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Abstract—Pandemics or high impact epidemics are one of
the biggest threats facing humanity today. While a complete
elimination of the occurrence of such threats is improbable, it is
possible to contain their impact by efficient management which
in turn depends on effective decision-making. In the event of a
pandemic the data flows are enormous and pose severe cognitive
overload to the public health decision-makers. In this context, this
paper presents PandemCap, an innovative decision support tool
that can be used by the public health officials for making better
and well informed decisions in the event of pandemics or high
impact epidemics. PandemCap provides an interactive, flexible
platform to public health decision-makers by making extensive
use of techniques from the domains of visual analytics and
epidemic modeling. In addition, the tool also allows for the study
of the impact of various interventions or control measures such
as the use of vaccines, anti-virals, hospital beds, and ventilators.

I. INTRODUCTION

Highly virulent infectious diseases, such as the plague,
cholera, and influenza have killed millions throughout human
history. Fifty million people died as a result of the 1918
influenza pandemic and HIV/AIDS is estimated to have taken
the lives of more than 35 million [1]. Epidemics, such as
Severe Acute Respiratory Syndrome (SARS) in 2003, H1N1
in 2009 and the Ebola epidemic in West Africa in 2013-2016,
have acted on a smaller scale but have had huge impact in
terms of both social and economic disruption. Despite several
advances in the domain of medical science and treatment, the
rate of emergence of infectious diseases continues to increase.
This could possibly be due to the growth of human population,
climate change, food production pressures and greater animal-
human interaction [2].

Public health emergencies, such as a pandemic outbreak,
pose the task of critical decision-making to public health offi-
cials and emergency response personnel. This is a challenging
task because such situations require decisions to be made on
the basis of uncertain and rapidly changing information. It is
in this context that this paper presents PandemCap –a visual
analytics decision-support tool– for the visualization and pre-
sentation of epidemiological data. In addition, the tool also
provides for the simulation of the spread/containment of the
epidemic based on the implementation of control measures
available to public health officials.

Specifically, PandemCap was developed as part of the EU
Horizon 2020 project called PANDEM: Pandemic Risk and

Emergency Management [3]. One of the key findings of the
project was the lack of availability of a common and efficient
visualization and resource modeling tool that could be used at
EU level in the event of a pandemic outbreak. PandemCap, as
presented in this paper, seeks to fulfill this gap. In addition, it
is flexible enough to be extended or used in countries outside
the EU as well.

This paper is structured as follows: In section II we provide
the theoretical foundations of concepts such as decision-
making, situational awareness, visual analytics, and epidemic
models. Next, section III presents related work, where we
describe some other popular visualization and simulation
tools used in the domain of public health decision-making.
The design architecture of our proposed tool PandemCap is
described in section IV. Section V presents the implemen-
tation of PandemCap as a proof-of-concept. Subsequently, in
section VI we demonstrate the use of PandemCap as a decision
support tool for public health officials in an influenza outbreak
scenario. Finally, we close the paper in section VII by drawing
conclusions and providing an insight into future work.

II. BACKGROUND

In this section we provide background information on
core concepts that are fundamental to the development of
PandemCap. These include decision-making and situational
awareness, visual analytics, and epidemic models, respectively.

A. Decision Making and Situational Awareness

The process of decision making involves determining the
best action/choice to perform from a set of alternatives in order
to arrive at a solution for a certain problem [4]. Decisions
made by public health officials are based on the information
provided by facts about a situation and their own suppositions.
Hence, Situational Awareness (SA) is critical for the decision
making process. SA provides an impression of what is taking
place around a situation. Such an impression is critical to
improving the decision maker’s ability to make informed
decisions. Endsley [5] formally defined SA as “the perception
of elements in the environment within a volume of time and
space, the comprehension of their meaning, and the projection
of their status in the near future”. Endsley [6] proposes a model
for SA that consists of three levels of awareness that lead to
decisions. These levels are as follows:



• Level 1-Perception: Perception of important elements in
the environment.

• Level 2-Comprehension: Decision makers have to com-
bine the information obtained in Level 1 with their own
experience to understand the situation.

• Level 3-Projection: The ability of creating a projection
of the current situation into different possibilities to
anticipate their implications.

Each level in this model is built over the previous one, where
projection is the most desirable. Different levels can be reached
depending on the data available, the context of the situation,
the expertise of the decision maker and their ability to predict
future situations.

The perception level of SA requires the public health
officials to collect data on various aspects of population health.
This includes recording the proportion of infected people
and their geographical locations as well as an account of
available resources such as the number of hospital beds,
mechanical ventilators, and antivirals, to name a few. Any
relevant and related surveillance data is also used at this level.
The comprehension and projection levels of SA require public
health officials to develop an understanding of the situation
and to anticipate the impact of the public health situation by
assessing the impact of interventions, respectively.

Based on the information received and their own experience,
public health officials evaluate interventions that can possibly
reduce/contain the spread of the diseases. Such interventions
include school closures, vaccinating a portion of the popu-
lation, increasing or decreasing the number of resources. A
comprehensive study of the effectiveness of the interventions
is important because incorrect or untimely decisions can have
very negative consequences such as increase in death rate,
higher costs, and can even result into the progression of an
outbreak into a pandemic.

In order to select the most optimal interventions to im-
plement, decision makers need to reach the third level of
SA. However, when building and comparing projections of
the numerous combinations of potential choices, the decision
maker can be easily overwhelmed. In this situation, informa-
tion overload becomes a crucial problem that needs addressing.

In general, in the context of pandemic management the data
flows are enormous. Hence, it is difficult for public health offi-
cials to process large amounts of information needed to make
decisions, and even more challenging to carry out projections.
In the following section we introduce visual analytics and its
role in handling information overload.

B. Visual Analytics

Visual analytics is a multidisciplinary area that aims to in-
tegrate interactive visualizations with automated data analysis
approaches to ease the processing of large volumes of data
and support a user’s decision making process [7][8][9]. By
means of visual analytics, users can gain deeper insight about
complex large-scale data and discover new knowledge as they
interact with visualizations that highlight the most meaningful
characteristics of the data. Originally, Thomas and Cook

in [10] define visual analytics as “the science of analytical
reasoning facilitated by interactive visual interfaces” [10].

Figure 1 presents the visual analytics process used in the
context of this project. The presented process is based on three
core components: Data, Model and Visualization; and it is
founded on the definitions proposed by Keim et al. in [8]. In
the Figure, it can be viewed how components interact with
each other and with the user.

Figure 1. Visual analytics process. Image adapted from [8].

The Data component handles the raw data, which may
be structured, semi-structured, or unstructured and comes
from heterogeneous sources. Usually, the data needs to be
preprocessed transformed or integrated before being used by
the model or visual component.

The Model component handles the mathematical models
used to reflect real-world dynamics. These models can be
used to simulate the behavior of a system changing over time
which is initially characterized by the original data and can
be controlled by the user by means of parameter refinements.
Examples of models in the domain of epidemic research
include [11], [12] and [13]. In brief, models drive the transfor-
mation of the data to be used for visualizations and “provide
a basis for decision makers to understand their world” [14].

The Visualization component handles visual representations,
which are used as the main interface between users and the
data and/or models. For the user to discover useful knowledge
the interaction with visualizations is needed.

In summary, visual analytic tools present themselves as so-
lutions to handle information overload by allowing the analysis
of some of the most relevant aspects of large-scale, dynamic
and complex data. They achieve this by means of interactions
between the data, model, and visualization components. As a
result, information overload is reduced allowing users to gain
a better insight and make informed decisions.

In this paper we propose PandemCap, a solution based
on visual analytics that provides public health officials with
insights into how the predicted impact of a pandemic changes
given different types of interventions.

C. Epidemic Models

An epidemic model is a simplified representation of reality
describing the transmission of an infectious disease through



a population [15]. Epidemic models allow us to observe the
evolution of an outbreak, evaluate the impact of implementing
mitigative strategies, and support emergency response and
risk assessment.

The SEIR model [16] is one of the most commonly used
epidemic models. In previous works, infectious diseases such
as Ebola [17], Zika [18], and Influenza [19][20] have been
modeled using the SEIR model. In this section we will further
explain the SEIR model as it is the main foundation for the
proposed model in our work (view section IV-B).

The SEIR model (view Figure 2) is a mathematical approach
that describes the state of an individual over time in one of
four compartments in which the population is divided in:

• Susceptible(S): Individuals who can be infected with the
disease.

• Exposed(E): Individuals who have been infected but
are still not infectious and might not exhibit signs of
infection.

• Infected(I): Individuals who are sick and infectious, in
consequence they can spread the disease to others.

• Recovered(R): Individuals who can not be infected with
the disease, either because they are isolated, immune, or
dead.

The model estimates the number of people in each of these
four compartments by describing how people move between
compartment. Thus, S(t), E(t), I(t) and R(t) are functions
of time t.

The total population size N is the sum of all compartments.
N = S(t) + E(t) + I(t) +R(t).

S E I R
IR RRER

Figure 2. Schema of the SEIR model.

The progression from one compartment to another initiates
when a susceptible individual (in compartment S) is infected
at the infection rate (IR), as a result the individual moves to
compartment E. After the latency period (ER), the exposed
individual becomes infectious and can spread the disease, as
a result the individual moves to compartment I . Finally, the
infectious individual is recovered permanently at the recovery
rate (RR), as a result the individual moves to compartment
R. We can extend the SEIR model to include interventions
such as mitigative strategies or resources capacity to reduce
the impact of disease spread.

In the section IV-B, we will explain how our solution
approach extends the SEIR model.

III. RELATED WORK

This section describes other relevant prior works that have
proposed visualization solutions for epidemic model simula-
tions. These solutions aim to support public health workers in
observing the impact of their decisions.

One example is GLEAMviz [21], a publicly available sys-
tem that simulates realistic infectious disease spread across the
world. First, the tool allows the user to design compartmental
models with mitigation strategies. Next, the model created can
be submitted to the GLEAMviz servers (high performance
computers), which execute thousands of simulations of the
possible epidemic evolutions, based on stochastic mathemat-
ical models and real-world population and mobility data.
When results are ready, they can be retrieved, stored and
visualized. As outputs, GLEAMviz can produce a 3D global
map animation and a dynamic 2D map view of the disease
evolution and spread over time, along with a related set of
charts that quantitatively describe results. As well, analysis
on mobility data and the structure of the airport network is
provided to reflect how the notion of distance is affected. All
in all, these features make GLEAMviz a convenient tool for
teaching or training.

Another popular visualization and modelling tool to support
decision-making in the domain of public health is PanViz [13].
It is an influenza simulation tool that uses spatio-temporal
views to help public health officials understand the impact
of decisions over the disease spread. The tool allows to set a
specific day of the simulated outbreak to view statistical data
about the progress of the disease and to evaluate the spread in
a geospatial/map view. Specifically, the map view (based on
the United States) displays the spread of the disease between
different counties across a state. The tool allows to set the point
of origin of the disease and chose or not the use of air travel
information to influence the spread. Finally, the decision maker
can, at any day of the simulation, indicate the execution of a
decision (i.e. intervention) and the number of days it would
take the decision to take full effect.

Afzal et al. [22] compared the impact of several mitigation
measures at different points over time, using their proposed
decision history view and spatio-temporal model view. On the
one hand, in the spatio-temporal model view it is possible to
adjust model parameters and explore the effect of mitigation
measures over space and time. On the other hand, the decision
history view allows for the user to insert decision points at any
point of the time line to generate branches. As a result, the
user can visualize the overall impact of lost or saved lives as
a function of decisions made by comparing branches. Though
the idea of presenting branches of different time lines can
have many advantages, one possible disadvantage of this view
is that in the presence of many branches it may be difficult to
differentiate each decision line.

In this section we described visualization tools developed
for supporting decision-making in the event of a public health
emergency and response management. In the following sec-
tions we describe the design architecture and implementation
of our proposed tool, PandemCap.

IV. ARCHITECTURE DESIGN

In this section, we explain the PandemCap design under the
components of the visual analytics process (see section II-B),
which are: Data, Model and Visualization.



A. Data

With metapopulation structures such as the SEIR model,
available epidemiological data can be used to map to model
variables. For example, population demographic data can be
accessed for a given geographic area, and these values can
be assigned to stocks (e.g. the number of people in a given
age cohort who are susceptible), and also to auxiliary variables
(e.g. the number of hospital beds available as a resource). This
is highly useful in order to build user confidence in the model,
and validate the model structure by comparing model values
to historical data.

B. Model

The dynamic model used for PandemCap is an extension
of the SEIR model, and is based on a stock and flow struc-
ture [14], used widely in the simulation literature. It is divided
into four age cohorts (00-04, 05-14, 15-64 and 65+), which
is commonly known as a metapopulation model [23][16], al-
though network-based models can also be implemented to sim-
ulate disease transmission [24][15][25]. In order to model the
different classes of infection that can spread through the pop-
ulation, the infected cohort is further divided into four com-
partments, each reflecting a possible impact of the pathogen
(asymptomatic, mild, moderate, and severe). Severe cases are
hospitalized, and their flow within a hospital scenario is dic-
tated by the availability of resources. The model can simulate
the impact of the following resources in the health system:
Vaccines, which can be targeted at risk groups and, depending
on efficacy, would change the model flow for recipients, where
they would be moved directly to the recovered stock, rather
than remaining in the susceptible stock.
Antivirals, which are used to treat at-risk groups at the early
stage of infection, and this resource-dependent intervention
can reduce the risk of acquiring a severe infection, and thereby
improve overall health outcomes, as well as reducing the
demand load profile on scarce hospital resources.
Hospital Beds, which are the number of beds available for
patients who have severe reactions to a pathogen, and these are
resources that cna ensure the best possible health outcomes. If
a pandemic surge is overwhelming, patients will be flow into
a model sector known as surge capacity, where models the
impact of a lower-quality health provision scenario.
Ventilators, which are resources for patients with severe
respiratory problems, and the availability of these resources
will improve patient outcomes. However, a lack of sufficient
ventilator supply will lead to increased mortality.

The model uses a who acquires infection from whom
(WAIFW) transmission structure [15], to evaluate the force of
infection for a pathogen, with cohort contacts informed by a
Europe-wide contact tracing survey [26]. The dynamic model
also contains measures for assessing the impact of a pandemic
on workforce absenteeism, and therefore it can provide an
insight into business continuity challenges that arise during
a prolonged pandemic. Absenteeism is calculated based on
a number of factors, including: the number ill in the 15-64
cohort (factored by a ratio of how many people in that group

are employed in the workforce); and the number of children
that are sick (as this will mean higher number of parents would
remain at home). The model also allows for school closures,
and also can capture seasonality effects, where the infectivity
of a pathogen can become further amplified during the winter
months, as more people remain indoors, and so the probability
of transmission increases.

C. Visualization

PandemCap, as mentioned previously, is specifically de-
signed and developed for visualizing and simulating data flows
and possible interventions in the event of a pandemic outbreak
at EU level as part of the PANDEM project. The current design
is based on the specific user needs of public health officials
responsible for pandemic management at EU level.

Interactivity is one of the key user needs addressed by
PandemCap. The tool allows the users to vary the intensity
parameter of a pandemic scenario and select between options
such as mild, moderate, and severe. In addition, various
options such as save, delete, etc are also provided. The user,
among other actions, can select, filter, pan or zoom views to
explore the outcomes.

The impact of various interventions described in the
previous section can also be visualized. Finally, the
PandemCap design also allows the visualization of the
distribution of cases over time, the information referring to
the number of people infected, as well as the geo-spatial
analysis spread of the disease.

V. PROOF OF CONCEPT IMPLEMENTATION

In this section we introduce the PandemCap prototype, a
proof-of-concept implementation of our proposed architecture
design (view section IV). We describe the technical aspects of
the PandemCap prototype and explain the development of our
solution under the components of the visual analytics process,
i.e. Data, Model and Visualization (view section II-B).

A. Data

PandemCap gathered data from the statistical office of the
European Union Eurostat [27] at the NUTS-2 level. NUTS-2
divides the EU territory into 276 territorial units for the gen-
eration of regional statistics and political interventions [27].
At this level it was possible to collect the needed geographic,
population and resources data to build the epidemic model.

B. Model

The model implemented as a set of ordinary differential
equations in R [28], using the deSolve library [29], which
supports numerical integration algorithms including Euler’s,
and also facilitates vectorization of models (which is essential
to model the four different age cohorts). At a technical level,
the model is implemented as an R closure, which encapsulates
the model structure and data into a single object, and therefore
supports running the model in parallel, as well as scaling
up the model to simulate many regions within a geographic
area under threat of a pathogen with pandemic potential.



PandemCap can be parameterized for each run (there are 58
parameters that can be varied), so that many of the variables
can be seeded with different initial conditions, and extensive
sensitivity analysis can be performed.

C. Visualization

In this section, we will present the user interface and func-
tionalities of the PandemCap interactive web application. The
front-end was developed using the web application framework
Shiny version 1.0 [30] for R.

The PandemCap simulator in Figure 3 is composed by two
main views:

• Panel(A) in Figure 4 is for setting the parameters and
managing the control buttons to run simulations.

• Panel(B) in Figure 5 displays the visual output of the
simulation.

A B

Figure 3. PandemCap main user interface.

First, in order to execute a simulation the decision maker
has to interact with Panel(A). In the Figure 4, it can be seen
that Panel(A) is divided in two sectors:

• Sector(A1) includes the parameter options to define the
region where the models can be applied, as well as the
parameters to customize the disease transmission and
resources capacities described in section IV-B.

• Sector(A2) provide buttons to control the execution of
each simulation (run, save, delete, compare and down-
load).

Specifically, the decision maker should set up the options
in Sector(A1) by following these steps:

1) Select the region/NUTS-2 of the EU to be analyzed
(e.g. Belgium-B10, France-FR23, Ireland-EI02).

2) Adjust the characteristics of the influenza outbreak in
terms of both the infectivity multiplier (customizes how
frequently the influenza is spread among susceptible
people) and the severity level(customizes how severe the
illness is by setting it in either mild, moderate or severe).

3) Select the interventions that the public health officer
wants to analyze. These interventions can be mitiga-
tive strategies (i.e. school closure or vaccination) or
adjustments over the capacity of resources (i.e. antiviral,
hospital bed and mechanical ventilators).

Once the parameters for the simulation are chosen, the
decision maker has the option of labeling the simulation to
keep track of each run. This feature is specially useful when
comparing two or more simulations side-by-side. In order to
compare simulations, the user must first run and save each
simulation individually.

A1

A2

Figure 4. PandemCap - Panel(A) sectors.

Next, after the simulation is executed, Panel(B) in Figure 5
displays graphics that present results in a temporal and ge-
ographical way. These views are rendered every time that
parameters are modified, they can be collapsed or re-opened
depending of the user needs, and allow for the user to interact
with them using actions such as filtering, zooming, panning.

Panel(B) is divided in seven graphics:

• Graphic(B1) includes information boxes used to show
dynamic information such as mortality rates, maximum
number of people infected and total number of sick
people.

• Graphic(B2) presents the distribution of disease cases
associated with an epidemic over time in a line chart.

• Graphic(B3) provides a geospatial analysis of the out-
break. The infected region is colored depending on the
proportion of disease cases reported, using a gradient
palette that generates smooth color transitions from green



(indicating low percentage of people infected), yellow to
red (indicating high percentage of people infected).

• Graphic(B4) displays a bar chart that gives a quick notion
of the financial impact of the simulation.

• Graphic(B5) shows the impact to the hospital system in
terms of bed and mechanical ventilator capacities.

• Graphic(B6) and Graphic(B7) present the absenteeism
observed between children and adults during the simu-
lation using a line chart.

B2 B3

B4 B5

B6 B7

B1

Figure 5. PandemCap - Panel(B) graphics.

In this section we have presented how our proposed ar-
chitecture design can be materialized in a proof-of-concept
prototype. In the following section we will explain in detail
how to use PandemCap to support the decision making process
within an influenza scenario.

VI. RESULTS AND DISCUSSION

In this section, we present our results by using an influenza
outbreak scenario in the FR22 region (NUTS-2) of France.
Our overall objective is to be able to measure the magnitude
of the outbreak as well as its evolution across the regions. In
addition we also want to evaluate the success of interventions
selected towards combating the spread of infectious disease
(influenza outbreak in our case). Toward these goals, we define
the following two use cases within our outbreak scenario that
demonstrate how a public health decision maker can interact
with the PandemCap simulator.

(a) Comparing outbreaks: Study the impact of a moderate
influenza epidemic in contrast to a severe influenza epi-
demic.

Table I
INPUT PARAMETERS FOR USE CASE “COMPARING OUTBREAKS”.

Simulation ModerateSim SevereSim
Region FR22 FR22
Severity level Moderate Severe
Infectivity multiplier 0.7 0.7
Force seasonal Yes Yes
Vaccination No No
School closure No No
Antiviral Default Default
Bed capacity Default Default
Ventilator capacity Default Default

(b) Comparing interventions: Evaluate in a severe out-
break the effectiveness between no interventions, closing
schools and increasing the number of hospital beds.

A. Comparing outbreaks

For the first use case, we defined the following two simu-
lations:

• ModerateSim: It is a moderate outbreak with no interven-
tions.

• SevereSim: It is a severe outbreak with no interventions.
Moderate and severe outbreaks differ in the amount of infected
people.

In order to compare between a moderate and a severe
influenza epidemic, we set up the parameters in Panel A (see
section V-C) on PandemCap as shown in Table I. Next, we
ran the simulations to compare the outcomes. Figure 6 shows
the results of the simulations in the different graphics that
are displayed in Panel B (see section V-C). The decision
maker can explore the visualization results to understand
the magnitude of each type of outbreak. For the purpose of
analysis we have labeled each Graphic in Figure 6 to use as
references in this section.

In Graphic B1, the decision maker can observe that the
severe simulation (SevereSim) presents a higher mortality
rate compared to the moderate Simulation (ModerateSim).
In addition, it can be perceived in the map of Graphic B3,
that SevereSim presents an intense red, which means a large
amount of people are infected and the disease has spread
widely. This is corroborated by the epidemic curve in Graphic
B2, where the highest peak belongs to SevereSim. Graphic
B5 presents the use of hospital resources between the two
simulations, where it can be appreciated that the resources at
hospitals are not enough to supply the demand of sick people
that require hospitalization when the outbreak is severe. In
brief, SevereSim shows the worst outcomes and the greatest
negative impact in all aspects.

B. Comparing interventions

For the second use case, we defined the following three
simulations:

• SevereSim: it is a severe outbreak with no interventions.
• SchoolCloure: it is a severe outbreak implementing

school closure intervention.
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Figure 6. PandemCap results for the use case “Comparing outbreaks”.

Table II
INPUT PARAMETERS FOR USE CASE “COMPARING INTERVENTIONS”.

Simulation SevereSim SchoolClosure IncreaseBed
Region FR22 FR22 FR22
Severity level Severe Severe Severe
Infectivity multiplier 0.7 0.7 0.7
Force seasonal Yes Yes Yes
Vaccination No No No
School closure No Yes No
Antiviral Default Default Default
Bed capacity Default Default Triple
Ventilator capacity Default Default Default

• IncreaseBedSim: it is a severe outbreak where the number
of hospital bed resources have been tripled.

In this use case, the decision maker can employ his/her
previous experience to decide which decision strategies to
evaluate. In this case, the decision maker has decided to study
two interventions, school closure or increase hospital beds
capacity, and their effect in reducing the disease spread.

For this use case, we set the parameters in Panel A (see
section V-C) on PandemCap as shown in Table II. Afterwards,
we ran the simulations to compare the outcomes. Overall, the
interventions are contrasted with the control case (SevereSim).
The visualizations in Figure 7 show all the relevant informa-
tion at a glance. For the purpose of analysis we have labeled
each Graphic in Figure 7 to use as references in this section.

Examples of observations that can be made are:
• In Graphic B2 it can be observed that SchoolClosure has

a minimal impact. The reason for this can be that there
are still enough infected people propagating the virus.

• In Graphic B2 the epidemic curve for IncreaseBed shows
a reduction of the overall cases of infected people. This
can be as a result of the increment in hospital cares.

• It can be seen in Graphic B5, in relation to IncreaseBed,
that there is a lack of hospital bed resources. It could
be interpreted that, although there was an improvement
in hospital capacity, it is still not enough to supply the
entire demand for sick people in the FR22 region.

In general, we can appreciate that between the two
interventions implemented, increasing hospital beds has a
better impact in reducing the overall number of people infected
and alleviating the health system burden in comparison with
school closure.

In this section we have shown the use of PandemCap in
the scenario of an influenza outbreak at the FR22 region in
France. We highlight that PandemCap is a useful tool to make
comparisons between different simulations and support the
decision maker in contrasting projections between possible de-
cisions. It is important to clarify that though we have presented
simulation examples based on one intervention, PandemCap
can also show the impact of applying a combination of
interventions such as school closure, vaccination and increase
the number of beds all in the same simulation.

B2 B3

B4 B5

B6 B7

B1

Figure 7. PandemCap results for the use case “Comparing interventions”.

VII. CONCLUSION AND FUTURE WORK

Countless infectious diseases continue to affect the
world. Epidemic is not a new threat to human security, but
globalization has changed the rules, allowing for a faster and
broader spread that results in an increased risk of an epidemic
turning into a pandemic [31]. The European Union has been



continuously dedicated to establish strategies, identify and
provide solutions in response to pandemic risk and emergency
management. In order to improve and update the current
mechanisms, the Pandemic Risk and Emergency Management
(PANDEM) project was created. Among challenges, it has
been identified that the appropriate presentation of available
information to decision makers is critical in the management
of a pandemic situation.

In this paper we presented PandemCap, a visual analytics
decision support tool that helps public health officers
understand what is happening during an outbreak and the
impact of potential actions/interventions. In the context of
the PANDEM project, this tool can be vital in order to
decrease the response time to face an epidemic, prevent its
intensification and overall its negative impact on society.

The project has extensive potential for future work. In the
short term, we plan to extend the model and visualizations
to include features such as human mobility patterns. As well,
we plan to evaluate the usability of PandemCap using public
health personnel. In the long run, we plan to add an optimiza-
tion solution that is able to search within a large set of sim-
ulations to find the sequence of interventions that could help
accomplish the public health officer’s objectives (e.g. decrease
number of infected people) for a specific outbreak scenario.
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