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Abstract   

Crystal habit modification of the drug diflunisal that normally grows into extremely thin, long needles 

has been achieved by breaking the stacking effect with the help of co-formers. Eight new co-crystals 

are reported, along with three crystal structures. In all cases, ortho F disorder, often a feature in 

diflunisal structures was absent due to the presence of CH…F interactions. Co-milling diflunisal with 

oxalic acid produced 1:1 and 2:1 co-crystals. In contrast, in solution crystallisation oxalic acid played 

the role of an additive resulting in the crystallisation of diflunisal form I rather than form III. To 

rationalize co-crystal formation a statistical analysis of the CCDC data base for aromatic o-hydroxy 

carboxylic acids was carried out. All co-crystals of o-hydroxy carboxylic acids with the COOH dimer 

motif have an electron-withdrawing group on one of the acids. COOH…Nar motifs are formed 

preferentially over carboxylic homo-dimers in the presence of an Nar co-former.  
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Introduction  

Needle like crystals of drugs not only tend to have dissolution issues, but are also known to pose a 

challenge to processing because they have poor flow properties and form tablets of variable densities.1 

Diflunisal (Chart 1) which is used for the treatment of rheumatoid arthritis2 and chronic lower back 

pain3 readily crystallizes as acicular needles which are difficult to handle.  

Improving the physicochemical properties of drugs can often be achieved through the use of 

techniques like co-crystallisation,4,5 milling,6 using supercritical fluids,7 use of additives8 and 

changing pH.9 Co-crystallisation techniques have been widely employed to improve many properties 

of materials like colour,10 fluorescence11,12 and the bioavailability of drugs.13 While various techniques 

like liquid assisted grinding,14 use of phase diagrams,15,16 and thermochemistry17,18 are used for 

experimental co-crystal screening, predicting co-crystallisation success is still quite a challenge.  

Extensive efforts are being made to understand the selection rules behind the formation of co-crystals, 

but there are still no universal criteria for algorithms that help predict the likelihood of co-crystal 

formation.18 Grecu et al. have used interaction site pairing energies as a method of virtual screening 

for the co-crystallisation of nalidixic acid19 and various other systems.20 Springuel et al. carried out 

conformational analysis and virtual co-crystal screening through identifying the structural 

resemblance of potential co-formers with those already known to form co-crystals with drug 

molecules.21 Multipolar refinements were carried out to try to understand the influence of inter- and 

intra-molecular H-bonding on the interaction energies that define the co-crystal – salt continuum.22 Ab 

initio DFT-D methods have been used to successfully predict 99 out of 102 structures, studied by 

Chan et al. using calculated thermodynamic stabilities relative to those of the starting materials.23   

Tools like Molecular Complementarity24 in the Mercury software25 take advantage of the vast 

collection of crystal structures in the CSD database to give a statistical prediction of possible co-

crystallisation events. Hydrogen bond propensity calculations have been used to quantify H-bonding 

in intra- and inter-molecular situations.26 While this approach is successful in many cases, it cannot 

predict situations where there is no direct interaction between the components, and also situations 

where adduct formations are a result of mere solubility differences.27  

Even though these tools have come a long way in predicting the role of a molecule as a co-crystalliser, 

there is still little understanding of the energetics and the kinetics involved in the formation of these 

systems. Empirical rules for co-crystallisations14,28 suggest that a pKa difference that is close to 0 

between the two molecules under study would give rise to a co-crystal, while a ΔpKa value between 0 

and 3.75 would give rise to inter-molecular H-bonding that has no clear ionic or covalent nature. On 

the other hand, a ΔpKa value greater than 3.75 should lead to proton transfer and salt formation. 

Lemmerer et al. have predicted co-crystal or salt formation between carboxylic acids and pyridine by 

calculating their pKa and other differences.29 This study did not extend to the case of ortho-hydroxy 
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substituted benzoic acids. Many of the non-steroidal anti-inflammatory drugs (NSAID), like 

diflunisal, aspirin, salisalate, piroxicam and other salicylic acid derivatives are of this type and it has 

been pointed out that the introduction of the ortho-hydroxy group can have a profound influence due 

to its resonance, steric and H-bonding effects.30 Fiedler et al. through titrimetry and density functional 

studies, established that intra-molecular H-bonding has a great influence on the acidity of ortho-

substituted benzoic acids,31 while they however, could not separate the influence of hydrogen-bonding 

and steric effects on this so called ‘ortho effect’. Competition between intra- and inter-molecular H-

bonding can greatly influence the ability of a synthon to form a co-crystal. Understanding these 

systems will help develop empirical rules for their co-crystallisation to improve their physical 

properties.  

Nine co-crystals of diflunisal are known but only three crystal structures have been reported. In all 

cases diflunisal forms 2:1 adducts with the co-formers, with up to twice the bioavailability.13 Wang et 

al. established the presence of COOH…NCO adduct formation through FTIR and solid state NMR 

studies of diflunisal-nicotinamide and isonicotinamide co-crystalline adducts in the absence of a 

crystal structure.32 A diflunisal-nicotinamide co-crystal was obtained using supercritical CO2.7 The 

crystal structures of co-crystals containing two active pharmaceutical ingredients (APIs), diflunisal 

and ciprofloxacin,33 and of diflunisal-theopylline34 have also been reported. Evora et al. carried out 

co-crystal screening of diflunisal with isomeric pyridine carboxamides using phase diagrams, which 

resulted in three new crystalline adducts, whose interactions were estimated using peak shifts in the 

FTIR spectrum.16 Evora et al. also made use of thermomicroscopy to study a new phase of a 

diflunisal-pyrazinamide co-crystalline adduct.17  

Another technique for improving the dissolution properties and processability of an API is a change in 

crystal morphology. Sometimes, this can be achieved through co-crystallisation. The use of additives 

or the presence of impurities are also known to lead to changes in the crystal habit. An additive that 

interacts only with a specific crystal surface can give a kinetically controlled metastable polymorph, 

while thermodynamic stabilisation in the presence of an additive can be achieved by the solvent co-

adsorption phenomena.35 An additive that is structurally similar to the compound being crystallised 

may disrupt both nucleation and crystal growth.36  

In this paper we identify key interactions involved in the formation of diflunisal adducts with co-

formers through statistical, theoretical and experimental methods. We have used a molecular 

similarity tool to predict possible co-formers and carried out co-crystallisation experiments to obtain 

crystalline adducts that are not subject to the crystal growth process accelerated by vdW contact 

stacking which often leads to the formation of needles. We also studied the inter-molecular 

interactions using DFT-D calculations for adducts in the gas phase and used PIXEL calculations to 

partition inter-molecular interaction energies in the co-crystals. We have also accessed a range of co-
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crystal adducts of diflunisal with carboxylic acids through mechanochemistry, which were considered 

unlikely by the molecular complementarity tool.   

 

Experimental Section 

Materials 

Diflunisal (1) was purchased from Baoji Guokang Bio-Technology Co., Ltd, China. The solvents, 

pyrazine (Py - a), 1,3-di (4-pyridyl) propane (PBipy - b), 4-(2-pyridine-4-ethyl) pyridine (EBipy – c), 

4,4’-bipyridine (Bipy – d), oxalic acid (OA – e), 4-aminobenzoic acid (PABA – f), 2-hydroxypyridine 

(HP – g), citric acid (CA - i), DL-tartaric acid (TA - j), DL-malic acid (DLMA - k), L-ascorbic acid 

(AA - l), trans-aconitic acid (tAA - m), adipic acid (APA - n), succinic acid (SA - o), maleic acid 

(MA - p), glutaric acid (GA - q), pimelic acid (PA - r), and fumaric acid (FA - s) were purchased 

from Sigma Aldrich. 4-Diamino-6-hydroxypyrimidine (DAHP - h) was purchased from Tokyo 

Chemical Industry (TCI, Europe).  All chemicals were used without any further purification.  

Solution co-crystallisation 

1:1 molar ratios of 1 and the co-formers a (Py), b (Pbipy) and c (Ebipy) were dissolved in 

methanol/acetonitrile (1:1), with stirring and gentle heating. Crystalline adducts were obtained 

through slow evaporation of the solvent mixture. Similar experiments were carried out using other co-

formers but were unsuccessful in producing single crystals. To study the additive effect of e (OA), 1 

and 10 % e were dissolved in ethanol, both with stirring and gentle heating, followed by slow 

evaporation.  

Ball milling  

Ball milling experiments with a 1:1 ratio of 1 and co-formers e-s and 1:1 and 2:1 ratios for the 

dipyridyl co-formers (b-d) and Py (a) were carried out at various time intervals, at 25 Hz using a 

Retsch ball mill. For long duration of milling the jars were allowed to cool for 15 min after every 30 

min milling. Cryo-milling was carried out on 1:1 combinations of 1 and the carboxylic acid co-

formers using the same mill, for different times. The jars were initially immersed in liquid nitrogen 

for 5 min and the millings were carried out in intervals of 7.5 min and the jars were cooled in between 

for 2.5 min. The measured external temperature of the jars did not rise above -20 °C during cryo 

milling.  

Single crystal X-ray diffraction  

Single crystal diffraction data of all crystalline adducts were collected using an Oxford Diffraction 

Xcalibur CCD diffractometer using graphite-monochromated Mo-Kα radiation ( = 0.71073 Å) at 
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room temperature (1a) or 150 K (1b, 1c). The structures were solved using SHELXT,37 embedded in 

the OSCAIL software.38 Non-hydrogen atoms were refined anisotropically and hydrogen atoms were 

in calculated positions. Graphics were produced with ORTEX and POGL also embedded in OSCAIL. 

Crystallographic data can be found in Table 1. CIF files can be obtained free of charge at 

www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 

Cambridge, UK with the REF codes 1491984, 1491985, and 1491986. 

X-ray powder diffraction (XRPD)  

X-ray powder patterns were recorded on an Inel Equinox 3000 powder diffractometer between 5 and 

90  (2θ) using Cu Kα radiation ( = 1.54178 Å, 35 kV, 25 mA). Theoretical powder patterns were 

calculated using the OSCAIL software.38 

Differential scanning calorimetry (DSC) 

DSC experiments were performed on a STA625 thermal analyzer from Rheometric Scientific 

(Piscataway, New Jersey). The heating rate was kept constant at 10 °C/min and all runs were carried 

out between 25 °C and 250 °C. The measurements were made in open aluminium crucibles, nitrogen 

was purged in ambient mode and calibration was performed using an indium standard.  

Scanning electron microscopy (SEM) 

The images were captured using a Hitachi S2600N Variable Pressure Scanning Electron Microscope 

with a backscatter BSE resolution of 20 nm at 25 kV, X 903 magnification, with an accelerating 

voltage of 5 kV, an emission current of 10000 nA at a working distance of 13.5 mm.  

Computational studies  

Molecular complementarity  

The Molecular Complementarity tool in the Mercury software25 was used to identify potential co-

formers for the co-crystallisation of 1. This was carried out using the database of potential targets 

supplied by the database, and a few other structures were loaded as their .mol files saved using the 

Avogadro software.39   

CSD search for motifs 

A motif search for three types of H-bonded adducts shown in Chart 2 was carried out, using the 

Conquest software.40 One moiety in each case was an ortho-hydroxy benzoic acid, while the second 

moiety was either a structure with an aromatic N, forming a 1D hydrogen bond with the acid or 

another carboxylic acid group forming a dimer with the acid. The criteria used for the search were that 

the interactions are within a distance of the sum of the vdW radii +1 Å, an R-factor < 7.5%, and 

organometallics were excluded. The results, in the form of descriptors, from the searches were then 
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exported to the Mercury software, where descriptive statistical analysis and principal component 

analysis41 of Z’, hydrogen bonding distances, number of unique chemical units, and the number of co-

ordinates were carried out.  

Gaussian calculations 

Gaussian calculations were carried out on the individual molecules (1, a – e) and their adducts with a 

subset of the co-formers (a – e), in the gas phase, using density functional theory (DFT). The B3LYP 

functional was employed with two different basis sets, 6-311+g(d,p) and cc-pvtz. The structures were 

optimised for lowest energy and checked for the absence of negative frequencies. Simple formation 

energies were calculated from the minimized energies.  

Stacking analysis  

Stacking analysis1 was performed on the obtained structures using OSCAIL.38 The vdW distances of a 

molecule to its nearest neighbours in potential stacks were calculated.  

PIXEL calculations 

PIXEL calculations42 were carried out to examine the contributions of various interactions towards the 

stability of the crystalline adduct 1a, of the crystal structure of 1 (REF code: FAFWIS01) and of co-

formers a (REF code: PYRAZI), b (REF code: AZSTBB), c (REF code: UGIHAT), d (REF code: 

HIQWEJ), and e (α form REF code: OXALAC05, β form REF code: OXALAC11). In the case of 1, 

one disordered F in the structure was replaced with a H to simplify the calculation.  PIXEL 

calculations on the other crystalline adducts were not possible as they had a Z’ > 2.  

 

Results and Discussion 

The promiscuity of drug molecules in co-crystal formation and the efficient use of supramolecular 

synthons have been a topic of wide interest for the past decade. Shattock et al.43 in their study of the 

heterosynthon motif OH…Nar carried out an examination of the crystal structures in the CSD and 

established that a COOH…Nar 1D H-bond is preferred over OH….Nar.  However, they did not include 

species with ortho substitution due to their complexity.  Amongst the 4922 structures in the CSD that 

have the COOH…COOH homosynthon, 149 of them have a hydroxyl group in the ortho position 

(motif II), equivalent to only 3% of the total. Similarly, a search for COOH…Nar gave 1780 hits out 

of which 82 had a hydroxyl group in the ortho position (motif I). Adduct formation is known to prefer 

heterosynthons over homosynthons in the process of H-bond formation,28 but only a COOH 

homodimer can be broken using a heterosynthon, while an amide homodimer in contrast is considered 

quite stable. Hence, here we have compared only ortho substituted COOH homosynthons to Nar 

heterosynthons.  
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Out of the 149 structures, identified as having motif II, only eight were co-crystals. From an 

examination of these structures, the following features were identified:  

1) COOH homosynthons between a co-former acid and an o-hydroxy carboxylic acid formed 

when either of them had electron-withdrawing groups present. Examples are REFCODES 

BIZYOA and COLKUL, which have chloroacetic acid and dinitrobenzoic acid as co-

formers. The presence of electron-withdrawing groups would greatly enhance the proton 

donating ability of the carboxylic acids. The pKa values are listed in Table S1 (Supporting 

Information, SI). The only co-former that does not have an electron-withdrawing group is 

acetic acid (REFCODES: YOVVOW, MAMRUP, MAMSAW). 

2) COOH homosynthons between a co-former acid and an o-hydroxy carboxylic acid formed 

when the o-hydroxy acid had a competing group (OH or NH2) that can H-bond with the co-

former. Examples are REFCODES GEQROL, GIDLUB, UGOWIY.  

A search that combined motifs I and II gave only eight hits, and in every single case the 

COOH…COOH distances were greater than 3 Å excluding a planar 𝑅 (8)2
2  motif. The normal distance 

for COOH…COOH interactions is around 2.6 Å.43  

Out of the 149 structures with the type II interactions, 49 showed stacking with the stacks slightly 

slipped. In the case of the COOH…Nar interactions (motif I), out of the 82 that have the o-hydroxy 

acid, 23 are stacked. Survo et al. found rare type III interactions in the co-crystals of 1 with 

theophylline. A search on the CSD for structures with motif III gave 78 structures, of which only 20 

were actually in-plane interactions. 

We carried out principal component analysis (PCA) on our searches based on motifs I and II in Chart 

2 separately, using the tools available in Mercury. The descriptors used for the PCA were Z’, 

distances (the H-bond distances between the H and the acceptor – 1 length in motif I and 2 in motif 

II), the number of atomic co-ordinates in the unit cell, and the number of unique chemical units. 

The COOH… Nar interactions: The PCA gave a cumulative variance of 100% for the first four PCs. 

PC1 (49.4% explained variance) was influenced surprisingly by Z’ and the number of co-ordinates, 

PC2 (24.7% explained variance) has a contribution from the number of unique chemical units. This is 

apparent from Figure 1a, where the data points are sorted into three distinct layers along the y-axis 

denoting PC2. It is only PC3 (18.5% explained variance), perhaps surprisingly, that has any 

contribution from the H-bonding distances. This is because the COOH…N distances are very 

consistent (1.6 – 1.8 Å) and thus do not contribute to variance. There are three exceptions here that 

have distances in the range of 2.3 - 2.6 Å. However, these systems contain pyridine N-oxide.44  

The COOH…COOH interactions: PCA gave a cumulative explained variance of 99% for the first 

four PCs. PC1 (46.8% explained variance) has the highest contribution from the hydrogen bonding 
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distances, as can be seen from Figure 1b, with all the data points with a star marker clustering to one 

side. PC2 (32.98% explained variance) is related to the difference in the two H-bonding distances that 

make the dimer ring, and PC3 (14.64% explained variance) is governed by the number of unique 

chemical entities in each studied molecule. PC4 (5.4% explained variance) is related to Z’ and the 

number of co-ordinates had no significance whatsoever. 

Gavezzotti et al. in a recent study have carried out a survey of all H-bonded structures and have 

explored the H-bonding features and the nature of crystal packing amongst other features. They found 

the order of donor ability to be COOH > NH > OH, with the COOH…Nar being the most favourable 

of interactions.45 

Studies based on diflunisal 

Molecular complementarity calculations revealed that 1 was likely to form co-crystals with co-

formers which had ‘N’ acceptors, rather than dicarboxylic acids, with exceptions of adipic acid (n) 

and benzoic acid (not studied here). This method makes use of multivariate analysis of the structures 

in the database, and projecting the current data to find a possible co-crystallisation hit. The data used 

are various properties, as well as crystallographic information.24 Table S2 (SI) lists the possible hits 

predicted using this method. These predictions were tested by carrying out a series of co-

crystallisation studies by ball milling and solution crystallisation of 1 with the co-formers listed 

above. 

Solution crystallisation  

Crystals of 1a (Dif-Py), 1b (Dif-Pbipy), and 1c (Dif-Ebipy) were obtained from a mixture of 1:1 

acetonitrile and methanol and the crystal habits were distinctly different from that of 1, especially in 

the case of 1a and 1b. The crystallographic information for 1a-1c are summarised in Table 1. Figure 

2 illustrates the crystal packing observed in 1a, 1b and 1c. While 1a is a co-crystal, 1b and 1c are salts 

where the proton from the carboxylic acid has been transferred to the N in the co-former. In all three 

cases the H bonding motifs observed are linear chains of the co-formers with a molecule of 1 at both 

ends. This is due to competition between inter- and intra-molecular H-bonding possibilities present in 

the molecule of 1. 

As can be seen from Figure 3a, 1a has a diamond-like habit. The crystal structure has an interleaved 

pattern with two molecules of 1 spaced by an a, with a 1-a distance of 3.7 Å. Figure 3b shows that 1b 

forms plate like crystals, crystallising in a monoclinic (P21/c) system. It has a rather large unit cell, 

which comprises of one molecule of b and two molecules of 1, with the ring carrying the carboxylic 

acid in 1 being co-planar to the pyridyl rings in b. 1c on the other hand forms needles like 1 itself 

does, and crystallises in the triclinic (P-1) system. 1c also has a molecule of the solvent acetonitrile 
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included in its unit cell. 1a and 1c are stable, while 1b is very hygroscopic and is unstable when the 

solvent is removed.  

To understand the direction and mechanism of growth in these systems, stacking analyses were 

carried out using the OSCAIL software.1 Table 2 gives a comparative account of the percentage of 

vdW interactions observed in the crystal lattices along all axes. For a stacking interaction to dominate 

crystal growth it is normally found that more than 50% of the atoms in a molecule are in vdW contact 

with their neighbours above and below them in a stack.1 In the case of the crystal form of 1,46 the 

crystal growth is dominated by the vdW contact stacking of the molecules along the short a-axis, 

resulting in needle formation. 1c is similar; here the growth is dominated by the vdW contact stacking 

of c on c and 1 on 1, and 84% of the atoms in the molecules are in vdW contact with their neighbours 

in the stack along the b axis. The acetonitrile solvent molecules in 1c fill voids and play no role in 

stacking. In the case of 1a, vdW interactions involving molecules along the a and c axes have only 

43.5% and 35.6% of their atoms in vdW contact, respectively. There is obvious interleaving of non-

identical molecules along b and c and the vdW contact stacking mechanism cannot contribute to 

growth in these directions. In the case of 1b the molecules have only 21% of their atoms in vdW 

contact along the relatively short b-axis and needle growth is not expected. A possible reason for the 

1c structure being related to that of 1 is that 1 and c are closely related in size and shape.   

Another interesting feature of these crystalline adducts is the absence of disorder with respect to the F 

atoms of 1. In the crystal structures of 1 (form I - FAFWIS01 and form IV – FAFWIS) the ortho F 

atom is disordered. This apparent disorder is due to the availability of space for torsion of the F-

carrying phenyl ring. In 1a, 1b and 1c, the ortho F is present on the side having the carboxylic acid 

unit in the adjacent ring. The formation is such that there is a pocket of C-F and C-H bonds, with the 

shortest C-H…F distance being 2.5 Å and largest F – F distance 5 Å and shortest 3.68 Å. Usually an 

F…H interaction is not considered significant due to the nature of F,47 but here the short C-H…F 

distance, 2.5 Å, indicates a weak interaction (vdW sum 2.67 Å) that seems to be vital in preventing 

the disorder. In rare occasions, aromatic fluorine substitutions, due to the weak F…H interactions can 

affect optimal geometries of structures.47 Such a feature was also identified by Bag et al.33 in co-

crystals of 1 with ciprofloxacin, where the weak C-F…H interactions form tetrameric units. 

Illustrative figures with measured distances are in the SI (Figure S3). The FAFWIS01 structure 

which has ortho F disorder has been compared to the FAFWIS02 (diflunisal form III), 1a, 1b and 1c 

structures which have no F disorder by placing an F atom along the C-H vector where an F atom 

would be if there was disorder. The lattice around the inserted F atom was examined for contacts 

inside the sum of the vdW radii. The results were that in FAFWIS01 neither F position made any 

contacts inside the sum of the vdW radii while the inserted F atom in all of the other four structures 

made contacts inside the sum of the vdW radii (Table S3). 
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PIXEL calculations were carried out on 1a, 1, a, b, c, d, and two forms of e to identify important 

interactions and their respective contributions to the stability of the structure. It was not possible to 

carry out the calculations on structures of 1b and 1c, because their Z’ >2 is beyond the computational 

limitations of the code.42 Table 3 lists the interaction energies of a central molecule of 1 with its next 

nearest neighbours in the co-crystal 1a. PIXEL energies for 1 and the co-formers (a – e) can be found 

in the SI (Tables S4 – S10). On comparison of the energy involved in 1 (-114.5 kJ/mol) with that of a 

(-59.7 kJ/mol) and 1a (-63.9 kJ/mol), it becomes apparent that there is no thermodynamic advantage 

for the formation of the co-crystal, as reported in the literature by Chan et al. using DFT-D methods.23 

Gavezzotti et al. in their recent study45 surveyed the CSD for co-crystals and carried out CLP 

calculations on 97 structures. They found that the lattice energies of the co-crystals were invariably 

more stabilising than the lattice energies of the components themselves. Their finding would suggest 

that even though the formation energies of the hetero-adducts are higher than that of their individual 

components, there is increased stability due to crystal packing effects. Unfortunately, they were not 

able to survey pharmaceutical co-crystals in any great length due to the presence of multiple 

functional groups. 

While dispersion energies are dominant in the crystal structure of a, combined with the fact that it has 

low lattice energies, gives it an advantage in forming 1a. The crystal structure of 1 is however, 

dominated by the Coulombic energy of the 𝑅 (8)2
2  H-bond dimer it forms with itself, followed by the 

dispersion energy of stack formation. Figure 4 illustrates the interactions observed in the 1a crystal, 

showing the origin of the dispersion and Coulombic energies.  

DFT calculations on the H-bonded adducts studied using Gaussian reveal a similar result. The 

formation energies calculated for adducts are much smaller than that of the 1-dimer, except for the 

case of the 1-e adduct, which had very similar formation energies to that of the 1-dimer itself. The 

formation energies for all adducts can be found in Table S11 (SI). It has to be noted that the gas phase 

calculations do not take the proton transfer in 1b and 1c into account, i.e. the formation of charge-

assisted H bonds. Arderne et al. through their calculations have shown that charge-assisted H-bonding 

tends to give adducts an extra 13 – 14 kJ/mol stabilisation compared to their neutral versions.48 

Adding in the extra 13 kJ/mol to the formation energies of 1b and 1c would still make their formation 

energy similar to and slightly higher than that of 1 itself. The fact that these adducts have lower 

formation energies suggests that their formation may well be driven by entropy, which would favour a 

heterosynthon over a homosynthon. It would also suggest that, being less stable than 1 itself, the 

adducts should have enhanced dissolution properties and hence be more bioavailable. In the case of 

oxalic acid the formation energies were very similar to that of the 1-dimer and yet it did not produce 

co-crystals in solution. In this case, there is no advantage in terms of formation energies due to the 

presence of COOH…COOH dimers and the entropy difference should also be small.  
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While further crystallisation studies were carried out using the other co-formers, they were not 

successful in producing co-crystals or salts. However, oxalic acid (e) had an interesting effect in the 

crystallisation of 1. 1 is known to produce crystals of polymorph III (FIII) in pure ethanol.46 However, 

in the presence of 10-50 % oxalic acid we observed the formation of form I (FI) in the same solvent. 

FI was identified by indexing single crystals on a diffractometer. FI is generally crystallised from 

toluene or from a mixture of benzene and methanol.46 Using e as an additive this polymorph can be 

obtained from the greener solvent ethanol. Thomas et al. have made similar observations in the cases 

of paracetamol,49 piroxicam,50 and gallic acid,50 where the presence of a large amount of co-former led 

to the formation of rare or previously unknown polymorphs. However, they have not been able to 

identify a mechanism for this behaviour. Due to large quantities of the co-former required, as opposed 

to the small amounts of additives generally known to affect nucleation events, we hyptothesize that 

the effect of the co-former might actually be a crystal growth effect.  

Together with the experimental observations and the findings of the DFT calculations showing very 

similar formation energies for both the 1 homodimer and 1e hetero-adduct, it would seem that, in the 

presence of a co-former, the increase in entropy presents no advantage for the formation of co-

crystals, as the enthalpy of formation dominates the thermodynamics of the system. It has been 

observed through ball milling (which we discuss in the next section), that 1e co-crystals are formed on 

milling. This would suggest that the co-crystal may have very high solubility at room temperature, 

preventing its crystallisation. The reason for large quantities of co-former causing a change in 

polymorph of the drug, is not currently understood, but further studies on this phenomenon are being 

carried out.  

After a few months in contact with solution, a few plates of FIV were also found amongst the FI 

needles. In the absence of oxalic acid FIV rapidly crystallises as needles. The transformation to the 

more thermodynamically favoured plates is a slow process. Previously, alkanoic carboxylic acids 

have been used as additives by Davey et al.51 in small quantities to modify the morphology of adipic 

acid. They observed an increase in the aspect ratio of the crystals, eventually leading to the formation 

of twin crystals of adipic acid in the presence of alkanoic acid. A long established example is that of 

urea modifying the morphology of NaCl crystals. Smith et al. have recently carried out theoretical and 

computational studies to understand the effect urea has on crystal growth.52 They identify that urea 

preferentially stabilises octahedral NaCl, by raising the chemical potential of all faces; however, the 

111 face was the most stable. 

Ball milling  

Mechanochemistry, due to its non-equilibrium nature, is often employed to produce polymorphs6 and 

co-crystals53 that are not accessible through solution crystallisation. Ball milling of 1 with all of the 

co-formers was carried out initially for 60 min. It was possible to produce eight new co-crystals by 
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this method. The results of the ball milling experiments are summarised in Table 4. Co-milling of a 

2:1 mixture of 1 and a (Py) for 15 min resulted in an XRPD pattern similar to the simulated pattern 

from the single crystal data (Figure S2), suggesting the formation of the same co-crystal. Co-milling 

1:1 and 2:1 ratios of 1 and b (Pbipy) for 30 min resulted in a physical mixture, while milling in the 

presence of 25 µL of acetonitrile produced the same XRPD pattern as that simulated from the single 

crystal data (Figure S4). The added acetonitrile is required, as proton transfer cannot take place in the 

absence of a solvent. This effect has been previously reported.53 Thermal analysis (Figure S5) of the 

milled material showed melting at 151 °C with no other thermal events except for sublimation at a 

higher temperature.  

Co-milling 1:1 and 2:1 mixtures of 1 and c (Ebipy), gives rise to new XRPD patterns (>5 new peaks 

per pattern, Figure S6) that are different to the ones simulated from the single crystal structures. This 

observation is supported by thermal analysis (Figures S7 and S8, SI), which shows a thermal event in 

both cases at 145 – 146 °C and melting endotherms at 239 °C and 229 °C for the 1:1 and 2:1 samples, 

respectively. The melting points of the different polymorphs of 1 are between 212 and 215 °C 46 and 

that of c is at 151 °C. There is a thermal event at 86 °C in the 2:1 case, the origin of which is not 

currently understood. The absence of the melting endotherms of the starting compounds and the 

differences in the XRPD patterns support the presence of pure co-crystals. Samples of 1a, 1b and 1c 

prepared by milling are stable for over two months.  

The XRPD patterns of milled 1:1 and 2:1 mixtures of 1 and d (Bipy), both having >5 new peaks 

(Figure S9, SI), suggest the formation of new co-crystalline adducts. Thermal analysis of the milled 

2:1 mixture shows an exothermic peak at 127 °C, followed by melting at 202 °C (Figure S10, SI). 

The absence of a melting endotherm for d (m.p. 114 °C) complements the XRPD data.    

XRPD patterns of 1:1 mixtures of 1 and f (PABA), milled at room temperature or cryo-milled for 120 

mins, are completely different compared to the starting materials and have a few peaks that 

distinguish them from each other (Figure S11). The pattern of the cryo-milled sample shows Bragg 

peaks with an underlying amorphous halo contributed from diffuse scattering. Thermal analysis of a 

sample milled at room temperature confirmed the formation of a new co-crystalline material, with a 

thermal event at 115 °C followed by melting at 165 °C. The melting point of f is 187 °C (Figure S12, 

SI). 

Co-milled 1 and g (HP) in a 1:1 ratio results in a new XRPD pattern (Figure S13, SI) suggesting the 

formation of a new co-crystalline adduct. This is further supported by the thermal analysis (Figure 

S14, SI) where the material shows an endothermic peak at 187 °C, followed by melting at 202 °C. 

These thermal events are different from the starting materials, where g is known to melt at 107 °C. HP 

exhibits lactam-lactim tautomerism. Both tautomers can interact with a carboxylic acid via an 𝑅 (8)2
2  

motif.  
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The case of oxalic acid (e) is very interesting. While the molecular complementarity tool in the 

Mercury software predicted a 0% probability of co-crystal formation, ball milling of 1:1 ratios of 1 

and e resulted in a new pattern as shown in Figure 5, suggesting the formation of a 1:1 adduct. 

Thermal analysis of the milled material revealed four thermal events, each with an associated weight 

loss (Figure 6). The peak at 67 °C corresponds to the loss of 1.5% adventitious water. The second 

event occurs at 171 °C, with a 15.5% weight loss, that corresponds to the loss of half of e present in 

the system. The third thermal event occurs at 199 °C, with a weight loss of 27.2%, that corresponds to 

the loss of all e molecules, followed by the melting of 1 at 213 °C. The absence of the melting 

endotherm of e (m.p. 202 – 203 °C) and the loss of half of e at 171 °C suggests the transformation of 

1e from a 1:1 composition to a 2:1 adduct. This is supported by the XRPD patterns. To understand the 

change in composition better, the 1:1 co-milled sample was held at 100 °C for 30 min and a second 

sample at 100 °C for 30 min followed by 30 min at 180 °C. The XRPD patterns (Figure 5) reveal the 

formation of both 1:1 and 2:1 adducts. Another experiment was carried out where a 1:1 mixture of 1 

and e (dihydrate form) was milled for 120 min without any cooling interval. This resulted in a bright 

purple sample (Figure S15), which could suggest the presence of a high degree of disorder in the 

structure.54 The XRPD pattern (Figure 5, D) is almost identical to that of FIII with the exception of a 

new peak at 21° (2θ). The thermal analysis however, revealed the presence of a co-crystal that melts 

at 178 °C, with two other recrystallisation events. Together with the fact that the material melts at a 

temperature different to that of its starting material and that there is no weight loss involved in either 

of the thermal events, it can be safely concluded that this is a polymorph of 1e. Seeded crystallisation 

experiments using crystals from the milled sample were unsuccessful.  

In contrast to all other co-milling experiments, milling a 1:1 mixture of 1 and h (DAHP) did not yield 

an XRPD pattern. Only an amorphous halo was observed and no Bragg peaks appeared during storage 

for over 6 months (Figure S16). It is possible that crystallisation was effectively blocked by the multi-

functional h, which has three H-bond donors and two acceptors, which could stabilize an amorphous 

phase by disrupting the formation of the acid dimers.55  

Figure 7 shows the SEM images of ball milled 1d (2:1, 15 min), 1f (1:1, 60 min), 1f (2:1, 60 min) and 

1h (1:1, 30 min). Corresponding low magnification images are shown in Figures S17 – S22 (SI). For 

1d and 1h tape like structures grew from flat surfaces which formed due to the impact of milling. In 

both of the 1f cases the samples are completely made up of these tape like features, with the 1:1 tapes 

slightly wider than the 2:1 ones. Some of these tapes are similar to the ones observed on milling 1 

alone for 120 min (Figure S17, SI). 

In the interesting case of 1e, milling for 120 min without intermittent cooling (Figure 8a) seems to 

lead to some kind of melting resulting in an amorphous looking material, from which some tape like 

features are growing. The 1:1 sample milled for 60 min with intermittent cooling, followed by heating 



15 
 

at 100 °C (Figure 8b) shows features similar to those in Figure 7. The sample heated at 180 °C that 

results in the 2:1 adduct as established by DSC shows the formation of large well defined blocks or 

plank like crystals. This could be an effect of the annealing process which could have led to the 

formation of these blocks that deviate from the normal needle like structures.  

Co-milling of 1 with carboxylic acids i – s did not yield any co-crystals. Co-milling 1 and s resulted in 

an X-ray amorphous material that crystallises back to its constituents. XRPD patterns for these 

samples are shown in Figures S23 – S33 (SI). Cryo-milling of these systems gave results that were 

similar to the room temperature studies (data not shown). A discrepancy with the predictions of the 

molecular complementarity tool in the Mercury software is the non-occurrence of co-crystals of n and 

r, either through milling or solution crystallisation, despite a prediction with a 100% hit rate. This tool 

however, has been successful in predicting co-crystallisers for diflunisal in 11 out of 14 cases the 

exceptions being oxalic acid, adipic acid and pimelic acid.  

 

Conclusions  

Ball milling diflunisal with a range of bipyridines, p-aminobenzoic acid and oxalic acid led to the 

formation of eight co-crystals.  

Solution crystallization of diflunisal with pyrazine gave a co-crystal (1a) and a salt with 1,3-di(4-

pyridyl)propane (1b) both of which unlike diflunisal do not show needle growth. However, 

centrosymmetric 4-(2-pyridine-4-ethyl)pyridine gives a salt which does show needle growth. The 

different morphologies of 1a and 1b are due to the presence of the co-formers that have a size and 

shape different to that of diflunisal and that prevent the stacking of molecules that dominates growth 

in the case of diflunisal and its salt with 4-(2-pyridine-4-ethyl) pyridine. 

Diflunisal FI that is normally crystallised from toluene can also be obtained from the greener solvent 

ethanol in the presence of 10% oxalic acid.  

Gaussian calculations show that the formation energies of adducts of diflunisal with the pyridines 

examined are much lower than that of the diflunisal dimer itself suggesting that other factors such as 

crystal packing may be important in controlling co-crystal formation. 
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Table 1. Crystallographic data for 1a – 1c 

 1a  1b  1c  

Formula weight 290.24 349.32 382.36 

Temperature 299.3(7) K 149.5(8) K 150.1(1) K 

Wavelength 0.71073 Å 0.71073 Å 0.71073 Å 

Crystal system triclinic monoclinic triclinic 

Space group P-1 P21/c P-1 

Unit cell 

dimensions 

a =  6.6989(5) Å       

b =  6.7724(6) Å     

c = 15.4897(13) Å                  

α = 97.507(7)° 

β = 97.957(7)° 

γ = 108.606(7)° 

a = 16.4959(13)Å 

b = 7.4339(5) Å         

c = 27.064(2) Å 

α = 90° 

β = 95.936(7)° 

γ = 90° 

a = 3.8618(2) Å         

b = 10.9073(7) Å      

c = 21.1215(14)Å     

α = 82.528(5)°                          

β = 86.109(5)° 

γ = 82.588(5)° 

Volume 648.05(10) Å3 3301.0(4) Å3 873.56(10) Å3 

Z 2 8 2 

Density 

(calculated) 

1.487 g/cm3 1.406 g/cm3 1.454 g/cm3 

Goodness-of-fit 

on F2 

1.032 1.098 

 

1.025 

R1 (obs. 

reflections)  

0.0734 0.0469 0.0936 

wR2 (obs. 

reflections) 

0.1547 0.1188 0.1976 

Reflections 

collected 

2919 6500 15026 

Independent 

reflections 

1926 3974 7615 

R (int) 0.0499 0.0188 0.0446 
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Table 2. Stacking analysis carried out using OSCAIL showing the percentage of atoms in a molecule 

in vdW contact with potential stack neighbours. A value >50% indicates a significant stacking 

interaction that will dominate crystal growth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. PIXEL energy calculations (in kJ/mol) for the co-crystal 1a, showing the contributions from 

various interactions between 1 and a  

Symmetry 

Operation 
Fragment Distance Coulombic Polarisability Dispersion Repulsion Pixel 

x+1,y,z diflunisal 6.699 -3.1 -1.6 -17.9 5.6 -17 

x-1,y,z diflunisal 6.699 -3.1 -1.6 -17.9 5.6 -17 

x,y+1,z diflunisal 6.772 -1.1 -1.4 -19.4 7.6 -14.3 

x,y-1,z diflunisal 6.772 -1.1 -1.4 -19.4 7.6 -14.3 

x+1,y+1,z diflunisal 7.86 -1.8 -0.8 -13.2 3.8 -12 

x-1,y-1,z diflunisal 7.86 -1.8 -0.8 -13.2 3.8 -12 

x+1,y,z pyrazine 4.259 -8.7 -3.1 -30.9 22.9 -19.8 

x,y,z pyrazine 7.671 -65.6 -32.3 -18.5 73.3 -43.1 

 

Crystal % vdW contact Crystal habit 

1 
Along a axis – 

Mean %**  84.62% 
needle (acicular) 

1a 

Along a axis – 

Mean %**  42.54% 

Along c axis – 

Mean %**  32.69% 

diamond-like 

1b 
Along b  axis – 

Mean %** 21.05% 
plate-like 

1c 
Along a axis- 

Mean %**  82.01% 
needle 
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Table 4. Results of crystallisation and balling milling experiments of 1 (FI) with all co-coformers  

Co-

former 
Ball milling 

Solution 

crystallisation 

a co-crystal (identical to the co-crystal obtained from solution) co-crystal 

b 
salt (identical to the structure obtained from solution, 

substoichiometric amounts of solvent required) 
salt 

c 1:1 and 2:1 co-crystals salt 

d 1:1 and 2:1 co-crystals 1 (FI) 

e 1:1 and 2:1 co-crystals 1 (FI and FIV) a  

f co-crystal 1 (FI) 

g co-crystal  1 (FI) 

h X-ray amorphous (stability >6 months) 1 (FI) 

i Bragg peaks of the acid with an underlying amorphous halo 1 (FI) 

j - s physical mixtures of 1 and the co-former 1 (F1) 

 
a crystallisation from ethanol 

 

Chart 1. Molecular structures of (1) diflunisal, (a) pyrazine, (b) 1, 3-di (4-pyridyl) propane, (c) 4-(2-

pyridine-4-ethyl) pyridine, (d) 4,4’-bipyridine and (e) oxalic acid.  
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Chart 2. Hydrogen bonding motifs in ortho hydroxy benzoic acids, (I) heterosynthon forming chain 

like motifs with aromatic N, (II) COOH….COOH homosynthon and (III) homosynthons forming 

four-atom rings with the ortho OH and the C=O of the acid.  

 

 

 

 

  

Figure 1. Principal component analysis of the CSD searches for (a) motif I (Chart 2) and (b) motif II 

(Chart 2). The two axes are PC1 and PC2, with the colour variation given by PC3 and size of the spot 

by PC4. The ‘star’ spots are the ones where the interaction distances exclude a planar 𝑅 (8)2
2  motif. 
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Figure 2. Crystal packing in 1a, 1b and 1c.  

  

 

 

1a

1b

1c
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Figure 3. Microscope images of a) 1a, b) 1b, c) 1c and d) Form I and Form IV of 1 crystallised in the 

presence of oxalic acid.  

 

 

 

Figure 4. Molecular interactions observed in co-crystal 1a through PIXEL calculations.  
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Figure 5. XRPD patterns of milled samples of 1 and OA: (A) OA dihydrate. (B) OA. (C) diflunisal 

FIII. (D) 1:1 mixture of 1 and OA milled continuously for 120 min without cooling. (E) co-milled 1 

and OA heated at 100 °C for 30 min followed by 30 min at 180 °C. (F) co-milled 1 and OA heated at 

100 °C for 30 min. (G) co-milled 1 and OA (1:1, 60 min). (D) shows peaks similar to FIII of 1 and 

one new peak at 21 ° (2θ). (G) shows a new pattern suggesting the presence of a co-crystal.  

 

 

 

Figure 6. (a) Simultaneous DSC and TGA of a milled sample of 1 and OA (1:1, 30 min) showing 

thermal events at 67 °C, 171 °C, and 199 °C, with associated weight loss of 1.5%, 15.5% and 27.2%, 

followed by melting at 213 °C and sublimation of 1 at 262 °C. (b) Simultaneous DSC and TGA of a 

milled sample of 1 and OA (1:1, 120 min without intermittent cooling) showing thermal events at 126 

°C, 143 °C, 151 °C, and 178 °C without weight loss.  
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Figure 7. SEM images of (a) co-milled 1 and d (2:1, 15 min), (b) co-milled 1 and f (1:1, 60 min), (c) 

co-milled 1 and f (2:1, 60 min) and (d) co-milled 1 and h (1:1, 30 min). 

 

 

 

 

Figure 8. SEM images of samples of co-milled 1 and e: (a) 1:1, 120 min milling, (b) 1:1, 60 min 

milling followed by heating at 100 °C for 30 min and (c) 1:1, 60 min milling followed by heating at 

100 °C for 30 min, followed by heating at 180 °C for 30 min. 
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Crystal habit modification through prevention of stacking of molecules and the prevention of disorder 

in the crystal structures of diflunisal was achieved through co-crystallisation and the formation of 

CH…F interactions. Eight new co-crystals are reported, along with a statistical analysis of their H-

bonding motifs.  

 

 

 

 

 


