num2str(wallContactTime), ' s']); 
    disp(['Glide Time = ' num2str(glideTime), ' s']); 
    disp(['PullDown Time = ' num2str(pullDownTime), ' s']); 
    disp(['Maximum Angular Velocity = ' num2str(maxAV), ' deg/s']); 
    disp(['Turn Direction = ' num2str(turnDirection)]); 
         
             
elseif currentStroke == 4 % butterfly 
     
    % import the data that is already known 
    wallContactTurn = wallContact(turnNumber); 
    feetContactTurn = feetContact(turnNumber); 
    pushOffTurn = pushOff(turnNumber); 
    breakOutTurn = wallContactTurn + break_out(turnNumber+1); 
     
    % find wallContactTime  
    wallContactTime = (pushOffTurn - wallContactTurn) /100;  
         
    % find Feet Contact Time  
    feetContactTime = (pushOffTurn - feetContactTurn) /100;  
     
    % find hands to feet contact time 
    handsFeetContactTime = (feetContactTurn - wallContactTurn) /100; 
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    % find first kick  
    glideWindow = ACz(pushOffTurn:breakOutTurn); 
    separation = 25; 
    thresh = 7.5;  
    [pks,locs] = findpeaks(glideWindow,'MINPEAKHEIGHT',thresh, 
'MINPEAKDISTANCE', separation); 
    kickData = diff(locs); 
    excludeKickValues = kickData > 75; 
         
         
    if kickData >0; 
        firstKick = locs(1); 
        kickCount = size(locs)- sum(excludeKickValues);     
        kickCount = kickCount(1); 
  
        % glide time = first kick - push off 
        glideTime = firstKick /100; 
  
        % kick time = breakout - first kick 
        % kickTime = ((break_out(turnNumber+1)) - (firstKick))/100; 
        kickTime = (breakOutTurn - pushOffTurn - firstKick)/100; 
                 
    elseif kickData == 0; 
        glideTime = break_out(turnNumber+1) /100;   
        kickTime = 0; 
        kickCount = 0; 
    end 
    
    % determine angular velocity during transverse rotation 
    resAV = (AVxTurn .^2) + (AVyTurn .^2) + (AVzTurn .^2); 
    resAV = sqrt(resAV); 
    maxAV = max(resAV);    
         
    % determine the direction of turn  
    [AVxMax, locAVxMax] = max(AVxTurn); 
    [AVxMin, locAVxMin] = min(AVxTurn); 
        
    if AVxMax > abs(AVxMin) 
        turnDirection = 'Right'; 
    elseif AVxMax < abs(AVxMin) 
        turnDirection = 'Left'; 
    else disp('Error'); 
    end 
         
    % display results 
    disp(['Results for Turn Number: ' num2str(turnNumber)]); 
    disp(['Wall Contact Time = ' num2str(wallContactTime), ' s']); 
    disp(['Hands to Feet Contact Time = ' num2str(handsFeetContactTime), ' 
s']); 
    disp(['Feet Contact Time = ' num2str(feetContactTime), ' s']); 
    disp(['Glide Time = ' num2str(glideTime), ' s']); 
    disp(['Kick Time = ' num2str(kickTime), ' s']); 
    disp(['Kicks off Wall = ' num2str(kickCount)]); 
    disp(['Maximum Angular Velocity = ' num2str(maxAV), ' deg/s']); 
    disp(['Turn Direction = ' num2str(turnDirection)]);  
      
  
else 
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    disp('Error'); 
end 
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involved in the early phase of the study, assisting the PI and PhD student. They will gain experience 
in data collection, experimental design and statistical analysis and will write up their project based on 
the first set of data collected (N=4 subjects). The groups will be based on each of the four 
competitive swimming strokes (Frontcrawl, Backstroke, Butterfly, Breaststroke), with each group 
only focused on their specific stroke as assigned. As engineering students, they will also consider 
operational aspects of the monitors in question, such as the algorithms used to derive the outputs 
investigated.  The undergraduates’ involvement in this project will finish before the end of Semester 
2, 2014.  

Family Name: Corley   Forename: Gavin  Title: Dr  
 
Department: Electrical and Electronic Engineering 
 
Institution: NUI Galway 
 
Tel:  Fax:  Email: gavin.corley@nuigalway.ie 
 
Present appointment: Postdoctoral researcher 
 
Qualifications: PhD 
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5. Funding Sources: 
 
(i) Has any funding been obtained/sought by the investigator in respect of this study? 
 

Funding applied for: YES  NO  Not applicable   
 

Funding secured:  YES  NO  Not applicable 
 

 
(ii) Name of sponsoring organisation from which funding has been obtained/sought? 
 
 
 
 
 
 
(iii) Does the Investigator(s) have any direct involvement in the sponsoring organization? 

 
e.g. financial, share-holding etc:  YES  NO  Not applicable   
 
If YES, give details:  
 
 
 
 
 
 
 
 
 
NOTE:  Where the research programme has already received funding approval, please 
attach the letter of offer to this application. 
 
 
6. Proposed start date and duration of study: 
 
 
 
 
 
 

Proposed Start date:  9th December 2013 
 
Duration (months): 12 Months 

x 
 

 

x 
 

 

 

 

Irish Research Council / Swim Ireland 

 x  
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7.  Signature of relevant personnel: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Principal Applicant declaration 
The information in this application form is accurate to the best of my knowledge and belief and I take full responsibility for it. 
 
I understand that it is my responsibility to obtain institutional approval where appropriate before the project takes place. 
 
I agree to supply interim and final reports to the Research Ethics Committee from which approval was granted for this project. 
 
I agree to advise the Research Ethics Committee from which approval was granted for this project and any local researchers 
taking part in the proposal of any material changes to the proposal or any adverse or unexpected events that may occur during 
this project. 
 
I agree to advise the Research Ethics Committee in the event of premature termination, suspension or deferral of this project 
and to provide a report outlining the circumstances for such termination, suspension or deferral. 
 
 
Signature of Principal Applicant: _________________________________   Date: ______________ 
 
Co-Signed by Supervisor where the P.A. is a Student: _________________    Date: _____________ 
 
 
Head of Department/Supervisor 
I am fully aware of the details of this project and agree for it to continue as outlined here. I can confirm that the necessary 
facilities and resources are available to the researcher. 
 
Name: _________________________________         Department: _________________________ 
 
Signature: ______________________________         Date: _______________________________ 
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SECTION 2             Study Details 
This section must be completed. A copy of the protocol should be enclosed with the application form but it is not sufficient to 
complete questions by referring to the protocol.  
 
8.  Aims and objectives of study  (i.e. what is the intention of the study, key research questions?) 
 
 
 
 
 
 
9. Scientific/theoretical background1 to study (Approx. 250 words) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10. Brief plan of investigation2 (i.e. what do you intend to do?) (Approx. 250 words) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11. List procedures or investigations involving risks to participants’ well-being or safety 
(what, when, how often and risks associated with all procedures) 
 
 
 
 
 
 

                                                 
1 A succinct background to be provided and to include reference to published work  
2 Please append detailed study protocol to this application; this brief description summarizes protocol only. 

The aims of this study are:  
1) To test the reliability and accuracy of the Garmin Swim and Finis Swimsense devices in order to 
comprehensively evaluate the devices’ performance on all four competitive swimming strokes.   
2) To test if these devices can be used by elite swimmers for training to improve technical performance. 
 

Swimming is the largest participation sport in Ireland, with 6.7% of adults over 16 years (approximately 
270,000 people) participating weekly (Kelly & Lunn, 2012). At an elite level, a traditional reliance on 
intermittent coaching feedback through video analysis methods has limited competitiveness and training 
efficiency. Kinematic stroke analysis is now considered essential to the training and preparations in elite 
swimming, to identify individual stroke variations and assess performance. Recent advances in the 
miniaturization of electronic wearable technologies, hydrophobic coatings enabling their use in water and the 
increasing availability of kinematic motion sensors facilitate a new approach to swimming coaching. This 
allows for improved analysis of stroke mechanics, race performance and energy expenditure as well as real-
time feedback to the swimmer, thus enabling more efficient, competitive and quantitative coaching. Some 
preliminary work has demonstrated the feasibility of this approach using early prototype sensors (Davey et al., 
2008). Commercially available swimming sensors include the Garmin Swim and FINIS Swimsense. However 
to date, no efforts have been made to objectively evaluate the performance of these devices in a competitive 
training environment. Such analysis is warranted, to test claims provided by the manufacturers regarding their 
accuracy and reliability. Output from sensors will vary depending on the swimming stroke employed. The four 
strokes (front crawl, backstroke, breaststroke, butterfly) are anatomically very different. A key question that 
remains unanswered is whether these devices can provide accurate data analysis across all four swimming 
strokes. 

Participants will be recruited from the Swim Ireland/NUIG Connacht Performance Centre, based at the 
Kingfisher on the NUIG campus. Data collection will take place on two occasions, separated by seven days, 
during the participants normal training schedule. Following a coach led warm up routine and collection of 
preliminary personal information, participants will be required to perform a prescribed swimming protocol, 
encompassing variations of speed and stroke style, whilst wearing swimming performance monitors on each 
forearm. Simultaneous video recordings will be obtained and used as a criterion measure. Following data 
collection, the results will be analyzed to assess the performance of each device against that of the criterion 
measures.  

The swimming protocol to be carried out is designed to be typical of an actual swimming session carried out 
as part of the participants’ regular training schedule and as such involves minimal risk to those involved. 
Participants will be informed of data collection procedures beforehand and all data will be anonymized.  



Application Form Version4.0/13.08.2009 NUI Galway Research Ethics Committee 
 

 Page 8 of 34 

12. Study design (tick as appropriate) 
Survey/Questionnaire   Interviews   
Case Study   • individual  
Observational X  • group  
Action research   • person-to-person  
Record based   • telephone  
Cohort   • electronic  
Case control     
Other X  Forms of Recording  
(please specify) 
Reliability assessment 

 • Video X 
 • Audio  
 • Photography  
 • Notes X 
 • Electronic recording X 

 
13. Size of the study (including controls):  
(i) How was the size of the study determined? 
 
 
 
 
 
 
 
(ii) Was there formal statistical input into the overall study design?  NO 
 
(iii) What method of analysis will be used? 
 
 
 
 
 
 
 
14. Where3 will the study take place and in what setting? 
 
 
 
 
 
15. Does the study involve:  

 (i) distribution of a questionnaire?    YES:                 NO:  
If YES, please append a copy of the questionnaire to this application. Please indicate whether the 
appended questionnaire is:  Non-validated:   Validated:  

 
(ii) the use of a existing medicinal product or medical device?  YES                 NO   
If YES, is this medical product or device being used within the terms of its current product licence? 

   YES  NO 
If NO, please complete Annex 1 of this application. 

 
(ii) the use of a new medicinal product or medical device? YES                 NO   
If YES, please complete Annex 1 of this application. 

 
 (iii) the use of ionising or non-ionising radiation, radioactive substances or X rays? 
        YES  NO   If YES, please complete Annex 2 of this application. 

                                                 
3 Geographical location; laboratory, hospital, general practice, home visits etc. 

Video analysis 

The size of the study was determined based on the availability of testing equipment 

NUI Galway Sports Centre, using the 25m swimming pool facility 

 x 

x 
 

 

 x 

  

 x 

x  
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16. Peer Review/Critique4 
 
Has the protocol been subject to peer review?   YES  NO 
 
If the review formed part of the process of obtaining funding, please give the name and address of the 
funding organisation: 
 
 
 
 
 
 
If the review took place as part of an internal process, please give brief details:  
 
 
 
 
 
 
If no review has taken place, please explain why and offer justification for this: 
 
 
 
 
 
 
 
 
17. Does the study fall into any of the following categories? 
 
Pilot:    YES  NO  Not applicable   
 
Multi-centre study  YES  NO  Not applicable 

 
 
If this is a multi-centre study, please complete the following details, otherwise go to question 17. 
 
(i) Which centres are involved? 
 
 
 
 
 
 
 
(ii) Which ethics committees have been approached, and what is the outcome to date? 
 
 
 
 
(iii) Who will have overall responsibility for the study? 
 
 
 
 
 

                                                 
4 If you are in possession of any referee or other scientific critique reports relevant to your proposed research, please forward copies with your 
application form. 

x  

Irish Research Council 
Brooklawn House 
Shelbourne Road 
Dublin 4 

In addition to the principal investigator, the protocol was subject to review by the Head Swimming 
Coach involved with the participants. 

N/A 

  

  

x 

x 

Contact Name     Department/Centre 
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(iv) Who has control of the data generated? 
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SECTION 3        Recruitment of participants 
 
18. Who is being studied? 
 
If non-competent persons are being studied, please give details of reasons for non-competence 
 
 
 
 
 
 
19. How will be the participants in the study be:  
(i) Selected? 
 
 
 
 
 
(ii) Recruited? (Please append advertisement materials to application) 
 
 
 
 
 
20. What criteria will be used for inclusion and exclusion of participants? 
(i) Inclusion criteria: 
 
 
 
 
 
(ii) Exclusion criteria: 
 
 
 
 
 
21. How many participants will be recruited and of what age groups? 
 
 
 
 
 
22. If applicable, how will the control group in the study be:  
(i) Selected? 
 
 
 
 
(ii) Recruited? (please append advertisement materials to application) 
 
 
 
23. What criteria will be used for inclusion and exclusion of the control group? 
(i) Inclusion criteria: 
 
 

Members of the Swim Ireland/NUIG Connaght Performance Centre squad are eligible to participate in the 
study.  
 

Recruitment will be through invitation of swimmers selected in consultation with Head Swimming Coach 

Members of the Swim Ireland/NUIG Connaght Performance Centre squad are eligible to participate in the 
study.  
 

N/A 

N=20 
The age group of the participants will be from 15-21 years 

N/A 

N/A 
 

Only swimmers who are members of the Swim Ireland / NUIG Connacht Performance Centre swimming 
squad will be eligible to take part in the study. 
 

N/A 
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(ii) Exclusion criteria: 
 
 
 
 
 
24. If applicable, how many controls will be recruited and of what age group? 
 
 
 
 
 
25. Are the participants/controls included in this study involved in any other research 
investigation at the present time? 
 YES:  NO:  
 
If YES, please give details 
 
 
 
 
 
26. Will participants receive any payment or other incentive to participate? 
  YES:  NO:  
 
(i) If YES, give details of incentive per participant? 
 
 
 
 
 
If YES, what is the source of the incentive? 
 
 
 
 
 
 

N/A 
 

N/A 
 

 x 

N/A 
 
 
 

 x 

N/A 
 

N/A 
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SECTION 4         Consent 
 
27. Is written consent for participation in the study to be obtained? 
 YES:  NO:  
 
If YES, please attach a copy of the consent form to be used (Guidance on consent is given in the Guidance Notes) 
 
If NO written consent is to be obtained, please explain why 
 
 
 
 
 
28. How long will the subject have to decide whether to take part in the study? 
(If less than 24 hours, please justify) 
 
 
 
 
 
 
29. Does the study include participants for whom English is not a first language? 
 YES:  NO:  
 
If YES, give details of special arrangements made to assist these participants 
 
 
 
 
 
30. Please attach a copy of the written participant information sheet 
If NO information sheet is to be given to participants, please justify 
 
 
 
 
 
31. If you are recruiting from a vulnerable groups (Children under 18 years of age; People 
with learning difficulties; Unconscious or severely ill participants; Other vulnerable groups 
e.g. dementia, psychological disorders, etc.), please specify and justify 
 
 
 
 
 
 
 
 
 
 
(ii) What special arrangements have been made to deal with the issues of consent and assent for vulnerable 
participants e.g. is parental or guardian agreement to be obtained, and if so in what form? 
 
 
 
 
 

x  

N/A 
 

Participants will be notified at least two weeks prior to the commencement of the study. 

 x 

N/A 

 

Some of the participants will be under 18 years of age. Swimming is considered an early specialization sport, 
with the majority of athletes of a younger age group. Also, the majority of athletes who are members of the 
Swim Ireland / NUIG Connacht Performance Centre are under 18 years of age. 

Parental consent will be required from all participants under 18 years of age.  
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(iii) In what way, if any, can the proposed study be expected to benefit the individual who participates? 
 
 
 
 
 
 
 
 
 
32. Answer this question only where invasive or other interventions are planned which could be a risk to a pregnancy  
      Are women of childbearing potential included in this study? 
 
 YES:  NO:  
 
If YES, does the protocol/participant information sheet address the following: 

- scientific justification 
- negative teratogenic studies 
- warning participants that foetus may be damaged 
- requirement for initial negative pregnancy test 
- forms of contraception defined 
- duration of use to exceed drug metabolism 
- exclude those unlikely to follow contraceptive advice 
- notify investigator if pregnancy suspected. 

 
If NO, please explain 
 
 
 
 
 
 
 
 

New performance monitoring tools in swimming offer the participants the opportunity to gain greater insight 
into their swimming performance.  
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SECTION 5     Details of interventions 
 
33. Does the study involve the use of a new medicinal product or medical device, or the use 
of an existing product outside the terms of its product licence? 
 YES:  NO:  
 
If YES, please complete Question 33 and Annex 1 of the Application Form.  
 
34. Does the study involve investigations and/or interventions on either participants or 
controls? 
(Please tick YES/NO as appropriate. If YES, details should be available in the protocol) 
 
Investigation/Intervention X YES  NO 
Self completion questionnaires  YES X NO 
Interviews/interview administered questionnaires  YES X NO 
Video/audio tape recording X YES  NO 
Physical examination  YES X NO 
Internal physical examination  YES X NO 
Venepuncture*  YES X NO 
Arterial puncture*  YES X NO 
Biopsy material*  YES X NO 
Other tissue/body sample*  YES X NO 
Imaging investigation (not radiation)  YES X NO 
Other investigations not part of normal care  YES X NO 
Additional out patient attendance  YES X NO 
Longer inpatient stays  YES X NO 
Local anesthesia  YES X NO 
General anesthesia  YES X NO 

 
Other – please detail 
 
 
 
 
 
 
Please indicate and justify where treatment is withheld as a result of taking part in the project. 
 
 
 
 
 
 
 
35. Will any ionising or non-ionising radiation, or radioactive substances or X-Rays be 
administered to a participant? 
 YES:  NO:  
 
If YES, please compete Annex 2 of the Application Form.  
 
36. Where research conducted in a general practice setting, will all GPs whose patients will 
be involved, be required to sign to indicate that they are aware of and in agreement with the 
planned project? 

YES:  NO:     Not applicable: 
 
                                                 
* Please see Guidance Notes 

 x 

 x 

N/A 

N/A 
 

  x 
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If NO, please explain why not 
 
 
 
 
 

N/A 
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SECTION 6              Risks and ethical problems 
 
37. Are there any potential risks to participants? 
 YES:  NO:  
 
If YES, please complete Annex 3 for each procedure for which a potential risk occurs. 
 
 
38. Could this study cause any discomfort or distress, either physical or mental? 
 YES:  NO:  
 
If YES, estimate the degree and likelihood of discomfort or distress entailed and the precautions to be taken 
to minimise them. 
 
 
 
 
 
 
Please include other potential embarrassments to the subject that should be explained prior to 
obtaining consent (e.g. state of undress etc) 
 
 
39. What particular ethical problems or issues do you consider to be important or difficult 
with the proposed study? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(i) Will treatments provided during the study be available if needed at the end of the study? 
 YES:  NO:   Not applicable:     
 
(ii) If NO, is this made clear in the participant information sheet? 
 YES:  NO:    
 
If NO, please give reasons 
 
 
 
 

Parental consent required from participants under 18 years of age. 

 x 

x  

Physical discomfort due to participants undertaking a prescribed swimming routine. The routine will be 
similar in nature to normal training activities so is not considered out of the ordinary for the participants. 

  x 
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SECTION 7                Indemnity  
Product liability and consumer protection legislation make the supplier and producer (manufacturer) or any person changing the 
nature of a substance, e.g. by dilution, strictly liable for any harm resulting from a consumer’s use of a product. 
 
(Please refer to Page 8 of the ‘Guidance Notes on Completing the Application Form’ for information on indemnity.)   
 
40. Arrangements for indemnification5/compensation 
(i) What arrangements have been made to provide indemnification and/or compensation in the event of a  
claim by, or on behalf of, a participant for negligent harm?  
    
 
 
 
 
 
(ii) What arrangements have been made to provide indemnification and/or compensation in the event of a 
claim by, or on behalf of, a participant for non-negligent harm?     
 
 
 
 
 
 
(iii) Will an undergraduate student be involved directly in conducting the project? 
 YES:  NO:    

 
 
41. In cases of equipment or medical devices, have appropriate arrangements been made 
with the manufacturer to provide indemnity? 
 YES:  NO:   Not applicable:     
 
If YES, please give details and enclose a copy of the relevant correspondence with this application 
 
 
 
 
 
 
 
 
42. In cases of medicinal products, have appropriate arrangements been made with the 
manufacturer to provide indemnity? 
 YES:  NO:   Not applicable:     
 
If YES, please give details and enclose a copy of the relevant correspondence with this application 
 
 
 
 
 
 
 
 
 

                                                 
5 Where there is more than one institution /organisation involved in the study, each institution /organization is responsible for its own 
indemnity cover, and confirmation of such cover must be appended to the application.  

NUI Galway Professional Indemnity Cover 

NUI Galway Professional Indemnity Cover 

x  

  x 

N/A 

  x 

N/A 
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SECTION 8               Confidentiality 
 
43. Will the study include the use of any of the following? 
 

Audio/Video recordings  YES:  NO:    
 

Observation of participants:  YES:  NO:    
 
If YES to either: 
(i) How are confidentiality and anonymity to be ensured? 
 
 
 
 
 
(ii) What arrangements have been made to obtain consent for these procedures? 
 
 
 
 
 
(iii) What will happen to the tapes at the end of the study? 
 
 
 
 
 
44. Will the study data be held on computer? 
  YES:  NO:   
 
If YES, will the data be held so that participants cannot be identified from computer files (i.e. no name, 
address, medical chart number or other potential identifier such as GMS or RSI number? 
  YES:  NO:   
 
If NO, please give reasons 
 
 
 
 
 
 
45. Will records (preferably paper records) linking study participant ID with identifying 
features be stored confidentially? (Please refer to the REC policy on Data Retention:  
http://www.nuigalway.ie/research/vp_research/documents/ethics_committee_docs/datapolicy.pdf) 
 
  YES:  NO:   
 
Please give details of arrangements for confidential storage 
 
 
 
 
 
 
For how long will records be retained prior to destruction? 
 
 
 

x  

x  

Participants will be assigned a number for identification purposes and all data will be anonymized. All data will 
be stored centrally with the PhD student, Robert Mooney. Upon publication, data will be destroyed. 

Participant information sheet will outline the procedures to be carried out and detail methods of ensuring 
confidentiality 

All data and video recordings will be deleted at the end of the study. 

x  

x  

 

x  

All data will be stored centrally with the principal applicant. Only summary data, which is non identifiable, will 
be shared with others involved. 
 

Records will be deleted following publication of the findings of the research 

http://www.nuigalway.ie/research/vp_research/documents/ethics_committee_docs/datapolicy.pdf


Application Form Version4.0/13.08.2009 NUI Galway Research Ethics Committee 
 

 Page 20 of 34 

 
 
46. Will the participants’ medical records be examined by investigators in the study? 
  YES:  NO:   
 
If YES, will information relevant only to this study be extracted: YES:  NO:        Not applicable:    
 
(i) If extra information is extracted, please justify 
 
 
 
 
 
(ii) What, if any, additional steps have been taken to safeguard the confidentiality of personal medical records? 
 
 
 
 
 
 
47. Will research workers outside the employment of NUI Galway examine medical or other 
personal records? 
 
  YES:  NO:    
 
If YES, it is the responsibility of the Principal Applicant to ensure that research workers understand that: 
Information obtained about and from research participants is confidential to the study and must not be 
divulged except in legitimate methods of study data presentation or exceptional circumstances as discussed 
and agreed with the principal investigator. 
 
 
 
 
 
 
 
 
 
  
 
 

Please ensure that you complete the checklist on the front cover of 
this application form and include all relevant enclosures. 
 
 
 
THANK YOU.  
 

x  

 x 

 

N/A 

 x 

N/A 
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ANNEX 1 
 
This form is to be used if the study involves the use of a new medical product or medical device, or the use of an existing product 
outside the terms of its product licence. 
 
(i) Does this project have Irish Medicines Board approval or has an application been made? 

YES:   NO:     Not applicable:    Application is at present with IMB:    
 

If approval applied for, state date of application:  
 
(ii) Is a pharmaceutical or commercial company arranging this trial? 

YES:   NO:      
 

If YES, attach indemnification. 
If NO, has the licensing authority been notified? YES:    NO:      

 
(iii) Does the drug(s) or medical device have a product license(s) for the purpose for which it is to be 
used? 

YES:    NO:      
 
If YES, please give details 
 
 
 
 
 
 
 
(iv) Is any drug or medical device being supplied by a company with a Clinical Trial Exemption 
Certificate or in response to an investigator with a Clinical Trial Exemption, or Doctors’ Exemption? 

YES:    NO:      
 
If YES, give details of:  

Clinical Trial Certificate Number:  
 

Clinical Trial Exemption Number: 
 

Doctors’ Exemption Number:  
 

 
(v) Details of drug use or medical device (please complete the table below) 
 
Approved name:  
 
Generic name: 
 
Trade name:  
 
Strength Dosage Frequency Route Duration of course 
     
     
 
(vii) Who will administer the drug or fit the medical device? 
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(viii) If a medical device, has the device been through acceptance and safety testing? 
 YES  NO      
 
Please give details 
 
 
 
 
 
 
(ix) Who is supplying the drug(s)/medical device? (If imported, name country) 
 
 
 
 
 
(x) Who will dispense the drug(s)/medical device?  
 
 
 
 
What is their qualification to dispense the drug(s)/medical device? 
 
 
 
 
 
(xi) Does the organisation and performance of this trial conform to European Directives on Good 
Clinical Practice? 
 YES  NO      
 
If no, please detail and explain 
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ANNEX 2 
 
This form is to be used if the study involves the use of ionizing or non-ionising radiation, radioactive substances or X-Rays. A 
competent Radiation Protection Advisor must be involved in implementing this section.  
 
A. RADIOACTIVE SUBSTANCES 
 
(i) Details of substances to be administered (please complete the table below) 
 
Investigation Radionucleide Chemical form Quantity of 

radioactivity to 
be administered 
(MBq) 

Route Frequency 

      
      
 
(ii) Estimated Effective Dose (Effective Dose Equivalent) (mSv) 
      (Please supply source of reference or attach calculation) 
 
 
 
 
(iii) Absorbed dose to organ or tissues concentrating radioactivity (mGy) (Specify dose and organ) 
      (Please supply source of reference or attach calculation) 
 
 
 
 
(iv) Administration of Radioactive Substances Advisory Committee certificate holder to 
oversee/administer substance 
 
Name of Person: 
 
Position: 
 
Certificate No.:  
 
I have assisted in and approve the protocol and arrangements that have been made in this project for the administration of the 
radioactive substance(s). 
 
Signature:             Date:      
 
 
B. X-RAYS 
 
(i) Details of radiographic procedures (please complete the table below) 
 
Investigation Organs Frequency 
   
   
   
 
(ii) Estimated Effective Dose (Effective Dose Equivalent) (mSv) 
      (Please supply source of reference or attach calculation) 
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C. NON IONISING RADIATION 
 
(i) Details of procedures (please complete the table below) 
 
Investigation Organs Frequency 
   
   
   
 
(iv) Who has given safety advice? 
 
Name of Person: 
 
Position: 
 
Qualification to advise:  
 
 
I have assisted in and approve the safety of the protocol and arrangements that have been made in this project 
 
 
Signature:             Date:      
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ANNEX 3 
 

Risk Assessment Form – Procedures Involving Human Subjects 
 
Procedure no.: 
 
Title of Procedure:  
 
 
Name of Assessor(s):  
 
 
Assessment Date:  
 
Does this procedure already have ethical approval? YES   NO 
 
If YES, enter Approval No. and Expiry Date:   Approval No: 
 
       Expiry Date:  
 
 
1. Please provide a brief description of the procedure; 
 
 
 
 
 
 
 
 
 
 
 
2.  Location in which the Procedure will take place 
(e.g. Research Laboratory – Room No. , Teaching Laboratory – Room No., Hospital clinic – specify,  etc) 
 
 
 
 
3. Subject(s) to be used 
 
How many human participants? 20 

 
(tick as appropriate) 
Undergraduate student(s) x 
Postgraduate student(s)  
University staff or campus personnel  
Members of the general public  x 

 
 
4. What is the level of any potential risks for participants?  
[To be explained BEFORE obtaining consent] 
 

None  
Minimal only x 
Moderate  
Significant  

 

Reliability and accuracy assessment of commercially available swimming performance 
monitors. 
 
 Prof Gearóid ÓLaigin 
 

 x 

9th December 2013 

 

 

Participants will be recruited from the Swim Ireland/NUIG Connacht Performance Centre, based at the 
Kingfisher on the NUIG campus. Data collection will take place on two occasions, separated by seven days, 
during the participants normal training schedule. Following a coach led warm up routine and collection of 
preliminary personal information, participants will be required to perform a prescribed swimming protocol, 
encompassing variations of speed and stroke style, whilst wearing swimming performance monitors on each 
forearm. Simultaneous video recordings will be obtained and used as a criterion measure. Following data 
collection, the results will be analyzed to assess the performance of each device against that of the criterion 
measures.  
 

NUI Galway Sports Centre, using the 25m swimming pool facility 
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(ii) If the risk is other than minimal, please give details and likelihood of risk occurrence 
 
 
 
 
 
 
(ii) If the risk is other than minimal, please give details of precautions taken to minimise the risk  
 
 
 
 
 
 
5. Actions to be taken in the event of adverse response or medical emergency  
Please provide details of arrangements to deal with adverse events, including reporting to the relevant 
authorities and follow-up 
 
 
 
 
 
 
6. Appropriate level of supervision required for procedure (please tick as appropriate) 
 

Post-graduate researcher x 
Research/ lecturing Staff  
Paramedical personnel  
Medical personnel – Nurse  
Medical personnel – Doctor  
Medical personnel – Other  

 
If other personnel, please specify title and/or required qualification 
 
 
 
 
 
7. Other documentation required for this assessment 
 

Pre-test subject questionnaire  
Detailed protocol  
Other x 

 
If other documentation is required, please describe 
 
 
 
 
 
8. Signature 
 
 
Signed:         Date:     
 Signature of Principal Applicant 

 

 

 

Staff at NUI Galway Sports Centre will be available during data collection in the event of a medical 
emergency. 

Head Swimming Coach, Swim Ireland/NUIG Connacht Performance Centre 

questionnaire 
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FOR COMPLETION BY HEAD OF DEPARTMENT 
 
 

Risk Assessment Form – procedures involving human subjects 
 
In the Department/ Institute/ Center of:  
 
 
 
Procedure no.: 
 
Title of Procedure:  
 
 
Name of Assessor(s):  
 
 
Assessment Date:  
 
 
9. Approval of Procedure 
 
  Granted  
 
  Subject to conditions (see below) 
 
  Refer to Hospital Ethics Committee 
 
  Other, please specify 
 
 
 
 
 
10. Comments and/or conditions 
 
 
 
 
 
 
 
 
 
11. Signature 
 
 
Signed:         Date:     
 Signature of Head of Department/Centre 
 
 
 
(Please copy this Annex as necessary) 
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Reliability and accuracy assessment of commercially available swimming performance 
monitors. 
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Study Protocol 

NUI Galway, Electrical & Electronic Engineering 
Principal Investigator’s Name:  Prof. Gearóid ÓLaigin 

Project Title:  Reliability and accuracy assessment of commercially available swimming 
performance monitors. 

 
 

A 15 Minute coach led warm-up routine will be carried out prior to commencement of the data collection 
phase, which is outlined below. 
 
50 Fly moderate pace Butterfly Distance Swum: 100 X 3 = 300 meters 
Rest 30   
50 Fly sprint swim   
Rest 30   
X 3  2.20 min X 3 = 7 min + 2 min 
Rest 2 min Estimated Time:                      = 9 min 
 
 
100 BS moderate pace Backstroke Distance Swum: 200 X 2 = 400 meters 
Rest 30   
100 BS sprint swim   
Rest 30   
X 2  4 mins X 2 = 8 min + 2 mins 
Rest 2 min Estimated Time:                   = 10 mins 
 
 
100 BRS moderate pace Breastroke Distance Swum: 200 X 2 = 400 meters 
Rest 30   
100 BRS sprint swim   
Rest 30   
X 2  4.30 min X 2 = 9 min + 2 min 
Rest 2 min Estimated Time:                      = 11 min 
 
 
100 FS moderate pace Freestyle Distance Swum: 200 X 2 = 400 meters 
Rest 30   
100 FS sprint swim   
Rest 30   
X 2  3.30min X 2 = 7 min + 2 mins 
Rest 2 min Estimated Time:                      = 9 mins 
 
 
Total Estimated Time = 39 min X 2 for two swimmers = 78 mins + 15 mins warm up equals 93 mins. The 
protocol will be repeated on two occasions, one week apart.  
 
 

 
 



 

  

Participant Information Sheet 
NUI Galway, Electrical & Electronic Engineering 

Principal Investigator’s Name:  Prof. Gearóid ÓLaigin 
Project Title:  Reliability and accuracy assessment of commercially available swimming 

performance monitors. 
 
You are being invited to take part in a research study. Before you decide, it is important for you to 
understand why the research is being done and what it will involve. This Participant Information 
Sheet will tell you about the purpose, risks and benefits of this research study. If you agree to take 
part, we will ask to ask you to sign a Consent Form. If there is anything that you are not clear about, 
we will be happy to explain it to you. Please take as much time as you need to read it. You should 
only consent to participate in this research study when you feel that you understand what is being 
asked of you, and you have had enough time to think about your decision. Thank you for reading 
this.  
 
Purpose of the study: 
The analysis of a swimmer’s technical performance is typically carried out using video based methods 
such as underwater camera’s. Recently, a new approach to this analysis has been developed that 
involves the use of body worn sensors. Examples of this include products such as the Garmin Swim 
and FINIS Swimsense devices. This research is been carried out to assess how accurately these devices 
perform in a competitive swimming environment. You have been invited to participate in this study 
as you are a member of the Connacht Performance Centre (CPC) swimming squad and in 
consultation with the CPC Head Coach.  
 
Taking part – what it involves  
Do I have to take part? 
It is up to you to decide whether or not to take part. If you do decide to take part you will be given 
this information sheet to keep and be asked to sign a consent form. If you decide to take part you are 
still free to withdraw at any time and without giving a reason. A decision to withdraw at any time, or 
a decision not to take part, will not affect your rights in any way. 
 
What will happen to me if I take part?  
If you decide to take part you will be asked to perform a set swimming protocol whilst wearing the 
Garmin Swim and FINIS Swimsense devices so that performance related measurements can be obtained 
and compared. A digital video of the swimming session will also be taken as a benchmark so that 
results from the sensor devices can be compared to video recordings. Participants will be assigned a 
number for identification purposes and all data will be anonymized. All data, including video recordings will 
be stored centrally with Robert Mooney. Video will be edited to obtain only the specific information of 
interest. Once the data is extracted from the video recordings, these images will not be used for any 
other purpose and will not be shared with any other parties. 
 
How long will my part in the study last?  
You will be required to perform the same swimming protocol on two occasions, one week apart. 
The exact time and date of the sessions will be confirmed at a later date but will take place during 
your regular training schedule at the CPC. Each session will last approximately one hour. 
 
What do I have to do?  
There are no restrictions to you either before or after the study. You are free to carry out your 
normal daily dietary, lifestyle and medical routine.  
 
What is the procedure being tested?  
The procedure being tested is whether the Garmin Swim and FINIS Swimsense devices can accurately 
record key variables related to swimming, such as stroke rate and swim speed. The routine outlined 
below will be repeated on two occasions, one week apart.  



 

  

 
Following a coach led warm-up routine; you will be fitted with two sensors, one on each wrist. You 
will be asked to swim the following routine. 
 

1. 50 metre butterfly moderate pace, rest 30 seconds, 50 metre butterfly sprint, rest 30 seconds, 
repeated 3 times, 2 minutes rest interval. 

2. 100 metre backstroke moderate pace, rest 30 seconds, 100 metre backstroke sprint, rest 30 
seconds, repeated 2 times, 2 minutes rest interval. 

3. 100 metre breaststroke moderate pace, rest 30 seconds, 100 metre breaststroke sprint, rest 30 
seconds, repeated 2 times, 2 minutes rest interval. 

4. 100 metre freestyle moderate pace, rest 30 seconds, 100 metre freestyle sprint, rest 30 
seconds, repeated 2 times, 2 minutes rest interval. 

 
What are the possible benefits in taking part?  
Should these devices prove accurate and reliable then there is potential for such instruments to be 
used as part of your regular training routine, so that you can obtain key information related to your 
swimming performance on an on-going basis. 
 
What are the possible disadvantages and risks of taking part?  
There are no risks to your involvement in this study. The swimming protocol does not involve 
undertaking any activity outside of your normal training routines.  
 
What happens if I change my mind during the study?  
You are free to withdraw your participation at any stage, without the requirement to provide reasons 
for your withdrawal. 
 
Whom do I contact for more information or if I have further concerns?  
If you have any further questions or concerns then please contact: 
 
Robert Mooney 
Bioelectronics Research Cluster, 
Electrical and Electronic Engineering, 
NUI Galway, 
University Road, Galway. 
Tel: 085-7173744 
E-mail: r.mooney4@nuigalway.ie 
 
What happens at the end of the study?  
At the end of the study the data collected with be summarised and analysed to draw conclusions 
regarding the suitability of the devices for use in competitive training environments. All data and video 
recordings will be treated in strict confidence and will be deleted upon completion of this study. 
 
If you have any concerns about this study and wish to contact someone independent and in  
confidence, you may contact: 
Chairperson of the NUI Galway Research Ethics Committee,  
c/o Office of the Vice President for Research, NUI Galway, ethics@nuigalway.ie. 
 
Confidentiality  
All information that is collected about you during the course of the research will be kept strictly 
confidential and will not be shared with anyone else. The information collected in this research study 
will be stored in a way that protects your identity. The original recordings will be stored securely for 
the duration of the study, after which they will be destroyed. Results from the study will be reported 
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as group data and will not identify you in any way.  
 
Summary  
Please feel free to contact Robert Mooney if you wish to clarify any points which remain unclear to 
you. Please note that you are free to refuse to take part in the study without any disadvantage and 
that should you agree to take part, you can change their mind at any point during the study and 
decide not to continue in the study without any disadvantage.  
 
Thank you for your interest in taking part in this study. 
 

 
______________________________ 
Robert Mooney 
Bioelectronics Research Cluster, 
Electrical and Electronic Engineering, 
NUI Galway, 
University Road, Galway. 
Tel: 085-7173744 
E-mail: r.mooney4@nuigalway.ie 
 
Date: 8th January 2014 
Version Number: 2.0 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:r.mooney4@nuigalway.ie


 

 

Participant Questionnaire 
Please respond to the following statements, by indicating your level of agreement in the space provided. 
1 = completely disagree 
7 = completely agree 
 
I found the FINIS watch comfortable to wear whilst swimming 
 1 2 3 4 5 6 7 

I found the Garmin watch comfortable to wear whilst swimming 
 1 2 3 4 5 6 7 

The FINIS watch interfered with my swimming stroke 
 1 2 3 4 5 6 7 

The Garmin watch interfered with my swimming stroke 
 1 2 3 4 5 6 7 

I would consider using the FINIS watch in future 
 1 2 3 4 5 6 7 

I would consider using the Garmin watch in future 
 1 2 3 4 5 6 7 

I believe that the FINIS watch could benefit my swimming performance 
 1 2 3 4 5 6 7 

I believe that the Garmin watch could benefit my swimming performance 
 1 2 3 4 5 6 7 

 
Do you have any other comments to make regarding these swimming sensors? 
 
 
 
 
 
 
 
 



 

 

Participant / Parental Consent Form 
 

NUI Galway, Electrical & Electronic Engineering 
 

Principal Investigator’s Name:  Prof. Gearóid ÓLaigin 
 

Project Title:  Reliability and accuracy assessment of commercially available swimming 
performance monitors. 

 
Please tick each box: 
 
1. I confirm that I have read the information sheet dated 5th November 2013  
(version 1.0) for the above study and have had the opportunity to ask questions.  
 
2. I am satisfied that I understand the information provided and have had enough time  
to consider the information.  
 
3. I understand that my participation is voluntary and that I am free to withdraw at any  
time, without giving any reason, without my legal rights being affected.  
 
4. I agree to take part in the above study.  
 
 
 
Participant Name: ________________________ Signature: ___________________________ 
 
Date: ____________________     
 
 
If the Participant is under 18 years of age, consent is also required from a 
parent/guardian 
 
 
Parent/Guardian Name: ___________________ Signature: ___________________________ 
 
Date: ____________________    
 
 
 
Researcher Name: ________________________ Signature: ___________________________ 
 
Date: ____________________    
 
 
 
 
 
 
 
 
 



 

 

CURRICULUM VITAE 
Prof. Gearóid Ó Laighin 

 
 
POSITION:   Head of Discipline & Professor of Electronic Engineering 

(2007-present), 
Electrical & Electronic Engineering, 
College of Engineering & Informatics 
NUI Galway 

 
QUALIFICATIONS:  B.E. Electrical Engineering (First Class Honours) (UCC), 

M.Eng.Sc. (Microelectronics) (UCC), Ph.D. (NUI Galway) 
 
MEMBERSHIP OF  FIEI, C.Eng., FIET, SMIEEE 
PROFESSIONAL BODIES: 
 
PROFESSIONAL  2 years in the automation industry, Dublin, Ireland 
EXPERIENCE:  5 years in the microelectronics industry, California, USA 

17 years as an academic at the University of Limerick and 7 
years as a Professor at NUI Galway 

 
TEACHING AREAS AND Biomedical Instrumentation, Kinesiology of Human 
SPECIALITIES  Movement, Medical Electronics 
 
RESEARCH ACTIVITIES Principle Investigator, Bioelectronics Research Cluster,NCBES 

Biomedical Electronics with a specialism in Neuromuscular 
Electrical Stimulation and Kinematic Sensing of Human 
Movement 
14 PhD students as lead supervisor to graduation. 

 
NUI Galway PI on FP7 project REMPARK 
NUI Galway PI on CIP project FATE 
NUI Galway PI on CIP E-NO FALLS 
NUI Galway PI on USA DoD project 
PI on EI Commercialisation Project VASGARD 
PI on EI Commercialisation Project VSENSE 
 
6 PhDs students currently under supervision 
60+ peer reviewed international journal papers 
>70 conference papers 
 
Total citations = 2848 
h-index = 26 
Top cited paper in last ten years in Medical Engineering & 
Physics 
Top cited paper in Gait & Posture over a ten year period. 
 
Full list of Google Scholar indexed publications showing 
citations in Google Scholar 
http://scholar.google.com/citations?user=j4btiysAAAAJ&hl=en 


	Robert Mooney - PhD Thesis (HardBoundPDF)_Rev3
	Appendix A
	1. General background
	2. The swimming sensor device system
	3. Role naming & description
	4. Description of system utilisation
	5. Device setup and configuration
	6. Pool-side preparation
	7. Data collection
	8. Data analysis
	9. Conclusion

	Appendix B
	Appendix C
	Appendix D
	RESEARCH ETHICS COMMITTEE APPLICATION FORM
	STUDY DESCRIPTORS



