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COMPUTATIONS FOR COXETER ARRANGEMENTS AND
SOLOMON’S DESCENT ALGEBRA II: GROUPS OF RANK FIVE

AND SIX

MARCUS BISHOP, J. MATTHEW DOUGLASS, GÖTZ PFEIFFER,

AND GERHARD RÖHRLE

Abstract. In recent papers we have refined a conjecture of Lehrer and Solomon

expressing the character of a finite Coxeter group W acting on the graded com-

ponents of its Orlik-Solomon algebra as a sum of characters induced from linear

characters of centralizers of elements of W. The refined conjecture relates the

character above to a decomposition of the regular character of W related to

Solomon’s descent algebra of W. The refined conjecture has been proved for

symmetric and dihedral groups, as well as for finite Coxeter groups of rank three

and four. In this paper, we prove the conjecture for finite Coxeter groups of rank

five and six. The techniques developed and implemented in this paper provide

previously unknown decompositions of the regular and Orlik-Solomon characters

of the groups considered.

1. Introduction

Let (W,S) be a finite Coxeter system. In previous articles [2–4] we proposed

a conjecture relating the character ω of the Orlik-Solomon algebra of W to the

regular character ρ of W. Based on a conjecture of Lehrer and Solomon [9], in this

paper we prove the conjecture for the Coxeter groups of type B5, B6, D5, D6, and

E6. These computations, together with the remarks about reducible Coxeter groups

following Theorem 2.3 of [2] and the proof of the conjecture for groups of type A

in [3], prove the conjecture for all finite Coxeter groups of rank five and six. Our

result is stated for these groups as the following theorem.

Theorem 1. Suppose that W is a finite Coxeter group of rank five or six and that

R is a set of conjugacy class representatives of W. Then for each w ∈ R there

exists a linear character ϕw of CW(w) such that

ρ =
∑
w∈R

IndWCW(w)ϕw and ω = ε
∑
w∈R

IndWCW(w)(αwϕw)

where ε is the sign character of W and for z ∈ CW(w), αw(z) denotes the deter-

minant of the restriction of z to the 1-eigenspace of w in the complex reflection

representation of W.
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Let A (W) be the Orlik-Solomon algebra of W. The strategy for proving Theo-

rem 1 is to decompose the CW-modules CW and A (W) into direct sums and prove

a refinement of Theorem 1 for each summand. This method is somewhat stronger

than directly proving Theorem 1, because it requires the solution to be compatible

with the direct sum decompositions of CW and A (W). This method also has the

advantage that it splits the problem into smaller problems and provides additional

insight into how the representations of W on CW and on A (W) are related.

The decomposition of CW comes from idempotents eλ in the descent algebra

Σ (W) constructed in [1]. These idempotents are indexed by subsets of S up to

conjugacy in W. A class of conjugate subsets of S is called a shape of W. Denote

the set of shapes of W by Λ. In [1] it is shown how to construct a quasi-idempotent

eL for any L ⊆ S and then eλ is the sum of the quasi-idempotents eL where L runs

over the subsets in the shape λ. It is also shown that {eλ | λ ∈ Λ} is a complete

set of primitive orthogonal idempotents of Σ (W). Since Σ (W) is a subalgebra of

CW and 1 =
∑
λ∈Λ eλ, we conclude that CW =

⊕
λ∈Λ eλCW as a CW-module.

Denoting the character of eλCW by ρλ we have

(1.1) ρ =
∑
λ∈Λ

ρλ.

The corresponding decomposition of A (W) comes from Brieskorn’s Lemma. Let

T be the set of reflections in the complex reflection representation V of W. Recall

that the Orlik-Solomon algebra A (W) may be defined as the quotient of the exterior

algebra with generators {et | t ∈ T } by the ideal generated by elements of the form∑k
i=1 (−1)

i
et1et2 · · · êti · · · etk for all sets {t1, t2, . . . , tk} ⊆ T of linearly dependent

reflections. Here, we say that a set of reflections is linearly dependent if the linear

forms defining their reflecting hyperplanes are linearly dependent in the dual of

V . For t ∈ T we denote the image of the generator et in A (W) by at. Thus, an

arbitrary element of A (W) can be expressed as a linear combination of monomials

at1at2 · · ·atk with t1, t2, . . . , tk ∈ T . The algebra A (W) is a right CW-module

with (at1at2 · · ·atk) .w = aw−1t1waw−1t2w · · ·aw−1tkw for w ∈W.

Each monomial at1at2 · · ·atk determines a subspace of V , namely the intersection

of the fixed point spaces of the reflections t1, t2, . . . , tk. If X is a subspace of V ,

then we denote by AX the span of all monomials with fixed point space equal to X.

Then taking Aλ to be the sum of the AX for which X is the fixed point set of some

conjugate of WL for some L ∈ λ, we have a decomposition A (W) =
⊕
λ∈ΛAλ.

Denoting the character of Aλ by ωλ we have

ω =
∑
λ∈Λ

ωλ.

Finally, we choose a set of conjugacy class representatives compatible with the

decompositions above. A conjugacy class in WL is called cuspidal if the fixed point

set in the reflection representation of WL of any of its elements is trivial. Now if

we choose a fixed representative L (λ) of each shape λ and let CL(λ) be a set of
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representatives of the cuspidal classes in WL(λ), then by Theorem 3.2.12 of [5]

(1.2) R =
⋃
λ∈Λ

CL(λ) is a set of conjugacy class representatives of W.

Suppose that L ⊆ S. The homogeneous component of A (WL) of highest degree

is called the top component of A (WL). On the other hand, WL is also a Coxeter

group and thereby admits a system of quasi-idempotents as in [1], now denoted by

eLJ for J ⊆ L to distinguish them from the quasi-idempotents eJ in CW. Note that

this notation does not agree with that used in [1, §7]. In analogy with A (WL) the

homogeneous component eLLCWL of CWL is called the top component of CWL. We

denote the characters of WL afforded by the top components of A (WL) and CWL

by ωL and ρL respectively.

Now the top components of A (WL) and CWL are naturally WL-stable subspaces

of A (W) and CW and it turns out that they are NW (WL)-stable by [3, Proposi-

tion 4.8]. Thus they afford characters ω̃L and ρ̃L of NW (WL) which are extensions

of ωL and ρL. Furthermore, if L ∈ λ then by the same proposition,

(1.3) ωλ = IndWNW(WL)
ω̃L and ρλ = IndWNW(WL)

ρ̃L.

Consider the following refinement of Theorem 1. In the statement of this theorem

we use the fact, proved in [8, Theorem 3.1], that if w is cuspidal in WL, then

CW (w) ⊆ NW (WL).

Theorem 2. Suppose that (W,S) is a finite Coxeter system of rank five or six, that

L ⊆ S, and that CL is a set of representatives of the cuspidal conjugacy classes of

WL. Then for each w ∈ CL there exists a linear character ϕw of CW (w) such that

ρ̃L =
∑
w∈CL

Ind
NW(WL)
CW(w) ϕw = αLεω̃L

where for n ∈ NW(WL), αL(n) denotes the determinant of the restriction of n to

the subspace of fixed points of WL in V.

To prove Theorem 1 we prove Theorem 2 for the representative L (λ) of each

shape λ. Then the characters ϕw that satisfy Theorem 2 with L = L (λ) as λ varies

over all shapes prove the first equality of Theorem 1 because

ρ =
∑
λ∈Λ

ρλ by (1.1)

=
∑
λ∈Λ

IndW
NW(WL(λ))

ρ̃L(λ) by (1.3)

=
∑
λ∈Λ

∑
w∈CL(λ)

IndW
NW(WL(λ))

Ind
NW(WL(λ))
CW(w) ϕw by Theorem 2

=
∑
w∈R

IndWCW(w)ϕw
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where the last equality follows from transitivity of induction and (1.2). A similar

argument proves the second equality in Theorem 1. We prove Theorem 2 in §3
and §4.

2. Implementation

As in [2], we have implemented the calculations for this article in the computer

algebra system GAP [11] in conjunction with the CHEVIE [6] and the ZigZag [10]

packages. In addition to our comments about the implementation in [2] we make

the following remarks about the techniques new to this paper and improvements to

old techniques.

2.1. The Extension ρ̃L. In this subsection we develop a formula for the character

ρ̃L of NW (WL) for L ⊆ S. First we review the definitions of the constructions used

in the process.

If J ⊆ L then the parabolic transversal of WJ in WL is the set XLJ of elements

w ∈WL satisfying ` (sw) > ` (w) for all s ∈ J, where ` is the usual length function

of W with respect to S. Then XLJ can be calculated directly from the definition or

by using the ParabolicTransversal function supplied by the ZigZag package.

In order to use the formula for ρ̃L below, we need to be able to decompose an

element of NW (WL) into the product of an element of WL and an element of the

normalizer complement NL of WL. Recall that NL consists of certain elements

of the parabolic transversal XSL of WL in W. Therefore, the decomposition of an

element of NW (WL) into a product nw with n ∈ NL and w ∈ WL is a special

case of the more general decomposition of an element of W into a product of a

coset representative in XSL by an element of WL. In ZigZag this decomposition is

implemented as the ParabolicCoordinates function.

The quasi-idempotents eLJ are defined in [1] by means of the matrix M = (mKJ),

whose rows and columns are indexed by the subsets of S and whose (K, J)-entry is

mKJ =

{
|{x ∈ XK | Jx ⊆ S}| if K ⊇ J
0 otherwise.

The matrix M can be calculated directly from the definition or by calling the

method Mu supplied by the ZigZag package. Then putting N = M−1 = (nKJ) we

have eLJ =
∑
K⊆L nJKx

L
K where xLK is the sum in CWL of the elements of XLK.

In the following discussion let w ∈ WL, n ∈ NL, and x ∈ CWL. Observe that

NW (WL) acts on CWL on the right by x. (wn) = n−1xwn. Using this action we

define the map

γ (wn, x) : CWL → CWL by γ (wn, x) (v) = (xv) . (wn) = n−1xvwn

for v ∈ CWL.

The idempotent eLL ∈ CWL determines a CNW (WL)-stable decomposition of the

group algebra of WL, CWL = eLLCWL⊕
(
1− eLL

)
CWL. Calculating the trace of the

action of γ
(
wn, eLL

)
with respect to a basis of CWL adapted to this decomposition,
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we find that ρ̃L (wn) = Tr
(
γ
(
wn, eLL

))
since γ

(
wn, eLL

)
sends

(
1− eLL

)
CWL to

eLLCWL. Using the linearity of γ in its second argument we can further refine this

to

ρ̃L (wn) =
∑
y∈WL

ayTr (γ (wn, y))

where the numbers ay are such that eLL =
∑
y∈WL

ayy.

For fixed n ∈ NL we define a right action ·n of WL on WL by

y ·n z = nz−1n−1yz

for y, z ∈WL. Then the stabilizer Zn (y) of y ∈WL under this action is CWL

(
n−1y

)
.

We denote the orbit of y by On (y) =
{
nz−1n−1yz | z ∈WL/CWL

(
n−1y

)}
. Now

Tr (γ (wn, y)) =
∣∣{z ∈WL | w−1 = y ·n z

}∣∣
=

{
0 if w−1 6∈ On (y)

|Zn (y)| if w−1 ∈ On (y)

=

{
0 if y 6∈ On

(
w−1

)
|CWL

(wn)| if y ∈ On
(
w−1

)
,

where in the last equality we have used the fact that w−1 ∈ On (y) if and only

if y ∈ On
(
w−1

)
, and if so, then the value of Tr (γ (wn, y)) is

∣∣Zn (w−1
)∣∣ =∣∣CWL

(
n−1w−1

)∣∣ = |CWL
(wn)| by the calculation above. In conclusion, we ob-

tain the following formula.

ρ̃L (wn) =
∑

y∈On(w−1)

ay |CWL
(wn)|

= |CWL
(wn)|

∑
y∈On(w−1)

∑
J⊆L

D(y)⊆L\J

nLJ

= |CWL
(wn)|

∑
J⊆L

nLJ
∣∣On (w−1

)
∩ XLJ

∣∣ .
Here we have used the descent set D (y) = {s ∈ L | ` (sy) < ` (y)} to derive the

formula
∑

D(y)⊆L\J nLJ for ay.

2.2. The Extension ω̃L. In this subsection we discuss the calculation of ω̃L for

L ⊆ S. As this calculation is almost identical to the calculation of ω, we begin with

ω and discuss the minor modifications needed to calculate ω̃L at the end.

For computational purposes, rather than working with the set T of reflections in

W, it is simpler to work with the positive roots of W. The positive roots are stored

in CHEVIE as vectors in the roots component of a Coxeter group record, the first

half being the positive roots and the second half being the negative of the first half.

This means that whenever a calculation involving roots results in a negative root,

we need to replace the negative root with its positive counterpart.



6 M. BISHOP, J. M. DOUGLASS, G. PFEIFFER, AND G. RÖHRLE

With this convention the generator at of A (W) is denoted by ar, where r is the

positive root orthogonal to hyperplane fixed by t. To simplify the notation, we

will denote ar simply by r. This also reflects the way one implements A (W) on a

computer. Namely, the elements of A (W) are represented by linear combinations

of sequences r1r2 · · · rq of positive roots. We will also assume that any element

r1r2 · · · rq satisfies r1 < r2 < · · · < rq, explicitly sorting the factors and inserting

the appropriate sign ±1 whenever the factors become unsorted. Here < denotes a

fixed total order on the positive roots, which can be simply be taken to be the order

in which the roots appear in the roots component of the record for W.

Now since CHEVIE implements the element w of W as a permutation σw of the

roots in V , it follows that if t is the reflection defined by the root r, then the conju-

gate w−1tw is the reflection defined by r.σw, which we simplify to r.w. Therefore,

the action of W on A (W) is given by (r1r2 · · · rq) .w = (r1.w) (r2.w) · · · (rq.w).
We use the non-broken circuit basis B of A (W) described in [2] to calculate

its character ω. While this works exactly as in [2], we briefly describe some im-

provements to the algorithm that make the calculations in this paper possible. Let

n = |S| be the rank of W and recall that the non-broken circuit basis of A (W)

consists of elements of the form r1r2 · · · rn not containing certain sequences called

broken circuits as subsequences. A broken circuit ri1ri2 · · · riq has the property that

there exists a positive root r with r > riq for which ri1ri2 · · · riqr is dependent, so

the defining relation for A (W) implies that

(2.1) (−1)
q
ri1ri2 · · · riq =

q∑
k=1

(−1)
k
ri1ri2 · · · r̂ik · · · riqr.

Therefore, any element not in B can be expressed as a linear combination of lexi-

cographically larger elements of A (W) by applying (2.1) to a broken circuit sub-

sequence. This observation is the rationale for the procedure for expressing an

arbitrary element of A (W) in terms of the non-broken circuit basis, but it also

leads to a significant improvement in the calculation of ω.

Namely, to calculate the value of ω at an element w ∈ W, one in principle

runs through all basis elements b ∈ B, expressing b.w as a linear combination of

elements of B using (2.1) and storing the coefficients of the result into the rows of a

matrix m. Then m represents the linear transformation w of A (W) and ω (w) is

the trace ofm. We observe that if at any point in the calculation of b.w we arrive at

a monomial lexicographically larger than b, then this monomial cannot contribute

to the trace of m. Such calculations can therefore be terminated. Furthermore, the

matrix m itself exists only in concept. In practice we need only its diagonal entries.

Therefore, we use the following algorithm.

COEFF (Individual coefficient with respect to B) With respect to the non-broken

circuit basis B of A (W) this algorithm takes as input a monomial a = r1r2 · · · rn ∈
A (W) and a basis element b ∈ B. It returns the coefficient of b when a is expressed

with respect to B.
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if a > b then

return 0

else if a ∈ B then

if a = b then

return 1

else

return 0

else

find a subsequence ri1ri2 · · · riq of a which is a broken circuit

find a root r for which ri1ri2 · · · riqr is dependent

return
∑m
j=1 (−1)

jCOEFF
(
r1r2 · · · r̂ij · · · rnr, b

)
Observe that in the last line of the algorithm, we have inserted r at the end of

the first argument of COEFF for notational convenience. Moving the factor to

its proper position will introduce a sign ±1. Then to calculate ω (w) we simply

calculate
∑
b∈BCOEFF (b.w, b).

Finally, to calculate the character ω̃L for L ⊆ S we calculate the non-broken cir-

cuit basis of the top component of A (WL). Observe that an element w ∈ NW (WL)

is implemented as a permutation σw of the roots in V , so to apply w to an element

r1r2 · · · rq of A (WL) each ri must be replaced with its corresponding root in V . In

CHEVIE this can be accomplished with the rootInclusion component of the WL

record. Then the permutation σw can be applied directly, followed by replacing

each root with the corresponding root in the reflection representation of WL using

the rootRestriction component of the WL record. With this modification, we

proceed exactly as in the calculation of ω above.

3. Proof of Theorem 2 when L = S

Observe that if L = S then ρ̃S = ρS, ω̃S = ωS, and NW (WL) = W. Observe

also that αS (w) = 1 for all w ∈W since the space of fixed points of W is the zero

subspace of V . Therefore, to verify Theorem 2 we need to find a character ϕw of

CW (w) for each w ∈ CS such that

(3.1) ρS =
∑
w∈CS

IndWCW(w)ϕw = εωS.

In this section we exhibit these characters for each irreducible Coxeter group W

of rank five or six. Once the characters ϕw are specified, one verifies (3.1) by

routine calculations, so we limit ourselves to displaying the characters IndWCW(w)ϕw
(denoted simply by ϕw), ε, ρS, and ωS only for the group W =W (E6).

Because each character ϕw is one-dimensional, it suffices to list its values on a

generating set for the group CW (w). For the group W (E6) we have constructed

generating sets for the groups CW (w) ad hoc. In type B generating sets for CW (w)
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are known, while in type D generating sets for CW (w) can be determined as de-

scribed below. We use the notation for these generating sets from [2], which we

now briefly review.

The cuspidal classes of W (Bn) are indexed by partitions of n. We always display

partitions in non-decreasing order without punctuation. With the labeling of the

elements of S given by the diagram <•
1
•
2
•
3
· · · •

n−1
•
n

we define the following

elements of W (Bn), where we denote the elements of S by 1, 2, . . . , n rather than

s1, s2, . . . , sn to improve legibility. If λ = λ1λ2 · · · λk is a partition of n then for

each 1 6 i 6 k we define a negative λi-cycle

(3.2) ci = (j+ 1) j (j− 1) · · · 212 · · · (j+ λi) where j =

i−1∑
k=1

λk.

Then each ci centralizes the element wλ = c1c2 · · · ck, which we take to be the

representative of the cuspidal class labeled by λ. Whenever λi = λi+1 the element

(3.3) xi =

λi∏
k=1

(j+ k) (j+ k− 1) · · · (j+ k− λi + 1) where j =

i∑
k=1

λk

also centralizes wλ. In fact, if m (j) = min {k | λk = j} then CW (wλ) is generated

by the elements xi for all i satisfying λi = λi+1, together with the elements cm(j)

for all j appearing as parts of λ. We remark that the elements defined in (3.2)

and (3.3) coincide with the elements ci and xi defined in [2]. The character ϕcλ of

CW (wλ) is denoted simply by ϕλ.

We view W (Dn) as a reflection subgroup of W (Bn) generated by the reflections

1 ′ = 121 and 2, 3, . . . , n. Then wλ ∈ W (Dn) whenever λ has an even num-

ber of parts. In fact, such elements wλ are representatives of the cuspidal classes

of W (Dn) and the centralizer CW(Dn) (wλ) is the intersection of W (Dn) with

CW(Bn) (wλ). We observe that the last factor j+k−λi+1 of (3.3) is at least λi+1

and that the other factors are greater than j + k − λi + 1. This means that 1 is

never a factor of xi so that xi ∈ W (Dn). However, (3.2) shows that 1 occurs as

a factor of ci exactly once, making the replacement of 121 by 1 ′ impossible. This

shows that ci 6∈ W (Dn). Nevertheless, generators of CW(Dn) (wλ) can often be

found among products of an even number of the elements ci.

In each of the following subsections we present the results of our calculations for

the finite irreducible Coxeter groups of rank five and six. For each cuspidal class

representative w we display a generating set of CW (w), where the generators are

written as words in the Coxeter generators. At each generator, we display the value

of the character ϕw. If ζ is an eigenvalue of w on V , we denote the determinant

of the representation of CW (w) on the ζ-eigenspace of w in V by det |ζ. If ϕw is

a power of det |ζ for some ζ, then we also indicate this. By Springer’s theory of

regular elements [12], the centralizer CW (w) is a complex reflection group when w

is a regular element. When this is the case, we identify CW (w) as such a group.
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For n > 1 we denote the nth root of unity e2πi/n by ζn, the cyclic group of size n

by Zn, and the symmetric group on n letters by Sn.

3.1. W =W (E6). We begin with W(E6) and present the calculations that lead to

the proof of Theorem 2 for this group. For the other groups of rank five and six we

present only the basic information described above.

Define the characters ϕd = ϕwd in the following table, where the conjugacy

classes of W are labeled by their Carter diagrams d. Here the elements of S are

labeled as in the Coxeter graph

•
1
•
3
•
4
•
5
•
6

•2

and r denotes the reflection defined by the highest root of W.

d wd Gen ϕd CW (wd) Det

A32 12356r 24542314 ζ3 G25 det |ζ3
13 ζ3
56 ζ3

E6(a2) w2E6 wE6 1 G5
234543 ζ3

A5A1 13456r wA5A1 ζ3
2345432 −1

r −1

E6(a1) 34wE6 wE6(a1) ζ9 Z9 det |ζ9

E6 123456 wE6 −1 Z12 (det |ζ12)
6

Finally, the values of the characters ϕWd together with ρS and ωS are shown in

the following table.

W ∅ A41 A21 A32 A2 A22 D4(a1) A3A1 A4 E6(a2) D4 A5A1 A2A
2
1

ϕA3
2

80 16 · −10 −4 2 8 · · −2 −2 −2 ·

ϕE6(a2) 720 16 · −18 −12 −6 8 · · −2 −2 −2 ·
ϕA5A1

1440 32 · −36 12 −3 · · · −4 2 −1 ·
ϕE6(a1) 5760 · · −72 · · · · · · · · ·
ϕE6 4320 96 · 108 · · −16 · · 12 · · ·

ε 1 1 1 1 1 1 1 1 1 1 1 1 1

ρS 12320 160 · −28 −4 −7 · · · 4 −2 −5 ·
ωS 12320 160 · −28 −4 −7 · · · 4 −2 −5 ·
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W E6(a1) E6 A1 A31 A3A
2
1 A3 A2A1 A22A1 A5 D5 A4A1 D5(a1)

ϕA3
2

−1 2 · · · · · · · · · ·

ϕE6(a2) · 2 · · · · · · · · · ·
ϕA1A5

· · −120 −8 · · · 3 1 · · ·
ϕE6(a1) · · · · · · · · · · · ·
ϕE6 · −4 · · · · · · · · · ·

ε 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

ρS −1 · −120 −8 · · · 3 1 · · ·
ωS −1 · 120 8 · · · −3 −1 · · ·

3.2. W =W (B5). The characters defined in the following table satisfy Theorem 2

for W =W (B5) when L = S.

λ Gen Word ϕλ CW (wλ) Det

15 S ε W det |−1

132 c1 1 −1

c4 43212345 −1

x1 2 −1

x2 3 −1

122 c1 1 −1

c2 2123 −1

x2 4354 −1

123 c1 1 −1

c3 3212345 ζ6
x1 2 −1

23 c1 12 −1

c2 3212345 ζ6

14 c1 1 −1

c2 212345 −1

5 c1 12345 ζ10 Z10 det |ζ10
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3.3. W =W (B6). The characters defined in the following table satisfy Theorem 2

for W =W (B6) when L = S.

λ Gen Word ϕλ CW (wλ) Det

16 S ε W det |−1

142 c1 1 −1

c5 5432123456 −1

x1 2 −1

x2 3 −1

x3 4 −1

1222 c1 1 −1

c3 321234 −1

x1 2 −1

x3 5465 −1

23 c1 12 −1 Z4 o S3
x1 3243 −1

x2 5465 −1

133 c1 1 −1

c4 432123456 ζ6
x1 2 −1

x2 3 −1

123 c1 1 −1

c2 2123 −1

c3 432123456 ζ6

32 c1 123 ζ6 Z6 o S2 det |ζ6
x1 432543654 −1

124 c1 1 −1

c2 32123456 −1

x1 2 −1

24 c1 12 −1

c2 32123456 −1

15 c1 1 −1

c2 2123456 ζ10

6 c1 123456 ζ6 Z12 (det |ζ12)
2
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3.4. W =W (D5). The characters defined in the following table satisfy Theorem 2

for W =W (D5) when L = S.

λ Gen Word ϕλ CW (wλ) Det

132 w132 1 ′2321 ′3431 ′2345 ζ4
c1 1 ′ −1

x1 2 −1

x2 3 −1

23 w23 1 ′3w14 ζ12

14 w14 1 ′2345 ζ8 Z8 det |ζ8

3.5. W =W (D6). The characters defined in the following table satisfy Theorem 2

for W =W (D6) when L = S.

λ Gen Word ϕλ CW (wλ) Det

16 S ε W det |−1

1222 c1c3 31 ′234 ζ4
x1 2 −1

x3 5465 −1

133 c1c4 43w15 ζ3
x1 2 −1

x2 232 −1

32 w32 1 ′343w15 ζ3 G (6, 2, 2) det |ζ6
c21 1 ′232 ζ3
x1 432543654 −1

24 w24 1 ′3w15 ζ38
c22 (3w15)

2
ζ4

15 w15 1 ′23456 ζ5 Z10 (det |ζ10)
2
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4. Proof of Theorem 2 when L is a proper subset of S

Recall that the normalizer in W of WL factors as the semidirect product of WL

and a normalizer complement [7]. When the semidirect product is a direct product,

WL is called bulky. It is shown in [4] that Theorem 2 holds if either WL is bulky

or the rank of WL is two or less. Also, it is shown in [3] that Theorem 2 holds if

WL is a direct product of Coxeter groups of type A. Thus, to prove Theorem 1 it

suffices to prove Theorem 2 for all pairs W,WL where the rank of W is five or six

and L is a proper subset of S for which the following hold.

(1) WL is not bulky in W,

(2) WL has rank at least three, and

(3) WL is not a direct product of Coxeter groups of type A.

After consulting the table of bulky parabolic subgroups in [2], it remains to consider

the pairs shown in Table 1.

W WL

B5 A2B2
B6 A2B2, A2B3, A3B2, A

2
1B2

D5 D4
D6 D4, D5
E6 D4

Table 1. List of pairs W,WL to be considered for Theorem 2

We consider each such pair W,WL separately in the following subsections. For

each pair we indicate representatives of the cuspidal conjugacy classes of WL, gener-

ators of the centralizers of these representatives, and linear characters of the central-

izers that satisfy the conclusion of Theorem 2. Additionally, we also give the values

of ρ̃L, ω̃L, αL, and ε for the pair W(B5),W(A2B2) and the pair W(E6),W(D4).

In the following sections we use the symbol wn to denote a representative of

the nth conjugacy class of a group in the list of conjugacy classes returned by the

command ConjugacyClasses in GAP. We denote the longest element of W by w0
and the longest element in WL by wL. As in §3 the symbols 1, 2, . . . , n denote the

elements of S.
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4.1. W =W (B5). As an illustration, we provide somewhat more detail in the case

where W = W (B5) and L = {1, 2, 4, 5}. The cuspidal conjugacy classes in WL are

represented by w13 and w15. The centralizer of w15 is 〈w15〉 × 〈w0〉 = Z12 × Z2.
The centralizer of w13 is generated by CW (w15) and 1. We define the characters

ϕ13 and ϕ15 by supplying their values at these generators shown in the following

table.

L Type Characters

{1, 2, 4, 5} A2B2 ϕ13 : (w15, w0, 1) 7→ (ζ3, 1,−1)

ϕ15 : (w15, w0) 7→ (ζ6, 1)

Then ϕ
NW(WL)
13 +ϕ

NW(WL)
15 = ρ̃L. This character is shown in Table 2 together with

ω̃L, αL, and ε. The conjugacy classes ofNW(WL) are listed in the order determined

by GAP where W is constructed using the command W:=CoxeterGroup("B",5) and

NW(WL) is constructed using the command

Normalizer(W,ReflectionSubgroup(W,[1,2,4,5])).

The classes are labeled by the orders of their elements and an additional letter to

distinguish them from one another. We see that ρ̃L = αLεω̃L so that Theorem 2

holds for the pair W,WL. This completes the proof of Theorem 1 for W.

NW (WL) 1a 2a 3a 2b 2c 6a 2d 2e 6b 2f 2g 6c 2h 2i 6d

ρ̃L 6 · −3 6 · −3 −2 · 1 −2 · 1 −2 · 1

ω̃L 6 · −3 6 · −3 2 · −1 2 · −1 2 · −1

αL 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1

ε 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 −1

NW (WL) 2j 2k 6e 4a 4b 12a 4c 4d 12b 2l 2m 6f 2n 2o 6g

ρ̃L −2 · 1 −2 · 1 −2 · 1 6 · −3 6 · −3

ω̃L 2 · −1 −2 · 1 −2 · 1 6 · −3 6 · −3

αL −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

ε 1 −1 1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

Table 2. Characters of NW (WL) where W =W (B5) and L = {1, 2, 4, 5}
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4.2. W =W (B6). The characters defined in the following table satisfy Theorem 2

for W = W (B6) and WL as in Table 1. For notational convenience, set M =

{1, 2, 3, 4, 5} and r is the reflection corresponding to the highest long root of W.

L Type Characters

{1, 2, 4, 5} A2B2 ϕ13 : (w15, w0, wM, 1) 7→ (ζ3, 1, 1,−1)

ϕ15 : (w15, w0, wM) 7→ (ζ6, 1, 1)

{1, 2, 3, 5, 6} A3B2 ϕ12 : (1, 2, 3, 56,w0) 7→ (−1,−1,−1, ζ3,−1)

ϕ24 : (w24, 1,w0) 7→
(
ζ23,−1,−1

)
ϕ30 : (123, 56,w0) 7→

(
−ζ3, ζ

2
3,−1

)
{1, 2, 4, 5, 6} A2B3 ϕ23 : (1, 2, 456,w0) 7→ (−1,−1, ζ4,−1)

ϕ25 : (12, 456,w0) 7→ (−1, ζ4,−1)

{1, 2, 4, 6} A21B2 ϕ12 : (1, 2, 4, 6, 5465, r) 7→ (−1,−1,−1,−1, 1, 1)

ϕ20 : (12, 4, 6, 5465, r) 7→ (−1,−1,−1, 1, 1)

4.3. W =W (D5). The characters defined in the following table satisfy Theorem 2

for W =W (D5) and WL as in Table 1.

L Type Characters

{1 ′, 2, 3, 4} D4 ϕ3 = ε

ϕ9 : (x1, 1
′w0) 7→ (−1, ζ4)

ϕ11 : (w11, w0) 7→ (ζ3, 1)

4.4. W =W (D6). The characters defined in the following table satisfy Theorem 2

for W = W (D6) and WL as in Table 1. For notational convenience, set M =

{1 ′, 2, 3, 4, 5} and x1 = 3243.

L Type Characters

{1 ′, 2, 3, 4} D4 ϕ3 : (1
′, 2, 3, 4, 6,wM) 7→ (−1,−1,−1,−1, 1, 1)

ϕ9 : (6, x1, 2wM) 7→ (1,−1, ζ4)

ϕ11 : (w11, 6,wM) 7→ (ζ3, 1, 1)

{1 ′, 2, 3, 4, 5} D5 ϕ7 : (w7, w0, 1
′, 2, 3) 7→ (ζ4,−1,−1,−1,−1)

ϕ15 : (w15, w0) 7→ (ζ12,−1)

ϕ17 : (w17, w0) 7→ (ζ8,−1)
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4.5. W = W (E6). Let L = {2, 3, 4, 5}. The cuspidal conjugacy classes in WL are

represented by w3, w9, and w11. The class containing w11 is also labeled by the

partition 13 in the notation used in type D4. It is convenient to take y13 = 2354

as a representative of this class instead of w11. The centralizer of y13 is generated

by y13, wM, wN where M = {2, 3, 4, 5, 6} and N = {1, 2, 3, 4, 5}. Then WM and

WN both are of type D5. Notice that conjugation by wM exchanges 2 with 3

while conjugation by wN exchanges 2 with 5. Set x1 = 4354. Define the following

characters.

L Type Characters

{2, 3, 4, 5} D4 ϕ3 : (3, 4,wM, w0) 7→ (−1,−1, 1, 1)

ϕ9 : (x1, 2wM, 243w0) 7→ (−1,−ζ4, ζ4)

ϕ11 : (y13, wM, wN) 7→ (ζ3, 1, 1)

In this case, NW (WL) ∼= W (F4). Then using the notation from [5, Table C.3]

for the irreducible characters of W (F4) (which is identical to the notation used in

CHEVIE), we have

ϕ
NW(WL)
3 = χ ′′(1,12)

ϕ
NW(WL)
9 = χ ′(6,6) + χ

′′
(6,6)

ϕ
NW(WL)
11 = χ ′′(2,4) + χ(9,2) + χ

′′
(9,6) + χ(12,4)

ρ̃L = χ ′′(1,12) + χ
′′
(2,4) + χ(9,2) + χ

′′
(9,6) + χ

′
(6,6) + χ

′′
(6,6) + χ(12,4)

ω̃L = χ ′(1,12) + χ
′
(2,16) + χ(9,10) + χ

′
(9,6) + χ

′
(6,6) + χ

′′
(6,6) + χ(12,4).

Now since αLε = χ(1,24) is the sign character of W (F4), the calculations above

together with [5, Table C.3] show that the characters ϕ3, ϕ9, ϕ11 satisfy Theorem 2

for the pair W,WL.
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