<table>
<thead>
<tr>
<th>Title</th>
<th>Microscale flow structures measured downstream of a mechanical heart valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Bellofiore, Alessandro; Quinlan, Nathan J.</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2010-01-22</td>
</tr>
<tr>
<td>Publisher</td>
<td>Trinity College Dublin</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/687</td>
</tr>
</tbody>
</table>
MICROSCALE FLOW STRUCTURES MEASURED DOWNSTREAM OF A MECHANICAL HEART VALVE

Bellofiore, A., Quinlan, N.J.
National University of Ireland, Galway

INTRODUCTION

A major goal in design of prosthetic mechanical heart valves (MHV) and other implants is to reduce the risk of mechanically induced thrombosis and haemolysis [1,2]. Since blood damage is initiated at the cellular level, it is necessary to understand the structure of the flow field at very small scales. A large-scale model MHV has been developed to allow increased spatial and temporal resolution of in-vitro measurements with particle image velocimetry (PIV) [3]. This approach, along with appropriate data processing techniques, is used to determine the flow structures downstream of the valve at finer scales than was previously possible.

MATERIALS AND METHODS

The model is based on a St. Jude Medical bileaflet valve, scaled up by a factor of 5.8 to 140 mm diameter. The model valve is mounted in a transparent model of the aortic root, connected to a computer-controlled piston pump, programmed to reproduce realistic unsteady flow conditions.

Fluid dynamic similarity is assured by preserving the Reynolds number \(Re = UD/\nu \) and Womersley number \(\alpha = D/(2f\nu)^{1/2} \), where \(\nu \) is the kinematic viscosity of the fluid, \(U \) is the velocity, \(D \) is the diameter and \(f \) is the heartbeat frequency. In order to preserve these two parameters, with water as the working fluid, the time scale of the experiment is increased by a factor of 118. Space- and time-resolved velocity measurements were performed using PIV with a 1-megapixel CCD camera at a measurement rate of 15 Hz. The fluid is seeded with 10 \(\mu \)m particles and illuminated by 532 nm laser light sheet with a thickness of approximately 100 \(\mu \)m.

The velocity field was measured in unsteady flow at peak a Reynolds number of 6200, keeping the leaflets in the fully open position. 650 velocity maps were collected for each cycle over several regions downstream of the valve. The scaling approach results in spatial resolution of 50 \(\mu \)m and temporal resolution of 570 \(\mu \)s in equivalent physiological scale. This resolution is unprecedented; recent state-of-the-art PIV measurements are at resolution of 135 \(\mu \)m / 67000 \(\mu \)s [1], 1200 \(\mu \)m / 333 \(\mu \)s [2] and 120 \(\mu \)m / 570 \(\mu \)s [3].

RESULTS AND DISCUSSION

The investigation focuses on the identification of flow patterns featuring intense and/or prolonged viscous stress. Shear stress was evaluated along instantaneous streamlines and by Lagrangian tracking through the unsteady flow field. Fig. 1 shows an example of the viscous stress along a streamline in the wake of the leaflet tip at peak systole. All the quantities are reported in equivalent physiological scale. These measurements show that blood cells can experience exposure longer than 10 ms to shear stress above the threshold for platelet activation (5 Pa according to Kroll et al. [4]).

![Fig. 1: Instantaneous shear stress along a streamline at systole peak. The gray shape on the left indicates the leaflet tip.](image)

Eddy structures are identified using a wavelet analysis. Eddies start to develop across a range of scales (down to about 200 \(\mu \)m) shortly before peak systole. The data indicate that the most intense shear stresses are associated to the structures located in the wake of the leaflet at the velocity peak.

ACKNOWLEDGEMENTS

This research is supported by SFI under grant RFP-07-ENMF450.

REFERENCES