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Abstract

We investigate the stability of the deformation modeled by the opening an-
gle method, often used to give a measure of residual stresses in arteries and
other biological soft tubular structures. Specifically, we study the influence of
sti↵ness contrast, dimensions and inner pressure on the onset of wrinkles when
an open sector of a soft tube, coated with a sti↵er film, is bent into a full
cylinder. The tube and its coating are made of isotropic, incompressible, hy-
perelastic materials. We provide a full analytical exposition of the governing
equations and the associated boundary value problem for the large deforma-
tion and for the superimposed small-amplitude wrinkles. For illustration, we
solve them numerically with a robust algorithm in the case of Mooney-Rivlin
materials. We confront the results to experimental data that we collected for
soft silicone sectors. We study the influence of axial stretch and inner pressure
on the stability of closed-up coated tubes with material parameters comparable
with those of soft biological tubes such as arteries and veins, although we do
not account for anisotropy. We find that the large deformation described in
the opening angle method does not always exist, as it can become unstable for
certain combinations of dimensions and material parameters.

Keywords: opening angle method, large bending, nonlinear elasticity,
bifurcation, coated sector, soft tissue modeling.
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1. Introduction

One of the most e↵ective ways to demonstrate the existence of residual

stresses in biological structures is to isolate a cylindrical shape and cut it axi-
ally. Invariably it will open up, revealing that the cylinder was under a large
circumferential stress, see Fig.1.

(c)

Figure 1: Cutting biological cylindrical structures radially reveals that they were under cir-
cumferential residual stresses. Left: slice of an Irish Ash tree; Middle: a green chilli pepper;
Right: Equatorial slice of rat heart (taken from [10]).

In turn, one of the most successful advances of non-linear elasticity is the
modeling of this stress through the so-called opening angle method. By measur-
ing how much a tube opens up into a sector, one can reconstitute a backward sce-
nario whereby the structure was initially an open circular sector, subsequently
bent into a complete tube by the action of what can now be identified as a
residual stress, see Fig.2. Hence the opening angle gives a measure of the level
of residual stress for an assumed model of material behavior.

Of course many questions remain open at the end of the process and here
we address the following: Is the bending deformation always possible, or is
it limited by loss of stability with respect to small-amplitude static wrinkles?
Moreover, can the instability be overcome by pressurization of the reconstituted
tube? These issues are most relevant to Finite Element simulations of residually-
stressed tubes, where buckling should be avoided as much as possible.

Here we first formulate in Section 2 the equations governing the large defor-
mation of a coated circular sector into an intact tube, which is possibly subjected
to an internal hydrostatic pressure and a uniform axial stretch. We then spe-
cialize the analysis to the case when the coating and the substrate are made
of di↵erent Mooney-Rivlin materials, because the stress components can then
be computed analytically. We pay particular attention to writing the boundary
conditions properly (hydrostatic pressure on inner face, perfect contact at the
interface, traction-free on outer face).

In Section 3 we present the algorithm implemented to solve the incremental
problem of static wrinkles superimposed onto large bending, axial stretch, and
pressurizing. It relies on the Stroh formulation and the Surface Impedance
Matrix method, and is robust and una↵ected by numerical sti↵ness.
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Finally, Section 4 presents experimental and numerical results: first our
own, achieved by gluing a silicone coating on a urethane substrate; and second
those coming from the literature on soft biological tubes, although of course
those cannot be accurately modeled as isotropic. In our experiments, we show
that no wrinkles form when a sector of opening angle 120� is closed, while
wrinkles form before a sector of opening angle 240� is closed. Applying the
aforementioned algorithm, we show numerically that the critical opening angle
at which wrinkles form is 209� and that four wrinkles should appear along
the circumference, which is consistent with the experimental results. Applying
the algorithm for dimensions and material parameters comparable (with the
limitation that anisotropy is not accounted for) to those of a rabbit artery, we
show that, in the absence of internal pressure, wrinkles form for an opening
angle of 320�, but that these wrinkles can be eliminated by applying an internal
pressure or can be delayed by the presence of an axial stretch. These results are
in line with intuition and experiments made on biological tubes.

2. The opening angle method

Consider the sector of a soft cylindrical tube with geometry delimited in the
cylindrical coordinate system {R,⇥, Z} (and orthonormal basis {E

R

,E⇥,EZ

})
in its natural state B0 by the region

A  R  C, �(2⇡ � ↵0)/2  ⇥  (2⇡ � ↵0)/2, 0  Z  L, (1)

where A, C are the radii of the inner and outer faces of the sector, respectively, L
is its height, and ↵0 2 (0, 2⇡) is the opening angle. The stress-free circular sector
consists of a sti↵ thin layer placed at the inner side (A  R  B), glued onto a
thicker and softer layer located in the outer region B  R  C, where B is the
radius of the interface between two layers, as shown on Fig.2a. From now on,
the superscripts (c) and (s) refer to the coating and the substrate, respectively.

The sector is deformed into an intact (circular cylindrical) tube with respect
to a cylindrical coordinate system {r, ✓, z} (with orthonormal basis {e

r

, e

✓

, e

z

})
by the following mapping [4]

r = r(R), ✓ = k⇥, z = �

z

Z, (2)

where

k =
2⇡

2⇡ � ↵0
> 1 (3)

is a measure of the opening angle and �

z

� 1 is the uniform axial stretch.
We denote this configuration by B

r

and refer to it as the residually-stressed

configuration. The geometry of the tube is now

a  r  c, 0  ✓  2⇡, 0  z  `, (4)

where a = r(A), b = r(B), c = r(C) and ` = �

z

L is the current tube length as
shown on Fig.2.
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E�ect of coating on the wrinkling in the problem
a cylindrical sector deforming into an intact tube
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Figure 1: (a) Stress-free, (b) pre-stressed and (c) pressurized configurations.
Image can be easily modified using Inkscape

Let us consider a bi-layered sector of cylindrical tube made of an incom-
pressible hyperelastic material with respect to a cylindrical coordinate system
{R,⇥, Z} in its natural state B0. Sector’s geometry is defined by the following
region:

A  R  C, �(2⇡ � ↵0)/2  ⇥  (2⇡ � ↵0)/2, 0  Z  L,

where A and C are the radii of the inner and outer faces, respectively, of the sec-
tor, � is length, ↵0 2 (0, 2⇡) is the opening angle. The circular sector is formed
by two layers: a sti↵ relatively thin layer serving as coating that is placed at
the compressive side of the system (A  R  B) and a second larger and softer
layer in the region B  R  C, where B is the radius of the interface be-
tween two layers, as shown on Fig.1a. Should we define n sectors using R

i

as in

1

Figure 2: The opening angle method: (a) An initially stress-free coated sector is subject to
axial stretch and bent into (b) a residually-stressed full tube. It can also be subject to (c) an
internal pressure. But is that large deformation stable?

The associated deformation gradient F is

F =
dr

dR
e
r

⌦E
R

+
kr

R

e
✓

⌦E⇥ + �

z

e
z

⌦E
Z

. (5)

The incompressibility condition, detF = 1, and one of the geometric require-
ments, e.g. r(A) = a, impose

r(R) =

s
R

2 �A

2

k�

z

+ a

2
. (6)

Taking into account the diagonal form of deformation gradient, we introduce
the principal stretches

�1 =
R

k�

z

r

, �2 =
kr

R

, �3 = �

z

, (7)

such that �1�2�3 = 1 to satisfy incompressibility.
We take both coating and substrate to be made of isotropic hyperelastic ma-

terials with strain energy densities W (c), W (s), respectively, so that the Cauchy
stress � is diagonal in the e

i

⌦ e
j

basis, with components

�

(l)
rr

= �q

(l) + �1
@W

(l)

@�1
, �

(l)
✓✓

= �q

(l) + �2
@W

(l)

@�2
, �

(l)
zz

= �q

(l) + �3
@W

(l)

@�3
.

(8)
Here l = c, s and q

(l) are the Lagrange multipliers arising from the incompress-
ibility condition.
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In the absence of body forces the only non-trivial equation of equilibrium is

@�

rr

@r

(l)

+
�

(l)
rr

� �

(l)
✓✓

r

= 0 (l = s, c). (9)

For the boundary conditions, we assume that the inner (coated) face of the tube
at r = a is under internal pressure P , that there is perfect bonding between the
two layers at the interface r = b, and that the outer face at r = c is free of
traction:

�

(c)
rr

(a) = �P, �

(s)
rr

(b) = �

(c)
rr

(b), �

(s)
rr

(c) = 0. (10)

By introducing the following quantities [4],

x ⌘ k�

z

r

2

R

2
, x

a

⌘ k�

z

a

2

A

2
, x

b

⌘ k�

z

b

2

B

2
, x

c

⌘ k�

z

c

2

C

2
, (11)

we may rewrite the principal stretches in terms of x as �1 = 1/
p
k�

z

x, �2 =p
kx/�

z

so that the energy density for fixed �3 = �

z

may be seen as a function

of x only: c
W

(l)(x) = W

(l)(1/
p
k�

z

x,

p
kx/�

z

,�

z

) for l = s, c.
Noting that

�

(l)
✓✓

� �

(l)
rr

= 2xcW (l)
,x

(x) (l = s, c), (12)

integrating equilibrium equations (9) for each layer, and using boundary condi-
tions (10), we find that the inflating pressure P is

P =

Z
xb

xa

c
W

(c)
,x

(x)

1� x

dx+

Z
xc

xb

c
W

(s)
,x

(x)

1� x

dx (l = s, c). (13)

We can also determine the stress components throughout the wall, as

�

(s)
rr

(x) = �
Z

xc

x

c
W

(s)
,t

(t)

1� t

dt, �

(c)
rr

(x) = �
Z

xb

x

c
W

(c)
,t

(t)

1� t

dt�
Z

xc

xb

c
W

(s)
,t

(t)

1� t

dt,

�

(l)
✓✓

= �

(l)
rr

+ 2xcW (l)
,x

(x), �

(l)
zz

= �

(l)
rr

+ �3
@W

(l)

@�3
� �1

@W

(l)

@�1
. (14)

For a given geometry of an undeformed coated sector in B0, the following
quantities are prescribed,

✏

B

= B

2
/A

2 � 1, ✏

C

= C

2
/A

2 � 1. (15)

Then the physics of the stretched and pressurized closed-up cylinder in B
r

are
prescribed by the given strain energy densities c

W

(l) for coating and substrate,
the given axial stretch �

z

and the given inner pressure P . The new geometry
is entirely determined by solving the system of three equations for the three
unknowns x

a

, x
b

, x
c

composed by Eq.(13) and the two relations

x

b

(✏
B

+ 1) = ✏

B

+ x

a

, x

c

(✏
C

+ 1) = ✏

C

+ x

a

. (16)
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Then the state of stress is entirely determined by Eqs.(14).
For illustration, in this paper we model the substrate and coating using the

Mooney-Rivlin energy density; it reads

W

(l) = 1
2C

(l)
1 (tr(C)� 3) + 1

2C
(l)
2

�
tr(C�1)� 3

�
, (l = s, c), (17)

where C

(l)
1 > 0 and C

(l)
2 > 0 are material constants and C = F

T

F is the
right Cauchy-Green deformation tensor. This model is quite general because
it recovers, at the same level of approximation [3], the most general model of
isotropic, incompressible, third-order weakly non-linear elasticity,

W = µ tr(E2) + 1
3A tr(E3), (18)

where E = 2C+I is the Green-Lagrange strain tensor, µ is the Lamé coe�cient
of linear elasticity, and A is the Landau coe�cient of third-order elasticity (The
connections between the constants are µ = C1 +C2, A = �4C1 � 8C2.) For the
Mooney-Rivlin material (17), we have

c
W

(l)(x) = 1
2 (C

(l)
1 + C

(l)
2 �

2
z

)

✓
kx

�

z

+
1

k�

z

x

◆
+ constant, (19)

which provides explicit expressions for the stress components in Eq.(14). Hence

�

(s)
rr

=
C

(s)
1 �

�1
z

+ C

(s)
2 �

z

2k


(1� k

2) ln

✓
x� 1

x

c

� 1

◆
� ln

✓
x

x

c

◆
+

1

x

� 1

x

c

�
, (20)

and so on for the other components.
For an example, assume that the coating is � times sti↵er than the substrate,

in the sense that C

(c)
1 = �C(s)

1 , C

(c)
2 = �C(s)

2 , where � � 1 is the sti↵ness
contrast factor. Then we consider how the stresses are distributed along the
radial axis for di↵erent sti↵ness factors �. We take the case where there is
no inner pressure (P = 0) and the opening angle is 139�. In the undeformed
geometry we take A = 13mm, B = 14.5mm, C = 18mm. Fig.3 illustrates the
distribution of stresses along the thickness of the wall of closed-up cylinders,
for a uniform material (� = 1.0), and for two-layered solids with moderately
(� = 3.0) and significantly (� = 7.0) sti↵er coatings compared to substrates. We
clearly observe the jump in the circumferential stresses at the interface between
coating and substrate, as expected.

3. Wrinkling of a coated sector

Here we study the stability of a coated sector closed into a pressurized cylin-
der. We signal the onset of instability by the existence of small-amplitude
wrinkles, solutions to the incremental equations of equilibrium. From experi-
mental observations, we know that they should be varying sinusoidally along
the circumference of the tube, with amplitude decay from the inner face to the
outer face. The analysis for the existence of such wrinkles can be put together

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

0.5 0.55 0.6 0.65 0.7 0.75
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

2

0.5 0.55 0.6 0.65 0.7 0.75

-2.5

-2

-1.5

-1

-0.5

0

0.5

-0.1

-0.05

0

0.05

0.1

-0-0-0

Figure 3: Non-dimensional radial �rr and circumferential �✓✓ stresses through two-layered wall
of coating (red) and substrate (blue) modeled as Mooney-Rivlin materials with corresponding

material constants C
(c)
i and C

(s)
i related by C

(c)
i = �C

(s)
i (i = 1, 2, j = 0, 1, 2), where � � 1

is the sti↵ness contrast between the coating and the substrate.

from the results of the previous section and those of Destrade et al. [4] and we
omit the details to save space.

In short, the wrinkles exist when the following boundary value problem is
solved for z(l) = z

(l)(x), (l = s, c), the 2⇥2 Hermitian surface impedance matrix

[2].

(i) Initial condition: z(s)(x
c

) = 0;

(ii) Numerical integration of the di↵erential Riccati matrix equation

d

dx
z

(l) =
1

2x(1� x)


z

(l)
G

(l)
2 z

(l) + i
⇣
G

(l)
1

⌘†
z

(l) � iz(l)G(l)
1 +G

(l)
3

�
,

(21)
in the substrate (l = s), from x

c

to x

b

;
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(iii) Interfacial condition: z(c)(x
b

) = z

(s)(x
b

);

(iv) Numerical integration of the di↵erential Riccati matrix equation (21) in
the coating (l = c), from x

b

to x

a

; and

(v) Target condition:

det

✓
z

(c)(x
a

) + P


1 in

�in 1

�◆
= 0. (22)

In Eq.(21), † denotes the Hermitian transpose and the Stroh sub-matrices
G

i

have components [4],

G1 =


i �n

�n(1� �) �i(1� �)

�
, G2 =


0 0
0 1/↵

�
, G3 =


11 i12

�i12 i22

�
, (23)

where the superscript “(l)” is understood, n denotes the wrinkling mode (num-
ber of wrinkles in the circumference), and

11 = 2� + 2↵(1� �) + n

2[� � ↵(1� �)2],

12 = n(2� + � + ↵(1� �

2),

22 = � � ↵(1� �)2 + 2n2(� + ↵(1� �). (24)

Here, in general,

↵ =
2xcW

,x

(x)

k

2
x

2 � 1
, � = k

2
x

2
↵, � = 2x2c

W

,xx

(x) + x

c
W

,x

(x)� ↵, � = �

rr

/↵,

(25)
and in particular for the Mooney-Rivlin model,

↵ = (C1�
�1
z

+ C2�z

)
1

kx

, � = (C1�
�1
z

+ C2�z

)kx, � = 1
2 (↵+ �). (26)

Finally, the derivation of the target condition (22) is detailed in the appendix.

4. Experimental & numerical results

Here we implement the stability analysis described in the previous section
for two cases: polymers and biological tissues. The algorithm is illustrated in
Fig.7(a). Essentially, we implement the steps (i)-(iv) and iterate over ↵0 until
the target condition (v) is reached. We denote by ↵cr = ↵0 the critical opening
angle at which wrinkles form when the sector is closed into an intact tube, i.e.,
the value of ↵0 when the target condition is reached.

8
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4.1. Results for polymers

For our first experiment, we used artificial materials, namely relatively sti↵
silicone (red) for the coating, urethane (black) and very soft silicone (white)
for the substrate. We subjected each material to a tensile test using a MTS
electromechanical material characterization machine. We then determined the
Mooney-Rivlin constants by curve-fitting over a useable range of data, and

found that C

(c)
1 = 0.98, C(c)

2 = 0.021 (MPa) for the red silicone, and C

(s)
1 =

0.14, C(s)
2 = 0.41 (MPa) for the black urethane, see Fig.4(a). We then glued

a 1.6mm thick red silicone layer onto a 26.9mm thick black urethane sector
(B = 23.93mm, C = 50.83mm) and produced two coated sectors, one with
opening angle 120�, the other with opening angle 240�, see Fig.4(b) and (c). We
produced similar sectors using white urethane as the substrate, see Fig.4(d).

We found that, for the black urethane substrate, no wrinkles formed when
the former sector was closed (Fig.4(b)), while for the latter sector six wrinkles
formed shortly before the sector became intact (Fig.4(c)). Thus we would expect
the critical opening angle at which wrinkles form when the sector becomes intact
to be somewhere between 120� and 240�. To check this assertion, we performed
the stability analysis described in the previous section for the same dimensions
and material parameters as in the experiments. We found that the critical
opening angle was 209� with corresponding mode number n = 4, which supports
our previous hypothesis.

red
silicone

black
urethane

�11

120�

120�

�

(a)

(d)

(b)

(c) 240�

(e) 240�

Figure 4: (a) Tensile tests for red silicone and black urethane. The early part of the data
for silicone was discarded as unreliable and the curve-fitting to the Mooney-Rivlin models
was done over the 1.5  �  5.0 range indicated by the dashed lines, yielding a relative
error of less than 5%. (b) Sector with opening angle 120�, black urethane substrate and red
silicone coating. No wrinkles form when the sector is closed into an intact tube. (c) Sector
with opening angle 240�, black urethane substrate and red silicone coating. Six wrinkles form
shortly before the sector is closed into an intact tube. (d), (e) Similar results for sectors
with white silicone substrate and red silicone coating, and opening angles 120� and 240�,
respectively.
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4.2. Results for soft tissues

Here we perform the stability analysis using the dimensions and material
parameters which are of the same order of magnitude as those of a rabbit carotid
artery, as collected by Holzapfel et al. [8].

The artery consists of three layers: the intima, the media and the adventitia.
However, the intima is very thin and not very sti↵ (at least in healthy young
individuals), and so we can use our two-layer model with the dimensions [8]
B � A = 0.26mm, C � B = 0.12mm, A = 1.43mm, along with an axial stretch
�

z

= 1.695.
For the material parameters, Holzapfel et al. [8] used an anisotropic model.

Here we have only considered isotropic models, and so we set to zero Holzapfel
et al.’s anisotropic parameters to make a (somewhat arbitrary) connection with
their measurements. Moreover, Holzapfel et al. [8] did not consider a depen-

dence of W on the second invariant of strain tr(C�1), so here we take C(c)
2 = 0,

C

(s)
2 = 0. For the other (neo-Hookean) parameters, we have C

(c)
1 = 3kPa,

C

(s)
1 = 0.3kPa, in line with Holzapfel et al.’s [8] values of the shear modulus for

the artery’s elastin matrix.
We perform the stability analysis over a physiological pressure range [5] of

0-170 mmHg. We plot the results in Fig.7(c) for the non-dimensional measure

of pressure P̂ = P/C

(s)
1 .

Then the physiological pressure range corresponds to 0  P̂  75.5.
First we plot the curves giving the critical opening angle ↵cr against the

pressure P̂ for increasing values of the mode number n = 2, 3, 4, . . .. Each curve
is a bifurcation plot: at a given pressure P̂ , a tube with opening angle larger
than ↵cr will buckle when it is bent into an intact closed tube; in order not
to buckle, a sector must have an opening angle which is less than the smallest
critical angle from all curves. Here we find that all curves for mode numbers
n � 5 are all below those for n = 2, 3, 4 and are virtually indistinguishable one
from another, see Fig.5. Hence our analysis does not allow us to determine the
mode number precisely here, in contrast to the scenario of Section 4.1.

From the plots we see that when there is no internal pressure (P̂ = 0), only
sectors with an opening angle greater than ↵cr ' 320� will buckle when closed
into an intact tube. This value is significantly above the recorded opening angle
for the rabbit artery [8], which was 160�. Hence we would expect (provided the
crudeness of our modelling arteries here is overlooked) that the rabbit artery is
smooth when it is not subject to internal pressure.

We also observe that as the internal pressure increases, the critical opening
angle increases, with asymptotic behaviour ↵cr ! 360� as P̂ ! 1. Hence
buckling can be eliminated by applying an internal pressure, which is in line
with our intuition and with, for example, experiments on a rat’s pulmonary
artery [6], see Fig.7(b).

For comparison, we also plot the curves obtained in the case of no axial
stretch, �

z

= 1, see Fig.6. We find that the axial stretch makes the sector more
stable with respect to bending into an intact tube (the values of ↵cr are higher
when �

z

> 1 than when �

z

= 1). To complete the picture, we also provide
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Figure 5: (a) Plots of the critical opening angle ↵cr for several mode numbers n versus the

non-dimensional pressure P̂ using the material parameters and dimensions comparable with
those of a rabbit artery [8], when it is subject to an axial stretch �z = 1.695. (b) Plots of the
critical circumferential stretch �a on the inner face of the intact tube at buckling versus the
pressure P̂ .

the plots of the variations of the critical circumferential stretch �

a

(contraction
stretch on the inner face of the intact tube).

5. Discussion

Often it is assumed that a stable deformation of a sector into an intact
tube exists. These “opening angle” deformations are then used to estimate the
residual stresses in the material [7]. Here we have shown that, depending on
the material properties and dimensions, wrinkling may occur before the sector
becomes intact, which would be followed by further buckling and creases when
the sector is closed. Our results have important implications for finite element
reconstructions of the opening angle method. First, a sti↵er coating will lead to
instabilities in finite element simulations, earlier than for a homogeneous sector
[4, 7]. Second, if the wrinkles occur, then our analysis is a first step towards
providing meaningful precursors to creases (see Fig.1 and Fig.7(b)).

We also showed that wrinkles can be eliminated by applying an internal
pressure, as has been confirmed in experiments.

Our method could also be applied to other tissues such as the esophagus,
which is often modeled as a two-layered structured, and in which wrinkles and
creases have been observed [12]. However, it is important to consider the limi-
tations of our model. For example, in the iliac artery of an 81 year old human,
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Figure 6: (a) Plots of the critical opening angle ↵cr for several mode numbers n versus the

non-dimensional pressure P̂ using the material parameters and dimensions comparable with
those of a rabbit artery [8], when it is not subject to an axial stretch (�z = 1.0). (b) Plots of
the critical circumferential stretch �a on the inner face of the intact tube at buckling versus
the pressure P̂ .

buckling of the intima in the zero-pressure state leading to delamination has
been observed [9]. As has been noted, the intima, one of the three layers of
the artery, becomes thicker and sti↵er with age. Evidently, there are residu-
als stresses present leading to buckling, but clearly a three-layer model would
be necessary to investigate such an occurrence. Furthermore, each layer of the
artery is highly anisotropic due to the presence of collagen fibers [8], and so a
more realistic model would reflect this fact.
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Appendix: Derivation of the target condition (22)

At the coating/vacuum interface, the incremental nominal traction is [11]

s

T

e

r

=
⇥
�⇤ + P (grad u)T

⇤
e

r

, (27)
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Iterate over ��

Find xa, x� and xc by
solving the system (13)
and (16) numerically

Integrate numeri-
cally equation (21)
in the first layer

Integrate numerically
equation (21) in
the second layer,

imposing continuity
across the interface
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� �
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�cr = ��
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Figure 7: (a) Flow chart illustrating the algorithm used to find the critical opening ↵cr for
given P and n. (b) Rat pulmonary artery at three di↵erent states: (A) Intact with low internal
pressure of 15 mmHg and smooth internal surface; (B) Intact with no pressure and buckled
internal face; (C) Cut open (image retrieved from [6]). (c) Plot of the critical opening angle

(for mode n = 4) versus the non-dimensional pressure P̂ using the material parameters and
dimensions of a rabbit artery [8]. Solid line: axial stretch � = 1.695, dashed line: � = 1.

where u is the incremental mechanical displacement, and �⇤ is the Cauchy
incremental stress in the 0  r  a region. But that space is under constant hy-
drostatic pressure P and has no constitutive law to speak of, being the vacuum,
so that �⇤ ⌘ 0. Also, the displacement gradient has components [4]

grad u =

2

6664

@u

@r

1

r

✓
@u

@✓

� v

◆

@v

@r

1

r

✓
u+

@v

@✓

◆

3

7775
, (28)

in the e

i

⌦ e

j

basis.
For displacements of the form

{u, v} = {U(r)ein✓, V (r)ein✓}, (29)

describing prismatic wrinkles, the incremental nominal traction is also of a sim-
ilar form:

{s
rr

, s

r✓

} = {S
rr

(r)ein✓, S
r✓

(r)ein✓}, (30)
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where U , V , S
rr

, S
r✓

are functions of r only. Then (27) reads

r


S

rr

S

r✓

�
= P


rU

0

inU � V

�
= P


�U � inV
inU � V

�
, (31)

at r = a, where for the second equality we used the incremental incompressibility
equation,

div u =
@u

@r

+
1

r

✓
u+

@v

@✓

◆
= (rU 0 + U + inV )

ein✓

r

= 0. (32)

On the other hand, the traction is related to the displacement by the surface
impedance matrix [2]:

r


S

rr

S

r✓

�
= z

(c)


U

V

�
. (33)

In particular, at the r = a interface, we have by (31)

P


�U(a)� inV (a)
inU(a)� V (a)

�
= z

(c)(a)


U(a)
V (a)

�
, (34)

from which the target condition (22) follows (see Balbi and Ciarletta [1] for an
early, but not entirely correct, derivation of the target condition).
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