

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-14T18:20:56Z

Some rights reserved. For more information, please see the item record link above.

Title A case study of collecting dynamic social data: The pro-ana
twitter community

Author(s) Wood, Ian

Publication
Date 2015

Publication
Information

Wood, Ian (2015) 'A Case Study of Collecting Dynamic Social
Data: The Pro-Ana Twitter Community'. Australian Journal of
Intelligent Information Processing Systems, 14 (3).

Publisher Australian National University, College of Engineering and
Computer Science, Department of Computer Science

Item record http://hdl.handle.net/10379/6907

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

A Case Study of Collecting Dynamic Social
Data: The Pro-Ana Twitter Community

Ian Wood

Australian National University, Canberra ACT 0200, Australia,
ian.wood@anu.edu.au

Abstract. The study of social processes in on-line social media content
is a relatively new and rapidly growing endeavour. Many social media
platforms provide a public API (Application Programming Interface)
which can be used for the targeted collection of data from perceived
communities, however existing software for this purpose focusses on a
“snapshot” of the community and its communications, and ignores im-
portant aspects of its dynamics. We present a data collection system
designed to capture tweets and the dynamics of Twitter user profile and
friend/follower lists, and an approach to identify a set of tags or keywords
that define an on-line community. This approach and system were used to
collect a data set spanning 2 years and 7 months (including 3 Christmas
periods) from the “pro-ana” (pro-anorexia) and eating disorder Twitter
community.

Keywords: data set, Twitter, software, adaptive cluster sampling, net-
work dynamics, social networks

1 Introduction

Social psychology is a dynamic process — people enter and leave social groups
and groups change and adapt their sense of identity and social norms. It is
these dynamics that make our societies what they are, that generate and define
human social fabric. In order to study and eventually make predictions about
group behaviour, it is essential that we capture the dynamics of the socially
meaningful features under study.

With the exception of one very recent paper [2]1, data collection for the
study of Twitter friend/follower network dynamics has been limited to a small
number of network snapshots without finer grained timing [6, 1, 3] and focus on
large scale and/or short term effects, without consideration of specific Twitter
communities.

Working from the observation that Twitter hash tags can define a commu-
nity [7, 4], we propose an approach analogous to adaptive cluster sampling [5] to
iteratively expand a small selection of hash tags thought to be used by/define a

1 the authors claim to have precise timing for friend/follower network changes, however
they do not describe how they obtained the data

community by examining tags used in tweet samples from queries on the current
set of tags. Frequent tags are added if they do not attract many tweets deemed
to be from outside the community.

For some time, a phenomenon has existed on the internet that conveys posi-
tive messages about anorexia, the so called “pro-ana” movement. In addition to
definitively “pro-” anorexia messages, there are other messages relating to eat-
ing disorders and connected social phenomena such as the “thin ideal”. In order
to study the “pro-ana” phenomenon and it’s social context, we sought to col-
lect “pro-ana” and eating disorder related Tweets. A selection of Twitter hash
tags used almost exclusively by people with eating disorders was constructed
following our approach.

We present a system that captures Twitter friend network dynamics by
polling a users’ friends and followers lists and user profile data each time we
collect a tweet from them. User profile data is also polled with each tweet. Any
changes are stored in a replicated MongoDB database and regular backups are
performed. It incorporates several features to ensure reliable operation in the
face of extreme tweet rates, outages and failures. The system was used to collect
all tweets containing the identified hash tags and associated dynamic user data
over a period of spanning three Christmas periods — over 1.2 million tweets,
300 thousand users and 200 thousand images.

In Section 2, I discuss communities defined by hash tags and the approach
used to identify tags from the Twitter “pro-ana” community. In Section 3, I
discuss the approach for sampling the dynamics of community network and user
data. In Section 4, I discuss the software design and technical challenges. In
Section 5, I present some general statistics from the collected data. In Section 6,
I summarise our findings, and finally in Section 7, I talk about possible system
enhancements and related research directions.

2 Identifying Communities

2.1 Hash Tags and Communities

Hash tags are used in Twitter and other micro-blogging sites as a way to organise,
emphasise and otherwise colour posts. A hash tag is simply a word with the hash
character “#” prepended, such as #diet. They allow users to specify aspects of
their posts that they consider important and to direct their posts to what they
feel is an appropriate audience [7, 4]. It is this second point that we attempt
to harness in order to collect the output of a hypothesised community around
“pro-ana” (pro-anorexia) and eating disorders.

2.2 Adaptive Sampling for Search Tags

Following the intuition behind adaptive sampling [5], a search query for collecting
tweets was selected through an iterative process identifying hash tags used by
people with eating disorders. At each step a sample of tweets was collected

containing the tags from the previous step, then a set of relevant new hash tags
was selected from frequent tags in that sample.

In the first iteration, a brief study of tweets and Tumblr2 posts containing
#proana revealed related tags #thinspiration #anorexia #bulimia and #pro-
mia3.

For the second iteration, tweets were collected from August 18–22 2012 on
these tags, a total of 1182 tweets. Hash tags were counted in the collected tweets,
and those with more than 3 occurrences were considered. The majority of the tags
appeared to have much wider usage than the community of interest (e.g.: #diet).
A quick manual check by conducting a twitter search on each tag confirmed
these suspicions, and those tags were discarded. Manual checks on the remaining
tags revealed many more with wider usage. Such tags were discarded if most
of the relevant tweets (those deemed to represent communications within the
hypothesised community) in which they were used also contained other selected
tags — hence the candidate tags were unable to identify new tweets not already
identified by other selected tags.

For each tag, a judgement had to be made about the number of irrelevant
tweets compared to the number of new tweets not collected by other tags in
the query. In general the distinction was clear, and no compromise was neces-
sary. However a few, such as #depression and #selfharm were discarded despite
identifying a small number of relevant tweets not identified by other tags. It was
deemed preferable to maintain a higher degree of data relevance and a smaller
query. Such a query stands a smaller risk of saturating the Twitter API rate
limits which could result in lost data. Table 1 lists some typical tags that had
wider usage with descriptions of the wider contexts in which they were used.

This process applied to all the remaining tags resulted in a core of 14 tags
identified as used almost exclusively by people with eating disorders, as well as
capturing nearly all tweets in the sample that were deemed produced by those
people. Tweets with these tags were collected for a further 4 days from September
15 to 19 2012 and the analysis repeated, however no extra tags were identified.
Table 2 lists the final set of selected tags.

3 Collecting Dynamic Twitter Data

Purchased twitter data as well as tweets collected with the Twitter API’s, contain
a snapshot of the tweeting users’ profile information with each tweet, giving
some information about user profile changes a user may have made between the
collected tweets from that user4. However the profile snapshot does not contain
the lists of friends and followers of the user, and to the best of my knowledge

2 www.tumblr.com
3 bulimia is short for bulemia nervosa, an eating disorder related to anorexia nervosa;

pro-mia is short for “pro-bulemia”.
4 though user data embedded in tweets can be stale.

Description Tags

diet and weight loss #diet #weightloss

body shape and parts #skinny #thin #supermodelbody #legs
#bones

adjectives and verbs #perfect #motivation #recovery #per-
fection

used to discuss eating disorders #anorexia #eatingdisorder
#eatingdisorders

fitness and exercise #fitspiration #fitspo #gym

depression and it’s symptoms not
specific to eating disorders

#selfharm #depression #cutting

with other meanings irrelevant
to eating disorders

#ana #ed #mia

Table 1. Non Personal Eating Disorder Tags

#proana #promia #anasisters #bulemia #bulimic #ednos #edproblems #hipbones
#thingsanataughtme #thinspiration #thinspo #abcdiet #thighgap

Table 2. Tags Selected For Search Query

historical data on changes in the friend/follower network are not commercially
available5.

Several previous studies of Twitter friend/follower network dynamics have
used a small number of network snapshots without finer grained temporal in-
formation [6, 1] and collected data for a fixed set of users, without focus on
particular communities. One very recent study of note [2] was able to obtain
a large data set containing precise timing for friend/follower network changes,
however they do not describe how. Their data is sufficiently large that it would
contain comprehensive information from many social groups, however it spans
just one month.

The Twitter APIs do not provide a feed containing network changes as
they happen, however they do provide a REST (Representational State Trans-
fer) interface for collecting a snapshot of a users’ friends and followers lists.
The data collection strategy presented here uses that endpoint to poll a users’
friend/follower lists each time they tweet. In this way the dynamics of the
friend/follower network of users active in the data is recorded with similar fre-
quency to their tweets and the user profile data contained therein.

5 a recent Quora post claims that the TwitterCounter service provides this for up to
one year.

It should be noted that the dynamic data thus collected is not complete. A
user who watches tweets in the data set, but themselves tweets rarely, will only
be polled on the occasions they tweet —– profile changes and follow/unfollow
actions made between recorded tweets by users not active in the data are only
captured in aggregate (though follow/unfollow actions will be detected if the
recipient tweets). The temporal data, then, has an element of sampling error, a
systematic lag, which is particularly pronounced with infrequent tweeters. None
the less, one might hope that changes to both the user profile and friend/follower
lists which are relevant to social processes within the hypothesised pro-ana twit-
ter community will have a high probability of occurring near the time of each
tweet to that community (i.e.: each tweet within my data set). We should, how-
ever, be careful when analysing behaviour of infrequent tweeters, as there may
be a bias in the recorded dynamics of their data.

4 Algorithms and Technical Challenges

This section outlines the design of the dynamic twitter data collection system
and describes some of the challenges that had to be faced in order to create
a stable system, robust to the the vagaries of tweet data flow, that efficiently
utilises the restricted data bandwidth provided by the Twitter APIs. Over the
course of two years of continuous data collection, a stable system that is robust
to twitter outages and sudden increases (by orders of magnitude) in data volume,
and efficiently utilises the narrow data bandwidth for collecting friend/follower
data has been built.

4.1 Overall Architecture

The system uses a multi-threaded architecture, enabling asynchronous HTTP
requests to the various Twitter API end points and media URLs (see Figure 1).
Communication between threads is achieved with thread-safe queues. A tweet
collection thread regularly polls the search/tweets REST API with the query
tags shown in Table 2. Each tweet and it’s meta-data are stored in the database
and the authors user id is added to the friends, followers and user profile queues.
Any media URLs and corresponding media entity ids are added to the entities
queue.

The systems main thread (the initial thread when the system launches) ini-
tially constructs the shared, thread-safe queues and launches the other threads.
It then monitors the other threads, restarting them if they crash and gracefully
coordinates system shut-down when requested. To help debug frozen threads, as
can happen in early development of multi-threaded systems if thread locks are
not properly released, the main thread also responds to operating system QUIT
signals, dumping a stack trace of each thread. As a further precaution, a unix
cron script (which is run regularly by the operating system) monitors the system
as a whole and relaunches it if an hour passes without activity. The system also
has a simple thread which initiates regular database backups.

Fig. 1. Overall Architecture. Arrows indicate data passed between threads.

The initialisation thread reconstructs the data collection queues by scanning
the tweet and user databases for partial and out of date data (e.g.: friend or
follower lists that have not been polled since the last tweet from the user). Once
the scan is completed, the initialisation thread shuts itself down. Other data
collection threads are launched and run synchronously with initialisation.

The tweet collection thread regularly polls the search/tweets API endpoint,
collecting all tweets that contain tags from Table 2. Collected tweets and em-
bedded user profile data are stored to the database and then the tweets authors’
id is placed in the friends, followers and user profile queues and any media en-
tity meta-data in the entity queue. On system restart, all tweets since the last
collected tweet are requested, however twitter does not guarantee that some will
not be missed. Our experience indicates that for this query, tweets are usually
accessible for several days and down times of that order do not result in lost
data. This is probably not the case during heightened tweet rates, however.

Twitter has two modes for accessing its REST APIs: with user authentication
and with application only authentication. With application only authentication,
you cannot perform tasks on behalf of a user (which is not needed here), but
you are given separate API rate limits. For a data collection application such as
this, using both forms of authentication essentially doubles the rate limit — in
the case of polling friend and follower lists, this is significant. Thus four threads
were used for collecting friends/follower information (each of friends or followers
with each of user and application only authentication). When storing friend or
follower list information, any changes to previously recorded lists are stored in
the database and the lists updated. Similarly, when new user profile information
is obtained from tweets or collected by the user profile thread, changes are stored
alongside the new data.

Data is stored in a replicated MongoDB instance. MongoDB was chosen due
to its easy deployment, easily modified schema, easy replication and because the
native format of stored data is JSON, the same as that returned by the Twitter
APIs. Three main collections are maintained: tweets, user profiles and media
meta-data (see Table 3). The Nectar research cloud6 was used to house database
replicas and for reliable storages of database backups.

Collection Twitter Data Added Meta-Data

tweets tweet data – how and when it was collected

entities media entity data – tweets that contain the entity
– a history of any changes to it’s data
– download attempts/success

user profiles user profile data – history of profile changes
– friends and followers lists
– a history of friend/follower list changes
– when and how the data was last polled

Table 3. Database Collections

6 http://nectar.org.au/research-cloud

4.2 Polling friend/follower lists — the main bottleneck

Tweet rates approximately follow a power law distribution, and the pro-ana/eating
disorder query is no exception. Tweet rates remain at a low level most of the
time, however occasionally, the rate increases by an order of magnitude, and
very occasionally by many orders of magnitude. During these “tweet storms”,
the download requirements of the system often exceed the Twitter API rate lim-
its, causing the data collection queues to grow. The four public Twitter REST
API endpoints used to collect data; tweets by query string, user profiles, user
friend lists and user follower lists; all have data rate limits7 which were on oc-
casion met. Prioritisation schemes were developed to ensure timely collection of
more important data.

Collection of tweets for the pro-ana and eating disorder community query fell
behind during the highest tweet rates, however due to the ability of the tweet
search endpoint to retrieve past tweets, the pro-ana/eating disorder query did
not apparently lose data as a result.

The user profile endpoint can poll 100 users per query with 180 queries per
15 minutes. This high rate quickly caught up with even the most extreme “re-
tweet storms”, and it was sufficient to prioritise users whose previously stored
data was oldest (unseen users first, ties resolved by user id).

The API endpoints for friends and followers lists poll only one user per query
and 15 queries per 15 minutes. Also, each query returns a maximum of 5000
friend/follower ids — occasional users with millions of followers require hun-
dreds of queries. Frequent ‘moderate’ re-tweet storms often took days to clear
the queue, and extreme events could take weeks. This substantial delay was
considered unacceptable.

Investigation of the re-tweet storms indicated that the majority of tweeting
users had no other tweets in our data, especially for the more extreme events.
Thus a strategy was implemented where users with at least one other tweet
in our data were given priority. Of those, the user whose friend/follower data
was oldest (i.e.: least recently polled) was given priority. With this strategy,
more frequent tweeters were quickly re-polled, while the queue of less interesting
one-tweet users can take many days to eventually clear. A newly seen user who
tweets again before having been polled is moved to the front of the higher priority
queue (’never’ is considered least recent). In an attempt to get a snapshot of at
least some one-tweet users friend/follower lists at the time they tweet, the most
recently seen first-tweet users are polled first. In both priority schemes, rare ties
are resolved by lexical order of user names.

User seen before? Priority Which user first?

Repeat User First Priority Least recently polled

New User Second Priority LIFO queue

Table 4. friend/follower lists polling priority scheme

7 https://dev.twitter.com/rest/public/rate-limits

4.3 Image Collection

Many tweets, and especially tweets in this data, contain images. Twitter includes
media URLs in tweet meta-data, and assigns a unique id to each image. When
a tweet containing images is collected, the images meta-data is stored in the
database including a link to the tweet. If the image with that twitter image id
has not been downloaded yet, it is downloaded and stored as a file on disk. A
simple cron script is used to backup the stored images to the servers running
the database replicas. It is common for duplicate images to be assigned different
twitter image ids. The system does not attempt to identify such duplicates.

4.4 Other Technical Challenges

Tweets can be directed to a recipient twitter user. Collecting the friend/follower
lists of recipients was also attempted, however it soon became evident that recip-
ients were frequently celebrities with millions of followers, causing extra burden
on the already stretched follower API endpoint. Users of interest that are part
of the pro-ana/eating disorder community would be tweeting regularly, and we
would be polling their friends and followers lists regularly anyway, so it was
decided that polling tweet recipients should be abandoned.

To test the relative reliability of the Twitter streaming and tweet search APIs,
a separate process received tweets via the streaming API and stored them in an
extra database collection. This collection was monitored by the main program,
and any extra tweets were copied to the main tweet collection. We found that
no tweets would have been lost without the streaming API data, so this part of
the system is unnecessary.

During system development, a bug in the python http library and difficulties
coordinating thread locks were identified from stack traces generated by the main
thread in response to Unix QUIT signals. Early in development, data loss was
avoided by automatically restarting the system via an hourly Unix cron script
when further bugs triggered by infrequent combinations caused the system to
crash. The system has now been running continuously for over a year without
any of these problems.

During the first year of data collection, Twitter announced that it was making
significant changes to it’s APIs, and especially to rate limits and the ways they
are reported and applied. The system attempts to utilise it’s rate limits as fully
as possible without exceeding them (which can prompt Twitter to block the
application for a time), so the API changes required substantial adjustment to
the rate limit monitoring logic. There were also a few changes to the meta-data
for tweets and users. This did not directly require changes to program logic,
however in order to keep database consistency, some logic was added to update
old format records.

At the time of initial development, Tweepy8 was chosen for access to the
Twitter APIs. Unfortunately, at that time Tweepy did not have support for

8 http://www.tweepy.org/

application only authentication. Twython9 did however, and since both packages
present the Twitter API in a similar way, it was not difficult to add threads that
utilised this capability.

5 Summary of Pro-Ana Data

As of 30 January 2015, the data contained 1,283,875 tweets, 296,483 users and
307,723 image ids. There were 1,616,199 follow events, 1,616,188 unfollow events
and 1,655,280 user profile changes. Hash tag usage followed a typical power law
distribution, as did the number of followers and friends, though follower and
friend counts were not correlated. The number of tweets per user, both in our
data and overall also follow a power law.

Hash tags related to “thinspiration” (typically images of people, mostly
women) dominate the data, with 73% of tweets. Retweets and images also ac-
count for a significant portion, with 57% of collected tweets retweets and 71%
containing images. Thinspiration tweets account for 89% of the images, 80% of
the retweets contain images and 76% of retweets contain thinspiration tags.

Fig. 2. Tag frequencies (converted to lower case, one mark per tag).

Figure 3 gives some indication of the user profile dynamics captured in the
data. In considering if a profile had changed, automatically generated profile
attributes such as the number of tweets, followers, favourites, etc. . . were not
considered. Changes in https versions of profile image URLs were also not con-
sidered, as it was noted that Twitter provides these from different web domains
depending on the way in which the user information is collected (embedded in
a tweet or via the user/search API endpoint). It can be seen that for hundreds

9 http://twython.readthedocs.org/en/latest/

of users, hundreds of profile changes have been captured, and for many thou-
sands of users, tens of changes, thus our goal of capturing profile dynamics has
succeeded. Changes to friend and follower lists follow a similar pattern.

Fig. 3. Number of user profile changes and user observation windows (one mark per
user).

6 Conclusion

Capturing data on dynamic aspects of social media communities is important
for the study of online social behaviour. Systems designed to capture data from
Twitter and other social media typically lack the ability to capture important
dynamics, such as changes in the social network. We have constructed a system
that captures these dynamics from Twitter communities that can be identified
by their use of hash tags or other search terms. The system is very robust
to the bursty nature of tweet streams, network problems and other difficulties
associated with online data collection.

We present an approach similar to adaptive sampling to identify hash tags
relevant to a community. With this approach, we identified a set of tags that is
used almost exclusively by the Twitter “pro-ana” and eating disorder community
and used our system to collect a nearly unbroken record of tweets, user and
network data from that community covering three Christmas periods: over 1.2
million tweets, 300 thousand users and 200 thousand images.

7 Further Work

For a longitudinal study of an online community, it may be appropriate to revise
the tweet search query on a regular basis (say, each month or quarter), as tag

usage may change over time, with new tags adopted by the community and old
tags loosing favour.

Identification of users of interest (e.g.: apparent members of a social group),
perhaps through analysis of the friend/follower, re-tweet and/or user mention
networks, could be used to prioritise and enable collection of extra data from
those users. For example, regular polling of friend/follower data and user pro-
files in periods of spare API bandwidth and/or at the expense of timely data
collection from less interesting users.

The search/tweets REST API is not saturated by the current data collection
approach, and substantially more tweets could at times be collected. Tracking
tweets by all individuals in the data would quickly become intractable, however
it could be valuable to collect more or all tweets by identified interesting users.
A simpler strategy of collecting all tweets from users for a certain time since
their last tweet could also be valuable.

The final search query from tags in Table 2 represents a balance between a
wide net and saturating the twitter API limits. The choice was made to keep the
query small in order to maintain a high degree of relevance in the data at the
expense of not collecting a small number of relevant tweets. It is an interesting
feature of the “pro-ana” phenomena on Twitter that the choice was quite clear,
and that little compromise was needed. It would be of interest to investigate
other potential Twitter communities to see if their boundaries can be so clearly
delineated.

In Section 3 we mentioned the systematic temporal sampling error inherent
in the data collection process. A valuable addition to research into social media
as a metric for social processes would be the study of this and related sampling
errors (e.g.: self selection bias).

Since the creation of this software, Twitter has introduced several new API
endpoints that could be integrated into the collection strategies to improve the
resolution and fidelity of dynamic, particularly friend/follower network, data. Of
particular interest is the friendships/show Twitter API endpoint, which returns
information about the relationship between two twitter users and has a high rate
limit of 180 calls per 15 minutes. Given a technique to regularly identify users
of particular interest, their user relationships could be polled more frequently.
Another Twitter feature that may be of interest is lists. Users can create and
join lists, and use their list membership(s) to filter the tweets that appear in
their Twitter feeds or manually view list tweets. List membership of users in the
pro-ana data follows a typical power law distribution, with about 40% of users
members of some list.

Acknowledgement.

Many thanks to Dr Henry Gardner and Dr Richard L. Jones for assistance
preparing this paper.

References

1. Hutto, C., Yardi, S., Gilbert, E.: A longitudinal study of follow predictors on
twitter. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. pp. 821–830. CHI ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2470654.2470771

2. Myers, S.A., Leskovec, J.: The bursty dynamics of the twit-
ter information network. pp. 913–924. ACM Press (2014),
http://dl.acm.org/citation.cfm?doid=2566486.2568043

3. Rainie, L.: The six types of twitter conversations (2014),
http://www.pewresearch.org/fact-tank/2014/02/20/the-six-types-of-twitter-
conversations/

4. Starbird, K., Palen, L.: Voluntweeters”: Self-organizing by digital volunteers in
times of crisis. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. pp. 1071–1080. CHI ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/1978942.1979102

5. Thompson, S.K.: Adaptive cluster sampling. Journal of the American Statistical
Association 85(412), 1050–1059 (1990), http://www.jstor.org/stable/2289601

6. Xu, B., Huang, Y., Kwak, H., Contractor, N.: Structures of broken ties: Exploring
unfollow behavior on twitter. In: Proceedings of the 2013 Conference on Computer
Supported Cooperative Work. pp. 871–876. CSCW ’13, ACM, New York, NY, USA
(2013), http://doi.acm.org/10.1145/2441776.2441875

7. Yang, L., Sun, T., Zhang, M., Mei, Q.: We know what @you #tag: Does the dual
role affect hashtag adoption? In: Proceedings of the 21st International Conference
on World Wide Web. pp. 261–270. WWW ’12, ACM, New York, NY, USA (2012),
http://doi.acm.org/10.1145/2187836.2187872

8 Appendix— Thread Locks and Events

The system has several resources that are shared between threads: the friends
list threads, followers list threads and user data thread all write to the database
collection containing user profile information. There is also an object for tracking
rate limit status that is shared by all data collection threads. Locks are required
to prevent threads from making changes simultaneously and potentially losing
or corrupting data.

MongoDB and it’s python API are threadsafe, and so long as the same record
is not processed simultaneously, we are ok. In order to prevent excessive wait
times as other threads process their data, a collection of locks was implemented,
keyed by Twitter user id’s. In this way, a thread must wait only when another
thread is processing the same user id. The lock collection creates a new Lock
object each time a new user id lock is requested, and so grows steadily. If we
were dealing with millions of user id’s, this could be a problem, however for this
system it was considered acceptable and no strategy was implemented to remove
old, long unused locks.

The system has two routines relating to rate limit status: one to poll the rate
limit status and update the internal record, the other to simply query the internal
record, but with an option to update it also. Due to the at times inconsistent

rate limit reports from Twitter, a number of heuristics are applied to detect and
abandon incorrect reports. To do this, the update method needs to make calls
to the query method. Since these methods call each other and potentially make
changes to the internal record, a re-entrant thread lock is used (a re-entrant
lock can be acquired by a thread multiple times). Note that query method calls
from within the polling method never request an update, so infinite recursion is
avoided.

Further communication between threads is implemented with events. An
event is an object shared between threads which can be set, cleared, read or
a thread can wait until the event is set (with an optional time limit). Events
were used for two purposes: to request threads to wind up their activities and
close down when the system is shutting down; and to inform data collection
threads when there is new data in their respective queues.

