<table>
<thead>
<tr>
<th>Title</th>
<th>CO2-responsive polyacrylamide copolymer vesicles with acid-sensitive morpholine moieties and large hydrophobic RAFT end-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chalmers, Benjamin A.; Magee, Christopher; Cheung, David L.; Zetterlund, Per B.; Aldabbagh, Fawaz</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2017-10-07</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>https://doi.org/10.1016/j.eurpolymj.2017.10.004</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/6970</td>
</tr>
</tbody>
</table>
CO$_2$-responsive polyacrylamide copolymer vesicles with acid-sensitive morpholine moieties and large hydrophobic RAFT end-group

Benjamin A. Chalmersa, Christopher Mageea, David L. Cheunga, Per B. Zetterlundb, Fawaz Aldabbagha,c,*

a School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
b Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
c Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
E-mail: f.aldabbagh@kingston.ac.uk

ABSTRACT: Sequential Reversible Addition Fragmentation Chain Transfer (RAFT) polymerizations using 2,2′-azobis[2-(imidazolin-2-yl)propane]dihydrochloride (VA-044) and 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) were used to give amphiphilic polyacrylamide block copolymers containing N-(2-morpholin-4-ylethyl) acrylamide (MEA), where the morpholine moieties are CO$_2$-responsive. The order in which monomers were polymerized determined the placement of the large hydrophobic RAFT end group with more complex ABA′ type self-assembly (e.g. patterned and large worm-like vesicles, large compound micelles) obtained when the dodecyl trithiocarbonate end-group was attached to the hydrophilic poly(MEA) block. Cleaving the hydrophobic end group reverts self-assembly to simpler spherical vesicles observed in the triblock of the same chemical composition, but with the RAFT end group attached to the hydrophobic poly(tert-butyl acrylamide) block. Ionization of the hydrophilic poly(MEA) block through flushing with CO$_2$ irreversibly shifts self-assembly towards lower order morphologies with spherical micelles being more favoured than vesicles.

Keywords: Block copolymer, Micelle; Radical polymerization; Self-assembly
1. Introduction

Benign CO$_2$ gas is an attractive stimulus for smart or switchable polymers due to its easy removal by flushing with an inert gas such as N$_2$ or Ar.1,3 The main advantage of using CO$_2$ over solutions of acids and bases is the convenience of repeated switching of cycles without salt accumulation. A large number of factors can affect the self-assembly of amphiphilic block copolymers in aqueous solutions,4 including tuning of the morphology by altering the degree of protonation or solubility of the block containing basic sites. The two types of CO$_2$-sensitive moieties (basic sites) typically utilised are amidine and tertiary amines. For example, self-assembled amphiphilic block copolymers containing hydrophilic poly(ethylene oxide) and hydrophobic poly(N-amidino)dodecyl acrylamide blocks form spherical vesicles that expand and contract upon the reversible reaction of the amidine moieties of the polymer core with CO$_2$.5,6 Increasing the size of the polystyrene (St) spacer in the amphiphilic triblock copolymer poly(ethylene oxide, EO)-b-(styrene, St)-b-(N-(2-diethylamino)ethyl) methacrylate) enabled spherical micelles to transform into worm-like nanostructures by applying CO$_2$.7 Sensitivity to more than one stimulus was exemplified by dual CO$_2$ and temperature response enabling the variation of the polymer lower critical solution temperature (LCST).8-10 The copolymer consisting of poly(N-(2-dialkylamino)ethyl) methacrylate) and poly(N-isopropylacrylamide, NIPAM) blocks in dilute aqueous solutions underwent vesicle to micelle phase transitions with CO$_2$ and temperature due to the conversion of both blocks into hydrophilic states.9 Incorporating a hydrophobic UV-responsive block with poly(N-(2-dimethylamino)ethyl) methacrylate) in a diblock copolymer gave micelles that allow controlled drug release using a variety of stimuli.11 Gao et al. reported amphiphilic block copolymers of poly(EO) and 2-(cycloalkylamino)ethyl methacrylates (where cycloalkylamino = pyrrolidine, piperidine and azepane), which self-assembled into micelles before a reduction in pH caused complete dissociation, allowing for selective payload release in endosomes/lysosomes.12 However, nitrogen heterocycles have thus far not been utilised as the CO$_2$-responsive moieties of the polymer - we here report amphiphilic polymers containing ionizable morpholine moieties.

The conventional radical and nitroxide-mediated polymerization (NMP) of N-(2-morpholin-4-ylethyl)acrylamide (MEA, Scheme 1) has been reported,13,14 and although NMP gives controlled/living character, extensive chain transfer at the polymerization temperature of 120 °C limited the achievable molecular weights.14 The advantages of Reversible Addition Fragmentation Chain Transfer (RAFT) polymerization over other types of reversible
deactivation radical polymerizations are well-documented,1,15,16 and include its application to a wider range of monomers and lower reaction temperatures. RAFT allows the rapid synthesis of water-soluble multi-block polyacrylamides with high degrees of livingness and narrow molecular weight distributions (MWDs),17-19 including polyacrylamides containing methylene substituted saturated nitrogen heterocycles.19 The present article describes the efficient syntheses of unique amphiphilic di- and tri-block copolymers consisting of exclusively polyacrylamide blocks containing ionisable morpholine moieties that self-assemble into a variety of morphologies. The influence of the order of polymerization, block length, end-group, CO\textsubscript{2} and pH on self-assembly in dilute aqueous solutions is examined.

![Scheme 1 General structures of reactants used.](image)

2. Experimental

2.1. Materials

\(N\)-(2-morpholin-4-ylethyl) acrylamide (MEA) was prepared by the reaction of acryloyl chloride (Sigma-Aldrich, ≥97.0\%) with 4-(2-aminoethyl)morpholine (TCI Chemicals, >98\%) and triethylamine (Sigma-Aldrich, 99\%) in CH\textsubscript{2}Cl\textsubscript{2} and recrystallized from ethyl acetate.20 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT, Sigma-Aldrich, 98\%) and 2,2'-azobis[2-(imidazolin-2-yl)propane]dihydrochloride (VA-044, Wako) were used as received. 1,4-Dioxane (Sigma-Aldrich, ≥99.0\%) and Milli-Q water were used directly as solvents for polymerization. \(N\)-tert-butylacrylamide (TBAM, TCI Chemicals) was recrystallised from hexanes and \(N,\text{\textit{N}}\)-dimethylacrylamide (DMA, TCI, 98\%) was distilled \textit{in vacuo} to remove radical inhibitor. \(N,\text{\textit{N}}\)-dimethylformamide (DMF; Sigma-Aldrich, HPLC-grade ≥99.9\%), CH\textsubscript{2}Cl\textsubscript{2} (Sigma-Aldrich, >99\%), CDCl\textsubscript{3} (Aldrich, 99.8 atom \%), D\textsubscript{2}O
(Aldrich, 99.9 atom %), LiBr (Aldrich, 99%), CO$_2$ (Food Grade, BOC), and N$_2$ (O$_2$ free, BOC) were used as received.

2.2. Measurements

Nuclear Magnetic Resonance (NMR) Spectroscopy. 1H NMR spectra were recorded using a JEOL GXFT 400 MHz instrument equipped with a DEC AXP 300 computer workstation. For conversion measurement each spectrum received a total of 16 scans with relaxation delay of 1s and repetition time of 3.18 s. The signal to noise is higher than 1000:1 with integration errors of less than 1%. For the polymerization of MEA conversion was estimated using the integral for the polymer contribution at 2.35 – 2.70 ppm (NCH$_2$, 2-CH$_2$, 6H) relative to the monomer peak at 5.65 ppm (vinyl, 1H). Poly(MEA) assignments follow those reported for the monomer (MEA)20 For the polymerization of TBAM conversion was estimated using the integral for the polymer contribution at 1.05-1.45 ppm (‘Bu, 9H) relative to the monomer peak at 5.57 ppm (vinyl, 1H). For the polymerization of DMA conversion was estimated using the integral for the polymer contribution at 2.76–3.22 ppm (Me, 6H) relative to the monomer peak at 5.67 ppm (vinyl, 1H). The relative composition or the degree of polymerization for the purified block copolymers containing both TBAM and MEA is estimated by comparing MEA integral at 3.50 – 4.00 ppm (OCH$_2$, 4H) with the TBAM integral at 1.05-1.45 ppm (‘Bu, 9H).

Theoretical number average molecular weight ($M_{n,\text{th}}$) was calculated according to equation 1:

$$M_{n,\text{th}} = \left(\frac{[\text{Monomer}]}{[\text{RAFT}]} \times MW_{\text{Monomer}} \times \text{Conversion}\right) + MW_{\text{RAFT}}$$

(1)

RAFT represents DDMAT or polymeric macroRAFT agent. MW_{monomer} and MW_{RAFT} are the molecular weights of the monomer and (macro)RAFT agent respectively. Conversion was measured by 1H NMR (as above) and isolated yields for the triblocks are by gravimetry.

Calculating the Theoretical Number of Living Chains (L). In degenerative transfer systems such as RAFT, it is advantageous to use low initiator concentrations in order to improve L, since the number of chains that undergo bimolecular termination directly corresponds to the number of radicals generated from decomposition of the initiator during polymerization.17
Equation 2 estimates L, where f is the initiator efficiency (assumed to be 0.5), and the decomposition rate constant k_d is taken as $3.20 \times 10^{-4} \text{ s}^{-1}$ for AIBN at 70 °C in dioxane/water (80:20), and $4.30 \times 10^{-4} \text{ s}^{-1}$ for VA-044 at 70 °C in water/dioxane (80:20) (conditions employed in the present work). The quantity $1 - \frac{f}{2}$ accounts for the effect of the termination mechanism (combination or disproportionation) on the number of chains.

Gel Permeation Chromatography (GPC). Molar mass distributions were measured using Agilent Technologies 1260 Infinity liquid chromatography system using a Polar Gel-M guard column (50 × 7.5 mm) and two Polar Gel-M columns (300 × 7.5 mm). DMF containing LiBr (0.01 M) was used as eluent at 1.0 mL·min$^{-1}$ at 60 °C. Twelve narrow polydispersity poly(methyl methacrylate, MMA) standards (EasiVial PM 2 mL, Agilent) were used to calibrate the GPC system. Samples were dissolved in the eluent and filtered through a PTFE membrane with 0.2 µm pore size before injection (100 µL). Experimental molar mass (M_n) and dispersity (D) values were determined by conventional calibration using Agilent GPC/SEC Software for Windows (version 1.2; Build 3182.29519). ($M_n = 550 – 2,136,000 \text{ g.mol}^{-1}$). Number average molecular weight (M_n) values are not absolute, but relative to linear poly(MMA) standards (as above).

Transmission Electron Microscopy (TEM). TEM images were obtained using a Hitachi H7000 using formvar/carbon 200 mesh Cu grids. One drop (~ 0.1 ml) of the micellar solution was placed on the copper grid and allowed to settle. After 10 min excess solution was carefully wicked with filter paper and allowed to dry for a further 5 min prior to TEM analysis.

2.3. General polymerization procedure

All polymerization solutions were added to borosilicate glass tubes sealed with septa and flushed with N$_2$ for 30 min. The solutions were heated at 70 °C in an aluminium heating block for 2 h unless otherwise stated. Polymerizations were stopped by placing glass tubes in an ice-water bath. Unless otherwise stated iterative chain extension reactions were performed directly on the macroRAFT agent reaction solution with the amount of initiator remaining after each cycle taken into account, according to equation 2. Where the block copolymer is isolated, unless otherwise stated, the polymerization mixture was dissolved in DMF (1-2 mL)
and precipitated from an excess of petroleum ether, filtered, and dried at room temperature under vacuum for 24 h.

2.4. Preparation of poly(TBAM)$_{80}$-b-(TBAM)$_{80}$-b-(MEA)$_{8}$-S(C=S)SC$_{12}$H$_{25}$ copolymer
A stock solution containing DDMAT (45.7 mg, 0.125 mmol), VA-044 (1.0 mg, 0.0031 mmol) in 10 mL dioxane/water (80:20) was prepared. One aliquot (1 mL) was added to TBAM (0.128 g, 1.00 mmol) to give 1.0 M monomer solution, and heated as described above. TBAM (0.128 g, 1.00 mmol) and VA-044 (2.98 x 10$^{-4}$ mmol from a stock solution) in 0.5 mL dioxane/water (80:20) were added to the poly(TBAM)$_{80}$-S(C=S)SC$_{12}$H$_{25}$ solution, and heated as described above. MEA (23 mg, 0.125 mmol) and VA-044 (0.00124 mmol from a stock solution) in 0.5 mL dioxane/water (80:20) were added to the poly(TBAM)$_{80}$-b-(TBAM)$_{80}$-b-(MEA)$_{8}$-S(C=S)SC$_{12}$H$_{25}$ solution, and heated as described above. Poly(TBAM)$_{80}$-b-(TBAM)$_{80}$-b-(MEA)$_{8}$-S(C=S)SC$_{12}$H$_{25}$ was isolated as described above, M_n = 20,700 g.mol$^{-1}$, M_w/M_n = 1.26, 80% conv., isolated yield = 0.248 g.

2.5. Preparation of poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{49}$-S(C=S)SC$_{12}$H$_{25}$ copolymer
A stock solution containing DDMAT (91.4 mg, 0.25 mmol), VA-044 (2.0 mg, 0.0063 mmol) in 10 mL dioxane/water (80:20) was prepared. One aliquot (1 mL) was added to TBAM (0.128 g, 1.00 mmol) to give 1.0 M monomer solution, and heated as described above. DMA (0.125 g, 1.26 mmol) and VA-044 (9.59 x 10$^{-5}$ mmol from a stock solution) in 0.5 mL dioxane/water (80:20) were added to the poly(TBAM)$_{40}$-S(C=S)SC$_{12}$H$_{25}$ solution, and heated as described above. MEA (0.325 g, 1.76 mmol) and VA-044 (0.0025 mmol from a stock solution) in 0.5 mL dioxane/water (80:20) were added to the poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{49}$-S(C=S)SC$_{12}$H$_{25}$ solution, and heated as described above. Poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{49}$-S(C=S)SC$_{12}$H$_{25}$ was isolated as described above, M_n = 18,000 g.mol$^{-1}$, M_w/M_n = 1.28, 70% conv., isolated yield = 0.410 g.

2.6. End Group Removal from poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{49}$-S(C=S)SC$_{12}$H$_{25}$ copolymer
A solution containing poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{49}$-S(C=S)SC$_{12}$H$_{25}$ (0.03 g, 1.55 x 10$^{-3}$ mmol), AIBN (5.10 mg, 0.031 mmol) in 0.5 mL dioxane was prepared and heated at 80 °C for 2.5 h. The resultant modified polymer was isolated as described above.

2.7. Preparation of poly(MEA)$_{51}$-S(C=S)SC$_{12}$H$_{15}$
A stock solution containing DDMAT (83.0 mg, 0.23 mmol), VA-044 (0.74 mg, 0.0023 mmol) in 10 mL dioxane/water (80:20) was prepared. One aliquot (1 mL) was added to MEA (0.461 g, 2.50 mmol), and heated as described above. The polymer was precipitated by drop wise addition to an excess of diethyl ether, filtered, and dried at room temperature under vacuum for 24 hours to give poly(MEA)$_{51}$-S(C=S)SC$_{12}$H$_{25}$, $M_n = 9,700$ g.mol$^{-1}$, $M_w/M_n = 1.28$, 46% conv., isolated yield = 0.205 g.

2.8. Preparation of poly(MEA)$_{51}$-b-(DMA)$_{50}$-b-(TBAM)$_{40}$-S(C=S)SC$_{12}$H$_{25}$ copolymer

Poly(MEA)$_{51}$ (0.0155 mmol) and DMA (77 mg, 0.775 mmol) were added to VA-044 (1.55 x 10^{-4} mmol from a stock solution) in 0.5 mL dioxane/water (80:20), and heated as described above. TBAM (79 mg, 0.622 mmol) and VA-044 (4.04 x 10^{-4} mmol from a stock solution) in 0.5 mL dioxane/water (80:20) were added to the poly(MEA)$_{51}$-b-(DMA)$_{50}$-S(C=S)SC$_{12}$H$_{15}$ solution, and heated as described above. Poly(MEA)$_{51}$-b-(DMA)$_{50}$-b-(TBAM)$_{40}$-S(C=S)SC$_{12}$H$_{25}$ was isolated as described above, $M_n = 18,350$ g.mol$^{-1}$, $M_w/M_n = 1.29$, 96% conv., isolated yield = 0.269 g.

2.9. Self-assembly and TEM analysis

Self-assembly of polymer samples were carried out using the method of Zhang and Eisenberg.22 For example, precipitated poly(MEA)$_{51}$-b-(DMA)$_{50}$-b-(TBAM)$_{40}$-S(C=S)SC$_{12}$H$_{25}$ (44.0 mg, 0.0024 mmol) was dissolved in DMF (3.87 mL), and distilled water (0.91 mL) added slowly with vigorous stirring at a rate of ~1 drop every 10 s. The resulting solution placed in a dialysis bag (molecular weight cut-off, MWCO = 3500) and exchanged with water (500 ml) for 12 h to exclude the organic solvent. The distilled water was replaced twice and dialyzed for a further 6 h each time. A direct sample and a ~3 mL, CO$_2$-flushed (30 min.) sample of the micelle solution were analysed via TEM. The CO$_2$-flushed sample was then flushed with N$_2$(g) (30 min.) and analysed via TEM.

3. Results and discussion

3.1. Polymer synthesis

Amphiphilic diblock copolymers were prepared starting with polymerizations of the hydrophobic monomer tert-butyl acrylamide (TBAM) and extending the resulting macroRAFT agent with hydrophilic N-(2-morpholin-4-ylethyl) acrylamide (MEA). NMP and
RAFT of TBAM have been reported at 120 and 90 °C, respectively, in alcohols,14 dioxane,23,24 and DMF23,25 giving controlled/living character, but accompanied by significant low molecular weight tailing and M_n deviating from theoretical values at higher conversions due to chain transfer.14 The reported RAFT polymerizations of TBAM used relatively low [RAFT]$_0$/[2,2'-azobisisobutyronitrile (AIBN)]$_0$ ratios (3.3 and 10),23,24 and would thus proceed with a significant theoretical fraction of dead chains (livingness $L = 75$-91% after 3 h according to equation 2). In order to maximize the fraction of living chains17-19 in the present work, low concentrations of the water soluble initiator VA-044 were used at 70 °C in 2 h polymerizations of TBAM in a mixture of 80:20 dioxane/water. The polymerizations were taken to 98% conversion, for example giving poly(TBAM)$_{80}$-$S(C=S)SC_{12}H_{25}$ with $L = 98\%$, $M_n = 12,450$ g.mol$^{-1}$ and $D = 1.12$ (Scheme 2, Table 1).

Scheme 2. Preparation of poly(TBAM)$_{80}$-b-(DMA)$_{80}$-b-(MEA)$_8$-$S(C=S)SC_{12}H_{25}$ shown in Figure 1c, where all polymerizations were carried out in dioxane/water (80:20).
Table 1 - Characterization of the polymers prepared.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Polymer<sup>a</sup></th>
<th>$M_{n,th}$</th>
<th>% Conv.<sup>c</sup></th>
<th>M_n<sup>d</sup></th>
<th>D<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Poly(TBAM)<sub>80</sub></td>
<td>10350</td>
<td>98</td>
<td>12450</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>Poly(TBAM)<sub>80</sub>-b-(MEA)<sub>113</sub></td>
<td>31150</td>
<td>65</td>
<td>30600</td>
<td>1.44</td>
</tr>
<tr>
<td>1b</td>
<td>Poly(TBAM)<sub>80</sub></td>
<td>10350</td>
<td>98</td>
<td>11150</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>Poly(TBAM)<sub>80</sub>-b-(MEA)<sub>48</sub></td>
<td>19200</td>
<td>80</td>
<td>20550</td>
<td>1.29</td>
</tr>
<tr>
<td>1c</td>
<td>Poly(TBAM)<sub>80</sub>-b-(TBAM)<sub>80</sub></td>
<td>20300</td>
<td>98</td>
<td>19200</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>Poly(TBAM)<sub>80</sub>-b-(TBAM)<sub>80</sub>-b-(MEA)<sub>h</sub></td>
<td>21800</td>
<td>80</td>
<td>20700</td>
<td>1.26</td>
</tr>
<tr>
<td>2a</td>
<td>Poly(TBAM)<sub>40</sub></td>
<td>5350</td>
<td>98</td>
<td>6100</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>Poly(TBAM)<sub>40</sub>-b-(DMA)<sub>50</sub></td>
<td>10250</td>
<td>99</td>
<td>9850</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>Poly(TBAM)<sub>40</sub>-b-(DMA)<sub>50</sub>-b-(MEA)<sub>40</sub></td>
<td>19300</td>
<td>70</td>
<td>18000</td>
<td>1.28</td>
</tr>
<tr>
<td>2b</td>
<td>Poly(MEA)<sub>51</sub></td>
<td>9750</td>
<td>46</td>
<td>9700</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>Poly(MEA)<sub>51</sub>-b-(DMA)<sub>50</sub></td>
<td>14600</td>
<td>99</td>
<td>13550</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>Poly(MEA)<sub>51</sub>-b-(DMA)<sub>50</sub>-b-(TBAM)<sub>40</sub></td>
<td>19600</td>
<td>98</td>
<td>18350</td>
<td>1.29</td>
</tr>
</tbody>
</table>

RAFT end group omitted from polymer structure drawings. The degree of polymerization for poly(MEA)₅₁ is estimated using M_n from GPC, and for all other polymers degree of polymerization is estimated from conversion by 1H NMR. b $M_{n,th}$ is calculated according to equation 1. c Determined by 1H NMR. d Determined by GPC/RI in DMF (0.01 M LiBr) using commercial linear poly(MMA) as molecular weight standards.

The effect of block size on self-assembly was investigated using diblocks of the structure poly(TBAM)-b-(MEA)-S(C=S)SC₁₂H₂₅. The near complete conversion of TBAM during synthesis of the first block allowed chain extensions without purification of the first hydrophobic block. Poly(TBAM)₈₀-b-(MEA)₁₁₃-S(C=S)SC₁₂H₂₅ and poly(TBAM)₈₀-b-(MEA)₄₈-S(C=S)SC₁₂H₂₅ were prepared in 65 and 80% conversion with M_n values close to
$M_{n,d}$ with $M_n = 30,600$ g.mol$^{-1}$ and $D = 1.44$ and $M_n = 20,550$ g.mol$^{-1}$ and $D = 1.29$, respectively (Figure 1, Table 1). In order to increase the hydrophobicity further, chain extension of poly(TBAM)$_{80}$-S(C=S)SC$_{12}$H$_{25}$ to poly(TBAM)$_{160}$-S(C=S)SC$_{12}$H$_{25}$ was conducted ($M_n = 19,200$; $D = 1.18$), followed by chain extension with MEA resulting in poly(TBAM)$_{160}$-b-(MEA)$_8$-S(C=S)SC$_{12}$H$_{25}$ (Scheme 2; $M_n = 20,700$ g.mol$^{-1}$; $D = 1.26$ at 80% conversion (Table 1)).

Scheme 3. Preparation of poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{40}$-S(C=S)SC$_{12}$H$_{25}$ shown in Figure 2a, where all polymerizations were carried out in dioxane /water (80:20).
Figure 1. Copolymers ending with -S(C=S)SC_{12}H_{25} (continuous lines) prepared starting from poly(TBAM) macroRAFT agent (dashed-dotted red lines). (a) Poly(TBAM)$_{80}$-b-(MEA)$_{113}$, (b) poly(TBAM)$_{80}$-b-(MEA)$_{48}$, and (c) poly(TBAM)$_{80}$-(TBAM)$_{80}$-b-(MEA)$_{8}$, with (i) MWDs of polymer prior to precipitation and (ii) TEM of corresponding precipitated and dialysed block copolymer. See Table 1.
For the synthesis of the triblock copolymer poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{49}$-$S(C=S)SC$_{12}H_{25}$ purification was only carried out after the final chain extension since only the MEA polymerization reached less than near complete conversion of 70% (Scheme 3). The triblock was isolated with $M_n = 18,000$, close to the theoretical value ($M_{n,\text{th}} = 19,300$ g.mol$^{-1}$), and $D = 1.28$ (Figure 2a, Table 1).

The large hydrophobic dodecyl group of the trithiocarbonate derived from DDMAT has been reported to greatly influence self-assembly, which led us to prepare the amphiphilic triblock with reversal of the order of blocks (Scheme 4). Purified poly(MEA)$_{51}$-$S(C=S)SC$_{12}H_{25}$ was converted into the amphiphilic triblock copolymer poly(MEA)$_{51}$-b-(DMA)$_{50}$-b-(TBAM)$_{40}$-$S(C=S)SC$_{12}H_{25}$. The triblock derived from poly(MEA)$_{51}$ macroRAFT agent was isolated with $M_n = 18,350$ g.mol$^{-1}$, close to the theoretical value ($M_{n,\text{th}} = 19,600$ g.mol$^{-1}$) and $D = 1.29$ (Figure 2b, Table 1).

Scheme 4. Preparation of poly(MEA)$_{51}$-b-(DMA)$_{50}$-b-(TBAM)$_{40}$-$S(C=S)SC$_{12}H_{25}$ shown in Figure 2b, where all polymerizations were carried out in dioxane /water (80:20).
Figure 2. (a) Poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{49}$-S(C=S)SC$_{12}$H$_{25}$ prepared starting from poly(TBAM)$_{40}$ as macroRAFT agent (dashed dotted line) extended with DMA (dashed line) and MEA (continuous line) with (b) Poly(MEA)$_{51}$-b-(DMA)$_{50}$-b-(TBAM)$_{40}$-S(C=S)SC$_{12}$H$_{25}$ prepared starting from poly(MEA)$_{51}$ as macroRAFT agent (continuous line) extended with DMA (dashed line) and TBAM (dashed-dotted line) and (i) MWDs of polymer prior to precipitation and (ii) TEM of corresponding precipitated and dialysed triblock copolymer. See Table 1.

3.2. Self-assembly

The post-polymerization block copolymer self-assembly procedure of Eisenberg was employed,22 whereby the polymer is dissolved in DMF with subsequent water dialysis reducing the solvency of the hydrophobic block to give a translucent colloidal suspension at low polymer concentrations (~1 wt%). For the diblock copolymers comprised of hydrophobic poly(TBAM) and hydrophilic poly(MEA) blocks, various morphologies were found depending on the block lengths (Figures 1 and S1). As a consequence of the large
hydrophobic RAFT moiety attached to the hydrophilic block, the diblock copolymer exhibited self-assembly behaviour reminiscent of a more complex ABA’ type-structure. The polymer with the largest hydrophilic block, poly(TBAM)$_{80}$-b-(MEA)$_{113}$-S(C=S)SC$_{12}$H$_{25}$, self-assembled into near spherical entities, most likely vesicles, with patchy-patterning on the surface (Fig. 1a). The patterning could arise from regions of different thickness in the bilayer due to the hydrophobic end-group with some of the polymer chains in the vesicle bilayer bending to sequester the end group into the hydrophobic core. Other polymer chains may remain straight with the hydrophobic end group exposed to the water with chains aggregating together to form this patchy structure through phase separation. From the polymer chain length it is expected that the bending of chains will be slow resulting in a patchy surface structure due to kinetic trapping. As the hydrophilic content decreases in poly(TBAM)$_{80}$-b-(MEA)$_{48}$-S(C=S)SC$_{12}$H$_{25}$, large worm-like vesicles with a diameter of approximately 500 nm appear (Fig. 1b). These worm-like vesicles are much larger than the worm-like micelles typically attained from polymerization induced self-assembly RAFT dispersion polymerizations (diblock copolymers). Further reduction in the length of the hydrophilic block as well as an increase in the length of the hydrophobic block (poly(TBAM)$_{160}$-b-(MEA)$_{8}$-S(C=S)SC$_{12}$H$_{25}$) resulted in formation of polydisperse large aggregates where the hydrophilic component is very short in comparison to the large hydrophobic contribution (Fig. 1c).

In regards to the triblock copolymer poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{40}$-S(C=S)SC$_{12}$H$_{25}$, hydrophobic interactions between the large end groups (TBAM block and the RAFT end group) leads to large compound micelles (Figures 2a(ii) and S2(a)). Such a large contribution of the RAFT end group in self-assembly has been observed previously for hydrophilic homopolymers. In particular alkynyl-terminated poly(NIPAM) were found to form similar compound micelles, where the generation of compound micelles (and other structures) was driven by intermolecular hydrogen bonding involving the terminal alkynyl group, suggesting that a specific interaction between the end groups can lead to self-assembly. Such a specific interaction involving the end groups is also responsible for the formation of flower-like micelles and gels in telechelic polymers.

Reversing the order of the blocks to instead have poly(MEA)$_{51}$-b-(DMA)$_{50}$-b-(MEA)$_{40}$-S(C=S)SC$_{12}$H$_{25}$ places the hydrophobic RAFT-end group on the hydrophobic poly(TBAM) block. This results in self-assembly following simple diblock-like behavior (both poly(MEA) and poly(DMA) are hydrophilic so can be considered as a single
hydrophilic block) leading to what appears to be spherical vesicles (Figure 2b(ii) and S2(b)). In this case, 1H NMR spectroscopy was used to demonstrate self-assembly in D$_2$O (1 wt%, Figure 3a). The tert-butyl signal of TBAM was greatly reduced in size compared to the spectrum in CDCl$_3$ with the self-assembly leading to suppression of the hydrophobic block (poly(TBAM)) concealed at the core. In CDCl$_3$ all three blocks were soluble, providing integrations in accordance with copolymer composition.

![NMR spectra](image)

Figure 3. 1H NMR spectra of (a) poly(MEA)$_{51}$-b-(DMA)$_{50}$-b-(TBAM)$_{40}$-S(C=S)SC$_{12}$H$_{25}$ in CDCl$_3$ and D$_2$O with reduction of the t-Bu peak in D$_2$O indicating self-assembly with poly(TBAM) core and (b) poly(MEA)$_{51}$-S(C=S)SC$_{12}$H$_{25}$ in D$_2$O indicating switchability after flushing the solution with CO$_2$(g) and N$_2$(g).
To further explore the effect of the large hydrophobic dodecyl moiety derived from the RAFT agent on poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{49}$-S(C=S)SC$_{12}$H$_{25}$, this moiety was removed by reaction with excess AIBN (20 eq.) in dioxane solution, with the cleavage of the trithiocarbonate evidenced by a reduction in UV-absorbance of the polymer (Figure 4). As a consequence, the large compound micelle structure due to ABA′ self-assembly reverted to smaller spherical entities, most likely vesicles, indicative of the diblock-like structure observed with poly(MEA)$_{51}$-b-(DMA)$_{50}$-b-(TBAM)$_{40}$-S(C=S)SC$_{12}$H$_{25}$, where the large hydrophobic end-group is attached to the hydrophobic poly(TBAM) block.

![Figure 4. (a) UV-Vis spectra showing poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{49}$-S(C=S)SC$_{12}$H$_{25}$ before (solid line) and after cleavage (dashed line) of the RAFT moiety and TEM images of the aqueous polymer (5% w/w) solutions before (b) and after (c) cleavage.]

3.3. CO$_2$-response

Dilute D$_2$O solutions of poly(MEA)$_{51}$-S(C=S)SC$_{12}$H$_{25}$ were used to confirm CO$_2$-responsivity by 1H NMR spectroscopy (Figure 3b). After bubbling CO$_2$ through the solution for 30 min, the morpholine moieties reacted with the acidic solution, and downfield shifts in polymer signals were observed. The most striking change was for the signal at $\delta_H = 2.40$-2.72 shifting to $\delta_H = 2.55$-2.88 for the bicarbonate salt. The CO$_2$-response was found to be switchable - passing N$_2$ through the CO$_2$-enriched polymer solution resulted in the chemical shifts reverting to the original values.

Reducing the pH, either through the addition of CO$_2$ or hydrochloric acid solution, causes the MEA block to become (partially) protonated, both increasing the hydrophilicity of the polymer and introducing electrostatic repulsion between the chains. When such a
hydrophilic block forms the corona of a self-assembled entity, an increase in charge density of the corona segment results in electrostatic repulsion, which in turn tends to drive the system towards lower order morphologies (which have lower curvature, i.e. spherical micelles are thus energetically favored relative to vesicles).4,29,36 For poly(TBAM)\textsubscript{40-b-(MEA)\textsubscript{113-S(C=S)SC\textsubscript{12}H\textsubscript{25}}, the presence of CO\textsubscript{2} causes a change from vesicles (pH 7) to spherical micelles at pH 5 (Figure 5(i)and S5(i)) with flushing with N\textsubscript{2} back to pH 7 returning the vesicles but to a non-spherical form. In the case of poly(TBAM)\textsubscript{40-b-(DMA)\textsubscript{50-b-(MEA)\textsubscript{49-S(C=S)SC\textsubscript{12}H\textsubscript{25}}, under neutral conditions large compound micelles were formed, which broke up after the addition of CO\textsubscript{2} (and decreases in pH) due to increased hydrophilicity of the MEA block (Figure 5(ii)). Returning to neutral conditions by flushing with N\textsubscript{2} does not return the system to the initial morphology rather individual micelles (micellar liquid) is seen. This suggests that the compound micelle state is not the equilibrium state, but is a kinetically trapped state due to strong interactions between the micelles, with the micellar liquid being the equilibrium state. The addition of hydrochloric acid (instead of CO\textsubscript{2}) to lower the pH to 1 almost solubilizes the block copolymer, which reassembles into individual spherical particles under basic conditions (pH \textasciitilde 8) upon the addition of sodium carbonate solution. The latter morphology is very similar to the effect of flushing the CO\textsubscript{2} out with N\textsubscript{2} to neutralize the system to pH 7.

4. Conclusions

RAFT polymerizations involving the monomer N-(2-morpholin-4-ylethyl) acrylamide (MEA) have been used to prepare amphiphilic block copolymers containing CO\textsubscript{2}-responsive morpholine moieties. It is demonstrated how diblock and triblock copolymers are able to self-assemble in water into a wide variety of morphologies. The triblock copolymer poly(MEA)\textsubscript{51-b-(DMA)\textsubscript{50-b-(TBAM)\textsubscript{40-S(C=S)SC\textsubscript{12}H\textsubscript{25}} gave spherical vesicles. Self-assembly was more complicated when the large hydrophobic RAFT dodecyl moiety was attached to the hydrophilic poly(MEA) block, leading to an ABA' type-structure for poly(TBAM)-b-(MEA)-S(C=S)SC\textsubscript{12}H\textsubscript{25} diblock copolymers. Depending on the size of the MEA fraction, patterned vesicles and large worm like vesicles were obtained. When the MEA content was small, the vesicular morphology was replaced by large aggregates of solid spherical hydrophobic particles. Poly(TBAM)\textsubscript{40-b-(DMA)\textsubscript{50-b-(MEA)\textsubscript{49-S(C=S)SC\textsubscript{12}H\textsubscript{25}} resulted in large compound micelles, which reverted to simpler spherical vesicles upon cleavage of the solvophobicity/solvophilicity balance distorting RAFT end-group. Decreasing
the pH through CO$_2$ or HCl addition irreversibly shifts the system towards lower order morphologies with spherical micelles being more favoured than vesicles. Overall, the present results show that a wide range of CO$_2$-tunable morphologies are accessible using well-defined polyacrylamide block copolymers containing heterocyclic moieties.

Figure 5. TEM of the aqueous polymer (5% w/w) solutions showing pH-response of (i) poly(TBAM)$_{80}$-b-(MEA)$_{113}$-S(C=S)SC$_{12}$H$_{25}$ after flushing with CO$_2$(g) and N$_2$(g) and (ii) poly(TBAM)$_{40}$-b-(DMA)$_{50}$-b-(MEA)$_{49}$-S(C=S)SC$_{12}$H$_{25}$ after flushing with CO$_2$(g) and N$_2$(g), and after the addition of 5% HCl and saturated Na$_2$CO$_3$ solutions.
Acknowledgements
We thank the Irish Research Council (IRC) for a Government of Ireland Postdoctoral Fellowship for B. A. Chalmers and the IRC for a postgraduate scholarship award for C. Magee as part of the First IUPAC Transnational Call in Polymer Chemistry co-ordinated by F. Aldabbagh. We thank Eadaoin Timmins at the Centre of Microscopy and Imaging (NUI Galway) for TEM.

References

