

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-12T05:21:22Z

Some rights reserved. For more information, please see the item record link above.

Title SAOR: Authoritative Reasoning for the Web

Author(s) Hogan, Aidan; Harth, Andreas; Polleres, Axel

Publication
Date 2008

Publication
Information

Aidan Hogan, Andreas Harth, Axel Polleres "SAOR:
Authoritative Reasoning for the Web", Proceedings of the 3rd
Asian Semantic Web Conference, 2008.

Publisher Springer

Link to
publisher's

version
http://dx.doi.org/10.1007/978-3-540-89704-0

Item record http://hdl.handle.net/10379/664

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

SAOR: Authoritative Reasoning for the Web?

Aidan Hogan and Andreas Harth and Axel Polleres

Digital Enterprise Research Institute, National University of Ireland, Galway

Abstract. In this paper we discuss the challenges of performing reason-
ing on large scale RDF datasets from the Web. We discuss issues and
practical solutions relating to reasoning over web data using a rule-based
approach to forward-chaining; in particular, we identify the problem of
ontology hijacking: new ontologies published on the Web re-defining the
semantics of existing concepts resident in other ontologies. Our solution
introduces consideration of authoritative sources. Our system is designed
to scale, comprising of file-scans and selected lightweight on-disk indices.
We evaluate our methods on a dataset in the order of a hundred million
statements collected from real-world Web sources.

1 Introduction

Data attainable through the Web is unique in terms of scale and diversity. Mil-
lions of data sources contribute billions of statements to a giant data graph. The
Semantic Web technology stack includes means to supplement instance data
being published using the Resource Description Framework (RDF) with ontolo-
gies described in RDF Schema (RDFS) [1] and the Web Ontology Language
(OWL) [16], allowing people to formally specify a domain of discourse, and pro-
viding machines a more sapient understanding of the data. While there exists a
large body of work in the area of reasoning algorithms and systems that work
and scale well in confined environments, the distributed and loosely coordinated
creation of a world-wide knowledge base creates new challenges.

Reasoning over aggregated Web data is useful, for example: to infer new as-
sertions using terminological knowledge from ontologies and therefore provide a
more complete dataset; to unite fractured knowledge about individuals collected
from disparate sources; and to execute mappings between domain descriptions
and therefore provide translations from one conceptual model to another. Our
work on reasoning is motivated by the requirements of the Semantic Web Search
Engine (SWSE) project1, within which we strive to offer search, querying and
browsing over the Semantic Web.

Reasoning on Web data poses a number of requirements:

– the system has to perform on web-scale, with implications on the complete-
ness of the reasoning procedure, algorithms and optimisations

? This work has been supported by Science Foundation Ireland (SFI/02/CE1/I131),
European FP6 project inContext (IST-034718) and COST Action “Agreement Tech-
nologies” (IC0801).

1 http://swse.deri.org/

– the method has to perform on collaboratively created knowledge bases, which
has implications on trust and the privileges of data publishers

– the web search scenario requires sub-second response times, which has im-
plications on the reasoning and query processing strategy

We present SAOR – Scalable Authoritative OWL Reasoner – which focuses
on performing best-effort RDFS and OWL reasoning on Web data. SAOR is
designed to accept as input a web knowledge-base in the form of a body of
statements as produced by a web-crawl and to output by forward-chaining a
knowledge-base enhanced by a given fragment of OWL reasoning. Discussion of
the end consumption of such a reasoned knowledge-base is outside of the scope
of this paper.

Specifically, we make the following contributions in this paper:

– We apply only a selected subset of OWL reasoning, to i) avoid an explosion
of inferred statements and ii) to protect existing specifications from undesir-
able contributions made in independent locations. Our system implements a
positive fragment of OWL Full which has roots in ter Horst’s pD* [17] en-
tailment. We describe an analysis of the authority of sources to counter-act
the highlighted problem of ontology hijacking in web data (Section 2).

– We describe a scalable, optimised method for performing rule-based forward
chaining reasoning through means of file-scan and lightweight dynamic data
structures. In particular, our algorithm capitalises on the low volume of
structural T-Box data relative to A-Box instance data (Section 3).

– We show experimentally that a forward-chaining materialisation approach
is feasible on Web data from 315k sources and in the order of 100m triples:
with our confined reasoning strategy we found that the knowledge base only
roughly doubles in size (Section 4) by cautious materialisation.

We discuss related work in Section 5 and conclude with Section 6.

2 Pragmatic Inferencing for the Web

We begin by stating a couple of observations regarding the feasibility of rea-
soning on the Web. Firstly, most OWL data crawlable on the Web is OWL
Full. Idealised assumptions made in OWL DL, such as disallowing subclassing
or defining subproperties of the OWL and RDF(S) vocabularies, are violated by
even very commonly used ontologies2. Secondly, consistency cannot be expected
on the Web. For instance, a past web-crawl of ours revealed the following:3

<timbl> a foaf:Person; foaf:homepage <http://w3.org/> .

<w3c> a foaf:Organization; foaf:homepage <http://w3.org/> .

foaf:homepage a :InverseFunctionalProperty.

foaf:Organization :disjointWith foaf:Person .

2 E.g., one of the reasons why the commonly used FOAF vocabulary falls into OWL
Full is that foaf:name is defined as a subproperty of rdfs:label [19].

3 Throughout this paper, we assume that http://www.w3.org/2002/07/owl# is the
default namespace and use well understood prefixes for other namespaces.

These triples together infer that Tim Berners-Lee is the same as the W3C and
cause an inconsistency. However, despite such examples which arise from mis-
understanding of the FOAF vocabulary, there might be cases where different
parties deliberately make contradictive statements.

These two points already suggest that complete inference at the instance
level is neither feasible nor desirable: firstly, for the computational infeasibility of
complete OWL Full reasoning, and secondly, since we do not deem the explosive
nature of contradiction in classical logics desirable in a Web reasoning scenario.

Thus, rather than striving for complete inference, we adopt a “best effort”
reasoning strategy, optimising inference based on the following principles:

1. We assume a separation of T-Box from A-Box.
2. We trade completeness for implementational feasibility following a rule-

based, finite, forward-chaining approach to OWL inference.
3. We trade completeness for producing a much smaller subset of inferred state-

ments; i.e, we deliberately ignore (i) the explosive behaviour of classical in-
consistency, (ii) arguably “void” statements in terms of non-standard use
of the RDF(S) and OWL vocabularies, (iii) non-authoritative T-Box state-
ments.

2.1 Separating A-Box from T-Box

In SAOR, we separate terminological knowledge from assertional data according
to their use of the RDF(S) and OWL vocabulary; we call these the “A-Box” and
the “T-Box” respectively (loosely borrowing Description Logics terminology).

Table 1 provides a list of graph patterns in RDF graphs we consider to be
part of the T-Box. Note that when retrieving graphs from the Web, the instances
of these patterns are all of the T-Box statements we consider in our reasoning
process: triples that do not match one of these patterns are not considered being
part of the T-Box, but are treated purely as assertional “data” triples.

The materialisation of axiomatic statements and completing the entire T-
Box may create a bulk of statements with little practical utility. In fact, we
deliberately accept the omission of T-Box inference rather as an optimisation:
we focus on answering queries over A-Box data rather than, e.g., inferring all
members of :Class.

SAOR does not support metamodelling, except by conceptually separating
the instance- class- or property-meanings of a resource: by separating the T-
Box and A-Box segment of the knowledge base, we do not support all possible
entailments from the simultaneous description of both a class and an instance.
Particularly, we treat URIs in the context they appear, in the spirit of “pun-
ning”4. We do subject the T-Box data to reasoning analogously to the A-Box,
but only store results in the A-Box. For example, we do not carry over :sameAs
inferences to the T-Box – this is in-line with first-order-logic point of view, where
equalities do not affect predicates.

We filter out further triples when extracting the T-Box; namely, we ignore
nonstandard use of RDF in our reasoning efforts. Non-standard use of RDF

4 http://www.w3.org/2007/OWL/wiki/Punning

No DL Syntax Corresponding RDF graph pattern

01 C v D ?C rdfs:subClassOf ?D .
02a C ≡ D ?C :equivalentClass ?D .
02b ?C :equivalentClass ?D .
03 P v Q ?P rdfs:subPropertyOf ?Q .
04a P ≡ Q ?P :equivalentProperty ?Q .
04b ?P :equivalentProperty ?Q .
05a P ≡ Q− ?P :inverseOf ?Q .
05b ?P :inverseOf ?Q .
06 > v ∀P−.C ?P rdfs:domain ?C .
07 > v ∀P.C ?P rdfs:range ?C .
08 P ≡ P− ?P a :SymmetricProperty .
09a ∃P.x ?C :hasValue ?x; :onProperty ?P .
09b ?C :hasValue ?x; :onProperty ?P .
10 C1 t ... t Cn ?C :unionOf (?C1 ... ?Ci ... ?Cn) .
11a C1 u ... u Cn ?C :intersectionOf (?C1 ... ?Cn) .
11b ?C :intersectionOf (?C1 ... ?Cn) .
12 > v ∀ ≤ 1P ?P a :FunctionalProperty .
13 > v ∀ ≤ 1P− ?P a :InverseFunctionalProperty .
14 P+ v P ?P a :TransitiveProperty .
15 ∃P.D ?C :someValuesFrom ?D; :onProperty ?P .
16 ∀P.D ?C :allValuesFrom ?D; :onProperty ?P .
17a (≤ 1P) ?C :maxCardinality 1; :onProperty ?P .
17b (= 1P) ?C :cardinality 1; :onProperty ?P .
18 {xi....xn} ?C :oneOf (?x1 ... ?xN) .

Table 1: Allowed T-Box constructs for each rule. Bold type indicates that the
element must be authoritatively spoken for. Where they appear, at least one of
the italic type elements must be authoritatively spoken for (see 2.3).

briefly equates to the use of properties and classes which make up the RDF(S)
vocabulary in locations where they have not been intended, cf. [2, 13]. We adapt
the definition of non-standard use for our purposes and only restrict the usage
of the vocabulary for the T-Box: let P = { rdf:type, rdf:domain, rdf:range,

rdfs:subClassOf, rdfs:subPropertyOf, :equivalentClass, :equivalentProperty,

:inverseOf, :onProperty, :hasValue, :someValuesFrom, :allValuesFrom, :in-

tersectionOf, :unionOf, :maxCardinality, :cardinality, :oneOf }, and C = {
:FunctionalProperty, :InverseFunctionalProperty, :TransitiveProperty, :Sym-

metricProperty }. We omit from the T-Box any triples with non-standard use of
the properties and classes in P ∪C, that is, triples where properties in P appear
in a position other than the predicate position or where classes in C appear in a
position other than the object of an rdf:type triple.

In summary, our view of a web knowledge base KB consists of the RDF merge
of a set of source graphs. KB is separated into a T-Box T mentioning classes
and properties CKB and PKB and an A-Box A consisting of class and property
membership assertions possibly using identifiers in CKB ∪ PKB.

2.2 Rule-based OWL Reasoning

Reasoning in SAOR is inspired by previous approaches, particularly the pD*
fragment defined by ter Horst [17], to cover large parts of OWL by positive
inference rules which can be implemented in a forward-chaining engine.

Table 2 lists all of the currently supported rules. Although certain triples
matched in the antecedents come from the T-Box and others come from the A-
Box, in contrast to ter Horst’s original rules, inferences are stored in the A-Box
only. Thus, on exhaustive application of the rules, the T-Box remains unchanged.

DL Syntax Rule

01 C v D ?C rdfs:subClassOf ?D . ?s a ?C . ⇒ ?s a ?D .
02a C ≡ D ?C :equivalentClass ?D . ?s a ?C .⇒ ?s a ?D .
02b ?C :equivalentClass ?D . ?s a ?D .⇒ ?s a ?C .
03 P v Q ?P rdfs:subPropertyOf ?Q . ?s ?P ?o . ⇒ ?s ?Q ?o .
04a P ≡ Q ?P :equivalentProperty ?Q . ?s ?P ?o . ⇒ ?s ?Q ?o .
04b ?P :equivalentProperty ?Q . ?s ?Q ?o . ⇒ ?s ?P ?o .

05a P ≡ Q− ?P :inverseOf ?Q . ?s ?P ?o . ⇒ ?o ?Q ?s .
05b ?P :inverseOf ?Q . ?s ?Q ?o . ⇒ ?o ?P ?s .
06 > v ∀P−.C ?P rdfs:domain ?C . ?s ?P ?o . ⇒ ?s a ?C .
07 > v ∀P.C ?P rdfs:range ?C . ?s ?P ?o . ⇒ ?o a ?C .

08 P ≡ P− ?P a :SymmetricProperty . ?s ?P ?o . ⇒ ?o ?P ?s .
09a ∃P.x ?C :hasValue ?x; :onProperty ?P . ?y ?P ?x . ⇒ ?y a ?C .
09b ?C :hasValue ?x; :onProperty ?P . ?y a ?C . ⇒ ?y ?P ?x .
10 C1 t ... t Cn ?C :unionOf (?C1 ... ?Ci ... ?Cn) . ?x a ?Ci

5 . ⇒ ?x a ?C .
11a C1 u ... u Cn ?C :intersectionOf (?C1 ... ?Cn) . ?y a ?C . ⇒ ?y a ?C1, ..., ?Cn .
11b ?C :intersectionOf (?C1 ... ?Cn) . ?y a ?C1, ..., ?Cn . ⇒ ?y a ?C .
12 > v ∀ ≤ 1P ?P a :FunctionalProperty . ?s ?P ?x , ?y . ⇒ ?x :sameAs ?y .
13 > v ∀ ≤ 1P− ?P a :InverseFunctionalProperty . ?x ?P ?o . ?y ?P ?o . ⇒ ?x :sameAs ?y .
14 P+ v P ?P a :TransitiveProperty . ?x ?P ?y . ?y ?P ?z . ⇒ ?x ?P ?z .
15 ∃P.D ?C :someValuesFrom ?D; :onProperty ?P . ?x ?P ?y . ?y a ?D . ⇒ ?x a ?C .
16 ∀P.D ?C :allValuesFrom ?D; :onProperty ?P . ?x ?P ?y; a ?C . ⇒ ?y a ?D .
17a (≤ 1P) ?C :maxCardinality 1; :onProperty ?P . ?x a ?C; ?P ?y, ?z . ⇒ ?y :sameAs ?z .
17b (= 1P) ?C :cardinality 1; :onProperty ?P . ?x a ?C; ?P ?y, ?z . ⇒ ?y :sameAs ?z .
18 {oi....on} ?C :oneOf (?o1 ... ?on) . ⇒ ?o1 ... ?on a ?C .
19a x = y ?x :sameAs ?y . ?x ?p ?o .⇒ ?y ?p ?o .
19b ?x :sameAs ?y . ?s ?p ?x .⇒ ?s ?p ?y .
19c ?x :sameAs ?y . ⇒ ?y :sameAs ?x .
19d ?x :sameAs ?y . ?y :sameAs ?z . ⇒ ?x :sameAs ?z .

Table 2: Supported rules with N3-style syntax used for triple patterns with T-
Box statements italicised and A-Box in plain font.

Next, we only support inferences in one direction for :someValuesFrom and
:allValuesFrom, as we do not apply any inference rules that involve invention of
new blank nodes. Like ter Horst, we do not support inequalities or disjointness;
i.e., SAOR operates monotonically without “explosive” reaction in inconsistency.
In addition to pD* we support functional cardinality constraints, as well as
limited support for enumerated classes (:oneOf).

Some of the rules in SAOR differ from their versions in pD*, e.g. (05a,b),
(19a,b). The alert reader may also miss rules to infer transitivity of rdfs:sub-

ClassOf, rdfs:subPropertyOf, :equivalentClass, :equivalentProperty as
well as symmetry of the equivalence and inverse-of properties. Whereas sym-
metry is covered by symmetric rules (02a,b), (04a,b), (05a,b), transitivity is han-
dled by SAOR via path traversals over internal data structures representing
the subclass and subproperty hierarchies, following the RDF ground entailment
algorithm outlined in [13].

Note that SAOR does not materialise any axiomatic triples [8]. Axiomatic
A-Box statements are not produced by SAOR so as to avoid a bulk of syntac-
tic statements (for example, rdf:type rdf:Resource statements and reflexive
:sameAs statements). Axiomatic T-Box statements are not considered as we
have a concretely defined T-Box which is extracted by means of a single scan
and does not support updates.

Finally, let us point out that there is good reason for excluding non-standard
usage of the ontology vocabulary: non-standard RDF could have unpredictable

5 ?Ci ∈ {?C1, ..., ?Cn}

results even under our simple rule-based entailment. One may consider a finite
combination of only four non-standard triples that, upon naive reasoning, would
explode all web resources R by inferring |R|3 triples, namely:

rdfs:subClassOf rdfs:subPropertyOf rdfs:Resource.

rdfs:subClassOf rdfs:subPropertyOf rdfs:subPropertyOf.

rdf:type rdfs:subPropertyOf rdfs:subClassOf.

rdfs:subClassOf rdf:type :SymmetricProperty.

The exhaustive application of standard RDFS inference rules plus standard in-
ference rule for property symmetry together with the typical inference for class
membership in rdfs:Resource for all collected resources in typical rulesets lead
to inference of any possible triple (r1 r2 r3) for arbitrary r1, r2, r3 ∈ R.

Having introduced our rule set, we are able to define our notion of closure.

Definition 1 (Closure). We denote by ClT (A) the closure of A, i.e., the union
of A with the set of statements inferred by exhaustive application of rules (01)-
(19) from Table 2 with respect to T-Box T .

2.3 Authoritative Reasoning against Ontology Hijacking

SAOR is designed to counter-act a behaviour we discovered from initial evalua-
tion which we term ontology hijacking. We counter such non-authoritative exten-
sions of ontologies by ignoring problematic statements during T-Box generation.
Before defining ontology hijacking, let us give some preliminary definitions:

Definition 2 (Authoritative Source).
A graph s ∈ KB speaks authoritatively about a concept c ∈ CKB ∪ PKB if c

appears in a triple of s and one of the following holds true:

1. c is not identified by a URI (i.e., identified by a blank node)
2. s is retrievable from a URI which coincides with (or redirects to) the names-

pace6 of the URI identifying c.

Firstly, all sources are authoritative for anonymous classes or properties de-
fined in that source. The second condition is designed to support best practices
as currently adopted by web ontology publishers7.

Let s ∈ KB = (T ,A) and KB′ = (T ′,A′) = KB \ {s} be the knowledge
base constructed from all graphs in KB except s. By Ontology Hijacking we now
mean that a source s speaks non-authoritatively about a concept c ∈ CKB ∪PKB

(i.e., where c appears in T ′), in such a way that ClT (A′) 6= ClT ′(A′).
Ontology hijacking is the re-definition or extension of a definition of a legacy

concept (class or property) in a non-authoritative source such that performing
reasoning on legacy A-Box data results in a change in inferencing. One particular

6 Here, slightly abusing XML terminology by “namespace” of a URI we mean the
prefix of the URI obtained from stripping off the final NCname

7 See Appendix A&B of http://www.w3.org/TR/swbp-vocab-pub/

method of ontology hijacking is defining new super-concepts of legacy concepts.
As a concrete example, if one were to publish today a property in an ontology
(in a non-authoritative location for FOAF), my:name, within which the following
was stated: foaf:name rdfs:subClassOf my:name ., that person would be hi-
jacking the foaf:name property and effecting the translation of all foaf:name
statements in the web knowledge base into my:name statements as well.

Ontology hijacking is problematic in that it vastly increases the amount of
statements that are materialised and can potentially harm inferencing on data
contributed by other parties. With respect to materialisation, the former issue
becomes prominent: instance data published using concepts from popular/core
ontologies get translated into a plethora of conceptual models described in ob-
scure ontologies; we quantify the problem in Section 4. However, taking precau-
tions against harmful ontology hijacking is growing more and more important as
the Semantic Web features more and more attention; motivation for spamming
and other malicious activity propagates amongst certain parties with ontology
hijacking being a prospective avenue. With this in mind, we assign sole respon-
sibility for the concepts and thus the semantics of their instances of the concepts
to those who maintain the authoritative specification.

Related to the idea of ontology highjacking is the idea of “non-conservative
extension” described in the Description Logics literature: cf. [11]. However, the
notion of a conservative extension was defined with a slightly different objective
in mind: according to the notion of deductively conservative extensions, an ontol-
ogy OB is only considered malicious towards OA if it causes additional inferences
with respect to the intersection of the signature of the original OA with the newly
inferred statements. Returning to the ex:myName example from above, the super-
classing of foaf:Name alone would still constitute a conservative extension. How-
ever, further stating that ex:myName a :InversefunctionalProperty. would
indeed violate the conservative extension property, since instances of ex:myName
might then cause equalities in other remote ontologies as side-effects, indepen-
dent from the newly defined signature. Summarising, we can state that every
non-conservative extension (with respect to our notion of deductive closure)
constitutes a case of ontology highjacking, but not vice versa.

In SAOR, we avoid the effects of ontology hijacking and non-conservative
extensions by disregarding possibly harmful nonauthoritative use of concepts
directly during T-Box construction. Table 1 shows how non-authoritative state-
ments are disregarded upon T-Box construction. The source containing the con-
cept description must be authoritative for the elements highlighted in boldface.
Where multiple elements are italicised, at least one such element must be au-
thoritatively spoken for. One can verify from Table 1 and Table 2 that, in the
antecedent of each rule, the T-Box axioms must be authoritative for at least one
of the class/property names appearing in the A-Box. Thereby, we protect A-
Box reasoning from the influence of non-authoritative T-Box axioms. For Rules
02, 04, 05, 09 & 11 if the given source of data is only authoritative for one
element, inferencing will only be executed in the direction “away” from that el-
ement. For example, for the statements foaf:Person :equivalentClass ex:New-

Class . ex:NewClass :equivalentClass foaf:Person . described in a source only

authoritative for the ex: namespace, inferencing will only translate ex:NewClass
instances into foaf:Person and not in the other direction.

When publishing OWL or RDFS descriptions on the Web, we recommend
that people avoid ontology-hijacking as defined in this section. We encourage
extension of existing concepts where possible so that instance data in the newly
published domain get translated into existing domains. Indeed, from brief anal-
ysis of some prominent specifications (specifically FOAF, DC, SIOC, SKOS), we
found that they were entirely compliant with our restrictive reasoning.

3 Reasoning Algorithm

In the following we firstly present observations on web data that influenced the
design of the algorithm, then give an overview of the algorithm, and next discuss
details of how we handle T-Box information, perform statement-wise reasoning,
and deal with ground equality.

3.1 Characteristics of Web Data

The design of our algorithm is motivated by observations on our Web dataset:

1. Reasoning accesses a large slice of data in the index: around 41% of state-
ments produced uniquely inferred statements.

2. Relative to A-Box data, the volume of T-Box data on the Web is small: only
around 2.5% of statements were classifiable as T-Box statements8.

3. The T-Box is the most frequently accessed segment of data for reasoning:
all but Rules 19a−d (:sameAs) require access to T-Box information.

Following from the first observation, we employ a file-scan approach which
is more efficient in this scenario than query processing lookups. Thus, we avoid
the overhead of indexing the data and running full query processing; also we
avoid probing the same statements repeatedly for different rules at the low cost
of scanning a given percentage of statements not useful for reasoning.

Following from the second and third observations, we optimise by placing
T-Box data in a separate data structure accessible by the reasoning engine. Cur-
rently, we hold the T-Box data in-memory, but the algorithm can be generalised
to provide for an on-disk structure or a distributed in-memory structure as needs
require.

3.2 Algorithm Overview

The algorithm involves three scans over the data as illustrated in Figure 1:

1. SCAN 1: separate T-Box information and build in-memory representation
2. PRE SCAN 2: execute rules with only T-Box patterns in the antecedent

(Rule 18)

8 Includes RDF collection fragments which may not be part of a class description

Separate

TBox

TBox

Source

Statements

Statement-

wise

Reasoning

Equality

Index

Join

Hashtables

Inferred

Statements

Consolidate

SCAN 1

SCAN 2

SCAN 3
SCAN 3

Final

Output

Fig. 1: High-level architecture

3. SCAN 2: perform reasoning in a statement-wise manner:

– Execute rules with only a single A-Box pattern in the antecedent (Rules
1-11a); join A-Box statement with in-memory T-Box; write inferred
statements immediately.

– Execute rules with two or more A-Box patterns in the antecedent (Rules
11b-17); join indices are maintained for such A-Box patterns. When a
statement matches one of the A-Box patterns for these rules and the
necessary T-Box join exists, the statement is written to the join index
and the join index is checked to see if all other A-Box patterns have been
previously satisfied; if they have, the rule is fired.

– Execute rules which involve equality reasoning (Rules 19a−d); lists of
equivalent individuals are maintained in a hashtable structure (equality
index). Newly identified equivalences are immediately reflected in the
join indices for Rules 11b-17 whereby new A-Box joins may form and fire
rules.

4. SCAN 3: consolidate source data along with inferred statements according
to the equality index and write to final output

3.3 Handling Structural Data

In the following, we describe how to separate the T-Box data and how to create
the data structures for representing the T-Box.

T-Box data from RDFS and OWL specifications can be acquired either from
conventional crawling techniques, or by accessing the locations indicated by the
dereferenced URIs of classes and properties in the instance data. We assume
for brevity that all T-Box data are already present in the input data. If T-Box
data are sourced via different means we can build an in-memory representation
directly, without requiring the first scan of the input data.

During the scan, all statements relating to the supported T-Box constructs
are identified and stored in an in-memory representation of classes and proper-
ties. The data structure holds the necessary information to infer new statements
given a class or role membership assertion from the A-Box. We employ separate
hashtables with URIs as keys and values containing a Java representation of the
classes or properties, as follows:

– Property objects contain the property URI and references to objects repre-
senting equivalent properties, super properties, inverse properties, domain
classes and range classes. Pointers are also kept to restrictions where the
property in question is the object of an :onProperty statement.

– Class objects contain the class URI and references to objects representing
equivalent classes, super classes and classes for which this class is a compo-
nent of a union or intersection. On top of these core elements, different types
of objects are created for different types of class description:
• union and intersection classes store references to their constituent class

objects
• enumerated classes store references to constituent individuals
• restriction classes store a reference to the property the restriction applies

to and also, as applicable to the type of restriction:
∗ the :cardinality or :maxCardinality value
∗ the class identified by :allValuesFrom or :someValuesFrom

∗ the value of a :hasValue restriction

Some class descriptions rely on the rdf:Collection construct, namely: unions,
intersections and enumerations. To construct in-memory representations of these
descriptions, the algorithm performs in-memory joining of rdf:Collection seg-
ments as the data are scanned according to rdf:first and rdf:rest properties.
Any collections not relevant to the T-Box segment of the knowledge base are dis-
carded at the end of loading the input data.

For each statement, the authority of the source for the given subject and
object are inspected. If the statement is allowed as enumerated in Table 1, the
statement is added to the T-Box.

3.4 Reasoning by Statement-wise Scan

Having loaded the structural data, the SAOR engine is now prepared for rea-
soning by statement-wise scan of the data.

We firstly analyse rules which do not require A-Box joins to compute. There
are two distinct types of statements which require different handling, namely
rdf:type statements and general non-rdf:type statements. The rdf:type state-
ments are subject to class-based entailment reasoning (Rules 1-2 & 9b-11a : rules
with a single rdf:type A-Box pattern), and require joins with class descriptions
in the T-Box. The non-rdf:type statements are subject to property-based en-
tailments (Rules 3-9a : rules with a single non-rdf:type A-Box pattern) and
thus require joins with T-Box property descriptions.

We assume disjointness between the statement categories: we know that the
defined semantics of rdf:type do not require any property-based entailment and
we further do not allow any external extension of the core rdf:type semantics
(non-standard use). Thus, we do not subject rdf:type statements to entailment
of Rules 3-9a.

The reasoning scan process can be described as recursive depth-first reasoning
whereby each unique statement produced is input immediately for reasoning.
Statements produced thus far for the original input statement are kept in a set

to provide uniqueness testing and avoid cycles; a uniquing function is maintained
on a resource level ensuring that statements are only produced once for a given
common subject group. Once all of the statements produced by a rule have
been themselves recursively analysed, the reasoner moves on to analysing the
proceeding rule.

Rules 11b-17 cannot be computed solely on a statement-wise basis. Instead,
for each rule, we assign an on-disk persistent data structure with an in-memory
MRU cache. Each index stores a representation of statements which may con-
tribute to satisfying the antecedent of its pertinent rule. During the scan, if a
statement satisfies the necessary T-Box join for a rule, it is written to the index
for that rule. When a statement is added which completes the pattern of an
antecedent for that rule, the rule is fired.

3.5 Equality Reasoning

In the following we discussed :sameAs entailment as encoded in Rules 19a−d of
Table 2. For Rules 19a,b, we employ an in-memory index for storing equivalence
of individuals. We store the identifiers for equivalent individuals in lists and also
store the lists which individuals are in using a hashtable. Thus, we can perform
a lookup for an individual in the hashtable to get a reference to a list of equiv-
alent individuals. The list structure maintains the transitivity and symmetric
properties of equivalence. Usually, :sameAs entailment on individuals results in
multiple individuals with the same data attached; however, we select a “pivot
element” to reduce the number of inferred statements. The pivot element of each
list is used to keep a consistent identifier for the set of equivalent individuals:
the first one encountered is chosen. For alternative choices of pivot identifiers on
web data see [9]. We use the pivot identifier to consolidate data by rewriting all
occurrences of equivalent identifiers to the pivot identifier (effectively merging
the equivalent set into one individual).

The in-memory equivalence index is filled from raw input :sameAs statements
and also from inferencing performed on Rules 12, 13 and 17. For the purposes of
the A-Box scan, we need not be immediately concerned about equality reasoning
for closure: no joins are present on the individual level. However, for the join in-
dex reasoning, equality reasoning is paramount for closure. The join indices are
immediately updated to reflect new equality knowledge; identifiers for equivalent
individuals are rewritten to their pivot identifiers are soon as equivalence is de-
termined. Rewriting of indices can lead to new inferences whereby the rewritten
identifiers align under the pivot identifier to form a new join, thus firing a rule.

Based on the equivalence knowledge attained during the second scan, the
inferred output and input data are finally scanned once more to ensure proper
consolidation. All statements are rewritten so that they only contain pivot iden-
tifiers, producing the final output.

4 Evaluation and Discussion

We now provide evaluation of the SAOR methodology, firstly with quantitative
analysis of the importance of authoritative reasoning, and secondly we provide

some performance measurements, discussion and some insights into the fecundity
of each rule wrt. reasoning over web data. Throughout, we use a 106M statement
web-crawl dataset from mid-April 2008, taken from 315k sources.

To show the effects of ontology hijacking we constructed two T-Boxes with
and without authoritative analysis. We then ran reasoning on single member-
ship assertions for the top five classes and properties found natively in our
dataset. Table 3 summarises the results. Taking foaf:Person as an example,
with an authoritative T-Box, six statements are output for every input rdf:type
foaf:Person statement. With the non-authoritative T-Box, 362 statements are
output for every such input statement. Considering that there are 2.4M such
statements in the input dataset, overall output for rdf:type foaf:Person input
statements alone approach 1 billion statements for non-authoritative reasoning.
With authoritative reasoning, we only produce 14M output statements: a 64.8x
savings on materialised statements.

Class URI A NA n n ∗ A n ∗ NA

http://purl.org/rss/1.0/item 0 356 2,550,664 0 908,036,384
http://xmlns.com/foaf/0.1/Person 6 389 2,410,331 14,461,986 937,618,759
http://xmlns.com/foaf/0.1/Document 1 355 1,497,132 1,497,132 531,481,860
http://xmlns.com/wordnet/1.6/Person 0 236 1,097,415 0 258,989,940
http://xmlns.com/foaf/0.1/chatEvent 0 0 1,097,265 0 0
TOTAL 7 1,336 8,652,807 15,959,118 2,636,126,943

Property URI A NA n n ∗ A n ∗ NA

http://purl.org/dc/elements/1.1/title 0 250 4,222,957 0 1,055,739,250
http://xmlns.com/foaf/0.1/name 5 664 3,753,791 18,768,955 2,492,517,224
http://purl.org/dc/elements/1.1/date 0 625 3,677,251 0 2,298,281,875
http://xmlns.com/foaf/0.1/nick 0 637 3,100,733 0 1,975,166,921
http://purl.org/dc/elements/1.1/description 0 631 30,138,087 0 19,017,132,897
TOTAL 5 2,807 44,892,819 18,768,955 26,838,838,167

Table 3: Comparison of authoritative and non-authoritative reasoning for the
number of inferred statements produced w.r.t. the five most frequently occurring
classes and properties in the input data.

We measured the performance of applying only the rules which do not require
A-Box joins (1-11a) and for applying all rules. The results of the evaluation on a
2.2 GhZ AMD Opteron machine with 3G of Java heap-space is shown in Figure
2. Please note that the trend with respect to statements read/input statements
processed is very similar to that presented for written statements/statements
output. Also, please observe that applying rules without A-Box joins exhibits
perfectly linear scaling behaviour, while using all rules slows down the algorithm
after inferring about 120m output statements. For implementing the on-disk
A-Box join indices we employ BerkeleyDB9, which slows down considerably if
the index size exceeds a certain limit (depending on caching policy and main
memory available to the JVM). We are currently investigating alternatives to
dynamic data structures for Rules 11b-17.

Table 4 lists the number of times the rules for a given primitive were fired
during reasoning over all rules. Interestingly, from Figure 2 and Table 4 we can

9 http://www.oracle.com/database/berkeley-db/je/

deduce that the bulk of current web reasoning is covered by those rules (1-12a)
which exhibit linear scale.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160

m
in

ut
es

 e
la

ps
ed

million statements written

all rules
single A-Box pattern rules

Fig. 2: Performance of the inferencing algorithm.

No Primitive Inferred Count

01 rdfs:subClassOf 66,283,568
02 :equivalentClass 7,325,048
03 rdfs:subPropertyOf 7,314,815
04 :equivalentProperty 6,943,803
05 :inverseOf 8,485,414
06 rdfs:domain 29,850,430
07 rdfs:range 19,466,468
08 :SymmetricProperty 458,467
09 :hasValue 9,938
10 :unionOf 5,676,861
11 :intersectionOf 13,239
12 :FunctionalProperty 15,218
13 :InverseFunctionalProperty 1,379,003
14 :TransitiveProperty 2,862,631
15 :someValuesFrom 51,403
16 :allValuesFrom 460,031
17 :cardinality 265
18 :oneOf 5,898

Table 4: Count of number of statements inferred for each primitive.

5 Related Work

OWL reasoning, specifically Query Answering over OWL Full, is not tackled by
typical DL Reasoners; such as FaCT++ [18], RACER [7] or Pellet [15]; which
focus on complex reasoning tasks such as subsumption checking and provable
completeness of reasoning. Likewise, KAON2 [12], which reports better results
on query answering, is limited to OWL-DL expressivity due to completeness
requirements. Despite being able to deal with complex ontologies in a complete
manner, these systems are not tailored for the particular challenges of processing
large amounts of RDF data.

Conversely, incomplete (wrt. OWL Full) rule-based inference, as we advocate
it in this paper, may be considered to have greater potential for scale. Several
rule expressible non-standard OWL fragments; namely OWL-DLP [6], OWL− [5]
(which is a slight extension of OWL DLP), OWLPrime [20], pD* [17], or in-
tentional OWL [4, Section 9.3]; have been defined in the literature and enable
incomplete but sound RDFS and OWL inferences. Amongst those fragments,
the fragment we support here is most closest to [17].

Systems such as Triple [14], JESS10, or Jena11 support rule representable
RDFS or OWL fragments as we do, but only work in-memory whereas our
framework is focused on conducting scalable reasoning using persistent storage.

Analogous to our approach, [3] introduce certain restrictions for axioms ac-
cepted by a reasoning engine, however, lacking a rigorous treatment of acceptable
axioms.

The OWLIM [10] family of systems allows reasoning over a number of rule-
representable OWL fragments using the TRREE: Triple Reasoning and Rule
Entailment Engine. Besides the in-memory version SwiftOWLIM, which uses
TRREE, there is also a version offering query-processing over a persistent image
of the repository, BigOWLIM, which comes closest technically to our approach
despite focusing on different fragments of OWL, including those inferring in-
consistencies. Whereas similarly to BigOWLIM, we employ persistent materi-
alisation of inferred triples, our reasoning approach strictly focuses on sensible
reasoning for web data; we only consider a positive fragment of OWL-Horst and
analyse the authority of T-Box statements. We deliberately sacrifice logical com-
pleteness for what we believe to be a more cautious, but still sound approach
for the web data use-case.

6 Conclusion and Future Work

We have presented SAOR: a reasoning methodology for performing reasoning
over Web data based on primitives known to scale. To keep the resulting knowl-
edge base manageable, both in size and quality, we made the following modifi-
cations to traditional reasoning procedures:

– allow only standard use of RDF and disallow metamodelling

– allow extension of classes and properties only from authoritative sources (no
ontology hijacking)

– use pivot identifiers instead of full materialisation of equality

We envision extensions to our system along two lines: scalability enhance-
ments by replacing the dynamic on-disk data structure with a more scalable
scans/sort approach and distributing the system using a hash-based placement
or T-Box replication strategy.

10 http://herzberg.ca.sandia.gov/
11 http://jena.sourceforge.net/

References

1. D. Brickley and R. Guha. Rdf vocabulary description language 1.0: Rdf schema.
W3C Recommendation, Feb. 2004. http://www.w3.org/TR/rdf-schema/.

2. J. d. Bruijn and S. Heymans. Logical foundations of (e)RDF(S): Complexity and
reasoning. In 6th International Semantic Web Conference, number 4825 in LNCS,
pages 86–99, Busan, Korea, Nov 2007.

3. G. Cheng, W. Ge, H. Wu, and Y. Qu. Searching semantic web objects based on
class hierarchies. In Proceedings of Linked Data on the Web Workshop, 2008.

4. J. de Bruijn. Semantic Web Language Layering with Ontologies, Rules, and Meta-
Modeling. PhD thesis, University of Innsbruck, 2008.

5. J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL−. Final draft d20.1v0.2,
WSML, 2005.

6. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Com-
bining logic programs with description logic. In 13th International Conference on
World Wide Web, 2004.

7. V. Haarslev and R. Möller. Racer: A core inference engine for the semantic web.
In International Workshop on Evaluation of Ontology-based Tools, 2003.

8. P. Hayes. RDF Semantics. W3C Recommendation, Feb. 2004.
http://www.w3.org/TR/rdf-mt/.

9. A. Hogan, A. Harth, and S. Decker. Performing object consolidation on the se-
mantic web data graph. In 1st I3 Workshop: Identity, Identifiers, Identification
Workshop, 2007.

10. A. Kiryakov, D. Ognyanov, and D. Manov. Owlim - a pragmatic semantic repos-
itory for owl. In Web Information Systems Engineering Workshops, LNCS, pages
182–192, New York, USA, Nov 2005.

11. C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive descrip-
tion logics. In Proc. of IJCAI-2007, pages 453–459, 2007.

12. B. Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Forschungszentrum Informatik, Karlsruhe, Germany, 2006.

13. S. Muñoz, J. Pérez, and C. Gutiérrez. Minimal deductive systems for rdf. In
ESWC, pages 53–67, 2007.

14. M. Sintek and S. Decker. Triple - a query, inference, and transformation language
for the semantic web. In 1st International Semantic Web Conference, pages 364–
378, 2002.

15. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl-dl reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

16. M. K. Smith, C. Welty, and D. L. McGuinness. Owl web ontology language guide.
W3C Recommendation, Feb. 2004. http://www.w3.org/TR/owl-guide/.

17. H. J. ter Horst. Combining rdf and part of owl with rules: Semantics, decidability,
complexity. In 4th International Semantic Web Conference, pages 668–684, 2005.

18. D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System description.
In International Joint Conf. on Automated Reasoning, pages 292–297, 2006.

19. T. D. Wang, B. Parsia, and J. A. Hendler. A survey of the web ontology landscape.
In Proceedings of the 5th International Semantic Web Conference (ISWC 2006),
pages 682–694, Athens, GA, USA, Nov. 2006.

20. Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Annamalai, and J. Srini-
vasan. Implementing an Inference Engine for RDFS/OWL Constructs and User-
Defined Rules in Oracle. In 24th International Conference on Data Engineering.
IEEE, 2008. To appear.

