

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T10:07:03Z

Some rights reserved. For more information, please see the item record link above.

Title MultiBeeBrowse Accessible Browsing on Unstructured
Metadata

Author(s) Kruk, Sebastian Ryszard; Gzella, Adam; Czaja, Filip;
Bultrowicz, Wladyslaw; Kruk, Ewelina

Publication
Date 2007

Publication
Information

Sebastian Ryszard Kruk, Adam Gzella, Filip Czaja,
Wladyslaw Bultrowicz, Ewelina Kruk "MultiBeeBrowse
Accessible Browsing on Unstructured Metadata", Proceedings
of the 6th International Conference on Ontologies, DataBases,
and Applications of Semantics, 2007.

Publisher Springer

Link to
publisher's

version
http://dx.doi.org/10.1007/978-3-540-76848-7_70

Item record http://hdl.handle.net/10379/669

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

MultiBeeBrowse – Accessible Browsing on
Unstructured Metadata ?

Sebastian Ryszard Kruk1, Adam Gzella1, Filip Czaja1,2, W ladys law
Bultrowicz1,2, and Ewelina Kruk1

1 Digital Enterprise Research Institute, NUI Galway, Ireland
2 WETI, Gdansk University of Technology, Poland

<firstname.lastname>@deri.org

Abstract. Growing abundance of information on the Internet, espe-
cially the Next Generation Internet, poses even more challenges on more
efficient information management; hence it has brought attention of the
researchers to the faceted navigation. Existing solutions, however, do not
address the majority of users, who are still inexperienced in using the
faceted navigation solutions or who do not understand underlying con-
cepts of the Semantic Web technologies, or both. The query refinement
process, while using the faceted navigation interface, is more complex
than, e.g., refining a simple keyword-based query.

In this article we present MultiBeeBrowse (MBB), an accessible faceted
navigation solution that solves aforementioned problems in the browsing
environment. We present how to improve users’ access to their history of
refinements; we discuss how users can share their browsing experience.
And last bust not least, we present an adaptable user interface, which
aims to decrease information overload.

1 Introduction

Future Internet, as envisioned by both the academia and the industry, will be the
Web of metadata. This large, metadata rich information space, will be hardly
manageable with current techniques. Until machines will really understand what
we mean, we will have to refine our queries ourselves. The Semantic Web com-
munity investigates new solutions for the faceted navigation designed for the
unstructured metadata; in contrary to, e.g., Flamenco [18], new interfaces are
designed to facilitate browsing without prior knowledge of the structure of the
information space.

? This material is based upon works supported by Enterprise Ireland under Grant No.
ILP/05/203 and by Science Foundation Ireland Grant No. SFI/02/CE1/I131, and
partially by KBN, Poland under Grant No. 4T11C00525. The author would like to
acknowledge Daniel Schwabe, Peter Brusilovsky, Bill McDaniel, Henryk Krawczyk,
Stefan Decker, the DERI eLearning Cluster, the Corrib.org working group for fruitful
discussions, and the group of 20 patient volunteers who agreed to take help with the
evaluation.

1.1 Motivations

In the faceted navigation the information space is partitioned using orthogo-
nal conceptual dimensions of the data. These dimensions are called facets and
represent important characteristics of the information elements. Each facet has
multiple restriction values and the user selects a restriction value to constrain
relevant items in the information space. The faceted navigation interface allows
to quickly narrow down number of results by choosing more and more precise
values from various angles. The facet theory [13] can be directly mapped to
navigation in semi-structured RDF data.

The faceted navigation aims to allow users to harness the full potential of
the web rich in semantics. Many people, however, have still problems with using
keyword search. In 2004, OneStat.com3 announced that 77% of queries consists
of 3, or less, word phrases. In January 2007, RankStat.com4 reported that 80%
of queries consist of 4, or less, word phrases. It means that over last 3 years only
a few people started using more complex queries. A query consisting of two word
phrases is the most popular, which means that most users do not create complex
queries; they rather rely on their luck, reading through long lists of results, and
eventually on refining they queries.

Constructing more complex (5 and more words) keyword-based queries still
poses problems to an average user; therefore, we cannot expect that advanced
navigation, e.g., faceted browsing, as it is delivered at the moment, will gain
much attention in the near future.

There are also two other features which still make it easier to construct key-
word queries composed to faceted navigation: (1) refining a query by adding,
removing, or changing certain words is relatively easy, since we operate in one
dimension of vocabulary definitions; we need to remember not only values (key-
words) but also the names of the facets (properties). This can become a real
nuisance when we trying to refine a query many times, and when by going back
in the refining process we loose our previous refinements. (2) we can easily share
our keyword-based searching experience with others, by dictating the words, giv-
ing a hint on them, or simply copy-pasting the URL from a search engine. The
same operation using the faceted navigation is much harder to achieve; it takes
much longer, e.g., to dictate all operations a user is required to perform.

In this article we present an accessible browsing solution, a MultiBeeBrowse
component for collaborative faceted navigation, which answers aforementioned
motivation requirements. By accessible browsing we understand a user interac-
tion with the browsing services, where accessibility is achieved through: improv-
ing access to the history of refinements, adapting the presentation and browsing
style, lowering the information overload, and engaging users in the collaborative
browsing. The term unstructured metadata, used in this article, adheres to the
concept of information, which structure, or schema, has not been defined before,
or could not be identified while processing the information.
3 http://www.onestat.com/html/aboutus pressbox27.html
4 http://www.rankstat.com/html/en/seo-news1-most-people-use-2-word-phrases-in-

search-engines.html

1.2 Related projects

With the growth of the Semantic Web we need more powerful tools to search
and browse on the unstructured metadata. We have identified four types of the
navigation interfaces: (1) with a keyword search, e.g., Swoogle 5, (2) with an
explicit querying, e.g., Sesame6, (3) with a graph visualization, e.g., IsaViz 7,
and (4) with faceted navigation, e.g., Longwell8.

Oren et al [12] showed the advantages, such as speed of information re-
trieval and the intuitiveness, of the faceted navigation. They presented and eval-
uated, both formally and experimentally, many solutions in this area such as
BrowseRDF [12], Flamenco [18], mSpace [14], Ontogator [6], Spectacle9, and
Siderean Seamark10. BrowseRDF turned out to be the most complete and pow-
erful in the whole group. Nevertheless the authors omitted one of the best, in out
opinion, faceted navigation solutions: SIMILE’s Longwell. Another omitted, but
very interesting system, is /facet [5] browser which was created and presented
at the same time as BrowseRDF.

Longwell is a navigation solution, which builds upon flexibility of the RDF
data model and effectiveness of the faceted browsing user interface paradigm. It
allows to visualize and browse arbitrary RDF dataset; users can quickly build
easy to use web sites, based on their own data.

BrowseRDF is minimalistic in form; Longwell, have a strong arsenal of func-
tions, and at the same time stays user-friendly, looks good and is reasonably fast.
It is also quite similar to /facet solution. /facet has most of the Longwell fea-
tures and a special mechanism to deal with the large number of facets. However,
Longwell is more flexible, fully configurable, when displaying the results.

One of research areas, related to the topic presented in this article, focuses on
graphical representation of the queries on RDF graphs. Harth et al. [4] presented
an interesting solution, which could be used to augment existing services, such
as BrowseRDF, Longwell, /facet, or MultiBeeBrowse, with SVG-based graphical
representation of faceted browsing queries.

Since we lacked an explicit comparison between Longwell and BrowseRDF
we decided to evaluate these two solutions together with our own (see Sec. 7).
To keep the evaluation easy and clear for users taking part in it we decided not
to evaluate /facet as this solution is quite similar to Longwell.

1.3 Outline of the paper

In the next section we present an overview of browsing operations on inter-
connected metadata. In section 3 we present how browsing context information
can be delivered through a zoomable interface paradigm. Section 4 shows how
5 http://swoogle.umbc.edu/
6 http://www.openrdf.org/
7 http://www.w3.org/2001/11/IsaViz/
8 http://simile.mit.edu/wiki/Longwell
9 http://www.aduna-software.com/products/spectacle/

10 http://www.siderean.com/

search and browsing experience can be exchanged among the users. In section 5
we identify adaptive hypermedia, and other techniques, for improving accessibil-
ity of browsing and of presented results. Finally, in section 6 we identify services
oriented architecture of our solution, MultiBeeBrowse. Eventually, we report
results of our user-based evaluation in section 7.

2 Browsing on Interconnected Metadata

Information discovery is a key capability of modern, information society; grow-
ing abundance of information accessible through various media, including the
Internet, has always been both the blessing and the curse of the contemporary
humankind. When Google showed up, it simple swept away other search engines
with its PageRank algorithm. But the new era of the Internet, which grows
to become a network of social media and interconnected metadata (semantics),
brings new challenges in the field of the information retrieval.

This section presents an overview of different information discovery tech-
niques, especially in the context of semantic and social web.

2.1 From Searching to Filtering

People, at the moment, are getting the grip on the keyword-based search very
slowly (see Sec. 1.1); therefore, more complex navigation solutions are still be-
yond capabilities of the majority of the Internet users. When dealing with meta-
data information a more advanced search can come handy. In a digital library we
can specify that Kruk should be matched against names of the authors only, and
navigation should be found in titles of articles only. A similar feature is offered
by Google search; users can restrict their search to a given site only, using a site:
prefix of the URL of the site. Although more powerful, these advanced search
solutions are not very popular and users tend to stick to simple keyword-based
queries. Nielsen [11] even suggests to discourage novice users to using advanced
search features. Another way to extend search operation is by delivering a nat-
ural language query interface. Users can ask complex queries by using natural
language sentences [9].

A simple filtering user interface is a step towards better navigation using
advanced search capabilities; a user can select a value for each property (facet)
from a list of possible values for this property in the given context. This approach
seemed to gain more appreciation from the users [15]. It gave incentives to further
research in the area of faceted navigation; the Flamenco project [18] is one of
most famous results.

2.2 From Filtering to Browsing

The new Web is not just a network of resources and shallow metadata; it is
a network of highly interconnected metadata, often called semantics. The new
Internet is also a social medium, with contribution from all users. In the Semantic

Fig. 1. Example of part of an RDF graph with article and person concepts

Web, this interconnected information is represented as an RDF Graph [10]. This
imposes new challenges on the navigation techniques. It is required not only to
filter but also to browse from one set of results (of one type) to a new set of
results (of different type).

In our example (see Fig. 1) we have two types of resources: articles and people.
A typical scenario for browsing on this information set would be to find other
articles written by authors of, e.g., Search and Browsing Cycle for Knowledge
Discovery and Learning. In our case this could be realized by browsing from this
article, to a set of its authors, and browse back to the list of their publications.
If we analyze the example graph (see Fig. 1) we will notice that Proceedings of
Irish Digital Library Summit will not be returned in our browsing process, since
the resource is related to the person with hasEditor property. In this case, we
would need to be able to find similar resources matching values (in this case a
person), not properties (hasCreator).

This simple scenario illustrates 3 requirements for a browsing on intercon-
nected information:

1. ability to browse from one set of results to another set of results, of possibly
even different type, related through a given property;

2. ability to represent, in human readable form, inverse properties (see Def. 1)
to those in initial graph of information;

3. ability to find similar resources based on either properties or values related
to given set of results.

The first requirement is the basic features of each navigation solution de-
signed to operate on arbitrary information. It allows to find resources related to
these in current set. Hence, we can get a list of co-authoring people, based on
the initial set of some of their publications.

Definition 1 (Inverse property). In RDF Graph G = (V, E, L, l), for each
e ∈ E, v1,v2 ∈ V, label ∈ L, so that e: (v1, v2) and l(e) = label, an Inverse
Property is a defined as (einv: v2, v1)11, and l(einv) = inv(label), where inv: L
→ L’ is an arbitrary labeling function12

11 In most cases the inverse property is a logical concept, which is not explicitly provided
in the source RDF graph, but can be explicitly defined using, e.g., owl:inverseOf

12 Inverse labeling usually involves natural language processing

Usability of the aforementioned browsing feature relies on realizing the second
requirement - being able to traverse the graph backwards to the direction of given
property. Support for inverse properties (see Def. 1) relies on both modeling of
possible interactions with given set of information, and on delivering user-friendly
names for the inverse properties. In our example (see Fig. 1), a user who wants
to go from a set of articles to a set of authors, will look for has creator property;
while, a user who wants to go from a set of people to a set of article, authored
by these people, will look for is creator of property. In most cases delivering a
separate label for the inverse property (in our case is creator of) improves the
overall usability of the browsing solution (see Sec. 5). The navigation interface
should allow for a seamless representation of underlying graph representation of
data, without requiring users to understand the technicalities.

The third required browsing operation is finding similar resources based on
either given property or on given value. In the first case, it would mean to look
for other articles co-authored by the same people who wrote any of the articles
from the first set. In the latter case, this would mean to look for any resource
somehow13 related to given value. It would allow for finding publications either
authored or edited by given person, but would not restrict the final set of results
to the same type of resources as the initial one.

When dealing with resources that can have different properties, such as has
creator or has editor, users might also want to restrict the set of presented
results to all resource that have given property, or to those that do not have
given property at all.

Some of more complex queries requires couple of steps to build; when you
what to say that you are looking for articles that were presented at a conference
which took place in Ireland, and whose authors were members of DERI, you need
to compute queries: (based on conference location and affiliation of authors), and
join them together. We have identified 4 types of combination operations:

– intersection – each resource must exist in both input sets;
– sum – each resource must exist in either of input sets;
– difference – each resource must exist in the first set, but not in the second

one;
– binding – returns a set of results that span together resources from both

sets, with a chain of connections not longer than a given parameter.

Access to resource metadata In most cases, search and browsing services would
rather present the result itself; in the context of multipurpose navigation frame-
work, however, access to the resource metadata allows users to build queries on
this seed information. They can find similar resources (see Sec. 2.2), or continue
with filtering and browsing.

13 New results need to have at least one property with a value matching the given one

3 Zoomable Browsing Context

Creating a faceted browsing query requires a number of refinement steps (see
Lemma 1); each of these steps involves one of atomic operations (see Def. 2)
defined in previous section (see Sec. 2).

Definition 2 (Browsing Operation). A Browsing Operation bo ∈ BO, is the
simplest operation which can be invoked on the navigation engine; it takes output
of zero, one, or two other Browsing Operations as input14; BO ={Resource0,
Search1, Filter1, Browse1, Similar1, Combine2}, each Browsing Operation
represents one refinement step in the browsing query building process.

Lemma 1 (Decomposition of Browsing Query). Each search and browsing
query Q can be decomposed into a set of consecutive browsing operations, each
representing one refinement step in the query building process.

Mastering the right query can take some time, especially to novice users; sadly
current web browsers does not handle history of actions as a graph of consecutive
operations, but rather as a flat list of recently opened URLs. Therefore our exact
refinement process is lost. When we decided to use backwards button to go back
couple of refinements steps, and continue with refinements, our previous history
of refinements is only accessibly through a meaningless view of all previous URLs
visited with our browser. What if we would like to retrieve our browsing actions
from long time ago, and be able to replay these refinements, step by step?

Based on these two goals: handling many paths of back and forth refinements,
and access to a structured history of operations, we have identified 4 views of
browsing context, which allow user to access effortlessly each of aforementioned
features.

– Basic browsing view provides access to all browsing operations (except for
Combine) with a typical search and browsing user interface (see Fig. 3).
To further enhance usability of our solution, we have extended the query
building part with suggestions of properties and values, and results rendering
part with an in-situ browsing menu (see Sec. 5).

– Structured history view allows users to view their current results in the con-
text of previous and following (if any) operations. This view is almost the
same as the basic browsing view, with one difference that users see 6 slots
(see the HoneycombTMview) with previous operations, and another 6 slots
for further browsing. Some of the slots might be already occupied with def-
inition of previously performed refinements; other are free, and a browsing
pop-up allows to specify which slot to use to continue browsing (see Fig. 3).

– HoneycombTM view presents users a comprehensive overview of their current
browsing context. Each browsing query is represented with a hexagon lozenge
in a 3D visualization (see Fig. 3); some edges between hexagons represent

14 Numbers in subscript, next to the name of operation, indicate a number of other
browsing operations which can be prepended to given one

Fig. 2. Basic browsing view Fig. 3. Structured history view

Fig. 4. HoneycombTM view Fig. 5. Life-long history view

browsing operations that were added to the chain of operation to create a
new browsing query. With this view, users can get a quick overview on their
browsing session; they can quickly jump to a selected browsing query in the
current context. This view also allows to perform Combine operations, by se-
lecting one of vertexes with exactly two adjacent hexagons. In a similar way,
by selecting an edge with only one adjacent hexagon the user can perform
any browsing operation, which was allowed in previous views.

– Life-long history view presents all previous sessions in which the given query
was invoked (see Fig. 3). It allows a user to quickly move in time to some
browsing context, review refinements invoked after the given browsing query.
User can even jump back to that context and continue browsing.

These four views have been set up, so that users can zoom out from the view
of results, to a view of the browsing context, to a view of all browsing contexts
(life-long history).

4 Collaborative Browsing

In the standard keyword-based search queries are not complicated. They usually
consist of three or four words (see Sec. 1.1), so it is very easy to recall and
repeat searching process. Sharing such queries is also quite easy as it is enough
to dictate or send the set of keyword or a URL that invokes the search query.
With faceted navigation querying process is not always straight forward. It often
consist of keywords and some actions that depends on the previous ones and the

context. Thus, sharing queries and results of them is much harder with faceted
navigation approach.

Definition 3 (Collaborative browsing). In group of users U and browsing
queries sets Bm, for ux, uy ∈ U and set of browsing queries b1m , b2m , ..., bnm ∈
Bum

, where m ∈ (x, y). Collaborative browsing is a process in which ux browse
through the Buy

and uses bi ∈ Buy
Optionally ux refines query bi → bi

′
and

performs Bux
= Bux

∩ bi and/or Bux
= Bux

∩ bi

′

Collaborative browsing (see Def. 3) solution, presented in this paper closes
the aforementioned gap between classic keyword-based and faceted browse. All
the actions in the system, facets dependency and the context of the search are
saved in a special URL (see Sec. 6). By invoking such a URL users can retrace
all their browsing steps and get desired results. It is also possible to refine the
query if the result is insufficient or the search objective has changed.

Users can now share these specially constructed URLs to the faceted brows-
ing results just like they did with keyword-based search. They can send them
by e-mail, through instant messaging, or put it on the web site. But searching
for URL in e-mails, browsing instant messaging history, looking for web page is
not very convenient and creates lots of problems; user would rather perform new
browsing than use the existing one, no matter how good it was. The navigation
component can be extended with an online bookmarking solution, such as SSCF
(Social Semantic Collaborative Filtering) [7]. SSCF allows users to create the
knowledge repository by bookmarking and categorising interesting and valuable
resources. Users can utilise the knowledge and expertise of others by browsing
and importing resource gathered by their friends. Resources in SSCF are se-
mantically annotated with community established categorization. Users are also
able to set fine-grained access rights to each category. SSCF has been extended
to deal with URLs representing browsing queries. They became standard SSCF
resources, so users can now share browsing experience with ease and without
any hassle.

To make the collaborative browsing truly happen, while browsing resources
users have quick access to their SSCF bookmarks. They can specify a name
and a description and select where in the hierarchy the current browse query be
added. It becomes an SSCF bookmark and can be shared by the community.
The browsing query has the same features as a standard SSCF resource; it can
be copied, cloned, imported by a friend or put in a directory with restricted
access rights.

Users can share their browsing queries, and by bookmarking refinements of
these queries, they actually perform collaborative browsing. With collaborative
browsing people can share their knowledge and their expertise with the social
network. Users can also help each other and learn how (by exchanging query
bookmarks) to get the satisfying results from the search process.

5 Adaptable Browsing Interface

In this section we will present how adaptive hypermedia, and other personaliza-
tion techniques, can improve the accessibility measures, such as the speed and
the ease of use, of navigation process. An accessible navigation interface con-
tains elements that are automatically adapted by the system according to user’s
profile, or that can be dynamically changed by users through their actions.

5.1 Results presentation

As a result of executing the given query, accessible browsing interface returns
a set of resources together with all available metadata and RDF relations. A
predefined rendering style can be applied based on the value of rdf:type prop-
erty. Each type has some main properties; these properties group predicates
describing the same concepts within different ontologies. We have also identified
descriptive properties of the most popular resource types, e.g., an abstract for
an article. We use the adaptive hypermedia strechtext technique [1] to present
on demand additional, collapsed by default, information, including descriptive
properties. A generic result is rendered with only a label, with all other prop-
erties collapsed. The label for a generic result, as for all properties and other
resources, is generated based on values of rdfs:label, dc:title, or foaf:name
properties. Also the URIs of namespaces are abbreviated to short names. This
feature adds an aspect of adaptability to the result presentation interface.

5.2 Using results for refining queries

Most of the values displayed in the results page, e.g., property names and values
or the resource URIs, can be used for refining user’s query. Instead of typing
some literals or URIs in search box users can click on the given value and use it
for building their query using in-situ browsing pop-up; they can start new search
or simply load the chosen URI. The action choice box that appears after clicking
a value offers the same functionality as the main search box. It limits, however,
possible options to only these actions, where the clicked value can be used. It
means that users can not load a resource using a literal value or they can not
choose a value that is not a predicate for further browsing. System recognizes
what element was chosen (property, value, or resource) and adapts the action
box by changing the set of possible actions for a given element. This technique
is one of the ways of limiting information overload in the browsing solution.

5.3 Adaptive concepts suggestion

Whenever users choose an action type and wants to specify some values for this
action, such as keywords or predicate name, the list of possible values appears,
and they can use one of the suggested entries. A given number indicates the
amount of results returned when using this value is presented next to each entry.

The list of the results can be presented as a regular list of entries or as a tag-
cloud, depending on user preferences.

One of the adaptive aspects of our browsing user interface is suggesting to
the user the values while building queries. When browsing through the results or
building new queries system suggests the values that user is most likely to use.

The algorithm for suggesting the entries is based on the statistics concerning
most popular users choices, most relevant predicates in given context, and the
history of browsing saved for a given user. User is not limited to the suggested
predicate values; they are only a hint to make the queries building easier. The
suggestions appear on the top of the list of possible entries, in different color
than the rest of entries. Up to three most likely to be used values are presented.

5.4 Accessible predicates names

The faceted browsing user interface is meant to be used by generic users that
do not necessary have to be familiar with concepts of RDF. In order to make
building of search or browse queries easier we decided to create a kind of “ac-
cessible predicates names”. At the moment translations of full predicate names
and names for inverse properties (see Def. 1) are based on hand crafted list of
about 150 items.

Since it is not a very big effort to make such translation for a specific domain,
e.g. eLibrary, this could be a good solution even for a final product. Nevertheless
we decided to create an algorithm, based on some common predicates naming
templates. It transforms the original name to a form that is much closer to
natural language. The algorithm defines rules for constructing names of invert
properties based on the original name of the predicate.

Transformed predicates are easy to understand and to use even by people
without computer background. Transformation process also hides the namespace
of each predicate so the users are not confused about its role and meaning.

The verification process of the algorithm, however, is still not finished. Eval-
uation of the algorithm itself is out of the scope of this paper.

6 Reference Implementation of Accessible Browsing

Based on motivation scenario (see Sec. 1.1), in previous sections we have iden-
tified the most important aspects of faceted browsing: a set of basic operations
(see Sec. 2), access to context and history of browsing (see Sec. 3), collaborative
browsing (see Sec. 4), and adaptability of browsing interface (see Sec. 5).

These component solutions influenced building the MultiBeeBrowse system
according to SOA (Service Oriented Architecture) paradigm [3], coupled with
AJAX-based user interface. MultiBeeBrowse allows to browse unstructured meta-
data represented as an RDF graph.

In this section we will present the REST-based services in MultiBeeBrowse
SOA, and briefly recap user interface component. We will discuss rationale and
main design properties behind this solution.

Why REST solution? As research [17] shows, SOAP is inadequate for implement-
ing web services for Semantic Web applications. An argument for REST [16], in
the context of the MultiBeeBrowse service, is that GET action defines an idem-
potent request, i.e., subsequent calls of the same URL should return the same
results. This can ensure that user will get the same results, each time given URL
is called. In MBB it is vital for collaborative browsing paradigm (see Sec. 4),
and handling history of results (see Sec. 3).

Our goal was also to construct a meaningful URL representing single browse
operations, as well as, whole chain of operations building up a browsing query.
This would allow advanced users to quickly construct their queries, directly in
the web browser address field.

Overview of MBB services We have identified following types of services that
should be delivered by our SOA:

– browsing services: access to a resource, search, filter, browse, similar, com-
bine;

– context and history management services;
– meta-services, which provides access to statistical information, and allows to

format response in desired metadata language format;

Each service is specified using BNF notation15; it is enough, since most of the
services except for the context services provide only GET method implementa-
tion. Each BNF specification has been translated into a regular expression. All
services has been grouped in a hierarchical structure. When an HTTP request
the URL is processed of the request is decomposed (see Fig. 6) into a chain of
atomic service calls, by traversing the tree of hierarchy of services. This approach
allows to validate the service call before it is actually executed. Plus, it adheres
to web approach to deliver as much as it is possible, against existing problems.
In the latter case, if one of atomic browse operations is misspelled the service is
executed until the last correct one.

Browsing services specified in section 2, deliver the primary functionality of the
MultiBeeBrowse component.

– Access resource service allows to load metadata about a resource with given
URL for further browsing; this service can only be called as the first one in
the chain of browsing operations.

– Search services, with three implementations: keywords and advanced search,
natural language query templates [9], and direct RDF query service. The two
first ones were already described in section 2.1; the third one allows to specify
query in one of RDF query languages.

– Filter service allows to specify selection filter using either predefined names
of properties or using full URIs for both properties and values.

– Similar service allows to find resource similar to those in given set,

15 http://wiki.s3b.corrib.org/MBB/SOA

Fig. 6. Example of decomposing browsing query into browsing and meta-service

– Related service allows to find resource that are related to the given ones
with given property, e.g., (list of publications) → has creator → (list of
co-authors).

– Combination service performs four operations: conjunction, sum, difference,
binding, on two given sets of results; it has to be called as the first one in
the chain, and takes as a parameters IDs (see Meta-services) of two other
browsing operations.

Context and history management services The information on the context of
browsing is kept in the RDF storage according to a simple ontology. This on-
tology defines a Browsing Context as a set of current browsing queries (Browse
Action). Each browsing query invokes a Call to a MBB service. The distinc-
tion between browsing queries and calls to MBB is important to keep track of
user actions, through Browse Action, and still have single Calls independent of
the user; this can be used for, e.g., caching purposes later. With context ser-
vices, users can traverse current browsing contexts, or retrieve all their browsing
contexts with the given call.

Meta-services Meta-services allow to render results in one of RDF serializations
(GetRawMetadata), or in one of feed (RSS, Atom) formats (GetFeedMetadata).
For adaptable user interface purposes a special meta-service (GetStatsMetadata)
generates statistics on properties and values a user can select from. Similar meta-
service generates a list of most frequently used concepts (GetFreqConcepts).
Another meta-service, GetChainMetadata renders the definition of current chain
of browsing operations in HTML or XML. Finally, the GetId service generates
a unique ID for given browsing query.

7 Evaluation

Since the faceted navigation itself is pretty well evaluated concept [12] we de-
cided to compare our prototype with other somehow similar solutions such as
BrowseRDF16 and Longwell. Second part of our evaluation is dedicated to gain
some opinions about each particular solution delivered by MultiBeeBrowse; these
solutions did not exist in either of compared systems (BrowseRDF, Longwell).

Initial questions Our survey involved 20 people. Distributions of age and edu-
cation level are shown on the Fig. 7 and Fig. 8. No one way familiar with either
the dataset used in the evaluation or with MultiBeeBrowse.
16 http://browserdf.org

Fig. 7. Distribution of age Fig. 8. Distribution of education

First of we asked couple of questions about subjects’ background and knowl-
edge of the area of our research. Slightly more than a half of (60%) have computer
science background but only 10 of them knew what RDF is. 15 (75%) of subjects
were not familiar with the term “faceted navigation”, and more than 85% use
Google to search information on the Web.

We asked two open, general questions. First was to name some typical tasks
they perform during searching. Many (75%) subjects pointed that they simply
try to assort good keywords. Then they look on couple first results (30%) or
browse the results further (25%). Opening of the results in new browser tabs
is also quite popular (20%). Among answers mentioned above we identified:
bookmarking, filtering and finding the queries and access to multilevel history
of browsing. Second task was to name features subjects miss searching systems
they use. Apparently only 20% is fully satisfied - 4 people answered “nothing”.
In general subjects complained about too many irrelevant results (low precision),
lack of quick previews of the results, no possibility of querying in natural lan-
guage, lack of good history and way to save the results, and last but not least,
about problems with too complicated usage and lack of easy help.

We have asked additional pre-assessment questions. And they were (number
of positive answers in brackets):

– Have you ever wished you could share your browsing experience with your
friends? (45%)

– Have you ever wished you could have someone else help you with browsing?
(80%)

– Have you ever wished you could recall you previous search/browse/refinements
history? (85%)

Comparison. We gave a short tutorial showing features of every search system as
best as it is possible. All of them were working on the same dataset, taken from
http://notitio.us service, filled with FOAF [2] profiles of the users, information
about publications from JeromeDL [8] (http://library.deri.ie) and an informal
knowledge gathered by IKHarvester17. Subjects were allowed to ask questions
and try to play with each system before the evaluation.
17 http://notitio.us/ikh/

friendly average hard to use

MBB 8 7 3
BrowseRDF 2 6 12
Longwell 16 4 0

Fig. 9. Comparison of user friendliness

Type of query Interesting Useful Clear

get by uri 53.8% 66.9% 86.2%
combine 79.2% 63.3% 67.3%
browse 63.1% 57.7% 53.8%
similar 76.2% 64.2% 49.2%
filter 60.3% 48.2% 71.5%
search 55.4% 86.9% 91.5%

Fig. 10. Evaluation of accessibility of browse services

After the presentation, we asked everyone to give a subjective marks (1-10)
to each of the compared systems, based on how it looks, how it interacts with
the user, features and results it provides.

Longwell took first place with average mark 6.875, second (by a proverbial
hair’s breadth) was our MBB with average 6.8, and left BrowseRDF far be-
hind (avg. 3.8). Since Longwell is a very mature product we found these results
satisfying.

We also asked about user friendliness (see Fig. 9), and MultiBeeBrowse came
close to Longwell again, leaving BrowseRDF behind.

MBB features In this paragraph we want to show how users value experience
our system. Figures 10 and 11 present marks which were given by the users to
particular solutions and to parts of our prototype (all marks are in percents).

We also asked some open questions, and the results are very good for us.
18 subjects (90%), like the idea of using results for refining queries. The same
number like the idea of saving queries as bookmarks. 15 subjects (75%) can
imagine using their friends bookmarked queries for their own searches and vice
versa. In particular: while searching for resources (11/55%), helping friends with
constructing queries (5/25%) or simply sharing knowledge (12/60%).

As far as user friendliness goes 19 people (95%!) said that the type of the
search result was to easy identify, and 17 (85%) of them thought that the default

Intuitiveness Clearness Attractiveness

72% 74% 59.5%
40% 37.75% 75%
65% 61.5% 72%
84% 81% 74%

Fig. 11. Evaluation of MBB context zooming views

information describing each resource was sufficient. 14 subjects (70%) claimed
that the history of searching was easy to identify and 13 (65%) were able to
locate themselves while browsing the history. 18 people (90%) found it easy to
switch between system components/views.

Task Confusion Operations Time

1 17% 1.2 (1) 24s (10s)
2 52% 2.9 (2) 66s (30s)
3 63% 3.3 (2) 106s (30s)
4 28% 2.6 (2) 51s (20s)

Fig. 12. Evaluation of MBB while performing predefined tasks (confusion, number of
operations, time of executing each task)

To finish our survey we gave four tasks/questions to each subject. Solutions
to similar tasks with use of all three tools were presented during our short tu-
torial. The tasks were to find: (1) all friends of Sebastian; (2) all co-authors of
Decker; (3) who were composers contemporary to Mozart? (4) all articles about
semantic web but not about web services. Subjects were asked about their “level
of confusion” while the time and the number of the operations needed were mea-
sured. Figure 12 shows the average results (the “ideal” results in brackets). By
“ideal” we mean the best result achieved during our pre-survey trials. An aver-
age number of operations was pretty close to ideal so the system is not really
hard to learn and use and the time was approximately twice longer probably
due to lack of user experience.

Comparison between MultiBeeBrowse and other navigation solutions We have
also compared features provided by MBB, Longwell, BrowseRDF, and other
faceted navigation solutions. From the plethora of services provided by MBB
(see Tab. 1), only selection services were fully supported by BrowseRDF, and
similarity by Longwell.

8 Conclusions and Future Work

In this article we have presented a concept of an adaptable collaborative brows-
ing interface. We have analyzed operations expected from a browsing solution
on interconnected metadata (semantic). We have exemplified how context in-
formation can support a history of browsing actions; than we have presented
the idea of collaborative browsing. Finally, we have described adaptive solutions
for the user interface, and presented the REST-based SOA, implemented in our
prototype called MultiBeeBrowse. We have also analyzed evaluation results.

MultiBeeBrowse component has been successfully implemented in notitio.us;
it is a service for collaborative knowledge aggregation and sharing; it employs
IKHarvester for retrieving RDF information about web resources bookmarked
by the users. In contrary to other bookmarking services, such as del.icio.us,
notitio.us keeps rich, semantically interconnected metadata shared by the users
using Social Semantic Collaborative Filtering [7]. MultiBeeBrowse has also been
integrated into JeromeDL 2.1, where together with solutions like Exhibit and
TagsTreeMaps it enhances user browsing experience.

Table 1. Comparison of browse operations supported by different solutions

Operator MMB BrowseRDF Longwell Flamenco,mSpace,Ontogator,Spectacle,Seamark
search + ± ± -
selection + + ± ±
property + ± - -
browse + - - -
combine + ± ± ±

During our work, and further evaluation of MultiBeeBrowse, we have iden-
tified a number of goal for future development of the project. These include
AJAX proxy service, for aggregating large number of service calls from the user
interface.

References

1. P. Brusilovsky. Methods and techniques of adaptive hypermedia. User Modeling
and User Adapted Interaction, 6(2-3):87–129, 1996.

2. L. Dodds. An Introduction to FOAF. http://www.xml.com/pub/a/2004/02/04/
foaf.html, February 2004.

3. T. Erl. Service-Oriented Architecture: A Field Guide to Integrating XML and Web
Services. Prentice Hall Professional Technical Reference, 2004.

4. A. Harth, S. R. Kruk, and S. Decker. Graphical representation of rdf queries. In
L. Carr, D. D. Roure, A. Iyengar, C. A. Goble, and M. Dahlin, editors, Proceedings
of the 15th international conference on World Wide Web, WWW 2006, pages 859–
860. ACM, 2006.

5. M. Hildebrand, J. van Ossenbruggen, and L. Hardman. /facet: A browser for het-
erogeneous semantic web repositories. In International Semantic Web Conference,
pages 272–285, 2006.

6. E. Hyvonen, S. Saarela, and K. Viljanen. Ontogator: Combining view- and
ontology-based search with semantic browsing. In In Proc. of XML, 2003.

7. S. R. Kruk and S. Decker. Social Semantic Collaborative Filtering with FOAF-
Realm. In Semantic Desktop Workshop, ISWC 2005, 2005.

8. S. R. Kruk, S. Decker, and L. Zieborak. JeromeDL - Adding Semantic Web Tech-
nologies to Digital Libraries. In Proceedings of DEXA’2005 Conference, 2005.

9. S. R. Kruk, K. Samp, C. O’Nuallain, B. Davis, B. McDaniel, and S. Grzonkowski.
Search interface based on natural language query templates. In Proceedings of
IADIS International Conference WWW/Internet 2006, 2006.

10. F. Manola and E. Miller. RDF primer. W3C Recommendation, 2003.
11. J. Nielsen. Designing Web Usability: The Practice of Simplicity. Number ISBN

156205810X. New Readers Publishing, 2001.
12. E. Oren, R. Delbru, and S. Decker. Extending faceted navigation for RDF data.

In Proceedings of ISWC’2006, 2006.
13. S. R. Ranganathan. Hidden roots of classification. Information Storage and Re-

trieval, 3(4):399–410, 1967.
14. M. Schraefel, M. Wilson, A. Russell, and D. A. Smith. mspace: Improving infor-

mation access to multimedia domains with multimodal exploratory search. Com-
munications of the ACM, 49(4), 2006.

15. V. Sinha and D. R. Karger. Magnet: supporting navigation in semistructured
data environments. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages 97–106, New York, NY,
USA, 2005. ACM Press.

16. S. Vinoski. Putting the ”web” into web services. web services interaction models.
IEEE Internet Computing, 6(4):90–92, 2002.

17. M. Wozniak. Service oriented architecture for collaboration and negotiation ontol-
ogy management portal. Master’s thesis, Gdansk Univeristy of Technology, Poland,
2006.

18. P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image search
and browsing. In Proceedings of ACM CHI 2003, 2003.

