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Abstract

The increasing amount of Linked Data and its inherent distributed nature have created

for need to developing and researching querying technologies. Inspired by research results

from traditional distributed databases, different approaches for managing federation over

SPARQL Endpoints have been introduced. Such a system consists of a federated engine

as the query mediator and a group of SPARQL endpoints as the data provider. SPARQL

is the standardised query language for RDF, the default data model used in Linked Data

deployments, and SPARQL endpoints are a popular access mechanism provided by many

RDF repositories.

The growth of the number of federated SPARQL query systems creates the necessity for

benchmarking systems to evaluate their performance. Designing a benchmark for a feder-

ated SPARQL query system is a non-trivial task since it consists of heterogeneous systems

(e.g. hardware, software, data structure and data distribution) which are also distributed.

In this thesis, we design a comprehensive benchmark based on the dependencies between

the metrics, datasets and queries. We initially investigate existing federated engines and

compare their features and behaviours. Based on this investigation, we first identify the

metrics that are suitable to assess the performance of federated SPARQL query systems.

We introduce three types of metrics: independent metrics, semi-independent metrics and

composite metrics. Thereafter, we investigate the benefits and the costs associated while

federating a SPARQL query over multiple sources having links between them in the existing

federated engines. Next, we present six approaches to generate a dataset for benchmarking

a federated SPARQL queries. Thereafter, by using those approaches, we generate 9 datasets

and then observe the relationship between the spreading factor of those datasets and the

communication cost. The spreading factor is a dataset metric for computing the distribu-

tion of classes and properties throughout a set of data sources. Finally, we present QFed, a

dynamic SPARQL query set generator for federated SPARQL query benchmarks that takes

into account the characteristics of both datasets and queries along with the metrics.
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Chapter 1

Introduction

The Resource Description Framework (RDF)1 is a World Wide Web Consortium (W3C)2

standard for exchanging data in the Web which allows machines seamlessly to process in-

formation available on the web. At present, a huge amount of data has been converted to

RDF and more and more data have been annotated with RDF. The SPARQL Protocol and

RDF Query Language (SPARQL)3 was officially introduced in 2008 to retrieve RDF data

similar to how the SQL4 query language is used to query relational databases. As the Web

of data grows and more and more applications are developed to exploit the rich informa-

tion, there is also growth in the number of SPARQL endpoints constructing and running

the SPARQL queries over the Web of Data using HTTP. According to Linked Open Data

cloud statistics5, 68.14% of public RDF repositories are equipped with a SPARQL endpoint,

SPARQL is becoming de facto standard for accessing RDF data, as it provides a flexible way

to interact with the Web of Data by formulating a query like SQL in relational databases.

In addition, a SPARQL endpoint can return the query answers in several formats, such as

XML6 and JSON7 which are widely used as data exchange standards in various applications.

But, aggregating data from multiple SPARQL endpoints remains a challenge which received

increased interest in recent years. Thus, we investigate several factors that are related to a

benchmark various engines that merge data from multiple SPARQL endpoints. After that,

we propose several approaches to benchmark those engines.

1RDF: http://www.w3.org/RDF/
2W3C: http://www.w3.org
3SPARQL: http://www.w3.org/TR/rdf-sparql-query/
4SQL: http://www.iso.org/iso/catalogue_detail.htm?csnumber=45498
5Linked Open Data: http://lod-cloud.net/state/
6XML: http://www.w3.org/XML/
7JSON: http://www.json.org

1

http://www.w3.org/RDF/
http://www.w3.org
http://www.w3.org/TR/rdf-sparql-query/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=45498
http://lod-cloud.net/state/
http://www.w3.org/XML/
http://www.json.org


2

To date, distributed RDF repositories applications have been actively developed mostly

in the life science domain since many life science datasets are available on the LOD cloud8

and can be accessed publicly. At the moment, there are more than 40 life science public

datasets which are publicly available on the LOD cloud. The Health Care and Life Sciences

(HCLS) domain advocated Linked Data from its early days, and currently a considerable

portion of the Linked Data cloud consists of datasets from the Linked Data for Life Sciences

(LD4LS) domain [Hasnain et al., 2012]. Currently, there are multiple datasets from HCLS

projects, including bio2rdf 9, the Health Care and Life Sciences Knowledge base10 (HCLS

Kb), linkedlifedata11, Linked Open Drug Data effort12 and the Neurocommons13. These ef-

forts are motivated by and have originated from biomedical facilities in recent years, partially

caused by the decrease cost of acquiring large datasets such as genomics sequences as well

as the trend towards personalised medicine, pharmacogenomics and integrative Bioinformat-

ics, which require accessing and querying life sciences data. [Hernandez and Kambhampati,

2004] described the high demand for biological dataset integration to support life science

researcher. Although the publication of datasets as RDF is a significant milestone towards

the feasibility of querying these healthcare and other biological datasets, to date, creating a

query-able Web of HCLS data is not a trivial task.

In order to get a better understanding of the need of federated SPARQL endpoints, con-

sider two SPARQL endpoints DrugBank14 and Kegg15 (Figure 1.1) that publish information

regarding drugs and compounds. Both the datasets have different useful information about

the same concepts. The oval in Figure 1.1 represents an entity, whereas the box denotes

the value of property. Querying data from three datasets produces drug information such

as a drug’s indication and compounds. In order to answer this question Find the chemical

equations and reaction titles of reactions related to only those drugs which are approved along

with their average Molecular Weight, we should send the query to both SPARQL endpoints.

Kegg contains two concepts, namely Chemical equations and Reaction title whereas the in-

formation like average Molecular Weight and approved drugs are found in the Drugbank

8The LOD (Linked Open Data) Cloud is consists of datasets from multiple domains where DBPedia as
a central hub. The domains include life science, geographic data, media, government, publication as well as
cross domain: http://lod-cloud.net

9http://bio2rdf.org/
10http://www.w3.org/TR/hcls-kb/
11http://linkedlifedata.com/
12http://www.w3.org/wiki/HCLSIG/LODD
13http://neurocommons.org/page/Main_Page
14Drugbank: http://wifo5-03.informatik.uni-mannhem.de/drugbank/
15Kegg: http://s4.semanticscience.org:16036/sparql

http://lod-cloud.net
http://bio2rdf.org/
http://www.w3.org/TR/hcls-kb/
 http://linkedlifedata.com/
http://www.w3.org/wiki/HCLSIG/LODD
http://neurocommons.org/page/Main_Page
http://wifo5-03.informatik.uni-mannhem.de/drugbank/
http://s4.semanticscience.org:16036/sparql
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kegg_resource:Reaction

Drugbank
Kegg

kegg_resource:Compound

kegg_resource:Enzyme
drugbank:drug

drugbank:keggCompoundId

drugType:approved 

drugbank:drugType

molecularWeightAverage value

molecularWeightAverage

kegg:xSubstrate

kegg:xEnzyme

kegg:equation keggImage:urlImage purl:title

equation urlImage ReactionTitle

Figure 1.1: Example data relation from the Drugbank and the Kegg datasets

SPARQL endpoint.

A noteworthy application of distributed RDF repositories is presented in [Cheung et al.,

2009] primarily for supporting neuroscience research. NeuroWiki16 also collects neuroscience

data from multiple life science RDF stores by using Linked Data Integration Framework

(LDIF) [Schultz et al., 2012]. Two interesting works on query federation on Cancer disease

were proposed by [Saleem et al., 2013c; Gonzälez-Beltrn et al., 2012]. Apart from the im-

plementation of federated queries in the life science domain, a query over distributed RDF

datasets system has also been applied to collect research publication information from more

than 20 datasets under the rkbexplorer.com domain [Millard et al., 2010].

Due to a growing demand for applications that collect and exploit data from multi-

ple datasets, federated engines have been actively developed to facilitate data integra-

tion amongst SPARQL endpoints [Rakhmawati et al., 2013]. These federated engines in-

clude DARQ [Quilitz and Leser, 2008], SemWiq [Langegger et al., 2008], Splendid [Görlitz

and Staab, 2011], FedX [Schwarte et al., 2011], Anapsid [Montoya et al., 2012a] and

Avalanche [Basca and Bernstein, 2010]. Therefore, there is a need for benchmarking the

existing federated engines as a main part of a federated SPARQL query framework. A

benchmark system helps to compare the existing federated engines and eventually the re-

sults of benchmarking will help us to choose a suitable federated engine for any semantic

web application that depends on federation. A federated SPARQL query framework is a

16NeuroWiki: http://neurowiki.alleninstitute.org/

rkbexplorer.com
http://neurowiki.alleninstitute.org/
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Metrics

Dataset Queries

Figure 1.2: Dependencies between metrics, datasets and queries

system that consists of a federated engine as the query mediator and a group of SPARQL

endpoints as data providers. The federated engine has several important roles, including:

distributing a query from the clients to SPARQL endpoints, merging the answers from the

SPARQL endpoints and then returning the results back to the clients.

Benchmarking is a process to compare a number of systems based on specific indica-

tors of performance. The outcomes of benchmarking are meant to help improving existing

systems and help to choose the best system for the next implementation. In general, the

evaluations of the performance of a single RDF store and federated RDF stores borrow ideas

from the field of relational database benchmarking [Guo et al., 2007]. In terms of database

benchmarking, the benchmark is usually comprised of three main components: 1) metrics

2) a dataset and 3) queries. In a nutshell, the relationship between these components of a

federated engine can be described in Figure 1.2, where arrows indicate how each component

influences the other components. Typically, the metrics component influences the design and

selection of the dataset and queries. For instance, if we consider runtime as a performance

indicator, then the complexity of the query should be one of the parameters considered when

designing a query benchmark. If the cost of data communication is the performance indica-

tor considered, then the query should be designed to retrieve more results. Also, the dataset

design should consider the number of data sources within the federation framework, the

data distribution, etc [Rakhmawati and Hausenblas, 2012]. The dataset also influences the

generation of queries, in other words the knowledge about the characteristics of the dataset

is necessary in order to generate queries that evaluate specific properties of the federated

SPARQL query system [Görlitz et al., 2012].

FedBench, which is the only benchmark suite for federated SPARQL queries, is useful

to test general purpose federated SPARQL query systems, but it cannot be used for the

performance evaluation of specialised federation systems. This is because the benchmark is
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comprised of predefined static queries and a set (singleton) of data sources which may be com-

pletely irrelevant to the specialised federation system in hand. For example, TopFed [Saleem

et al., 2014, 2013a] is a specialised federation system, particularly designed for the Linked

Cancer Genome Atlas (LTCGA17) [Saleem et al., 2013a] data set. However, to the best

of our knowledge, none of the existing SPARQL query federation benchmarks include the

LTCGA data set and queries. Similarly, SAFE18 is developed for SPARQL query federation

over linked statistical data using the RDF DataCube vocabulary19 and thus it is essential to

test this system with RDF DataCube data sets and corresponding SPARQL queries. In a

nutshell, to test such specialised systems, we need a dynamic query generator which can gen-

erate a variety of federated SPARQL queries over the given set of data sources. Apart from

that, the existing evaluations for assessing the federation over SPARQL endpoints [Montoya

et al., 2012c; Schwarte et al., 2012] usually run their experiment over different datasets and

different query sets. In fact, the performance of the federated engine is influenced by both

the dataset and the query set. As a result, the performance results may vary. For bench-

marking, a better comparison of federated engines performance can make with either static

query sets over different datasets or static datasets with various query sets. Prasser [Prasser

et al., 2012] have implemented three partitions for evaluating a distributed RDF repositories

system: naturally-partitioned, horizontally-partitioned and randomly-partitioned. Compar-

ing values of a specific performance metric across different data distributions is particularly

useful for investigating which characteristics of a dataset that influence the performance of

a federated engine. Moreover, running an evaluation over different datasets can show the

flexibility of an engine for various datasets. Therefore, in this thesis, we propose queries and

a dataset generator for benchmarking federated SPARQL queries. With respect to metrics,

the existing evaluations use metrics that only assess the performance of a federated engine

regardless of the existence of SPARQL endpoints. In fact, the SPARQL endpoints contribute

to the performance of a federated engine. Thus, we investigate performance metrics that

assess both the federated engine and the SPARQL endpoints20

17Linked TCGA: http://tcga.deri.ie/
18SAFE: http://linked2safety.hcls.deri.org:8080/SAFE-Demo/
19RDF DataCube: http://www.w3.org/TR/vocab-data-cube/
20Please note that the federated engines could be assessed from a variety of viewpoints, e.g., completeness,

accuracy. In this thesis we focus on performance, we assume that query completeness and accuracy have a
high dependency on SPARQL endpoint capacity and configuration (The detail explanation can be found at
page 10)

http://tcga.deri.ie/
http://linked2safety.hcls.deri.org:8080/SAFE-Demo/
http://www.w3.org/TR/vocab-data-cube/
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1.1 Problem Statement

1.1.1 Challenges

1. Multiple Locations

Federation over SPARQL endpoints has many similar characteristics to distributed

relational databases as in both cases the data are distributed in multiple locations.

Communication between machines is required for executing a query. As a result, the

network can influence the performance of federated SPARQL query engines. The net-

work location of SPARQL endpoints will contribute to the performance of a federated

engine. For instance, the response time of a SPARQL endpoint that is located far away

from the federated engine is slower than others. Eventually, the execution time of the

federated engine takes longer.

2. Heterogeneous Systems

Another challenge related to accessing datasets from multiple locations, as shown in

Figure 1.3, is that the system can consist of heterogeneous components in terms of

the hardware, software and dataset characteristics. For example, the federated engine

runs on a machine that has high hardware specifications, while the SPARQL endpoints

are set-up on the machines with low hardware specifications. Consequently, this slow

query execution in a federated engine since the federated engine must wait for the

SPARQL endpoints to execute a subquery. Furthermore, each SPARQL endpoint may

use different underlying software that has different capabilities for managing RDF data.

Apart from that, each SPARQL endpoint stores datasets with different characteristics

such as the dataset size, dataset structure, etc.

3. An Holistic Benchmark

Each component in a federated system can contribute to the performance of the whole

federation framework. Thus, it is challenging to evaluate the federation framework

performance. Ideally, we would like to benchmark that evaluates both the federated

engine and SPARQL endpoints in a holistic way. Then different federated engines could

be better assessed and compared, but most current evaluation approaches disregard the

existence of the SPARQL endpoint server. Hence, the existing approaches for query

optimisation in federated engines only focus on getting results in a timely manner

without considering the capability of the SPARQL endpoint.
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Figure 1.3: Heterogeneity in federated SPARQL endpoints framework

1.1.2 Research Question

Considering the challenges discussed in the previous section, this thesis addresses the follow-

ing research question:

How can we design a comprehensive SPARQL query federation

benchmark that considers the dependencies between metrics, dataset

and queries?

The research question can be broken down as follows:

• Q1 : What are suitable metrics for assessing the performance of a federated SPARQL

query framework?

– A metric should not depend on the hardware environment.

A benchmark should produce the same results in a range of hardware environ-

ments (i.e. small and large scale systems) if the federated engine, SPARQL end-

points, queries and datasets are the same as the ones used in previous evaluations.

It is important to establish a gold standard when people re-run a similar evalua-

tion from the prior conducted evaluation. The gold standard can illustrate what
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the next evaluation result will look like. If the next evaluation produces a result

that is not in the range of the gold standard, this could be an indication that some-

thing went wrong while re-running the evaluation. Possible issues could include

an incompatible system issue, a wrong configuration, etc. Therefore, a bench-

mark should be widely examined and approved by the community that needs it.

The community contributes to fostering benchmark quality by testing the bench-

mark and sharing the benchmark results. Such benchmarks already exist in the

database community since the database field is more mature than the seman-

tic web field. A notable database benchmark is TPC21 where numerous vendors

contribute by evaluating their system and by sharing the evaluation configura-

tion and results, with the objective of verifying and standardising the evaluation

process. In this way, a researcher cannot claim that their system can surpass

other systems without verification. The federated SPARQL query field is still far

away from this kind of maturity. To the best of our knowledge, the Linked Data

Benchmark Council (LDBC) [Boncz, 2013] is the only Linked Data benchmark

that adopts the TPC style. Nevertheless, as of this writing, LDBC is still in the

early stages of its development and does not handle federated SPARQL queries.

Thus, we investigate a set of independent metrics for assessing the performance

of the query federation framework.

– A metric should assess both the federated engine and SPARQL end-

points.

In light of the above, the performance of the federated SPARQL query framework

is influenced by the federated engine and a group of SPARQL endpoints. The

capabilities of the SPARQL endpoint server while answering a query (e.g how

quickly it executes a query, how many queries can be processed in a certain

interval time, how many rows can be returned as a query answer) determine the

final results that are delivered to the client. In order to obtain a meaningful

summary of the evaluation, a metric should assess both the federated engine and

the SPARQL endpoints. In this way, eventually, we can investigate which factors

contribute the most to the query execution.

• Q2 : Which characteristics of a dataset influence the performance of the query federa-

tion framework?

21TPC: http://www.tpc.org

http://www.tpc.org
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A federated SPARQL query framework consists of a group of autonomous SPARQL

endpoints which handle different dataset characteristics. The dataset characteristics,

particularly influence the source selection stage because most federated engines select

relevant SPARQL endpoints that potentially answer the query before executing a query.

There are three main characteristics of the query federation dataset – content, size and

structure – which can be explained as follows:

– Content

With respect to dataset content, data redundancy and distribution can affect the

outcome of the source selection. If the same data occurs in multiple sources,

then there are more sources that can answer the query. This condition leads to

increased communication cost between the federated engine and the SPARQL

endpoints. Eventually, the client also receives redundant answers which further

increases the communication cost between the client and the federated engine.

A single query may be able to be answered by multiple sources. Hence, the

distribution of data is highly related to the number of SPARQL endpoints that

contribute in answering a query. If related data are spread across the dataset, a

federated engine should split a query into several sub queries and distribute them

to the relevant SPARQL endpoint. As such, the number of requests delivered to

the SPARQL endpoints tends to be much higher that actually needed.

– Size

The dataset size of each SPARQL endpoint might be different, for example a

SPARQL endpoint handling the smallest dataset may execute a query faster than

the others. Inspired by a RDF single repository clustering, we attempt to dis-

tribute the dataset size equally amongst the sources to keep the workload balanced

amongst the SPARQL endpoints. In terms of the RDF dataset, the dataset size

includes the number of triples, number of vertexes, number of properties, number

of classes, etc.

– Structure

The structure of an RDF dataset expresses the relationship between properties

and entities of the dataset [Duan et al., 2011]. Duan stated that the dataset is

more structured, if each entity has all properties that belongs to the same class.

To calculate the dataset structure, Duan proposed a metric called coherence. In

terms of a federated SPARQL query, if the average coherence is close to one, then
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the related triples are located in the same source.

• Q3 : What should be considered when designing a query for federated SPARQL queries

benchmark?

After addressing the first and second research questions, we formulate a query for

benchmarking federated SPARQL queries based on both dataset characteristics and

the performance metrics.

– Characteristics of the dataset

It should be possible to generate queries from any given dataset. In order to

address this task, we should have a good knowledge of the characteristics of the

dataset beforehand. We can tune the level of complexity of the query based on

that knowledge. The characteristics of the dataset used for generating a query

are statistical information about dataset content (e.g the frequencies of properties

and classes, etc) and distributed properties and classes, etc.

– Benchmark metrics Choosing a specific metric for assessing a system is an in-

dividual decision. In some cases, when we consider a metric as an indicator, the

result may be compared to another metric result. As an example, if we choose

the volume of data transmission between the federated engine and SPARQL end-

points as a metric, then the completeness result might not be achieved when

the expected results from the SPARQL endpoint requires more than the capac-

ity of the SPARQL endpoint. Figure 1.4 shows an incoming query asking for

information about associated students and courses. The SPARQL endpoint con-

taining student information stores 3000 students, while the SPARQL endpoint

about course stores 100 courses that are taken by the students. The federated

engine delivers a student query to the Student SPARQL endpoint. The Student

SPARQL endpoint only returns 2000 results since the maximum results that can

be returned is limited to that number. Consequently, the answer received by the

user is incomplete, and to tackle this issue, the federated engine may deliver stu-

dent query in two steps. However, in this way, the volume of data transmission

increases.

As we described above the completeness results depends on the capacity of

SPARQL endpoints. The SPARQL endpoint is generally not in our control, there-

fore the completeness result is not considered as a metric in this work. Aside
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Figure 1.4: Example of query execution for searching students along with their courses

from the completeness results, we do not take into account accuracy as one of

main metrics because the data stored in the SPARQL endpoints can change fre-

quently[Umbrich et al., 2010]. Such condition can influence the accuracy of a

query results.

The relationship between the metrics has to be carefully investigated if we want to

combine them, otherwise, a metric that is more suitable to our situation should

be selected. With respect to query generation, we choose the volume of data

transmission as a metric because the query federation framework involves net-

work communication in order to execute a query. Based on the first and second

research questions, we can investigate which of the performance features influence

the volume of data transmission between the federated engine and the SPARQL

endpoints.

1.2 Hypothesis

In this thesis, we evaluate several existing federated engines by using various partitioning

strategies. The aim of these partitioning strategies is to distribute data across SPARQL

endpoints. By distributing data, various of characteristics of datasets, such as the size,

content and structure can be generated.

In order to quantify the distribution of the data, a metric is proposed to reveal the char-

acteristics of a dataset. Based on the characteristics of the dataset and selected performance

metric, set of queries are generated.

Thus, our hypothesis can be summarised as follows:

Given a set of various characteristics of data-sources, we can evalu-

ate a federated SPARQL query framework that take into account the

relationship between metrics, queries and datasets.



1.3. Contribution and Thesis Structure 12

1.3 Contribution and Thesis Structure

This thesis aims to present a comprehensive evaluation of a SPARQL query federation frame-

work.

With respect to the metrics component, we investigate a set of environment independent

metrics, introduce a set of metrics for assessing both the federated engine and the SPARQL

endpoints and propose a composite metric for merging different performance metrics.

With respect to the dataset component, we design and develop a complementary

lightweight tool for generating the dataset benchmark. Furthermore, we propose two spread-

ing factors as dataset metrics for computing the distribution of classes and properties

throughout a set of sources.

With respect to the queries component, we design a set of queries for benchmarking

a specialised SPARQL query federation system which normally has a specific use-case or

dataset (e.g., TopFed22 [Saleem et al., 2014, 2013a], SAFE etc.). As the final output, we

provide a tool for generating a set of queries from any given dataset.

To begin with, we carry out a survey to observe existing federated engines. We then

compare the works and behaviours of those federated engines (i.e., how they parse queries,

select the relevant sources, etc). Finally, we list challenges that should be tackled in the

development of the federated engines. This survey is useful to understand the concept

of various federated engines. Based on this information, we can design a comprehensive

evaluation for those federated engines.

Based on our findings about the general architecture of federated engines in the survey

and the data transmission unit, we investigate a set of independent metrics that do not

depend on the hardware environment. After that, we propose semi-independent metrics

which are derived from the independent metrics. To give a meaningful summary of federated

engines comparisons, we then introduce a composite metric. To generate a composite metric,

we assign a weight for each performance value of a query and merge the performance metrics

values in a single value by using the geometric mean.

Thereafter, we observe the characteristics of a dataset in the federation system environ-

ment. Since link between two datasets is one of the characteristics of the dataset, we thus

begin by investigating the costs and benefits of link between the datasets while executing a

federated query. We then implement nine data distribution strategies to create a dataset for

benchmarking. Furthermore, we introduce two spreading factors as dataset metrics, namely

22TopFed federation engine: https://code.google.com/p/topfed/

https://code.google.com/p/topfed/
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the spreading factor of a dataset and the spreading factor of a dataset associated with a

query set. The metrics calculation is based on the occurrences of classes and predicates. We

also observe the relationship between the spreading factors and communication cost while

executing a federated SPARQL query.

We then design a query for benchmarking a SPARQL query federation framework based

on the characteristics of the dataset and the communication cost between the federated

engine and SPARQL endpoints. To generate a query involving more than one source, we

identify the query join patterns from different sources. We then extend the query by adding

query features that can increase the communication cost such as the data types and the

SPARQL query keywords.

The remainder of the thesis is structured as follows:

• Chapter 2 provides background on Semantic Web standards, in particular, we introduce

the RDF and SPARQL technologies. We also introduce the Linked Data concept and

the infrastructure for querying over Linked Data. In the last section of this chapter,

we focus primarily on the SPARQL query federation approach;

• Chapter 3 presents the state of the art on SPARQL query federation, then we give a

comparison between existing federated engines. Additionally, we identify appropriate

features and challenges in terms of developing a federated engine;

• Chapter 4 describes existing RDF benchmark suites. Further we provide a list of

evaluation approaches to assess the performance of federated engines. Finally, we

detail our proposed benchmark metrics;

• Chapter 5 explains the benefits and costs of interlinking in SPARQL query federation.

We describe our interlinking definition and investigate the impact of interlinking on

the performance of federated SPARQL queries.

• Chapter 6 details several approaches for generating a dataset for benchmarking

SPARQL query federation framework.

• Chapter 7 describes our metrics for calculating the distribution of the data in a dataset

as a component of the characteristics of a dataset. Finally, we investigate the relation-

ship between the metrics and the performance of a federated engine by executing

federated SPARQL queries over the generated datasets introduced in this work.
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• Chapter 8 explains a list of requirements for designing a query for benchmarking a

SPARQL query federation framework. Later on we detail our methodology for gener-

ating queries for benchmarking a federated SPARQL query system;

• Chapter 9 summarises our contributions, discusses the limitations of this work, and

suggest future directions.

1.4 Impact

Parts of the work presented herein have been published in various international workshops

and conferences, listed here in chronological order.

• we presented our preliminary results that investigate the impact of data distribution

on federated SPARQL query at the DIDAS Workshop, IEEE Sixth International Con-

ference on Semantic Computing 2012 [Rakhmawati and Hausenblas, 2012]. This work

is presented in Chapter 6;

• we presented a survey of the existing federated engines at the Knowledge Engineering

and the Semantic Web Conference 2012 [Rakhmawati and Umbrich, 2013] and then

extend it in [Aini Rakhmawati et al., 2013]. This survey is presented in Chapter 3;

• our investigation of metrics for federated SPARQL query benchmark was presented

at the Information Systems International Conference 2013 [Rakhmawati, 2013a]. This

work is discussed in Chapter 4;

• we presented a study of the costs and benefits of interlinking on federated SPARQL

query performance in the International Conference on Web and Information Systems

2014 [Rakhmawati et al., 2014a]. The findings of this study are presented in Chapter 5;

• In the same conference [Rakhmawati et al., 2014b], we introduced a composite metric

to merge the performance metric value results into a single metric. This metric is part

of the content of Chapter 4. Additionally, we proposed spreading factor metrics for

calculating the characteristic of a dataset. Along this line, we provide a tool for gen-

erating datasets for federated SPARQL query benchmark. These works are presented

in Chapter 6 and 7

• We presented a tool for generating a set of queries for benchmarking a federated engine



1.5. Thesis Scope 15

in Chapter 8). This tool was presented in the International Conference on Information

Integration and Web-based Applications and Services 2014 [Rakhmawati et al., 2014c].

1.5 Thesis Scope

In this study, we focus primarily on federation over SPARQL endpoints infrastructure. Other

infrastructures that use query languages such as RQL23, RDQL24, SeRQL25 are beyond the

scope of this study. A database benchmark suite is a completed system which consists of

test driver, dataset and queries.

With respect to the benchmark, we do not develop a benchmark suite, but we provide a

tool for generating a dataset and queries for benchmarking purposes. The generated dataset

can not solve the problem in federated Linked Open Data environment (e.g. data distribu-

tion) because the dataset generation is only controlled by the Linked Data publisher. The

aim of our dataset generation is to have datasets with different characteristics for bench-

marking a federated system.

23RQL: http://139.91.183.30:9090/RDF/RQL/
24RDQL: http://www.w3.org/Submission/RDQL/
25SeRQL:http://www.w3.org/2001/sw/wiki/SeRQL

http://139.91.183.30:9090/RDF/RQL/
http://www.w3.org/Submission/RDQL/
http://www.w3.org/2001/sw/wiki/SeRQL


Chapter 2

Background

“Knowledge of what is does not open the door directly to what should

be.”

—Albert Einstein

This chapter describes background contexts of this thesis and introduces several notations

that are used in this thesis. In particular, we introduce the Semantic Web concepts: RDF,

Turtle and SPARQL. Further, we explain the Linked Data concepts and the infrastructure

for querying data over multiple sources.

2.1 Semantic Web

The core idea of the Semantic Web is to make information available on the Web machine-

processable [Berners-Lee et al., 2001]. In the early phase, a first solution was to describe web

content with metadata which allows a machine to understand the meaning of the content

and then process it for other applications.

2.1.1 Resource Description Format(RDF)

In summary, RDF triples are formally defined in Definition 2.1.

Definition 2.1 Let U be a set of all URIs1, B be a set of all blank-nodes2, L be a set of

1URI: http://www.w3.org/TR/rdf11-concepts/#section-IRIs
2blank-nodes: http://www.w3.org/TR/rdf11-concepts/#section-blank-nodes

16

http://www.w3.org/TR/rdf11-concepts/#section-IRIs
http://www.w3.org/TR/rdf11-concepts/#section-blank-nodes
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disease:382 "Estrogen resistance"

rdfs:label

Figure 2.1: Representation of a RDF statement.
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rdf:type

"Estrogen resistance"
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diseasome:disease

diseasesome:size 1

disease:383

"Ethylmalonic encephalopathy"

rdfs:label

rdf:type

dailymeddrug:363

diseasesome:possibleDrug

diseasesome:size

Figure 2.2: Representation of RDF triples

all Literals3, then a triple tps = (s, p, o) ∈ (U ∪ B)× U × (U ∪ L ∪ B) where s is called the

subject, p is called the predicate and o is called the object.

There are several formats for serialising RDF data, namely RDF/XML [Gandon and

Schreiber, 2014], N3 [Berners-Lee, 1998], N-Triples [Beckett, 2014] and Turtle [Beckett

et al., 2014]. Throughout this thesis we use Turtle syntax to denote RDF triples, triple

patterns and graphs. Given RDF triples as shown in Figure 2.4, then we can write these

triples in Turtle syntax as follows:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#label> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix diseasome: <http://wifo5-03.informatik.uni-mannheim.de/diseasome/resource/diseasome> .

@prefix disease: <http://wifo5-03.informatik.uni-mannheim.de/diseasome/resource/diseases> .

@prefix dailymeddrug: <http://wifo5-03.informatik.uni-mannheim.de/dailymed/resource/drugs> .

disease:382 rdf:type diseasome:diseases .

disease:382 rdfs:label "Estrogen resistance"^̂ xsd:string .

disease:382 diseasome:possibleDrug dailymeddrug:363 .

disease:382 diseasome:size "1"^̂ xsd:integer .

disease:383 rdf:type diseasome:diseases .

disease:383 rdfs:label "Ethylmalonic encephalopathy"^̂ xsd:string .

disease:383 diseasome:size "1"^̂ xsd:integer .

In the first five lines, we declare prefixes that are used in RDF triples. The prefixes

3literals: http://www.w3.org/TR/rdf11-concepts/#section-Graph-Literal

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2001/XMLSchema#
http://wifo5-03.informatik.uni-mannheim.de/diseasome/resource/diseasome
http://wifo5-03.informatik.uni-mannheim.de/diseasome/resource/diseases
http://wifo5-03.informatik.uni-mannheim.de/dailymed/resource/drugs
http://www.w3.org/TR/rdf11-concepts/#section-Graph-Literal
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rdf, rdfs and xsd are frequently used in RDF triples. For the following RDF triples in

this thesis, we will omit all prefixes. A full list of prefixes used in this thesis can be found

in Appendix A. Literals are declared between double quotes ("") as shown in "Estrogen

resistance" and followed by double-caret delimiter (^̂ ) and the data type. We may use

either white-space, tabs, or newlines to delimit a subject, a predicate and an object. A dot

(.) must be appended at the end of each triple.

Further, to abbreviate rdf:type, we can replace rdf:type with a:

disease:382 a diseasome:diseases ;

Triples which share the same subject can be grouped together using a ; semi-colon de-

limiter:

disease:382 a diseasome:diseases ;

rdfs:label "Estrogen resistance" ;

diseasome:possibleDrug dailymeddrug:363 ;

diseasome:size "1"^̂ xsd:integer .

2.1.2 SPARQL

SPARQL is a query language for RDF. This section presents the syntax and semantics of

the SPARQL.

1. Triple Pattern

We initially describe a triple pattern as a core component of a SPARQL query. Like a

triple statement, a triple pattern also consists of subject, predicate and object. Apart

from those three components, it may contain variables that can be located either on

the subject, predicate or object positions, which can be defined as follows:

Definition 2.2 A query consists of a set of triple patterns τ which is formally defined

as τ(s, p, o) ∈ (U ∪ V )× (U ∪ V )× (U ∪ L ∪ V ) where V is a set of all variables.

For instance, given the RDF dataset depicted in Figure 2.2, we can retrieve a list

of diseases by using the following triple patterns: ?disease is a variable that can

be replaced with any valid value in that RDF dataset. A variable must be started

by a question mark(?). Triple pattern ?disease a diseasome:diseases is matched
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Listing 2.1: Example of a SPARQL query for retrieving all triples relating to
diseasome:diseases

select {

?disease a diseasome:diseases .

}

against the two following triples: disease:382 rdf:type diseasome:diseases .

disease:383 rdf:type diseasome:diseases .

2. Basic Graph Pattern

A Basic Graph Pattern (BGP) is a set of triple patterns that is delimited with braces.

Like RDF triples, BGP can also be modelled as a graph. The definition of BGP can

be found at 2.3. Given the following BGPs in Query 2.2 that aims to retrieve a list of

diseases and their drugs from the graph in Figure 2.2, then we can present the above

BGP as a graph in Figure 2.3.

Definition 2.3 Given a triple pattern τ and a Basic Graph Pattern BGP , var(τ) is

a set of variables in triple τ and var(BGP ) = ∪τ∈BGPvar(τ). Let f(τ) be a mapping

function that generates the triples after replacing var(τ) , then f(τ) = ∪τ∈BGPf(τ)

Listing 2.2: Example of a SPARQL query for retrieving a list of diseases and its drugs

SELECT * {

?disease a diseasome:diseases .

?disease rdfs:label ?name .

?disease diseasome:possibleDrug ?drug .}

Based on the source graph in Figure 2.2 and the BGP in Figure 2.3, we can see

which parts of the source graph are matched against the BGP in Figure 2.4. To be-

gin, we can start matching the first triple pattern of the BGP to the source graph.

Then the matching process is followed by the second and third triple patterns of

the BGP. Since disease:383 does not have a property diseasome:possibleDrug,

we only retrieve the following result: ?disease<-disease:382,?name<-Estrogen

resistance,?drug<-dailymeddrug:363
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?disease
rdf:type

?name

rdfs:label

?drugdiseasesome:possibleDrug

diseasome:disease

Figure 2.3: Example of a SPARQL basic graph pattern (BGP) represented as a graph.

disease:382

rdf:type

"Estrogen resistance"

rdfs:label

diseasome:disease

diseasesome:size 1

disease:383

"Ethylmalonic encephalopathy"

rdfs:label

rdf:type

dailymeddrug:363

diseasesome:possibleDrug

diseasesome:size

Figure 2.4: Matching parts of the source graph in Figure 2.2 and BGP in Figure 2.3

3. Joining BGPs

This section explains about joining BGPs in a SPARQL query. The joining BGPs can

influence performance of a query engine. There are three approaches to join BGPs:

inner join, left outer join and union. If we do not specify any operator in-between

BGPs, the BGPs are combined by using the inner join scheme. An OPTIONAL keyword

allows us to do left outer join between BGPs. The UNION operator combines the results

from two BGPs.

Looking at our previous query example in Listing 2.2, the results of the query in Listing

2.3 include disease:383 when we insert an OPTIONAL keyword.

We retrieve the following results from the joining BGPs in Listing 2.3:

(?disease<-disease:382,?name<-Estrogen resistance,?drug<-dailymeddrug:363),

(?disease<-disease:383,?name<-Ethylmalonic encephalopathy,?drug<-NULL)

Unlike UNION in SQL, we may be able to combine two BGPs with an UNION in

SPARQL even though the BGPs do not share any common variable. The following

BGPs and an UNION keyword aim to retrieve results from the source graph in Figure

2.2:
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Listing 2.3: Example of a SPARQL query for retrieving a list of diseases and its drugs by
using the OPTIONAL keyword

SELECT *

{

?disease a diseasome:diseases .

?disease rdfs:label ?name . }

OPTIONAL

{

?disease diseasome:possibleDrug ?drug . }

}

Listing 2.4: Example of a SPARQL query for retrieving a list of diseases information by
using an UNION keyword

SELECT * {

{ disease:383 rdfs:label ?name . }

UNION

{ disease:382 diseasome:possibleDrug ?drug . }

}

Each row of the results has two columns: ?name and ?drug :

(?name<-Estrogen resistance,?drug<-NULL),

(?name<-NULL ,?drug<-dailymeddrug:363)

The previous example might not be a useful query, but it shows that the presence of

the UNION keywords in the query can return an answer even if both BGPs have different

variables.

4. Query Forms

As we stated in Chapter 1, query is one of the main components in a federated SPARQL

benchmark system. We will create a query set with various query forms in Chapter 8.

In the previous section, we explained the SELECT query that is a popular query form in

SPARQL that is used to retrieve matched values for variables in the query. SPARQL

also supports other query forms, namely:

• CONSTRUCT is similar to SELECT, but it returns an answer in an RDF graph. For

example, given Figure 2.2 as a source graph, then we ask for all disease triples

that have size one by using the query in Listing 2.5. The CONSTRUCT query returns
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Listing 2.5: Example of a SPARQL CONSTRUCT query for retrieving a list of diseases with
size 1

CONSTRUCT { ?disease ?p ?o . }

WHERE

{ ?disease diseasome:size 1 .

?disease ?p ?o }}

seven triples that are exactly the same as the source graph in Figure 2.2.

• ASK aims to check whether or not a given graph pattern matches to any of triples

in the source. This query form returns a Boolean value. Suppose that we would

like to check the presence of diseases with size one in the source graph in Figure

2.2, then we can deliver the following query to a SPARQL endpoint:

Listing 2.6: Example of a SPARQL ASK query to check a list of diseases with size 1

ASK

{ ?disease diseasome:size 1 . }

• DESCRIBE retrieves all information about a given resource. For instance, we re-

quest all information about disease:383:

Listing 2.7: Example of a SPARQL DESCRIBE query for retrieving all triples relating to
disease:383

DESCRIBE { disease:383 }

then the SPARQL endpoint returns the following response: disease:383

rdf:type diseasome:diseases .

disease:383 rdfs:label "Ethylmalonic encephalopathy"^̂ xsd:string .

disease:383 diseasome:size "1"^̂ xsd:integer .

5. Retrieving data based on certain condition

BGPs matching is inadequate to answer a complex situation. Hence, we can insert a

FILTER keyword to retrieve data that meet our specified condition. For example, we

execute the following query against the source graph in Figure 2.2:
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Listing 2.8: Example of a SPARQL query for retrieving all diseases which disease’s size is
greater than one by using the FILTER

SELECT * {

?disease a diseasome:diseases .

?disease rdfs:label ?name .

?disease diseasome:size ?size .

FILTER (?size > 1)

}

The purpose of the query in Listing 2.8 is to retrieve all diseases information which

disease size is greater than one. As a result, we obtain an empty result since all size of

the diseases in the graph is one.

6. SPARQL Algebra

SPARQL graph pattern can be translated in to a SPARQL algebra form. The SPARQL

algebra in this work follows the SPARQL 1.1 document [Harris and Seaborne (eds),

2013] from W3C. A simple BGP pattern (?s ?p ?o) can be expressed as BGP [triple

?s ?p ?o]. A single BGP may consist of more than one triple. The results of graph

pattern matching is grouped by a ToList keyword. For instance, query in Listing 2.2

can be translated in Listing 2.9.

Listing 2.9: Example of a SPARQL algebra for query in Listing 2.2

(ToList

(BGP

[triple ?disease a diseasome:diseases]

[triple ?disease rdfs:label ?name ]

[triple ?disease diseasome:possibleDrug ?drug ]

))

The OPTIONAL graph pattern is left outer join. Thus, the OPTIONAL keyword is

converted to leftjoin keyword in a SPARQL algebra. Aside from that, the OPTIONAL

graph pattern is followed by true keyword. The example of usage of OPTIONAL

SPARQL query in Listing 2.3 can be expressed in a SPARQL algebra in Listing 2.10

In a SPARQL algebra, the UNION operator is located before the list of BGPs com-

bined, as seen in Listing 2.4
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Listing 2.10: Example of a SPARQL algebra for query in Listing 2.3

(tolist

(leftjoin

(BGP

[ triple ?disease a diseasome:diseases]

[ triple ?disease rdfs:label ?name ]

)

(BGP

[triple ?disease diseasome:possibleDrug ?drug ] )

true

))

Listing 2.11: Example of a SPARQL algebra for query in Listing 2.4

(tolist

(union

(BGP

[ triple disease:383 rdfs:label ?name ] )

(BGP

[ triple disease:382 diseasome:possibleDrug ?drug ] )

))

The FILTER keyword is also written before the set of BGPs that contain the variables

in the FILTER expression. An example of a SPARQL algebra that contains FILTER

is shown in Listing 2.12.

Listing 2.12: Example of a SPARQL algebrafor query in Listing 2.8

(tolist

(filter (?size > 1)

(BGP

[triple ?disease a diseasome:diseases]

[triple ?disease rdfs:label ?name ]

[triple ?disease diseasome:size ?size ]

)))
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2.2 Linked Data

As the Semantic Web matured, it gave rise to an initiative to make RDF data accessible

and browsable. Eventually, such condition will allow us to link between RDF data from

various places. This initiative is called Linked Data which is originally inspired by the global

network of documents that are connected by hyper-links in the World Wide Web. In Linked

Data, structured data in one data source is linked to other structured data from other data

sources.

The idea of Linked Data was coined by Tim Berners Lee, who introduced four design

rules for publishing the Linked Data [Berners-Lee, 2006]:

1. use URIs as the unique identifier of entities

2. use HTTP URIs so the information about the resource can be looked up on the web

3. use a standard format to publish the information.

4. include other links in the information so that they can discover related information

about the resource.

With the advent and rapid adoption of Linked Data, we can now assemble a query

over multiple public data sources to retrieve a meaningful and rich information. In the

examples above, we only query data from the Diseasome dataset. In order to obtain further

information about a drug, we need to combine data from the Diseasome with other datasets

such as Dailymed4 dataset. As illustrated in Figure 2.5, we span the source graph in Figure

2.2. Now we have the RDF data from the Dailymed and the Diseasome datasets. These two

datasets are connected by using diseasome:possibleDrug predicate.

2.2.1 Querying over Linked Data Infrastructure

As Linked Data grew in popularity, various infrastructures have been designed to cope with

data integration between RDF data sources. Based on data source location, the infras-

tructures for querying Linked Data can be divided in two categories, namely a centralised

repositories and distributed repositories.

4Dailymed contains information about branded drugs http://wifo5-03.informatik.uni-mannheim.de/

dailymed/

http://wifo5-03.informatik.uni-mannheim.de/dailymed/
http://wifo5-03.informatik.uni-mannheim.de/dailymed/
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disease:382rdf:type

"Estrogen resistance"

rdfs:labeldiseasome:disease

dailymeddrug:363

dailymed:drug

rdf:type

dailymed:name

"Vivelle"

dailymed:possibleDiseaseTarget

Diseasome

Dailymed

diseasesome:size

1

diseasesome:possibleDrug

Figure 2.5: Example of Linked Data implementation on Diseasome and Drugbank datasets.

2.2.2 Centralised Repository

As shown in Figure 2.6, the characteristics of a centralised repository are similar to the char-

acteristics of a data warehouse in relational databases, where data are collected in advance

before query processing. Watson [d’Aquin et al., 2007] provides a central repository infras-

tructure for crawling, analysing and indexing RDF Data. Sindice [Tummarello et al., 2007]

is another example of a centralised repository which indexes data based on URIs, inverse

functional properties, and keywords. Sindice also provides APIs and a SPARQL endpoint

for accessing the data.

The single data location used in this infrastructure offers the benefit of not requiring

network communication and source selection. As such, the query execution time can be

minimised. However, data synchronisation could be a problem in this infrastructure when

the data is often changing [Umbrich et al., 2012b].

Another drawback is that this approach is a resource intensive when applied to large scale

data. Further, integrating data from multiple sources requires a high maintenance system.

2.2.3 Distributed Repositories

In contrast to a centralised repository, querying over Linked Data in a distributed repositories

environment does not require crawling the data beforehand. As sources need not be collected

in a single repository, the data is more up-to-date than from a centralised repository’s data,

but query processing time takes longer. The system only invests little resources such space

and time because of no earlier crawling data phase. There are three different systems of

distributed repositories: P2P, link traversal and federation, which are discussed in more
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Figure 2.6: Centralised repository

detail in the following subsections.

1. P2P P2P is a system that consists of a group of autonomous peers that are connected

to each other. These connections allow them to exchange data if they are a pair

of peers or they find a route via intermediate peers that can connect them. The

P2P can be divided into two types, namely Pure P2P systems and centralised P2P

systems. Pure P2P System is a system where all peers have the same role without any

central component that acts as a mediator in this system. As shown in Figure 2.7(a),

all peers communicate with other peers until they find an answer for an incoming

query. For centralised P2P systems (Figure 2.7(b)), a peer plays a critical role to

index data summary in selecting potential peers that are able to answer a given query.

Edutella [Nejdl et al., 2002] implements a centralised P2P paradigm which uses RDF

for representing metadata about each peer and exchanging data between the peers.

2. Link Traversal

Discovering data by following HTTP URIs is the basic idea in a link traversal system.

As shown in Figure 2.8, without any data knowledge, relevant data sources are de-

tected during runtime execution [Hartig, 2011]. Link traversal provides a high level of

freshness of the data since the data is directly accessed from data sources. For execut-

ing a query, this system takes a single triple pattern as a starting point. Determining

the starting point is a vital task in this system because it influences the flow process

of the whole query execution. A wrong starting point can increase the number of in-

termediate results and eventually increase bandwidth usage. A noteworthy approach
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Figure 2.7: P2P Systems
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Figure 2.8: Link Traversal

that proposed link traversal is LTBQE [Hartig, 2011]. Later on, Lidaq [Umbrich et al.,

2012a] extended LTBQE to support an unbound predicate in query execution.

3. Federation

Query federation uses a federated engine as a query mediator to transform a user query

into several sub queries and generates results from the integrated data sources. There

are two kinds of frameworks for query federation: federation over single repositories

(Figure 2.9) and federation over SPARQL endpoints (Figure 2.10). In the federation

over single repositories such as Sesame Sail Federation5, the federated engine delivers

sub queries by using a native API. However, not all repositories support this API. A

federation over SPARQL endpoints system requires an endpoint as a bridge between

5Sesame AliBaba: http://www.openrdf.org/alibaba.jsp

http://www.openrdf.org/alibaba.jsp
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Figure 2.9: Federation over single RDF repositories
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Figure 2.10: Federation over SPARQL endpoints

the federation layer and source (we will detail this type of federation in Chapter 3). In

majority, current federated engines are compatible with this type, since RDF stores are

generally equipped with a SPARQL Endpoint. Several federated engines [Langegger

et al., 2008; Acosta and Vidal, 2011] also offer a wrapper for supporting other data

formats like CSV and XML.



Chapter 3

Querying over Federated SPARQL

Endpoints —A survey of the State of

the Art*

This chapter first discusses federation feature in SPARQL 1.1. We then give an overview

of federation architectures, explain six different ways to do query federation, and detail

the steps of querying over SPARQL endpoints. Our main contribution of this chapter is a

comparison of the different existing federated engines based on their strategies such as source

selection and execution plan. By knowing the characteristics of a federated engine, we can

identify what factors influence the performance of the federated engine in the rest of this

thesis. In the last section, we pointed out the challenges that should be considered in the

future development of a federated SPARQL query engine.

3.1 Federation Feature in SPARQL 1.1

SPARQL 1.1 is the currently simplest way to retrieve data from multiple sources. Although

SPARQL 1.0 allows us to query data from remote sources, it does not retrieve data from

specified remote SPARQL endpoints. It only fetches data from specified remote graphs.

Consider the source graph in Figure 2.5, which is extracted from the Diseasome and Dailymed

graphs; by using the query in listing 3.1, we can retrieve a list of disease names along with

their associated drug names. Notice that, in SPARQL 1.0, we must specify the location of

*Parts of this chapter have been published as [Rakhmawati and Umbrich, 2013; Aini Rakhmawati et al.,
2013]

30
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the remote graph after the FROM keyword.

SPARQL 1.1 adds the SERVICE keyword as a way to query data from multiple SPARQL

endpoints. However, this requires prior knowledge about the data location, which must be

explicitly mentioned in the query. For example, in Listing 3.2, in order to obtain a list of

drugs and their associated diseases, the Diseasome and Dailymed SPARQL endpoints are

specified after the SERVICE keyword.

Listing 3.1: Example of a federated SPARQL query in SPARQL 1.0

SELECT ?diseasename ?drugname {

WHERE {

FROM <http://localhost/diseasome.rdf> {

?disease a diseasome:diseases .

?disease rdfs:label ?diseasename .

?disease diseasome:possibleDrug ?drug .

}

FROM <http://localhost/dailymed.rdf> {

?drug dailymed:name ?drugname .

}

}

Listing 3.2: Example of the same federated SPARQL query in SPARQL 1.1 with the SERVICE
keyword

SELECT ?diseasename ?drugname {

WHERE {

SERVICE <http://wifo5-03.informatik.uni-mannheim.de/diseasesome/sparql> {

?disease a diseasome:diseases .

?disease rdfs:label ?diseasename .

?disease diseasome:possibleDrug ?drug .

}

SERVICE <http://wifo5-03.informatik.uni-mannheim.de/dailymed/sparql> {

?drug dailymed:name ?drugname .

}

}
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3.2 Architecture of Federated SPARQL Query Engines

This section describes three types of architecture of federated SPARQL query engines,

namely the Executor architecture, the Rewriter architecture and the Planner architecture.

SPARQL 1.1 is designed to overcome several limitations of SPARQL 1.0, including update

operations, aggregates, and federated query support. We call Executor architecture for those

systems that already support SPARQL 1.1 because those systems can only execute a query

containing SERVICE keywords (Figure 3.1(a)) and SPARQL endpoint addresses. A query

processor receives a query including the addresses of the SPARQL endpoints, sends each

subquery to the defined SPARQL endpoints, and joins the results of the SPARQL End-

points.

The lack of knowledge about the data being queried is a main problem when execut-

ing federated queries. Thus, two architectures have been introduced to overcome this lack

of knowledge which we call Rewriter architecture (Figure 3.1(b)) and Planner architecture

(Figure 3.1(c)). A user can write a query blindly without knowing the data location. These

federation models can execute a query, such as the one from Listing 3.2 without any SPARQL

endpoint declared. By removing the SERVICE keyword, the query can be transformed into

the query in Listing 3.1. The rewriter architecture provides an interface to translate a query

to the SPARQL 1.1 format. After parsing and decomposing the query, the rewriter’s source

selector determines the most relevant sources for each subquery. The core part of the rewriter

architecture is the query rewriter component. This component inserts a SERVICE keyword

followed by the destination address of each subquery. The result of the query rewriter archi-

tecture will be executed by an internal query processor system.

The second type of architecture we described, the planner architecture, creates query

execution plans outside of a SPARQL query processor. This architecture was developed

while SPARQL 1.1 was still in draft format. The main difference to the rewriter architecture

is that the planner architecture must create execution plans, execute each subquery based

on the plan and then merge all the results from SPARQL endpoints. All those tasks are

done by the query planner and query executor. Consequently, an internal query processor

is not required. As in the rewriter architecture, the planner architecture requires a source

selector component in order to predict the relevant sources for the query.
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Listing 3.3: Example of a federated SPARQL query without the SPARQL endpoint specified

SELECT ?diseasename ?drugname {

?disease a diseasome:diseases .

?disease rdfs:label ?diseasename .

?disease diseasome:possibleDrug ?drug .

?drug dailymed:name ?drugname .

}

Query Interface

Query Processor

Query with

SPARQL endpoint

defined

(a) Executer

Query Interface

Query Rewriter

Query Processor

Source Selector

Query without

SPARQL endpoint

defined

(b) Rewriter

Query Interface

Query Planner

Source Selector

Query Executor

Query without

SPARQL endpoint

defined

(c) Planner

Figure 3.1: Architecture of federation over SPARQL endpoints

3.3 Federated SPARQL Query Approaches

Federated SPARQL query may involve more than one SPARQL endpoint. Queries can

use several approaches to collect data from multiple SPARQL Endpoints, namely 1) the

SERVICE keyword, 2) using a variable or popular predicate, 3) the UNION keyword, 4) using

object similarity and 5) using links. Following some preliminaries, we discuss each of these

approaches in turn.
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Figure 3.2: The Relationship amongst entities in Drugbank, Disease, Dailymed and Sider
datasets

Preliminaries

In order to illustrate these six different approaches to the federation over SPARQL endpoints,

we formally define a source-set that is used throughout this thesis as follows:

Definition 3.1 A source-set D is a finite set of sources d where a source d is identified by

a URI. The contents of d (contents(d)) is a set of triple statements t.

For convenience of notation and if there is no confusion possible, we abbreviate con-

tents(d) with d. For clarity, we formulate queries in this chapter based on the source-set

shown in Figure 3.2. Our source-set consists of four life science datasets: Dailymed, Drug-

bank, Diseasome and Sider1. The oval shapes represents the entities, and the arrows represent

the interlinking between datasets. Drugbank provides a list of generic drugs information,

while Dailymed contains the branded drugs information. Sider consists of a list of side effects

of the drugs, whereas Diseasome comprises a list of disorder genes, diseases and the relation

between of them.

Except for the SERVICE keyword, all other strategies are only able to execute over the

federated engine that provides source selection procedure for determining the most rele-

vant source for our query (rewriter engine and planner engine). The SERVICE keyword was

explained in Section 3.1, we now explain the other five approaches to federated SPARQL

1Sider: http://wifo5-03.informatik.uni-mannheim.de/sider/

http://wifo5-03.informatik.uni-mannheim.de/sider/
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queries: 1) using a variable or popular predicate, 2) the UNION keyword, 3) using object

similarity and 4) using links.

3.3.1 Using a popular predicate and a variable in the predicate

position

Federated engines typically use a list of predicates to determine the relevant sources for a

subquery. If the predicate occurs in multiple sources, all of them may be queried. A simple

example is shown in Query 3.4 where we can retrieve data from multiple SPARQL endpoints

that contain the rdfs:label predicate.

Listing 3.4: Example of a federated SPARQL query using the Popular Predicate

select * {

?thing rdfs:label ?label . }

Aside from using a popular predicate, a variable in the predicate position can also combine

data from multiple SPARQL endpoints as shown in Query 3.5. The purpose of Query 3.5 is

to find any predicate for the drug DB00001 from Drugbank and the drug 1681 from Dailymed

dataset that have the same objects.

Listing 3.5: Example of a federated SPARQL query Using a variable in the predicate position

select * {

drugbankdrug:DB00001 ?p1 ?o1 .

dailymeddrug:1681 ?p2 ?o1 . }

3.3.2 Using a UNION Operator

The UNION operator can combine data from multiple SPARQL endpoints. By using the

UNION operator, Query 3.6 obtains the list of diseases for either the drug DB00001 from

Drugbank or the drug 1681 from Dailymed.

3.3.3 Object similarity

Determining object similarity by comparing entity labels is another way to aggregate data

from multiple SPARQL endpoints. This can be done by a string matching process between
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Listing 3.6: Example of a federated SPARQL query using a UNION operator

select * {

{ drugbankdrug:DB00001 drugbank:possibleDiseaseTarget ?disease .}

UNION

{ dailymeddrug:1681 dailymed:possibleDiseaseTarget ?disease . }

}

two entity labels in different sources. For example, Query 3.7 asks for all Sider drugs that

have similar names with Drug DB00316 in the Drugbank dataset. In order to handle case

sensitivity, we can use a filter operator to compare the objects value. Unfortunately,

this strategy requires an expensive query. Furthermore, the entity label is not a unique

identifier. Therefore, instead of using the entity name, it is better to use either a literal that

contains a unique identifier (such as a serial number) or a URI object such as a homepage

address. For instance, Query 3.8 finds all of the branded drugs in the Dailymed dataset

corresponding to all of the diseases in the Diseasome dataset by mapping the object of

diseasome:possibleDrug to the object of dailymed:genericDrug.

Listing 3.7: Example of a federated SPARQL query using label comparison

select * {

drugbankdrug:DB00316 rdfs:label ?drugname .

?siderdrug a sider:drugs .

?siderdrug rdfs:label ?drugname . }

Listing 3.8: Example of a federated SPARQL query using URIs comparison

select * {

?disease a diseasome:diseases .

?disease diseasome:possibleDrug ?genericdrug .

?drug a dailymed:drugs .

?drug dailymed:genericDrug ?genericdrug . }

3.3.4 Using Links

The aims of links generation are 1) to connect two entities having the same characteristic(e.g

owl:sameAs), 2) to link two related entities (e.g. drugbank:possibleDiseaseTarget).
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Hence, the existence of links can be useful to merge data from multiple SPARQL end-

points. Like Query 3.7, Query 3.9 also retrieves drugs that are the same as drug DB00316

in the Drugbank by using the owl:sameAs link.

Listing 3.9: Example of a federated SPARQL query using links

select * {

drugbankdrug:DB00316 owl:sameAs ?siderdrug .

?siderdrug a sider:drugs .

?siderdrug rdfs:label ?drugname . }

3.4 Basic Steps of Query Process in a Federated Engine

We have introduced five different approaches to query in a federated SPARQL query frame-

work, we next introduce the basic steps of federated querying. As the mediator, the federated

engine holds three important roles: 1) to manage an incoming query from a user, 2) deliver

the query to each source and 3) give back the results to the user. We explain some important

concepts about query federation frameworks for executing a query, as depicted in Figure 3.3,

the steps in federated querying are 1) query parsing, 2) source selection, 3) source tracking

4) query planning and 5) query execution; we describe each of these steps in turn.

3.4.1 Query Parsing

In this initial phase, SPARQL query is transformed to an internal pattern, which can be in

the list of BGPs (Section 2), abstract syntax tree [Görlitz and Staab, 2011], or other formats.

The outcome of the parsing step is useful for later steps, particularly in query optimisation.

3.4.2 Source Selection

Instead of sending every piece of a query to all sources, a federated engine should determine

the relevant source for each subquery carefully. It may be acceptable to deliver a simple query

to all destinations, however, a complex query with many intermediate results could lead to

increased communication cost due to more transmissions between the federated engine and

SPARQL endpoints. Further, the capacity of each source to answer the query should also be

considered. Choosing a relevant source for a query can be done in four different ways: ASK

query, data catalogue, data indexing, and caching.
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Figure 3.3: Federated SPARQL query Process in a federated engine

• ASK Query

An ASK SPARQL query returns a Boolean value that indicates whether or not a query

can be answered by the SPARQL endpoint. For instance, to solve the query in List-

ing 3.3, a federated engine will send a query in Listing 3.10 to the SPARQL endpoints in

order to seek sources that can answer the subquery ?drug dailymed:name ?drugname.

By sending an ASK query, the bandwidth usage can be reduced significantly because

a subquery is only transferred to the endpoints responding true. Furthermore, sending

an ASK query can detect the changing of data at runtime. The limitation of SPARQL

ASK is that it is only a binary decision and it cannot detect redundancy data among

sources. To address redundancy, [Hose and Schenkel, 2012] extended the ASK oper-

ation during source selection by including a sketch: an estimation of the number of

results and a summary of the results. Another limitation of ASK query is that it is

only suitable for SPARQL query federation frameworks with a small number of sources

because it takes a long time to wait for each SPARQL Endpoint to answer the ASK

query.

• Data catalogue

By consulting the source catalogue, a federated engine can predict suitable sources for a

query. For example, [Langegger et al., 2008; Görlitz and Staab, 2011] use VoID [Alexan-

der and Hausenblas, 2009] as the data catalogue. VoID expresses the metadata of the
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Listing 3.10: Example of an ASK query to select the most relevant source

ASK {

?drug dailymed:name ?drugname .

}

dataset and its relation with other datasets, according to LOD cloud statistics, 32.2%

of LOD datasets provide a dataset description expressed in VoID. The purpose of VoID

is used to register a new source in the SemWIQ [Langegger et al., 2008], and to es-

timate a cardinality for a SPARQL query pattern [Neumann and Moerkotte, 2011]

in SPLENDID [Görlitz and Staab, 2011]. SPLENDID and SemWIQ will be further

explained in Section 3.5. Another way to provide information about a dataset is to use

RDFStats [Langegger and Woss, 2009] which is built on SCOVO [Hausenblas et al.,

2009]. RDFStats consists of a list of statistics of instances and a histogram of classes,

properties and value types. Another data catalogue is Service Description 2 which

describes the data availability from a SPARQL endpoint, data statistic and the re-

striction of query pattern; it is primarily designed for [Quilitz and Leser, 2008]. Most

data catalogues only provide a list of predicates since the number of predicates is less

than the number of subjects and objects. Based on the catalogue, the federated engine

generally pre-compute the statistics that are needed for query optimisation. This data

catalogue can be updated during the query execution, especially for frequently chang-

ing data. The freshness of a data catalogue impacts the accuracy of source selection,

but the updating process consumes significant bandwidth. Furthermore, generally, the

SPARQL query delivered for updating data catalogue is an expensive operation which

might be refused by the SPARQL endpoint.

• Data Indexing

According to the LOD cloud statistics, 63% of sources do not expose their data cat-

alogues. In order to overcome the lack of data catalogues, data indexing could occur

either before or during query execution. [Harth et al., 2010] proposed an indexing

method that applies QTrees [Hose et al., 2007]. Indexing could assist a federated en-

gine to determine the relevant sources for a query by describing the instances and

schemas contained in each dataset. The data is normally indexed periodically. Thus,

the advantage of data indexing is data freshness. In general, the drawback of data

2Service Description:http://darq.sourceforge.net/#Service_Descriptions

http://darq.sourceforge.net/#Service_Descriptions
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indexing is that it needs more storage compare to data catalogue as it usually indexes

every triple. In order to deal with this storage problem, [Basca and Bernstein, 2010]

detects the relevant query sources by obtaining dataset descriptions from either a Web

Directory or a Search Engine such as Sindice3 after the query parsing step. These

indexes provide a summary of ontological prefixes, predicates and classes which can be

used for the query execution process. However, network latency issues arises during

execution because this approach relies on third-party indexing.

• Caching

Most federated engines load statistical information during the initialisation phase be-

cause it may reduce the bandwidth consumption at runtime. However, the source

selection process is not accurate, if the data is often changing. To tackle this prob-

lem, the caching can be used during query execution to improve the freshness of the

statistics used in later query execution. The information stored in a cache is likely to

be similar to that stored in a data catalogue. To decrease the communication cost,

a federated engine does not deliver a new query, but rather updates statistical source

information based on the results of subqueries answers from the SPARQL endpoints.

All the aforementioned source selection strategies can be applied to dynamic data such

as data streams, as long as either data catalogue or indexing is always updated. Because up-

dating tasks consume significant bandwidth, we should have a mechanism that only requests

the frequently changing data as proposed by [Umbrich et al., 2012b] or that only updates

data information periodically.

3.4.3 Source Tracking

Source tracking is an approach to detect the availability of SPARQL endpoints. In order

to determine whether a SPARQL endpoint is alive or not, a federated engine can send

SPARQL ASK queries periodically. Besides, the SPARQL endpoint can use a cache for

storing information about previous query execution. If a SPARQL endpoint can answer in

the previous query execution, the SPARQL endpoint can send the current queries.

3Sindice: http://sindice.com/

http://sindice.com/
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3.4.4 Query Planning

In the second phase of query processing, a federated engine decomposes the query and builds

multiple sub queries based on the results of the source selection step. The construction of

subqueries is also considered before the query is transmitted. A single triple pattern can

match either a single source or multiple sources. To reduce redundancy sending a single query

pattern to multiple sources, a query pattern can be grouped with other query patterns in a

single subquery. Grouping query patterns can also minimise the selectivity value of query

and ultimately reduce the intermediate join processes. To cluster related query patterns in a

single subquery[Schwarte et al., 2011] and [Akar et al., 2012] proposed the Exclusive Group

scheme. The triple patterns that can be answered by a single source and have the same

variable are grouped in a single subquery.

In order to arrange the order of a list of join arguments, a federated engine builds several

query execution plans that are generally represented by a tree structure. The subquery

combination produces various query execution plans. Hence, a federation engine normally

uses statistical information to compute the cost execution of each plan. The cost of the

execution can be calculated, for example by cardinality estimation, selectivity estimation,

etc. This process influences the number of intermediate results produced at runtime. The

objective of this step is to select the best execution plan with lowest execution cost (fewest

number of intermediate results).

3.4.5 Query Execution

Herein, we describe several strategies for delivering subqueries to SPARQL endpoints:

• Nested Loop Join

Nested loop join is not an optimal solution for a complex query since each previous

scanning result will be joined to the next results.

• Bind join

Improving on the nested loop join, the bind join, first introduced by [Haas et al., 1997],

uses the intermediate results as a filter for the subsequent queries. As a result, the

transmission cost can be minimised, but the query runtime increases because the query

mediator has to wait for the complete answer of each previous query.

• Bound join

A variation of the bind join strategy, the bound join [Schwarte et al., 2011] combines
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the intermediate sub queries to a single SPARQL endpoint into a single subquery by

using the UNION keyword.

• Hash join

Hash join, implemented in [Görlitz and Staab, 2011], submits sub queries in parallel and

then joins all intermediate results locally. This join can boost the runtime performance

for the small intermediate results. However, the transmission cost will be higher if the

intermediate results are large.

3.5 The Existing Frameworks for Federation over SPARQL

Endpoints

As described in the Section 3.2, there are three federation architectures that have been devel-

oped recently, namely executor architecture, rewriter architecture and planner architecture.

In this section, we only explain the existing federated engines that are classified as rewriter

architecture and planner architecture. These federated engines are compared in Table 3.1

and 3.2 based on seven dimensions: data catalogue, source selection strategy, platform,

the presence of cache, query execution strategy, source tracking and whether they have a

Graphical User Interface (GUI). We do not detail the executor architecture because most

SPARQL query processors such as ARQ4, Sesame5, Virtuoso6 are able to execute a query

with the SERVICE keyword.

3.5.1 Rewriter architectures

Several frameworks have been built on top of SPARQL query engines supporting SPARQL

1.1 such as ARQ, Sesame and Virtuoso. In order to execute a federated SPARQL query

that does not specify endpoints, these engines rewrite the query by appending the SERVICE

keyword. Table 3.1 compares federated engines that implement the rewriter architecture

approach. First, we look at the data catalogue used by the engines. Then we compare the

platforms that are used to develop the engine. The source selection column describes how

the engine determines the relevant sources. We then look at whether a cache is present

during query execution. The query execution plan strategies are also compared. The source

4ARQ: http://jena.apache.org/documentation/query/index.html
5Sesame: http://www.openrdf.org/index.jsp
6Virtuoso: http://www.openlinksw.com/

http://jena.apache.org/documentation/query/index.html
http://www.openrdf.org/index.jsp
http://www.openlinksw.com/
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Engine Catalogue Platform Source Se-
lection

Cache Query Ex-
ecution

Source
Tracking

GUI

SemWIQ RdfStats +
VoID

Jena Statistic +
Service

X Bind Join X X

Anapsid Predicate
List and
Endpoint
status

Anapsid Predicate
List

X Symmetric
Hash Join
and XJoin

X X

WoDQA VoID
Stores

Jena List of
predi-
cates and
ontologies

X X X X

Table 3.1: The existing federated engines using the rewriter architecture approach.

selection column has two values: dynamic and static. The dynamic value means that the

changing data in sources or SPARQL endpoints are updated automatically, while the static

value means that information about the sources is never updated after the federated engine

is executed. The last column indicates whether a GUI is available. Table 3.2 also contains

these columns.

ANAPSID

The ANAPSID framework [Acosta and Vidal, 2011] is designed to manage query exe-

cution with respect to the data availability and runtime conditions for the SPARQL 1.1

federation. It enhances the XJoin [Urhan and Franklin, 2000] operator and combines

it with Symmetric Hash Join [Deshpande et al., 2007]. Both of them are non-blocking

operators that save the retrieved results to a hash table. Similar to other frameworks,

it also has a data catalogue that contains a list of predicates. Additionally, execution

time-out information of the SPARQL endpoint is added to the data catalogue. There-

fore, the data catalogue is updated on the fly. Apart from updating a data catalogue,

ANAPSID also updates the execution plans at runtime. The Defender [Montoya et al.,

2012a,b] in ANAPSID translates an incoming query to SPARQL 1.1 format. Further,

the Defender also composes related subqueries in the same group using bushy tree

algorithm [Vidal et al., 2010].

SemWIQ

SemWIQ [Langegger et al., 2008] is another system building on top of ARQ and part

of the Grid-enabled Semantic Data Access Middleware (G-SDAM). It provides a spe-

cific wrapper to allow the source without an equipped SPARQL endpoint connected.
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Query federation relies on data summaries in RDFStats and SDV7. RDFStats always

updates the statistical information since the SemWIQ monitoring component periodi-

cally collects information at runtime and stores it into a cache. As the RDFstats also

covers histograms of String, Blank Nodes etc, it is more beneficial for SemWIQ to

be able to execute any kind of query pattern. SDV is based on VoID which is useful

for source registration. A query is parsed by a Jena SPARQL processor ARQ before

the optimisation process. SemWIQ applies several query optimisation methods based

on statistical cost estimation such as push-down of filter expressions, push down of

optional group patterns, push-down of joins and join and union reordering. During

optimisation, the federator component inserts the SERVICE keyword and a SPARQL

endpoint address for each subquery.

WoDQA

WoDQA (Web of Data Query Analyzer) [Akar et al., 2012] also uses ARQ as the query

processor. The source selection is done by analysing the metadata in the VoID stores

such as CKAN8 and VoIDStore9. Source observation is based on Internationalised

Resource Identifiers (IRI), linking predicates and shared variables. It does not exploit

any statistical information from the VoID of each source, but only compares either

IRIs or linking predicates to subject, predicate and object. The same variables in the

same position are grouped in a single subquery. After detecting relevant sources for

each subquery, the SERVICE keyword is appended followed by the SPARQL endpoint

address.

3.5.2 Planner Architectures

In this architecture, a federated engine acts as a mediator [Hose et al., 2011] that transfers a

SPARQL query from the user to multiple sources either single RDF repositories or SPARQL

endpoints. Before delivering a query to the destination source, a planner architecture breaks

down a query into sub queries and selects the destination of each subquery. Following query

execution, it must join the results retrieved from the SPARQL endpoints. The following

overview of the current federated engines that implement the planner architecture is sum-

marised in Table 3.2.

7SDV: http://purl.org/semwiq/mediator/sdv#
8CKAN: http://ckan.net/
9VoIDStore: http://void.rkbexplorer.com/

http://purl.org/semwiq/mediator/sdv#
http://ckan.net/
http://void.rkbexplorer.com/
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DARQ

Distributed ARQ (DARQ) [Quilitz and Leser, 2008] is an extension of ARQ which pro-

vides a transparent query access to multiple distributed endpoints. A Service Descrip-

tion which consists of the data description and statistical information has to declare

in advance before query processing to decide where a subquery should go. According

to the list of predicates in the Service Description, it re-writes the query, creates sub

queries and designs the query planning execution. The query planning is based on

estimated cardinality cost. DARQ implements two join strategies: Nested Loop Join

and Bind Join (Section 3.4.5).

Splendid

Splendid [Görlitz and Staab, 2011] extends Sesame which uses VoID as the data cat-

alogue. The VoID of source is loaded when the federated system is started and ASK

queries are submitted to each source for a verification. Once the query is issued, the sys-

tem builds sub queries and determines the optimal join order. Based on the statistical

information, the bushy tree execution plan is generated by using dynamic program-

ming [Selinger et al., 1979]. Similar to DARQ, it computes the join cost based on

cardinality estimation. It provides two join types to merge the results locally, namely

hash join and bind join.

FedX

FedX [Schwarte et al., 2011] is also developed on top of the Sesame framework. It is

able to run queries over either Sesame repositories or SPARQL endpoints. During the

initial phase, it loads the list of sources without their statistical information. The source

selection is done by sending SPARQL ASK queries. The result of a SPARQL ASK

query is stored in a cache to reduce communication for the subsequent queries. A rule

based join optimiser minimises intermediate result size based on the cost estimation.

FedX implements exclusive groups to cluster related patterns for a single relevant

source. Beside grouping patterns, it implements a bound join strategy. Those strategies

can decrease the number of query transmission and eventually, they reduce the size of

intermediate results. It comes with a workbench as the GUI for demonstrating FedX’s

federated approach to query processing.

ADERIS

Adaptive Distributed Endpoint RDF Integration System (ADERIS) [Kikuchi et al.,

2010] fetches the list of predicates provided by a source during the setup stage. The
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predicates list can be used to determine the destination source for each subquery

pattern. During query execution, it constructs predicate tables to be added in the

query plan. One predicate table belongs to a subquery pattern. The predicate table

consists of two columns: subject and object, which are filled from the intermediate

results. Once two predicate tables have been completed, the local joining starts using

a nested loop join algorithm. The predicate tables are deleted after the query is

processed. ADERIS is suitable for a source that does not expose any data catalogue,

but it only handles limited query patterns such as UNION and OPTIONAL. A simple

GUI for configuration and query execution is provided.

Avalanche

Avalanche [Basca and Bernstein, 2010] does not maintain a source registry because

the information about sources comes from third parties such as search engines and

web directories. Beside these, Avalanche also stores a set of prefixes and schemas for

special endpoints. The statistics about sources are always up to date because Avalanche

always requests source information from the search engine or the web directory after

query parsing. To detect the sources that can contribute to answering a subquery, it

calculates the cardinality of each unbound variable. The combinations of sub queries

are constructed using best first search approach. All subqueries are executed in parallel.

To reduce the query response time, Avalanche only retrieves the first K results.

GDS

Graph Distributed SPARQL (GDS) [Wang et al., 2011a] overcomes the limitation of

their previous work [Wang et al., 2011b] which does not handle multiple graphs. It

is developed on top of the Jena platform by implementing the Minimum Spanning

Tree (MST) algorithm and enhancing a BGP representation. Based on the Service

description, a MST graph is generated by exploiting the Kruskal algorithm which aims

to estimate the minimum set of triple patterns evaluation and the best execution order.

The query planning execution can be done by either semi join or bind join which is

assisted by a cache to reduce the traffic cost.

Sesame

As early as 2009, Sesame supported federated SPARQL querying by using SAIL Al-

iBaba extension10, but it could not execute a query containing the SERVICE keyword.

10Sesame SAIL Alibaba: http://www.openrdf.org/doc/alibaba/2.0-alpha2/alibaba-sail-federation/index.html

http://www.openrdf.org/doc/alibaba/2.0-alpha2/alibaba-sail-federation/index.html
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Engine Catalogue Platform Source Se-
lection

Cache Query Ex-
ecution

Source
Tracking

GUI

DARQ Service
Descrip-
tion

Jena Statistic of
Predicate

X Bind Join
or Nested
Loop Join

X X

ADERIS Predicate
List dur-
ing setup
phase

X Predicate
List

X Nested
Loop Join

X X

FedX X Sesame ASK X Bind Join
parallelisa-
tion

X X

Splendid VoID Sesame Statistic +
ASK

X Bind Join
or Hash
Join

X X

GDS Service
Descrip-
tion

Jena Statistic of
Predicate

X Bind Join
or Semi
Join

X X

Avalanche Search En-
gine

Avalanche Statistic
of predi-
cates and
ontologies

X Bind join X X

Sesame Al-
iBaba

X Sesame X X Nested
Loop Join

X X

Table 3.2: The existing federated engine applying the planner architecture approach.

Instead, for SPARQL 1.0, Sesame integrates multiple sources into a virtual single repos-

itory to execute a federated query. Its API can execute federated SPARQL queries

either over RDF dumps or SPARQL endpoints. The source must be registered in ad-

vance during a setup phase. By default, Sesame provides a simple configuration file

containing only a list of SPARQL Endpoint addresses. Thus, Sesame sends queries

to all sources without a source selection mechanism. In order to optimise the query

execution, Sesame offers additional features in the configuration file, namely a list of

predicate and subject prefixes, which is used to predict the relevant source for a sub-

query based on prefix matching. The join ordering is decided by calculating the size of

basic graph patterns. The latest version of Sesame provides a federated query feature.
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3.6 Challenges

Although federation over SPARQL endpoints has been actively developed over the past few

years, particularly to design source selection algorithms, this area is still in its infancy. In

future development, several challenges need to be tackled, which were highlighted by the

survey in Section 3.5.

• Data catalogues

As described in Section 3.5, source registration can be done by a federated engine as well

as by third parties such as search engines. For querying over Linked Open Data, the

source registry should not be limited. Federated engines could combine both static and

dynamic source registration where sources in the static registration are given a higher

priority than source in the dynamic registration. Assigning different priority levels is

to ensure the federated engine to get the potential sources for a sub-query. Updating

a data catalogue requires an expensive query. Hence, there should be mechanisms to

reduce the communication cost between a federated engine and SPARQL endpoints

while the federated engine is updating the data catalogue.

• Data Access and Security

The sources and federated engine are usually located in different locations, therefore

secure communication processes should be used for sending data between the federated

engine and sources. Several SPARQL endpoints restrict query access to limited users

based on authentication features. However, to the best of our knowledge, no federated

engine protects against an unauthorised interception between the federated engine

and sources. Public key cryptography could be implemented in the query federation

frameworks where the federated engine and sources share public and private keys for

data encryption during interaction.

• Data Allocation

Since several RDF stores crawl data from other sources, data redundancy can not be

avoided in the Linked Open Data Cloud. Consequently, a federated engine may detect

the same data from multiple locations. This could increase the communication cost

during selection source and query execution stage, particularly for federated engines

that use a statistical information from a third party. Furthermore, this redundant data

could increase the intermediate results. On the one hand, using a popular vocabulary

allows user to query heterogeneous sources [Polleres, 2010], but on the other hand,
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source prediction for a query is a hard task. As pointed out by [Rakhmawati and

Hausenblas, 2012] when popular entities and vocabularies are distributed over multiple

sources, the performance of federated queries decreases.

• Data Freshness

Freshness is one of the most important measures for the data integration because each

source might have different freshness values. Having an up-to-date data catalogue is

essential for a query federation framework to achieve a high freshness value. Inaccurate

results could arise from an inaccurate data catalogue. Nevertheless, updating a data

catalogue is a costly operation in terms of the query execution and traffic between the

sources and federated engine. Apart from data catalogue problem, a high level of fresh-

ness cannot be obtained when high network latency occurs during the communication

process.

• Benchmarks

To date, FedBench [Schmidt et al., 2011a] is the only benchmark proposed for evalu-

ating federated query performance. It provides two performance metrics: loading time

and querying time. Those performance metrics are not sufficient to evaluate a query

federation framework. Several performance measurements from traditional distributed

database should be considered such as query throughput. In addition, several metrics

that are related to the approach that is implemented in each phase in a federated en-

gine should be considered, such as the size of intermediate results, number of requests,

amount of data sent, etc. Apart from the performance metrics, data quality metrics

become important —due to data heterogeneity; data quality metrics include freshness,

consistency, completeness and accuracy. FedBench metrics were updated by [Montoya

et al., 2012a]— who added two more FedBench metrics, namely Endpoint Selection

time and completeness. Furthermore, it evaluated the performance of the federated

engines in various environments. Since the FedBench has a static source-set and query

set, it is difficult to evaluate a federated engine by using another source-set. To address

this problem, the SPARQL Linked Open Data Query Generator (SPLODGE) [Görlitz

et al., 2012] generates a set of random queries for any given dataset. The query set gen-

eration is based on the characteristics of a dataset that are obtained from its predicate

statistics. Besides the characteristics of the dataset, SPLENDID also considers the

query structure and complexity (i.e the number of joins, query shape, etc) to produce

the query set. Using similar idea, we propose QFed (Chapter 8), a lightweight tool for
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generating queries benchmark based on communication cost and characteristics of a

dataset.

• Overlapping Terminologies

The RDF data are generated, presented and published using numerous expressions,

namespaces, vocabularies and terminologies, that significantly contain duplicate or

complementary data [Quackenbush, 2006; Bechhofer et al., 2011]. Therefore, the map-

ping rules among heterogeneous schemas is highly required in query federation. This

task could be done by having a global schema catalogue —that maps related concepts

or properties— and generating more links among the related entities.

• Provenance

Since more than one source is involved in a federated SPARQL query, the origin of

data results is not prominent. Further, data redundancy often results from a federated

SPARQL query, especially in federation over Linked Open Data. This is because sev-

eral publishers expose the same dataset. For example, Sindice contains DBpedia data:

when a user requests DBpedia data, both DBpedia and Sindice SPARQL endpoints

are able to answer that query. Such condition can cause the redundant results which

cannot be avoided by the query federation frameworks that use third party catalogues.

Hence, the data provenance is an important factor in the federation over SPARQL

endpoints. A notable provenance implementation in the OPENPHACTS11 federa-

tion system is explained in [Harland, 2012]. In order to tackle the provenance issue,

OPENPHACTS uses the Nanopublication [Groth et al., 2010] format which supports

provenance, annotation, attribution and citation.

3.7 Conclusion

Federated SPARQL queries have made significant progress in recent years. Although a

number of federated engines have already been developed, the field is still relatively far from

its maturity. Based on our experience with the existing federated engines, most federated

engines focus mostly on source selection and join optimisation during query execution.

In this chapter, we listed federated engine and their features. We classified those frame-

works into three categories, namely executor architecture, rewriter architecture, and planner

architecture. Based on this list, a user can choose a suitable federation engine for their need.

11OPENPHACTS: http://www.openphacts.org/

http://www.openphacts.org/
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Based on the current generation of query federation frameworks surveyed in this work, fur-

ther improvements are still required to make the frameworks more effectively in a broader

range of applications.

Based on the survey in this chapter, we then determine a suitable metric for assessing

performance of the federation over SPARQL endpoints framework in Chapter 4. Further-

more, designing a benchmarking query for federated SPARQL query (Chapter 8 also requires

a comprehensive understanding of the work of a federated engine that we have described in

general architecture of the federated engine.



Chapter 4

A Proposal for New Performance

Metrics for Query Federation

Benchmarks*

In this chapter we first give an overview of the state of the art in RDF benchmarks for

both a single repository and distributed repositories. We then list the existing evaluations

of query federation frameworks. We classify a set of basic performance metrics based on

their measurement regions. Later on, we discuss what metrics should be considered in

assessing a framework for federation over SPARQL endpoints, namely independent metrics,

semi-independent metrics and composite metrics. We conclude this chapter by providing an

evaluation of existing federated engines by using those three metrics.

4.1 State of the art of RDF repository benchmarks

With the popularity of Semantic Web, the need for RDF store benchmarks has been acknowl-

edged. As there are some similarities between the Semantic Web and relational databases,

some current RDF benchmarks adopt relational database benchmarks such as performance

metrics, sets of queries, synthetic datasets etc. The Benchmark Handbook [Gray, 1992] ex-

plains a list of notable benchmarks for relational database such as TPC, Wisconsin [DeWitt,

1993], SPEC [Dixit, 1991].

In this section, we conduct a survey on the state of the art in RDF repository benchmarks.

In particular, we explain the metrics, queries and datasets used in current benchmarks.

*Parts of this chapter have been published as [Rakhmawati, 2013a; Rakhmawati et al., 2014b]
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4.1.1 Benchmark for a single RDF repository

Although our concern is federation over SPARQL endpoints, we also describe benchmarks

for single RDF repository because they were used to evaluate some initial work in query

federation.

1. Lehigh University Benchmark (LUBM) LUBM [Guo et al., 2005] provides a syn-

thetic dataset that contains university data and activities. This dataset is parametris-

able which allows us to customise the dataset. It provides 14 test queries, but those

queries do not include OPTIONAL, UNION, and solution modifiers. To test performance

of a RDF repository, they proposed six metrics, as follows:

• Load Time: How long it takes to load dataset into the repository in initial setup.

• Repository Size: How large the secondary storage is after loading data

• Query Response Time: How long it takes for the federated engine to return the

final results after an incoming query received from the user.

• Query Completeness: The percentage of the entailed answers that are returned

by the system

• Query Soundness: The percentage of the answers returned by the system that are

actually entailed.

• Combined metric: To give a meaningful summary of all performance metrics,

LUBM combines query response time, completeness and soundness into a single

metric by using F-measure [van Rijsbergen, 1979] formula.

2. Berlin SPARQL Benchmark (BSBM) The Berlin SPARQL Benchmark (BSBM) [Bizer

and Schultz, 2009] consists of 25 queries that are grouped into 12 query types. The

queries demonstrate the use case of e-commerce search. The BSBM dataset contains

a set of products that is offered by different companies and a set of product reviews

from consumers. Furthermore, it also provides a driver test —for setting up a test

environment, performing several tests and concluding the final performance results.

Like LUBM, the loading time is also used as a metric in BSBM. Additionally, BSBM

measures how many queries can be executed within one hour.

3. SPARQL Performance Benchmark (SP2B) SPARQL Performance Benchmark

(SP2B) [Schmidt et al., 2008] is intended for benchmarking a single RDF repository

that supports SPARQL querying. Thus, the 14 test queries provided cover all the
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key operations in SPARQL 1.0. Similar to LUBM and BSBM, it provides a synthetic

dataset, but the SP2B dataset reflects real world cases since the dataset is originally

from the DBLP dataset1. Various sizes of the dataset can be generated. More com-

prehensive metrics are proposed by SP2B to assess the performance of a single RDF

repository:

• Success Rate: This metric illustrates the success rate of a single query execution.

It has four different values: success, time-out, memory exhaustion and error.

• Loading Time

• Per Query Performance: This represents the performance of an RDF repository

in executing a single query.

• Global Performance: This combines all the per-query performance values in a

single metric.

• Memory Consumption: This shows the usage of the main memory during query

execution.

4.1.2 Distributed RDF Repositories

In the earliest works on query federation over SPARQL endpoints, the evaluation was carried

out using the single RDF repository benchmark. Researchers normally partition those single

repository benchmarks datasets, and then the federated engine executes the original queries

over partitioned dataset. These single RDF repository benchmarks are generally proposed

for single RDF stores, hence they are not suitable for distributed infrastructure.

FedBench

To the best of our knowledge, FedBench is the only benchmark that is particularly designed

for federation over SPARQL endpoints. In order to represent real world datasets, it uses 12

Linked Open Datasets both cross-domain and in the life science domain. The cross domain

dataset includes DBpedia2, NyTimes News3, Geonames4, Jamendo5, and LinkedMDB6, while

1DBLP is a computer science bibliography dataset http://dblp.uni.tier.de
2DBpedia: http://dbpedia.org
3NyTimes: http://www.nytimes.com/
4Geonames: http://www.geonames.org
5Jamendo: http://jamendo.org
6LinkedMDB: http://linkedmdb.org

http://dblp.uni.tier.de
http://dbpedia.org
http://www.nytimes.com/
http://www.geonames.org
http://jamendo.org
http://linkedmdb.org


4.2. Proposed Performance Metrics 55

the life science dataset consists of DBPedia Drug, KEGG Compounds7, KEGG Enzymes8,

KEGG Drugs9, KEGG Reactions10, Drugbank and ChEBI11. The selection of the datasets

is based on three criterias, namely: the dataset size, coverage and schema. FedBench also

provides 16 predefined queries and two performance metrics: loading time and response time.

The state of federated SPARQL query evaluations

Federation over SPARQL endpoints benchmarking is still in its infancy. To date, no single

federated benchmarking process has been globally adopted. Table 4.1 shows various methods

for evaluating federated engines. The majority of datasets used in evaluation are generated

from partitioning a dataset or partitioning multiple merged sources. In general, federated

engines execute more than 10 queries in an evaluation. Also, we noted that response time

is the primary metric in all evaluations. DARQ also uses transformation time to calculate

the time needed for query planning and optimisation. FedBench is frequently used as the

benchmark suite in several author’s evaluations. In some evaluations, the federated engines

were evaluated using BSBM. In those evaluations, the BSBM dataset was divided into smaller

datasets.

4.2 Proposed Performance Metrics

Based on our survey in Chapter 3 and our findings about the existing evaluations, we now

propose the suitable performance metrics for assessing federated engines and SPARQL end-

points.

4.2.1 Basic Metrics

To begin with, in Figure 4.1, we describe the federated SPARQL query infrastructure and

metrics that are associated to each of its components. We define five sections in which we

can measure the basic performance metrics:

Section A At the client side, metrics include memory usage (primary and secondary memory) and

CPU usage while sending a query, the time when the query was sent and the results

7KEGG Compounds: http://www.genome.jp/kegg/compound/
8KEGG Enzymes: http://ec.bio2rdf.org/sparql
9KEGG Drugs: http://dr.bio2rdf.org/sparql

10KEGG Enzymes: http://rn.bio2rdf.org/sparql
11ChEBI: http://chebi.bio2rdf.org/sparql

http://www.genome.jp/kegg/compound/
http://ec.bio2rdf.org/sparql
http://dr.bio2rdf.org/sparql
http://rn.bio2rdf.org/sparql
http://chebi.bio2rdf.org/sparql
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Engine Dataset Queries Metrics Benchmark Sys-
tem

Reference

ADERIS DBPedia (4 sources,
splitting by download
name)

20 Response Time - [Kikuchi et al.,
2010]

Anapsid LinkedSensorData-
blizzardsa, LinkedCTb,
DBPedia

30 Number of re-
trieved results,
Response Time

- [Acosta and
Vidal, 2011]

Avalanche IEEE, DBLP and ACM
(5 sources, Merging and
splitting their origin and
chronological order)

3 Number of re-
trieved results,
Response Time

- [Basca and
Bernstein,
2010]

DARQ DBPedia (5 sources,
splitting by its type)

4 Response Time,
Transformation
Time

- [Quilitz and
Leser, 2008]

Distributed
SPARQL

BSBM dataset (6
sources)

10 BSBM Metrics,
Memory Usage,
CPU Usage,
Bandwidth
Usage

BSBM [Zemánek and
Schenk, 2008]

FedX FedBench dataset 16 Number of se-
lected sources,
Response Time

Fedbench [Schwarte
et al., 2011]

GDS FedBench and BSBM
datasets

28 Response Time,
CPU usage,
Network usage,
Memory usage

FedBench,
BSBM

[Wang et al.,
2011a]

SemWiq KSO Sunspotc(2
sources),Univ Graz
Publication,H Alpha

Exposured ,Scientiste

8 Response Time - [Langegger
et al., 2008]

Splendid FedBench dataset 16 Number of se-
lected sources,
Response Time

FedBench [Görlitz and
Staab, 2011]

Table 4.1: The list of existing evaluations of a federated SPARQL query

ahttp://wiki.knoesis.org/index.php/LinkedSensorData
bhttp://linkedCT.org
cKanzelhhe solar observatory as part of the Austrian Grid project, a national research project funded

by the Austrian Federal Ministry for Education,Science and Culture.
dcontains pictures taken with a special H-alpha telescope
econtains personal information about scientists working at the organization

http://wiki.knoesis.org/index.php/LinkedSensorData 
http://linkedCT.org
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received. It is hard to measure performance in the client side because this section is

not under our control. However, we can calculate the amount of data delivered to the

federated engine once this data is received at the federated engine side.

Section B The networking infrastructure between the client and the federated engine is the main

component. One of the metrics that can be quantified in this area is the network speed

and capacity. Like section A, section B is not under our control, therefore we do not

consider measuring metrics in this section.

Section C Federated engine performance is normally measured in most evaluations. The met-

rics include memory usage, CPU usage and network usage during query execution.

Although a federated engine does not store any data, it does sometimes consume sec-

ondary memory for storing the caching data and intermediate results. In addition,

the main memory usage and CPU usage may increase while executing a query. The

network usage can be calculated as the total volume of data transmission between the

clients, the federated engine and the SPARQL endpoints. Furthermore, like the prior

evaluation explained in Table 4.1, the response time and the query throughput are also

two main metrics in this area.

Section D The essential difference between a single RDF repository and distributed repository

is the presence of sections D and E. Similar to section B, this section consists of

networking infrastructure, but it connects the federated engine and several SPARQL

endpoints. We also do not take into account metrics in this section because this section

is not under our coverage.

Section E This section is normally out of our control, unless the SPARQL endpoints are at the

same host with the federated engine. If the SPARQL endpoints are located in the same

machine, we can measure the CPU and memory usage that are required for executing

sub queries at the SPARQL endpoints.

4.2.2 Extended Metrics

Apart from the basic metrics above, we next develop other metrics that are suitable for

measuring the performance of framework for federation over SPARQL endpoints. Based on

observing the federated engine components in Figure 3.4, there are two types of federation

performance metrics: independent metrics and semi-independent metrics.
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Figure 4.1: The section of infrastructure for assessing query federation framework

Query Parsing

Source Selection

Query Planning

Data Catalogue

Query Execution

Data Indexing

data source

data source

Query

ASK, RQ,SS,DSR

IR, RQ,MAX,DSR

Figure 4.2: The relationship between federated engine components and independent metrics.
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1. Independent Metrics

Except for the network usage, the above metrics are dependent on the federation en-

vironment such as the CPU speed, memory capacity, applications etc. For instance,

response time is one of the metrics that is highly related to CPU speed and memory

capacity. Consequently, it is difficult to generate a gold standard for federation over

SPARQL endpoints benchmarks by using such metrics. But as described in Chapter 1,

we need a gold standard for a federated SPARQL query evaluation. Herein, we iden-

tify a set of independent metrics that evaluate the federated engine performance by

observing the federated engine components and data transaction between the feder-

ated engine and SPARQL endpoints. We focus on the data transaction because query

execution is influenced by network in the federated SPARQL query.

Three types of data metric units arise during query execution: rows, requests and

bytes. Those data metric units can represent the cost of communication between the

federated engine and SPARQL endpoints. Based on the data transactions between the

federated engine and the SPARQL endpoints, we identify the following independent

metrics:

• Number of ASKs (ASK) Several approaches deliver an ASK SPARQL query

to find the relevant sources for certain subqueries (Section 3.4). The basic idea of

this strategy is to discover the relevant sources with the minimum communication

cost since the SPARQL ASK query only returns a Boolean value. Consider the

example query in Listing 3.3, executed on a federation over SPARQL endpoint

containing two SPARQL endpoints: Disease and Dailymed datasets. Suppose the

federated engine uses SPARQL ASK query in source selection so that it sends a

list of ASK queries for each triple pattern as shown in Listing 4.1. In this example,

the number of ASKs will equal to the number of triple patterns times the number

of SPARQL endpoints = 4× 2 = 8 requests. This metric was used by [Hose and

Schenkel, 2012].

• Number of requests (RQ) refers to how many SPARQL queries (ASK, SELECT,

CONSTRUCT, DESCRIBE) are delivered by a federated engine to the SPARQL end-

points. Coming back to the previous example of the number of ASKs, after

sending a list of ASK queries, the federated engine delivers the first three triple

patterns to the Diseasome SPARQL endpoint and the fourth triple pattern to the

Dailymed SPARQL endpoint (Listing 4.2). As a result, the number of requests
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for executing that query is the sum of the number of ASKs and the number of

SELECTs, which in this case is: 8 + 2 = 10 requests. RQ was used for assessing

performance of [Hose and Schenkel, 2012; Schwarte et al., 2011; Montoya et al.,

2012b; Görlitz and Staab, 2011].

• Size of the intermediate results (IR) The intermediate results are all an-

swers retrieved by the federated engine from all SPARQL endpoints during query

execution. The size of the intermediate results can be predicted by cardinality

estimation at the query planning stage. To compute the size of the intermediate

results, we count the total number of rows received by the federated engine at run-

time. Given two SPARQL endpoints, Diseasome and Dailymed that store datasets

as in Figure 2.5 and the query in Listing 3.3 received by the federated engine, then

the federated engine receives a row from the Diseasome SPARQL endpoint after

executing the first three triple patterns. In addition, it also retrieves a row from

the Dailymed SPARQL endpoint. In total, the size of intermediate results to

execute the query in Listing 3.3 is two rows. This metric was used by [Montoya

et al., 2012b].

• Maximum Results (MAX) is defined as the maximum size of intermediate re-

sults obtained at runtime per query request. Since both Diseasome and Dailymed

SPARQL endpoints receive a row, the maximum results is one row.

• Amount of data sent and received (DSR) Apart from calculating the number

of rows, we also consider data transmission in byte unit. Current of federated

engines only estimate the join cardinality based on the number of triples. In fact,

the number of rows cannot reflect the real quantity of data transmission. Different

rows have different size in bytes. A literal object could contain more characters

than a URI object. Various query forms are transmitted from a federated engine

to SPARQL endpoints. Consequently, the federated engine sends different amount

of data based on the number of characters used to formulate a SPARQL Query.

For a simplified instance, regardless of the HTTP header size, we can calculate

the total amount of data sent and received as the number of characters in all ASK

queries (as in Listing 4.1) and subqueries and the answers of those subqueries (as

in Listing 4.2).

Besides the data transmission calculations, we also consider the Number of Selected

Sources (SS) proposed by FedX and Splendid as one of the independent metrics. SS
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Listing 4.1: List of ASK queries sent to determine relevant sources for query in Listing 3.3

ASK {

?disease a diseasome:diseases .

}

ASK {

?disease rdfs:label ?diseasename .

}

ASK {

?disease diseasome:possibleDrug ?drug .

}

ASK {

?drug dailymed:name ?drugname .

}

refers to the number of SPARQL endpoints involved to accomplish a single query ex-

ecution. A query can be answered by either partial or all sources. The effectiveness

of the source selection strategy can be shown from the number of SPARQL endpoints

accessed. Since it is hard to distinguish which queries are part of the source selec-

tion process and which ones are not, we ignore the ASK queries delivered to SPARQL

endpoints.

All independent metrics are influenced by the strategy applied at the federated engine

components. We find a relationship among the independent metrics and federated

engine components as depicted in Figure 4.2. Obviously, the number of ASK’s and

SS’s depend on the source selection approach. The IR and MAX values are affected

by the query optimisation approach for query planning and execution. DSR and RQ

are influenced by the source selection, query planning and execution strategies since

data transmission between the federated engine and SPARQL endpoint happens during

source selection and query execution, .

2. Semi-Independent Metrics

As part of the federated engine, a SPARQL endpoint can influence the performance

of a framework for federation over SPARQL endpoints. However, most of the cur-

rent evaluation approaches disregard the existence of the SPARQL endpoint. Hence,

the query optimisation in the federation engine only focuses on getting results quickly
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Listing 4.2: List of sub queries sent to SPARQL endpoints to accomplish query in Listing 3.3

#sent to Diseasome

SELECT * {

?disease a diseasome:diseases .

?disease rdfs:label ?diseasename .

?disease diseasome:possibleDrug ?drug .

}

#received from Diesasome

# ?disease,?diseasename,?drug

# diseasome:382,Estrogen resistance,dailymeddrug:363

#sent to Dailymed

SELECT *

{

?drug dailymed:name ?drugname .

}

#received from Dailymed

# ?drug,?drugname

# dailymeddrug:363,Vivelle

without considering the SPARQL endpoint capability. For instance, FedX (see at Sec-

tion 3.5.2) proposed the bound join strategy to merge a number of intermediate results

variables in a single query. In theoretical, ideal conditions, this can reduce the num-

ber of requests and size of intermediate results. However, each request may consume

significant bandwidth to retrieve the results from SPARQL endpoint. Moreover, the

federated engine might be able to communicate more than one request to a SPARQL

endpoint in a period of time. Consequently, the SPARQL endpoint workload tends

to be high. In order to ensure the sustainability of a SPARQL endpoint server, the

SPARQL endpoint server sometimes rejects an expensive query and only returns a lim-

ited number of results. Ultimately, the query answer could be incomplete as described

in Figure 1.4 and in the worst case, the federated engine can fail to finish the query

execution. Based on observing the capability of a SPARQL endpoint, we generate

semi-independent metrics using independent metrics as the variables:

• Request Workload (RW ) Typically, a public SPARQL endpoint does not allow

us to send many requests in an interval of time. Hence, we define a request
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workload (RQ) as — the approximation of the number requests delivered to a

number of SPARQL endpoints in a given interval time – which can be formulated

as follows:

RW =
RQ

T ∗ SS
(4.1)

where T is the response time, RQ is the number of requests and SS is the num-

ber of SPARQL endpoints selected12. Coming back to the previous example of

the number of requests(RQ) and the number of sources selected(SS) in the inde-

pendent metrics section, RQ is 10 requests and SS is 2 sources. Given T is 60

seconds, then RW = 10
60∗2 = 0.833

• Average Answer Size (ANS) A SPARQL query can return zero or many rows. In

order to decrease bandwidth usage, it normally truncates answer size to a certain

number of rows. ANS indicates the capacity of a SPARQL endpoint to answer a

query, which can be calculated as follows:

ANS =
IR

RQ
(4.2)

where IR is the size of intermediate results and RQ is the number of requests. As

described in the previous example of the size of intermediate results, Listing 3.3

generates two rows. Based on that example, we can calculate ANS = 2
10

= 0.2

• Average Data Received (ADR) is defined as the amount of data received by

a federated engine in bytes per query request. The high value of ADR implies a

costly communication between the federated engine and the SPARQL endpoints.

ADR =
DSR

RQ
(4.3)

3. Composite Metrics

As shown in Table 4.1, most evaluations execute more than 10 queries. It is difficult

to judge which federated engine performs better than others by looking at multiple

results. For the sake of readability, we aggregate the results of each performance

metric into a single value. In order to avoid trade-offs among queries, we assign a

weight to each query using the variable counting strategy from ARQ Jena [Stocker

and Seaborne, 2007]. This weight indicates the complexity of the query based on the

12This modifies our previous request workload formula
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selectivity of the variable position and the impact of variables on the source selection

process. The complexity of a query can influence the federation performance. Hence,

we normalise each performance metric result by dividing the metric value by the weight

of the associated query. In the context of federated SPARQL queries, we set the weight

of the predicate variable equal to the weight of the subject variable since most of the

federated engines rely on a list of predicates in order to select the data location. Note

that, a triple pattern can contain more than one variable. The choice of the weight

of the subject variable ws, predicate variable wp and object variable wo for the triple

pattern τ can be explained as follow:

ws(τ) =

{
3 if the subject of triple pattern τ ∈ V
0 otherwise

(4.4)

wp(τ) =

{
3 if the predicate of triple pattern τ ∈ V
0 otherwise

(4.5)

wo(τ) =

{
1 if the object of triple pattern τ ∈ V
0 otherwise

(4.6)

Finally, we can compute the weight of query q:

weight(q) =
∑
∀τ∈q

ws(τ) + wp(τ) + wo(τ) + 1

MAX COST
(4.7)

where MAX COST = 8 because if a triple pattern consists of a set of variables that

are located in all three positions, the weight of the triple pattern is 8 (3+3+1+1).

Given that Q is a set of queries q in the evaluation, we then define the weight normal-

isation of the query q (ω(q,Q)) in query set Q as follows:

ω(q,Q) =
weight(q)∑

qt∈Qweight(qt)
(4.8)

By using the weight normalisation of a query, we can align the query performance

results afterwards. Each result is calculated individually. Given that Q is a set of

queries q in the evaluation and that m is a set of performance metric results associated

with the query set Q, then the final metric µ for the evaluation is defined in Equation
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Figure 4.3: Response Time (seconds).

4.9.

µ(Q,m) =
∑
q∈Q

mqω(q,Q) (4.9)

Given an evaluation with two queries and two response time results as follows:

Query 1 (15 seconds): select * { ?s ?p ?o .}
Query 2 (20 seconds): select * { ?s rdfs:label ?o . ?s diasesome:size 1 .

}

The weight of Query 1 (q1) is 3+3+1+1
8

= 1 , whereas weight of query 2 (q2) is
3+1+1

8
+ 3+1

8
= 1.125. Now, the weight normalisation of two queries can be computed:

ω(q1, Q) = 1
1+1.125

= 0.47, ω(q2, Q) = 1.125
1+1.125

= 0.529. The final metric for response

time is 0.47 ∗ 15 + 0.529 ∗ 20 = 17.63 seconds.

4.3 Experiment and Result

In order to investigate the performance of existing query federation frameworks from different

metrics, we perform a comprehensive experiment on Linux Ubuntu 64 bits. Three SPARQL

endpoint servers and federated engine are set up on a single machine. Dailymed dataset

is divided (Table 4.2) based on its classes: Drugs, Ingredients and Organizations and store

them in different SPARQL Endpoints. We ran each of 16 queries detailed in Appendix B.1

three times, once on FedX [Schwarte et al., 2011], Splendid [Görlitz and Staab, 2011] and
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Source-set Triples Classes Properties Subjects Objects
Drugs 147245 2 26 4308 56973

Ingridients 11212 1 3 4066 4978
Organizations 5773 1 4 711 5055

Table 4.2: Source-set Used in Evaluation

DARQ [Quilitz and Leser, 2008] federation engines. The final results shown are the composite

metrics of independent and semi-independent metrics.

DARQ failed at Queries 4 and 5 since these queries contains unbound predicate, while

FedX could not perform Query 6 because of the evaluation time out issue. In general, the

fastest response time was achieved by Splendid and FedX (Figure 4.3), but FedX commu-

nication was expensive (Figure 4.4(d)). Splendid and DARQ produced high intermediate

results (Figure 4.4(c)), but the volume of data transmission was low (Figure 4.4(d)). All

federated engines have a source selection strategy before sending the sub queries, therefore

the number of selected sources in all queries are the same (Figure 4.4(b)). FedX does not

have a data catalogue to predict the data location, consequently, the number of requests

was higher than the other federated engines (Figure 4.4(a)). Only Splendid and FedX gen-

erated ASK queries during execution (Figure 4.4(e)). As seen at Figure 4.5(b) and 4.5(a),

the lowest of ADR and ANS were obtained by FedX, since it uses a bound join strategy.

As a result, the FedX request workload is lower than the DARQ and SPLENDID request

workload (Figure 4.5(c)). The speed of a federated engine can be a main indicator of the

framework for federation over SPARQL endpoint performance, but other metrics should be

considered to measure the framework performance. For instance, even though FedX can

answer a query quickly, it produced too many requests which can cause poor performance of

SPARQL endpoints. The communication cost can not only be described by the average size

of intermediate results, but the average data received should also be taken into account. As

shown in Figure 4.5(b) and 4.5(a), SPLENDID had more intermediate results than DARQ,

but it received less data than DARQ. Thus, it is necessary to calculate the cost of query

execution based on the size of the data, not only based on the cardinality estimation.

To provide a better comparison amongst federated engines, we combine the response time,

the data sent received and the number of requests by using the geometric mean since the

small value produced by these metrics indicates better performance of a federated engine. As

seen in Figure 4.6, the best performance was achieved by SPLENDID, followed by FedX and

DARQ. Using a data catalogue and the ASK SPARQL query does minimise the bandwidth

usage and number of requests between SPLENDID and the SPARQL endpoints.
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Figure 4.4: Performance of the three federated engines measured by independent metrics
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Figure 4.5: Performance of the three Federated Engines Measured By Semi-Independent
Metrics
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Figure 4.6: Combined Indepedent Metrics Results

4.4 Conclusion

We have presented a holistic evaluation of the existing federation SPARQL Engines by intro-

ducing three types of metrics : independent metrics, semi-independent metrics and composite

metrics. The independent metrics are not influenced by the evaluation environment such as

the hardware and software. These metrics include the number of requests, number of ASKs,

size of intermediate results, amount of data sent and received and number of selected sources.

Most of those metrics are obtained from the data transmission between the federated en-

gine and the SPARQL endpoints. We also proposed three metrics that are associated with

SPARQL endpoint capacity, namely the Request Workload, the Average Answer Size and

the Average Data Received.

Based on these various metrics, a user can select the metrics that are suitable for his

environment and use case. On one hand, the speed of a federated engine to answer a query

can be a main indicator of the federation performance, but on the other hand, sometimes

this leads to more expensive communication such as a high number of requests delivered

in given interval of time and high data transmission. In real cases, such conditions can

significantly impact the SPARQL endpoint performance. Eventually, it will also affect the

whole federation system. Hence, a federated engine developer should consider approaches

for minimising the number of requests such as applying a window size in a query execution

strategy.
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Federated engines normally apply the cardinality estimation based on how many rows

selected which is more suitable for the single RDF query optimisation. Since the federation

framework encounters a network communication issue, a weighting function should be as-

signed to objects with literal values. Literal values especially strings, might consume more

bandwidth than URI values.



Chapter 5

The Cost And Benefit of Exploiting

Links in Federated SPARQL Query*

In this chapter, firstly we describe our motivating example to carry out an investigation

that explores the benefits and the costs of using links in a federated SPARQL query. Next,

we define the link term in a federated SPARQL query. Continuing, we explain the cost

and benefits of links on the performance of a federated SPARQL query engine. In the final

section, we conduct three experiments to analyse the impact of links on federated SPARQL

query.

5.1 Motivating Example

Different initiatives have been taken by researchers to link data both at schema and instance

level to facilitate efficient query processing. At schema level, the linking mechanism mainly

relied on aligning the ontologies used by different sources e.g. BLOOMS [Jain et al., 2010].

Alternatively, [Hasnain et al., 2012] proposed a methodology to facilitate a posteriori data

integration to help SPARQL federation by cataloguing the data. Similarly, SILK [Jentzsch

et al., 2010] and LIMES [Ngomo and Auer, 2011] facilitate link generation between instances

from two sources based on matching the predicates. The interlinking of multiple sources in

the Web of Data enables users to navigate amongst these sources, similar to the way the

users currently navigate through different web pages in the Web of Documents. In this way,

the LOD Cloud can be significantly benefit users to retrieve a meaningful information by

enhancing existing tasks such as querying, reasoning, and knowledge discovery [Jain et al.,

*Parts of this chapter have been published as [Rakhmawati et al., 2014a]
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drug:DB00316

Dbpedia

LinkedCT

Sider

owl:sameAS

owl:sameAS

owl:sameAS

Figure 5.1: The example of the hidden cost of links

2010].

Although the interlinks amongst sources have several benefits associated with them for

the data users, there may have been some hidden costs associated with federating a query

over multiple SPARQL endpoints. For example, a single entity which is connected to mul-

tiple object values with the same link. Those objects values may not be available in any

datasets for a particular federation scenario. Consequently, these links may increase the

communication cost between the federated engine and SPARQL endpoints because many

subqueries with those objects cannot be answered by the SPARQL endpoints. As a moti-

vating example, assume that a federated engine receives Query 3.9 and drug DB00316 in the

Drugbank dataset has seven owl:sameAs links to LinkedCT1, one link to Sider and two links

to DBPedia (Figure 5.1). If the defined federation framework does not contain DBpedia and

LinkedCT datasets, these links that point to DBPedia and LinkedCT datasets can cause

unexpected intermediate results during query execution. Consequently, these intermediate

results can increase the data transmission between the federated engine and SPARQL end-

points. Hence, there is a need to investigate the impact of distinct links from one dataset to

others for calculating the cost of any federation framework.

As mentioned earlier, researchers have been focusing on presenting new ideas and tools

to facilitate data integration and interlinking, but no initiative has been taken (to the best

of our knowledge) to analyse the costs and benefits of link i.e how the costs of a federated

SPARQL query change while accessing the data from multiple locations having links between

them and in compare to the cost associated when accessing the data without links.

1http://linkedct.org/

http://linkedct.org/
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5.2 Related Work

There have been studies carried out to the benefit of interlinking. [Hausenblas, 2009] il-

lustrates how the link can improve the web application development. With respect to the

benefits of links for specific domains, the link is useful for discovering musics [Raimond

et al., 2009], drugs [Jentzsch et al., 2009] and experts [Stankovic et al., 2010]. [Iqbal and

Hausenblas, 2013] analysed the benefits of link in the Open Source Software development.

LIDAQ [Umbrich et al., 2012a] investigate the benefit of owl:sameAs and rdfs:seeAlso

links in terms of increasing the recall of the querying results of a link traversal infrastruc-

ture. Along these lines, our work mainly concerns in the benefits of the links in the context

of federated SPARQL query.

Apart from the advantages of links, several initiatives developed the cost model

for distributed SPARQL query [Obermeier and Nixon, 2011] and federated SPARQL

query [Rakhmawati, 2013b]. [Obermeier and Nixon, 2011] builds a distributed query cost

model using the R system, however it does not provide an evaluation for the cost model.

Our initial work to build a cost model for a federated SPARQL query is presented

by [Rakhmawati, 2013b]. We formulated a cost model based on the multiple regression

models where the performance metrics of the federated engine is the dependent variable and

the dataset metrics is the independent variables. In this thesis we do not build a cost model

for distributed SPARQL query in general, but we observe the costs of the existence of the

links in a sense of querying data over SPARQL endpoints.

5.3 Interlinking in Federation over SPARQL End-

points

Federation over SPARQL endpoints consists of a federated engine as the mediator and a

group of autonomous SPARQL endpoints. Although each SPARQL endpoint is independent,

they could be virtually interlinked with several links which connect entities amongst SPARQL

endpoints as shown in Figure 5.2. In this figure, the Diseasome, the Sider and the Drugbank

is interconnected by owl:sameAs link.

For a better understanding, we initially define links that can merge data from two or

more datasets. Two or more sources are linked if there is a path from one source to other

sources. The path can be formally defined as follows:
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Client

drugbank sider

disease
Federated Engine

query

diseasome
owl:sameAs owl:sameAs

Figure 5.2: A sample of a federation over SPARQL endpoints where some entities in SPARQL
endpoint are interlinked with owl:sameAs

Definition 5.1 Let D be a source set. The set of all paths(D) is defined inductively as

follows:

1. 〈a, b〉 is paths(D) if there exists d ∈ D and a, p ∈ U such that (a, p, b) ∈ d∨(b, p, a) ∈ d.

2. if there is a path 〈a1, ....., an〉 in paths(D) and if there is d ∈ D and b, p ∈ U such that

(an, p, b) ∈ d ∨ (b, p, an) ∈ d then 〈a1, ....an, b〉 ∈ paths(D).

3. if there is a path 〈a1, ....., an〉 ∈ paths(D) and there is a resource b such that

(an, owl:sameas, b) is in the transitive symmetric closure of all owl:sameAs statements

of union d in D then 〈a1, ....., an−1, b〉 ∈ paths(D).

4. these are all the paths.

Given paths(D), now we can determine whether two sources are linked.

Definition 5.2 Two sources R, S ∈ D are linked if there is a path 〈a1, ....an〉 ∈ paths(D)

such that there is ai ∈ R ∧ aj ∈ S with 1 <= i, j <= n.

Let R be a SPARQL endpoint that contains the following triples:

exR:Alice rdf:type foaf:person .

exR:Alice owl:sameAs exS:student123 .

and let S a also be SPARQL endpoint that contains the following triples:

exS:student123 rdf:type exS:student .
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Since there is a path exR:Alice-exS:student123-exS:student from R and S, we can say

that R and S are linked.

The last condition of Definition 5.1 is intended for covering the characteristic of http://

www.w3.org/2002/07/owl#sameAs (owl:sameAs). Owl:sameAs is a link that connects two entities

that are located in different locations but have the same characteristics. This link is one of

popular links that integrate data from multiple locations.

If we add exS:student123 owl:sameAs exR:Alice in S SPARQL endpoint as shown in the

following triples:

exS:student123 rdf:type exS:student .

exS:student123 owl:sameAs exR:Alice .

then the closure between (exR:Alice owl:sameAs exS:student123) ∈ R and (exS:student123

owl:sameAs exR:Alice) ∈ S is symetric.

Next, if we let R be a SPARQL endpoint stores the following triples:

exR:Alice rdf:type foaf:person .

exR:Alice owl:sameAs exT:Alicia .

and S be a SPARQL endpoint has the following triples:

exS:student123 rdf:type exS:student .

exS:student123 owl:sameAs exT:Alicia .

We can conclude that R and S are also linked because the relation between (exR:Alice

owl:sameAs exT:Alicia) ∈ R and (exS:student123 owl:sameAs exT:Alicia) ∈ S is transitive

closure. The compositions of transitive closure between R and S is {(exR:Alice owl:sameAs exT:Alicia),

(exR:Alice owl:sameAs exS:student123), (exS:student123 owl:sameAs exT:Alicia)}. If ext:Alicia

cannot be found in any source that is part of source-set D, R and S might be also linked to

another source.

In this chapter, we analyse the effects of the existence of the links since links have an

important role when merging data from different data-sources. We only consider observing

links that are produced by data publisher for connecting two entities that are located in two

locations. Such links are predicates that connect two sources with length of path is two. For

instances, owl:sameAs, rdf:seeAlso, etc. In early phase of distributed RDF data, these links

are used to navigate from one source to another source. And at present, there are more links

generated to create Linked Open Data (LOD) cloud.

http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
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Listing 5.1: Drugbank Sample Dataset

1 drugbankdrugs:db00316 rdf:label "Acetaminophen" .

2 drugbankdrugs:db00316 owl:sameAs sider:1983 .

3 drugbankdrugs:db00316 drugbank:target drugbanktargets:290 .

For example, consider Listing 5.1 which contains triples related to Acetaminophen and

given a dataset D as shown in Figure 3.2 that comprises: Drugbank, Dailymed, Sider and

Diseasome. According to Definition 5.1, rdfs:label in the first triple is not a link because

its object type is a literal. owl:sameAs is one of links because sider:1983 is a subject in

Sider dataset. In contrast, drugbank:target is not a link since the subject and object is

located at the same location.

5.4 The Cost and Benefit of the Links

The existence of links can replace the objects similarity (Section 3.3.3) approach in some

cases. In order to compare the benefits of exploiting links and other approaches (without any

links) for federated SPARQL execution strategies, we use the RDF selectivity estimation. In

our scenario, we assume that each link and each predicate has exactly one object value in

order to produce the same number of intermediate results. For the sake of simplicity, we only

consider the two triple patterns that combines data from more than one dataset regardless of

the rest of query. Basically, the object similarity and the reusing of an identifier approaches

are object-object join pattern. Suppose that ?x1p1?y1 is a triple query pattern that matches

data-source d1 while ?x2p2?y2 is a triple query pattern that matches data-source d2. Then an

object-object join pattern can be defined as: [?x1p1?y1] and [?x2p2?y1], whereas the using link

approach is a subject-object join pattern which can be written as [?x1p1?y1] and [?y1p2?x2].

These joining strategies cost are influenced by the execution strategies. In general, there are

two main types of execution strategies in the federated SPARQL query namely Nested-loop

join and Bind join [Quilitz and Leser, 2008] which have been explained in Section 3.4.5.

In the Nested-loop join scheme, the federated engine sends each subquery to all SPARQL

endpoints simultaneously and joins the results locally. By contrast, in order to minimise the

number of intermediate results, federated engines apply the Bind join strategy by executing

each subquery one by one and assigning the results from the previous subquery as a constraint

on the next subquery.

In the case of object-object join query pattern, the Nested-loop join generates different
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intermediate results from the Bind join. Suppose that T (p1) is a function to count the number

of triples that match to pattern [?x1p1?y1] while T (p2) is a function to count the number of

triples that match to pattern [?x2p2?y1]. Then, the intermediate results of object-object join

pattern in the Nested-loop join strategy is T (p1) + T (p2). Bind join produces fewer number

of intermediate results because ?y1 from the previous subquery becomes a constrains for

[?y1p2?x2]. Let T (p2, y1) be a function to calculate the number of triples that match pattern

[?x2p2?y1] where ?y1 is replaced by the previous subquery result, then the intermediate

results of object-object join pattern in the Bind join strategy is T (p1) + T (p2, y1). However,

by contrast, using links that implements the subject-object join pattern produces the same

result in both the Nested-loop join and the Bind join strategies.

According to [Stocker et al., 2008], the subject-object join pattern is more selective than

the object-object join pattern. Hence, the existence of links could provide more benefits

to a federated engine that applies the Nested-loop join strategy. In order to support the

argument made above, we conducted an experiment which is detailed in Section 5.5. Apart

from that, there are also several potential benefits of links in the federated SPARQL query:

• As described in Section 3.3, without using links, we can use objects similarity to query

over multiple sources. However, the objects similarity often encounters case sensitivity

problem due difference in the capitalisation of the entity label. To tackle the problem

of case sensitive, we can use the FILTER keyword to compare object values. In addition,

a REGEX keyword can also be added. However, these two keywords may increase the

cost of a query execution. Apart from case sensitivity, typographical errors in writing

a label can potentially lead to decreases the number of query results. The usage of

links at a federated SPARQL query can avoid these issues.

• The links generation requires the domain experts to curate the validity of links. Hence,

the existence of these links can increase the accuracy of federated SPARQL query

results. However, other strategies such as object similarity may return invalid results

or fewer results. This statement is supported by experiment 3 in Section 5.5 which

compares the accuracy of results between queries containing links and those without

any links.

In the following section, we will describe our experimental set-up to investigate the costs

and benefits of interlinking in the context of a federated SPARQL query.
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Dataset Properties Triples Links

Dailymed 28 164276 39635

Drugbank 118 766920 56958

Disease 19 91182 31750

Sider 11 193249 20294

Table 5.1: Statistic for the dataset used in the evaluation

5.5 Experimental Setup

We carried out three experiments with three different objectives: 1) investigate the effects of

the existence of links at federated SPARQL query 2) observe the impact of number of links

on the performance of a federated engine and 3) study how the presence of links contributes

to the accuracy of the results. We run these experiments on an Intel Xeon CPU X5650,

2.67GHz server in which Ubuntu Linux 64 bit is installed as the Operating System and Fuseki

1.0 as the SPARQL endpoint server. For each dataset, we set-up a Fuseki server which is

distinguished by unique port. The execution time-out for each query is set to one hour. Our

experiment uses four Life Science domain datasets which are related to the pharmaceutical

domain (Figure 3.2), namely Dailymed, Drugbank, Disease and Sider. Further statistical

details of each dataset can be found in Table 5.1.

The details of our experiments are explained as follows:

1. The first query set consists of six objectives. Each objective contains two queries: one

uses links while the other uses object similarity (Section 3.3.3). The aim of having

two queries for each objective is to compare between a query that exploits links and

a query that does not use any links. Since we can not find the object similarity case

for the Diseasome dataset, first query set only uses Drugbank, Dailymed and Sider

datasets. Our queries for this experiment can be found in Appendix B.2. The first

query triple pattern in each query always contains a constant subject in order to avoid

different number of results in the same query objective. Note that, we only run the first

experiment on DARQ, Splendid and FedX because we want to investigate the impact

of the links with three different execution strategies. Although we earlier described five

federated SPARQL query approaches in Section 3.3, we only designed query set based

on two approaches: the object similarity and using link approaches because these two

approaches address the same objective in two different ways. Other approaches with the

same objective, such as using the SERVICE keyword use either of the two approaches

we study: object similarity and using links approaches. However, we only take into
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account a query which does not explicitly contain the SPARQL endpoint address. We

choose federated engines that have a source selection strategy for executing a query,

namely Darq, SPLENDID and FedX. In order to assess the performance of federated

engines, we use five metrics 1) Number of rows 2) Response time of the federated engine

to execute a query 3) Data transmission between the federated engine and SPARQL

endpoints 4) Number of intermediate results to execute a query 5) Number of requests

delivered to all SPARQL endpoints.

2. The second query set comprises 210 queries including: 151 two-chains, 38 three-chains

and 21 star queries. Besides the path pattern, the query set is differentiated by its

classes, links and predicates. Our query set covers all classes and properties in the

dataset. However, not all properties are included in our query set since each predicate

is not always found in all datasets. We also design some queries to retrieve data from

all data-sources. The query pattern is differentiated by its shape of path, namely the

star shape, chain shape and hybrid shape. In any pattern, the property is a constant

whereas the subject or object of the triple pattern could be a variable. In the query

federation framework, the path query slightly differs from the centralised repository

infrastructure. The path in our evaluation refers to the links between datasets, not the

path between subjects and objects in a single dataset.

• A Chain Shape comprises more than one triples which are connected by a link.

As shown in the Figure 3.2, a chain shape example is a relation owl:sameAs be-

tween sider:side effects with diseasesome:diseases. The chain shape may

involve more than two datasets. For instance, the path drugbank:brandedDrug

between drugbank:drugs and dailymed:drugs then dailymed:drugs also has

dailymed:possibleDiseasetarget linking to diseasesome:diseases.

• A Star Shape is useful for retrieving triples having the same link from

multiple datasets. The star path is formed by a link to different datasets

which belongs to a single subject or entity. For example, sider:drugs has

owl:sameAs that links to dailymaed:drugs and drugbank:drugs. Another

star shape example is diseasome:possibleDrug making the connections be-

tween diseasome:diseases and dailymed:drugs or diseasome:diseases and

drugbank:drugs. This shape allows a federated engine to deliver the same sub-

query to multiple SPARQL endpoints in parallel.

• A Hybrid shape is a combination of star and chain shape joining more than two
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datasets.

The query sets were executed 3 times over 4 federation engines, namely DARQ, Splen-

did, Sesame SAIL Alibaba and FedX. With respect to the execution strategy, DARQ

implements either Nested-loop join and Bind strategy, Splendid uses Bind join strategy

and FedX applies the Bound join strategy. In order to see the effect of the links in

various execution strategies, we set DARQ to implement the Nested-loop join. Note

that, we do not use the current Sesame that already supported SERVICE keyword, but

we run our evaluation over Sesame SAIL Alibaba which allows us to query without a

SERVICE keyword specified.

3. The last experiment used four queries which have the same objective: obtain a list

of branded drugs from the Dailymed dataset and its generic drugs from the Drugbank

dataset. These queries can be explained as follows:

(a) Compare the label of inactive ingredient of the drugs in the Dailymed dataset to

the label of drugs in the Drugbank dataset.

(b) Compare the label of active ingredient of the drugs in the Dailymed dataset to

the label of drugs in the Drugbank dataset.

(c) Compare the label of active moiety of the drugs in the Dailymed dataset to the

label of drugs in the Drugbank dataset.

(d) Exploit the dailymed:genericDrug link to discover the relation of the branded

drug in the Dailymed and its generic drug in the Drugbank.

We picked active ingredient, inactive ingredient and active moiety as part of the com-

parisons since these properties usually refer to the generic drug name. Each drug brand

name consists of at least one active ingredient which refers to the generic name and

many inactive ingredients (such as substances including colors, flavours, preservatives,

and materials that bind to the drugs ). After getting the query results, we asked two

experts (a pharmacist and a cardiologist) to evaluate the accuracy of our results. We

limit the validation to the top ten results. The detail of this experiment is reported in

Appendix D.

A complete query sets for all experiments can be found at http://github.com/nurainir/

costbenefitlinks.

http://github.com/nurainir/costbenefitlinks
http://github.com/nurainir/costbenefitlinks
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Figure 5.3: Average Number of Rows

5.6 Results and Discussion

The first experimental results are depicted in Figure 5.3-5.7 and the second experimental

results are presented in Figure 5.8. As illustrated in Figure 5.3, all federated engines return

the same result, but we obtained more results while using links. Without a link, the query

execution often encounters the case sensitivity and invalid label issues. Hence, fewer results

are retrieved without links than with links. In general, there are not many differences in

the results (Figure 5.4-5.7) between the no-link query and the link query when these queries

are executed by Splendid and FedX since these engines implement the Bind join strategy.

DARQ, the only federated engine implementing Nested-loop join shows that the no-link

query reduce the performance of DARQ.

In total, we have 2520 results (3 running times x 4 frameworks x 210 queries) in the

second experiment but 108 results are discarded. The reason for removing results are: 1) the

query execution time exceeds one hour 2) query results are below 50% of the completeness

value. The success of query processing is not only defined by the completion of execution, but

it also depends on the validity of the result. Thus, we consider calculating the completeness

of the results after query execution is done. The completeness is defined as the ratio of the

number of true answers retrieved to the number of true answers in the dataset. In order to

describe the results, we calculate the arithmetic mean of multiple different queries results

having 1) the same number of distinct linked datasets and 2) the same number of links.

A high number of links can lead to a high communication cost between the federated
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Figure 5.6: Average Intermediate Results (in log scale)
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Figure 5.8: Average Data Sent and Received (Bytes) Versus the number of Links (log scale)

Query 1 2 3 4
#Correct Results 0% 90% 80% 100%

Table 5.2: The Accuracy of Query Results (Experiment Three)

engine and SPARQL endpoints. As indicated in Figure 5.8, the performance of Splendid,

DARQ, and FedX first increases gradually and then starts rising sharply after 6000 links.

Sesame transmits more data than the other federated engines. Thus, in the evaluation,

Sesame time-outs occur for queries with more than 6000 links. In general, the federated

engines generate higher data transmission as the number of links increases because the

number of links is highly related to the intermediate results which eventually influences the

amount of data transmission.
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Results from the third experiment are summarised in Table 5.2. The first query aimed to

map inactive-ingredients from two different sources, Dailymed and Drugbank. In this query,

the inactive-ingredients of Dailymed are mapped to the drug names from Drugbank. Since

the drug label in Drugbank mainly covers active-ingredients, this query failed to return the

generic name of the drug. The second query mapped the active-ingredients from Dailymed

to the drugs label from Drug Bank. This query has returned the correct results. Since both

the active-ingredient and drug labels refer to the generic names of a drug, the second query

retrieved correct results for all cases when a drug has only one active-ingredient. If a drug

contains more than one active-ingredient (e.g Zestoretic), the query retrieves only one of

the active-ingredients). The third query lists the drug names and their relation to generic

names by using the active-Moiety label of Dailymed. This query returns the correct results

with exceptions of Vasocidin and Zestoretic cases. In these cases, there is more than one

active-ingredient, but that query is only able to retrieve one active-ingredient. In the fourth

query, brand names are mapped using genericDrug link. This query returned the correct

results. Since the links generation is generally validated in advance, the results of the query

that exploits links is more accurate than the results of the query without using any link.

The results of each query are detailed in Appendix D.

5.7 Conclusion

As part of the characteristics of a federated SPARQL query dataset, links have an important

role in navigating from one dataset to other datasets, thus we investigate the impact of the

existence of the links in the context of federated SPARQL querying. In order to observe

the effects of the links, we run object similarity and using links query approaches over four

federated engines: DARQ, Splendid, FedX and Sesame. Our experimental results reveal that

the links can improve the performance of the federated engine if the federated engine applies

the Nested-loop join strategy. Additionally, by using links, the number of query answers is

higher than the query results without any link as a query without a link sometimes faces

the case sensitivity and typo problems. Further, the accuracy of query results that uses the

links is higher than the accuracy of query results without any link involved because links

generation is normally curated by an expert.



Chapter 6

Dataset for Query Federation

Benchmark*

This chapter explains several existing partition strategies that have been applied in a cen-

tralised RDF repository. We then adapt these strategies to divide a real dataset that will

be used for benchmarking a federated SPARQL query. The results of these partitions are

several datasets with different shapes such as number of triples, number of entities etc.

6.1 The states of the art of RDF data partitions

We first study data partition approaches for clustering a centralised RDF repository. To

provide a better understanding, we use sample data in Listing 6.1.

6.1.1 METIS Partition

Often, with graph partitions, attempts are made to split the nodes and vertices uniformly in

terms of the overall number. One notable graph partition for scalable data is METIS [Karypis

and Kumar, 1998]. To split up the graph, METIS has three steps: graph coarsening, par-

titioning and un-coarsening. During the coarsening phase, the initial graph is converted to

smaller graphs successively by removing edges between two vertices repeatedly. Once the

smallest graph is created, the partition process will be applied. The partitioned coarsen

graph will be the initial partition for bigger graph in the un-coarsening process. The aim

*Parts of this chapter have been published as [Rakhmawati and Hausenblas, 2012; Rakhmawati et al.,
2014b]
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Listing 6.1: Dailymed Sample Triples

dailymeddrug:82 a dailymed:drug .

dailymeddrug:82 dailymed:activeingredient dailymeding:Phenytoin .

dailymeddrug:82 rdfs:label "Dilantin-125 (Suspension)" .

dailymeddrug:201 a dailymed:drug .

dailymeddrug:201 dailymed:activeingredient dailymeding:Ethosuximide .

dailymeddrug:201 rdfs:label "Zarontin (Capsule)" .

dailymedorg:Parke-Davis a dailymed:organization .

dailymedorg:Parke-Davis rdfs:label "Parke-Davis" .

dailymedorg:Parke-Davis dailymed:producesDrug dailymeddrug:82 .

dailymedorg:Parke-Davis dailymed:producesDrug dailymeddrug:201 .

dailymeding:Phenytoin a dailymed:ingredients .

dailymeding:Phenytoin rdfs:label "Phenytoin" .

dailymeding:Ethosuximide a dailymed:ingredients .

dailymeding:Ethosuximide rdfs:label "Ethosuximide" .

dailymeddrug:82

dailymeding:Phenytoin

dailymeddrug:201

dailymeding:Ethosuximide

dailymedorg:Parke-Davis

dailymed:activeingredient

dailymed:producesDrug

dailymed:activeingredient

dailymed:producesDrug

"Dilantin-125 (Suspension)"

"Phenytoin"

"Parke-Davis"

"Ethosuximide"

"Zarontin (Capsule)"

rdfs:label

rdfs:label

rdfs:label

rdfs:label

rdfs:label

Figure 6.1: Example of METIS Partition applied

of this partition scheme is to reduce the communication needed between machines during

the query execution process, by storing the connected components of the graph in the same

machine. As shown in Figure 6.1, by using the METIS partition approach, there is only one

link (dailymed:producesDrug) between two partitions; and the related triples are grouped

in a single partition.
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6.1.2 Vertically Partitioned Tables

This method, proposed by [Abadi et al., 2007], distributes triples based on its predicates.

By excluding predicates, a table stores subjects and its associated object in the same row.

Given a source graph in Listing 6.1, Vertically Partitioned Tables scheme generates four

tables that can be found in Table 6.1.

rdf:type
Subject Object

dailymeddrug:82 dailymed:drug
dailymeddrug:201 dailymed:drug

dailymedorg:Parke-Davis dailymed:organization
dailymeding:Phenytoin dailymed:ingredients

dailymeding:Ethosuximide dailymed:ingredients

rdfs:label
Subject Object

dailymeddrug:82 Dilantin-125 (Suspension)
dailymeddrug:201 Zarontin (Capsule)

dailymedorg:Parke-Davis Parke-Davis
dailymeding:Phenytoin Phenytoin

dailymeding:Ethosuximide Ethosuximide

dailymed:activeingredient
Subject Object

dailymeddrug:82 dailymeding:Phenytoin
dailymeddrug:201 dailymeding:Ethosuximide

dailymed:producesDrug
Subject Object

dailymedorg:Parke-Davis dailymeddrug:82
dailymedorg:Parke-Davis dailymeddrug:201

Table 6.1: Example of Vertically Partitioned Tables applied

6.1.3 Property Tables

Wilkinson [Wilkinson, 2006] suggested a method for storing RDF data in a relational

database, called Property Table (PT). There are two kinds of PT partitions: Clustered

Property Table, in which RDF with the same predicate are grouped in a property table

and Property-class Table in which each class is stored in a single table. The remaining

triples which do not belong to the Property-Tables are stored to a Left-Over-Triples table.



6.1. The states of the art of RDF data partitions 89

The property table for a graph in Listing 6.1 has three columns: Subject, rdfs:label and

rdf:type in which all entities in the graph are included in the Property-Table (Table 6.2).

As shown in Table 6.3, when the Property-Class-Table is applied to the graph in Listing 6.1,

three Property-Class-Tables are generated, but no Left-Over-Triples table is produced.

Property Table
Subject rdfs:label rdf:type

dailymeddrug:82 Dilantin-125 (Suspension) dailymed:drug
dailymeddrug:201 Zarontin (Capsule) dailymed:drug

dailymedorg:Parke-Davis Parke-Davis dailymed:organization
dailymeding:Phenytoin Phenytoin dailymed:ingredients

dailymeding:Ethosuximide Ethosuximide dailymed:ingredients

Left-over Triples
Subject Predicate Object

dailymedorg:Parke-Davis dailymed:producesDrug dailymeddrug:82
dailymedorg:Parke-Davis dailymed:producesDrug dailymeddrug:201

dailymeddrug:82 dailymed:activeingredient dailymeding:Phenytoin
dailymeddrug:201 dailymed:activeingredient dailymeding:Ethosuximide

Table 6.2: Example of Clustered Property Table applied

dailymed:drug
Subject dailymed:activeingredient rdfs:label

dailymeddrug:82 dailymeding:Phenytoin Dilantin-125 (Suspension)
dailymeddrug:201 dailymeding:Ethosuximide Zarontin (Capsule)

dailymed:organization
Subject rdfs:label dailymed:producesDrug

dailymedorg:Parke-Davis Parke-Davis dailymeddrug:82
dailymedorg:Parke-Davis Parke-Davis dailymeddrug:201

dailymed:ingredients
Subject rdfs:label

dailymeding:Phenytoin Phenytoin
dailymeding:Ethosuximide Ethosuximide

Table 6.3: Example of Property-class Table Applied

The fragmentation results of these partition approaches are stored in a relational

database.
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6.1.4 Class Partition

Class Partition divides a dataset based on its classes. This partition was used for DARQ

evaluation [Quilitz and Leser, 2008].

6.1.5 Hash Partition

In this approach, each vertex is distributed randomly based on a hash function; as a con-

sequence the data that is related to each other potentially ends up in different partitions.

Eventually, this distribution could pose a problem in queries, since it induces more traf-

fic between the federated engine and the data-source. The hash partition was proposed in

SHARD [Rohloff and Schantz, 2010], which uses Hadoop1 to provide the hashing function

for each distinct subject.

6.1.6 Discussion

We have reviewed four state of the art partitions for clustering a centralised RDF repository.

In order to minimize links between sources, we take METIS partition into account to divide a

dataset. Due to the high numbers of properties in a dataset, we do not consider the Vertically

Partitioned Tables to divide our dataset. The Property Tables stores the partition results in

a relational database, while we only use an RDF store. However, we adopt these partitions

to split the data with respect to its class information. We do not take the hash partition

into account in our partition since a SHARD requires Hadoop for querying distributed data

in a single SPARQL endpoint and therefore, it is not suitable for our set-up system.

6.2 Dataset Generation

Realistic data generation for benchmarking is a relevant research question in both the Seman-

tic Web area and other mature fields like relational databases. As reported in Chapter 4, sev-

eral existing evaluations divided a single dataset into smaller datasets. In a centralised RDF

repository cluster, several machines need to communicate with each other in order to execute

a query, whereas in a federated SPARQL query, there is no interaction amongst SPARQL

endpoints. A federated engine has a role to communicate to each SPARQL endpoint during

query execution in the federated SPARQL query. Although the machine communication of

1http://hadoop.org

http://hadoop.org
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centralised RDF repository cluster and the federated SPARQL query are different, we apply

some of above centralised RDF repository cluster strategies to generate several synthetic

datasets for benchmarking a federated SPARQL query. The following items are the essential

requirements that need to be considered for the generation of datasets for assessing SPARQL

query federation frameworks:

1. Number of sources, a federated SPARQL query framework consists of more than

one source. Our work [Rakhmawati and Hausenblas, 2012] reported that the number

of sources has a positive linear relationship with number of requests and response time.

2. Distribution, The content distribution of a dataset will influence how many sources

are involved to answer a query. In terms of the RDF dataset, the content distribution of

a dataset includes the triples distribution, entities distribution, properties distribution,

and classes distribution. The distribution in this context means how triples, entities,

properties and classes are spread out through the sources.

In this section we will present steps of partition approaches namely, METIS partition,

entity partition, class partition, triples partition, property partition and hybrid partition.

We will evaluate for each partition approach in Chapter 7.

6.2.1 METIS Partition

RDF Data can be represented as a graph. Inspired by a centralised RDF repository

cluster [Huang et al., 2011], we performed a graph partition over our dataset by using

METIS [Karypis and Kumar, 1998]. The METIS is considered for our partition tool be-

cause the METIS’s output minimises the links between partitions.

1. We first identify a list of connections of subject and object in different triples. We only

consider a URI object which is also a subject in other triples. Intuitively, the reason

is that an object which appears as the subject in other triples can create a connection

if the triples are located in different dataset partitions. V (D) denotes a set of pairs

of subject and object that form a path (see path definition in Definition 5.1) in the

dataset D.

2. Assign a numeric identifier for each pair of subject and object V (D)

3. Create a list of sequential adjacent vertexes for each vertex then uses it as an input of

the METIS API.
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4. Run METIS to divide the vertexes. METIS produces a list of the partition number of

the vertexes.

5. Distribute each triple based on the partition number of its subject and object.

Consider an example, given a dataset in Listing 6.1, then

V (D) = {(dailymeddrug:82, dailymeding:Phenytoin), (dailymeddrug:201,

dailymeding:Ethosuximide), (dailymedorg:Parke-Davis,

dailymeddrug:82), (dailymedorg:Parke-Davis, dailymeddrug:201)}

An identifier value starts from one, and we then increase the identifier value by one. For

example, we set the identifier of each entity as follows:

• dailymeddrug:82=1

• dailymeding:Phenytoin=2

• dailymeddrug:201=3

• dailymeding:Ethosuximide=4

• dailymedorg:Parke-Davis=5.

After that, we can create a list of sequential adjacent vertexes V (D): {(2, 5), 1, (4, 5), 3, (1, 3)}.
For instance, we divide the sample of the dataset into 2 partitions, then output of the

METIS partition is {1, 1, 2, 2, 1} where each value is the partition number for each vertex.

Based on the METIS output, we can say that dailymeddrug:82 belongs to partition 1,

dailymeding:Phenytoin belongs to partition 1, dailymeddrug:201 belongs to partition 2

and so on. In the end, we have the two following partitions:

Partition 1: all triples that contain dailymeddrug:82, dailymeding:Phenytoin and

dailymedorg:Parke-Davis

Partition 2: all triples that contain dailymeddrug:201 and dailymeding:Ethosuximide

The result of the METIS partition is also shown in Figure 6.1.
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6.2.2 Entity Partition

To begin with, we define an entity and a class as follows:

Definition 6.1 if there is a triple t(s, p, o) and p = rdf:type, then s is an entity and o is a

class of entity s.

The goal of entity partition is to distribute number of entities evenly in each partition.

Different classes can be located in a single partition. However, entities of the same class

should be grouped in the same partition until the number of entities reaches the maximum

number of entities for each source. We initially create a list of subjects along with its class

(E(D)) as follows:

Definition 6.2 The set E(D) of pairs of the entity and its class in dataset D is

E(D) = {(s, o)|∃(s, rdf:type, o) ∈ D}

To do entity partition, we deploy the following methods:

1. Sort E(D) by its class o .

2. Store each pair of the subject and object in a single partition until the number of pairs

of the subject and object equals to the ratio of the total number of pairs of subject

and object and the number of partitions.

3. Distribute the remainder of the triples in the dataset based on the subject location.

For instance, given a dataset in Listing 6.1, then

E(D) = {(dailymeddrug:82, dailymed:drug), (dailymeddrug:201, dailymed:drug),

(dailymedorg:Parke-Davis, dailymed:organization), (dailymeding:Phenytoin, dailymed:ingredients),

(dailymeding:Ethosuximide, dailymed:ingredients)}

Suppose we split the dataset into two partitions, then the maximum number of entities

for each partition is |E(D)|
numberofpartitions

= 5
2

= 3 (ceiling of 2.5). We put dailymeddrug:82,

dailymeddrug:201 and dailymedorg:Parke-Davis in partition one and store the remain-

ders of entities in partition two. As the final step, we distribute the related triples based on

its subject partition number.



6.2. Dataset Generation 94

6.2.3 Class Partition

First, we distributed entities based on its class. After that, the related triples that belong to

an entity are placed in the same machine. The class partition steps are explained as follows:

1. To begin with, we also create E(D) which has been defined in Definition 6.2.

2. Distribute each triple based on the class of the subject.

Like entity partition example, we do the same step to generate E(D). For instance, given

E(D as defined in Section 6.2.2, then we divide the datasets into three partitions as follows:

dailymed:drug dailymed:organization dailymed:ingredients

dailymeddrug:82 dailymedorg:Parke-Davis dailymeding:Phenytoin

dailymeddrug:201 - dailymeding:Ethosuximide

6.2.4 Property Partition

In our property partition, we do not have a Property-class table because we treat all prop-

erties in the same manner. We store the triples that have the same property to a single

data-source. Due to a high number of properties in the dataset, more than one property

may be stored in the same partition as long as we get similar numbers of triples among the

partitions. In summary, our query set partition steps are described as follows:

1. Group the triples based on its property.

2. Store each group in a partition until the number of partition triples is less than or

equal to the number of dataset triples divided by the number of partitions.

For instance, given a dataset as shown in Listing 6.1, then we have four properties: rdf:type,

dailymed:activeingredient, rdf:label and dailymed:producesDrug. Suppose that we

want to divide the dataset into two partitions, then the maximum number of triples in each

partition is thenumberoftriples
thenumberofpartitions

= 14
2

= 7. As the following step, we store the triples based on

its property as follows:

Partition 1: five triples with rdf:type property, two triples with dailymed:activeingredient

property

Partition 2: five triples with rdfs:label property, two triples with dailymed:producesDrug
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6.2.5 Triples Partition

Performance of framework for federated SPARQL query is influenced not only by the fed-

erated engine solely, but also depends on the SPARQL endpoints within the federation

framework. In order to keep balanced workload for SPARQL endpoints, we split up the

triples of each source evenly because LUBM [Guo et al., 2005] mentioned that the number

of triples can influence the performance of a RDF repository. If the triples partition applies

over a given dataset in Listing 6.1 to divide the dataset into two partition, then partition 1

contains the following triples:

dailymeddrug:82 a dailymed:drug .

dailymeddrug:82 dailymed:activeingredient dailymeding:Phenytoin .

dailymeddrug:82 rdfs:label "Dilantin-125 (Suspension)" .

dailymeddrug:201 a dailymed:drug .

dailymeddrug:201 dailymed:activeingredient dailymeding:Ethosuximide .

dailymeddrug:201 rdfs:label "Zarontin (Capsule)" .

dailymedorg:Parke-Davis a dailymed:organization .

partition 2 contains the following triples:

dailymedorg:Parke-Davis rdfs:label "Parke-Davis" .

dailymedorg:Parke-Davis dailymed:producesDrug dailymeddrug:82 .

dailymedorg:Parke-Davis dailymed:producesDrug dailymeddrug:201 .

dailymeding:Phenytoin a dailymed:ingredients .

dailymeding:Phenytoin rdfs:label "Phenytoin" .

dailymeding:Ethosuximide a dailymed:ingredients .

dailymeding:Ethosuximide rdfs:label "Ethosuximide" .

6.2.6 Hybrid Partition

The Hybrid Partition is a partitioning method that combines two or more previous partition

strategies. For instance, if the number of triples that are related to a specific class is more

than the number of triples in a partition, we can distribute the triples to another partition

to equalise the number of triples. As shown in Listing 6.1, the number of triples that are

related to dailymed:drug is six, while other classes have four triples. We can move one

triple from dailymed:drug partition to other partitions.
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6.3 DFedQ

We provide DFedQ, a tool for generating the following datasets that can be found at https:

//github.com/nurainir/DFedQ. This tool produces several datasets with different shapes such

as the number of entities, the number of classes, the number of properties for each partition.

https://github.com/nurainir/DFedQ
https://github.com/nurainir/DFedQ


Chapter 7

On Metrics For Measuring

Fragmentation Of Federation over

SPARQL Endpoints*

In this chapter we investigate the effect of data distribution on the federated engine perfor-

mance. We propose two composite metrics to calculate the presence of classes and properties

across sources. These metrics can provide an insight into the data distribution in the dataset

which ultimately can determine the communication cost between the federated engine and

SPARQL endpoints.

7.1 Motivating Example

Processing a federated query in Linked Data is challenging because we need to consider

the number of the sources, the source locations and heterogeneous systems such as the

hardware, the software, the data structure and the distribution. A federated SPARQL

query can be formulated by using the SERVICE keyword. Nevertheless, determining the data

source address that follows SERVICE keywords can be an obstacle in writing a query because

a priori knowledge data is required. To address this issue, several approaches described in

Chapter 3 have been developed with the objective of hiding the SERVICE keyword and the

source locations from the user. In these approaches, the federated engine receives a query

from the user, parses the query into sub queries, decides the location of each sub query and

distributes the sub queries to the relevant sources. A sub query can be delivered to more

*Parts of this chapter have been published as [Rakhmawati et al., 2014b]
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Figure 7.1: Example of a federated SPARQL query involving many datasets

than one data-source if the desired answer occurs in multiple sources. Thus, the distribution

of the data can affect the federation performance [Rakhmawati and Hausenblas, 2012]. As

an example, consider two sources shown in Figure 7.1. Each source contains a list of personal

information using the FOAF1 vocabulary. If the user asks for the list of all person names,

the federated engine must send a query to all sources. Consequently, the communication

cost between the federated engine and data-sources would be expensive.

Federated engines typically use a data catalogue to predict the most relevant sources for

a subquery. The data catalogue generally consists of a list of predicates and classes (Chapter

3.2.4). Apart from deciding the destination of the sub queries, a data catalogue can assist

the federated engine to generate a set of query execution plans. Hence, we analyse the

distribution of classes and properties throughout the dataset. The dataset used in this work

is defined in Definition 3.1. First of all, we determine a list of properties and classes in the

source-set as follows:

Definition 7.1 Suppose d is a source in the source-set D, then the set P (d) of properties in

the source d is defined as P (d) = {p|∃(s, p, o) ∈ d ∧ d ∈ D} and the set P (D) of properties

in the source-set D is defined as P (D) = {p|p ∈ P (d) ∧ d ∈ D}

We also consider the occurrences of classes to cover a SPARQL query that contains rdf:type

following by the class name.

Definition 7.2 Suppose d is a source in the source-set D, then the set C(d) of classes in

the source d is defined as C(d) = {c|∃(s, rdf:type, c) ∈ d ∧ d ∈ D} and the set of classes in

1http://xmlns.com/foaf/spec/

http://xmlns.com/foaf/spec/
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the source-set D is defined as C(D) = {c|c ∈ C(d) ∧ d ∈ D}

Given source-set D = {d1, d2} as shown in Figure 7.1, then P (d1) = {rdf:type,foaf:name},
P (d2) = P (D) = {rdf:type,foaf:name, foaf:mbox} and C(d1) = C(d2) = C(D) =

{foaf:person}.

7.1.1 Spreading Factor of a Dataset

With the above definitions of class and property, we can describe the calculation of the

spreading factor. The spreading factor of a dataset is based on the occurrence of classes

and properties in a source-set. In this calculation, we do not count the number of times a

class and property that are found in the source d because the federated engine usually relies

on the presence of properties in order to predict which SPARQL endpoints that can answer

a sub-query (see Section 4.5 Source Selection). Given a source-set D that contains a set

of sources d, the normalisation of number of occurrences of properties in the source-set D

(OCP (D))is calculated as follows:

OCP (D) =
|P (D)|∑
d∈D |P (d)|

(7.1)

Given the source-set as shown in Figure 7.1, we can calculate OCP (D) = 3
2+3

= 0.6. How-

ever, Equation 7.1 cannot reflect the distribution of properties in the source set. For instance,

given four distinct properties p1, p2, p3, p4 that are distributed to two distinct sources d1, d2.

Suppose that we have two source sets D1 and D2 as follows:

D1 = {d1, d2} where P (d1) = {p1, p2} and P (d2) = {p3, p4}
D2 = {d1, d2} where P (d1) = {p1, p2, p3} and P (d2) = {p4}
D1 and D2 have different distributions of properties with the same number of distinct

properties, but have the same OCP value as follows:

OCP (D1) = 4
2+2

= 1

OCP (D2) = 4
3+1

= 1

The OCP should produce the same value for the same distribution, therefore we modify

Equation 7.1 as follows:

OCP (D) =

∑
d∈D |P (d)|

|P (D)| × |D|
(7.2)

To provide a clarity, we generate various combinations of distribution properties in Table

7.1 where the number of sources is 2 and the number of distinct properties (P (D)) are 3, 4
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|P (D)| |P (d1)| |P (d2)| OCP1 OCP2

3 1 2 1 0.5
3 1 3 0.75 0.67
3 2 3 0.6 0.83
3 2 2 0.75 0.67
3 3 3 0.5 1
4 1 3 1 0.5
4 1 4 0.8 0.625
4 2 2 1 0.5
4 2 3 0.8 0.625
4 2 4 0.67 0.75
4 3 3 0.67 0.75
4 3 4 0.57 0.875
4 4 4 0.5 1
5 1 4 1 0.5
5 1 5 0.83 0.6
5 2 3 1 0.5
5 2 4 0.83 0.6
5 2 5 0.71 0.7
5 3 3 0.83 0.6
5 3 4 0.71 0.7
5 3 5 0.625 0.8
5 4 4 0.625 0.8
5 4 5 0.56 0.9
5 5 5 0.5 1

Table 7.1: The combinations of distribution of properties

and 5 properties. OCP1 is the value of OCP for Equation 7.1, while OCP2 is the value of

OCP for Equation 7.2. As shown in Table 7.1, the value of OCP1 is 1 for more than one

distribution with the same number of P (D), while the value of OCP2 is 1 when all properties

occurs in all sources. Further, the value of OCP2 increases when the number of properties

in each sources increases (Figure 7.3), while the value of OCP2 is inconsistent (Figure 7.2).

The normalisation of number of occurrences of classes in the source-set D (OCC(D))

also adopt Equation 7.2.

OCC(D) =

∑
d∈D |C(d)|

|C(D)| × |D|
(7.3)

OCP (D) and OCC(D) have a range value from 0 to 1. If all properties occur in all datasets,

Equation 7.2 is designed to result in the value 1. Likewise, if all classes occur in all datasets,
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Figure 7.2: The OCP values for Equation 7.1
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Figure 7.3: The OCP values for Equation 7.2
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Equation 7.3 is designed to result in the value 1.

Inspired by the F-Measure function [van Rijsbergen, 1979], we combine OCP (D) and

OCC(D) into a single metric which is called the spreading factor Γ(D) of the dataset D. We

choose the F-Measure because it is a weight function that combines two different metrics.

Further, we can set a weight to give different emphasis to classes and properties.

Γ(D) =
(1 + β2)OCP (D)×OCC(D)

β2 ×OCP (D) +OCC(D)
(7.4)

β is an arbitrary value, we can assign any value for β. The high Γ value indicates that the

class and properties are spread out over the dataset.

Using our previous example in which we define P (d1), P (d2), P (D), C(D), C(d1),C(d2),

then we can calculate OCP (D) = 2+3
3X2

= 0.833 and OCC(D) = 1+1
1X2

= 1. Given β = 0.5, we

obtain Γ(D) = 0.961

7.1.2 Spreading Factor of a Dataset associated with the Query set

The spreading factor of a dataset reveals how the classes and properties are distributed over

the dataset. However, a query may not consist of all properties and classes in the dataset.

Thus, it is necessary to quantify the spreading factor of the dataset with respect to the

query set. For instance, a user delivers the query that consists of rdf:type and foaf:name

(Figure 7.1). The federated engine will not seek the location of foaf:mbox because foaf:mbox

are not included in the query. Therefore, we modify OCP (D) (Equation 7.2) and OCC(D)

(Equation 7.3). These equations will only cover particular classes and properties that are

included in the query.

OCP (p,D) =
|
⋃
∀d∈D{d|p ∈ P (d)}|

|D|
(7.5)

OCC(o,D) =
|
⋃
∀d∈D{d|o ∈ C(d)}|

|D|
(7.6)

Given a query set Q = {q1, q2, · · · , qn}, the Q-spreading factor γ of the dataset D asso-

ciated with query set Q is computed as

γ(Q,D) =
∑
∀q∈Q

∑
∀τ∈q OC(τ,D)

|Q|
(7.7)
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where the occurrences of the class and property for τ is specified as

OC(τ,D) =



OCC(oτ , D)
if pτ is rdf:type

∧oτ /∈ V

OCP (oτ , D)
if oτ is not rdf:type

∧pτ /∈ V∑
∀d∈D |P (d)|
|D|

otherwise

Consider an example, given a query and a source-set as shown in Figure 7.1, then OC(

?person a foaf:person , D) = 1 and OC( ?person foaf:name ?name , D) = 1 because

foaf:person and foaf:name are located in two different sources. As a result, the q-spreading

factor γ(Q,D) is 1+1
1

= 2

7.2 Evaluation

The objective of our evaluation is to show that our spreading factor metrics are highly related

to the communication cost between a federated engine and SPARQL endpoints. We compute

the correlation between the communication cost and our spreading factor metrics.

We perform the following evaluation steps:

• In order to evaluate our metrics, we use partition strategies to generate different shapes

of data distribution as described in Chapter 6. In total, we generate nine datasets by

partitioning the native Dailymed dataset into three parts.

• After that, we design a static query set that will be executed over those data distribu-

tions.

• We only perform our observation on two federation over SPARQL endpoints systems,

namely SPLENDID and DARQ. However, our work could also be implemented in other

distributed query processing systems such as Hybrid-processing approaches [Umbrich

et al., 2012c], link traversal approaches [Hartig, 2011] and the federation over single

RDF repositories [Haase et al., 2010]. Query with a SERVICE keyword is also out

of the scope of our study because this query only goes to the specified sources. In

other words, the data distribution does not influence the performance of the federation

engine while executing this query.
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• We measure the bandwidth usage between the federated engine and SPARQL end-

points during runtime. Later on, this bandwidth usage is called as the volume of data

transmission.

• We calculate the correlation between the spreading factor and the volume of data

transmission by using the Pearson correlation.

• In the final step, we generate different spreading factor of the dataset by using different

β values.

The details of our evaluation can be explained as follows:

7.2.1 System

We ran our evaluation on an Intel Xeon CPU X5650, 2.67GHz server with Ubuntu Linux 64-

bit installed as the Operating System and Fuseki 1.0 as the SPARQL Endpoint server. For

each dataset, we set up Fuseki on different ports. Each query was executed three times on

two federation engines, namely SPLENDID and DARQ. These engines were chosen because

SPLENDID employs VoID as a data catalogue that contains a list of predicates and entities

while DARQ has a list of predicates which is stored in the Service Description. Apart from

using VoID, SPLENDID also sends a SPARQL ASK query to determine whether or not the

source can potentially return the answer. We explain the details of our dataset generation

and metrics as follows:

7.2.2 Query set

In order to evaluate the dataset, we design a query set(Table 7.2) comprising 16 queries.These

16 queries include all classes and properties in Dailymed dataset. We prefer seeing the

coverage of a query over partitions, therefore the operator and modifier are not included in

our queries. To reflect real word queries, we design the queries based on the distribution

of properties and classes, selectivity, and the shape of the path query. The distribution of

properties and classes can be computed as the spreading factor metric. We use unpopular

and popular properties. In terms of selectivity, we use variables in various positions. For

instance, queries 3 and 4 could cover multiple entities since their predicate is a variable.

Although the predicate is not a variable, query 5 also involves multiple entities since it

consists of an unbound subject, rdfs:label as the predicate and an unbound object that

could be located in every partition. There are three shapes of the query path, namely chain,
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QID Across Entities Star(S)/Chain(C)/Hybrid
1 No S
2 No S
3 No -
4 Yes -
5 Yes -
6 No S
7 No S
8 No S
9 No S
10 No S
11 Yes H
12 Yes H
13 Yes H
14 Yes C
15 Yes H
16 Yes H

Table 7.2: Query Characteristic

star and hybrid. A ’-’ refers to a single path query. We limited the query processing duration

to one hour. The query details can be found in Appendix B.1.

7.2.3 Dataset

9 partitions were generated as listed in Table 7.3. Three triple partition datasets (TD,

TD2, TD3) were created. TD is obtained by partitioning the native Dailymed dataset

into three parts. TD2 and TD3 are generated by picking a random starting point within

the Dailymed dump file(by picking a random line number). Since the number of triples in

each dataset of the Class Distribution CD are not equal, HD is created to distribute the

triples evenly. However, the rdf:type property and the rdfs:label property are distributed

evenly through all partitions in dataset HD2. This distribution is intended for balancing

the workload amongst SPARQL endpoints since those properties are commonly used in our

query set.

Figure 7.4 shows the calculation of predicates and classes occurrences. The spreading

factor of datasets are shown in Figure 7.5. We assign β = 2 in order to put two times more

emphasis on the classes than the properties because more than 50% of our queries contains

rdf:type. As shown in these figures, the classes and properties are distributed over most
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Dataset Approach
GD Graph Partition
CD Class Partition
TD Triples Partition
TD2 Triples Partition
TD3 Triples Partition
PD Property Partition
ED Entity Partition
HD Entity, Class and Triple Partition
HD2 Entity Partition, rdf:type and rdfs:label distributed evenly

Table 7.3: Dataset used in evaluation
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Figure 7.4: The occurrences of classes and properties in the dataset

of the partitions in the GD dataset. The PD has the lowest spreading factor among the

datasets because each property occurs exactly in one and only one partition that contains

rdf:type. The distribution of triples and coherence values among the datasets are presented

in Figure 7.6 and 7.7 respectively. The dataset generation code and the generation results

can be found at DFedQ github2

2https://github.com/nurainir/DFedQ

https://github.com/nurainir/DFedQ
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Figure 7.5: Spreading factor of the dataset
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7.2.4 Metrics

To calculate the communication cost of the federated SPARQL query, the volume data

transmission between the federated engine and SPARQL Endpoints is computed. The volume

data transmission includes the amount of data both sent and received by the mediator. The

final metrics shown in the following graphs is a composite metric as discussed in Chapter 4.

7.3 Results and discussion

In our previous experiment [Rakhmawati et al., 2014b], we set β = 0.5. As seen in Table 7.5,

we achieve 72% correlation value. We then generate other spreading factors of the dataset by

using β = 0.6, 0.75, 1, 1.2, 1.5, 2 and 2.5. Graph 7.8 shows that the correlation value increases

linearly with β value from 0.5 to 2. Hence, β = 2 is the best value for our dataset. The β

value is dependent to the dataset and the query set.

As seen in Figures 7.9- 7.10 and Table 7.4, the volume data transmission between DARQ

and SPARQL endpoints is higher than the data transmission between SPLENDID and

SPARQL endpoints. This is because DARQ never sends SPARQL ASK queries in order
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Dataset Γ(D), β = 2 γ(Q,D) Splendid DARQ
PD 0,33 0,81 1.108.667,53 1.400.185,82
CD 0,24 1,07 1.624.941,31 1.550.632,54
TD 0,34 1,33 1.516.277,90 1.712.768,39
TD3 0,45 1,36 1.787.506,38 1.958.427,22
TD2 0,46 1,64 1.713.565,46 1.784.818,20
ED 0,63 1,76 1.704.258,63 1.952.598,75

HD2 0,55 2,02 1.717.721,47 1.953.069,80
HD 0,61 2,19 1.734.167,18 1.953.348,40
GD 0,81 2,43 2.519.135,09 3.618.034,68

Table 7.4: Evaluation Results

Splendid DARQ
Γ(D), β = 0.5 0,72 0,73
Γ(D), β = 2 0,80 0,82
γ(Q,D) 0,73 0,76

Table 7.5: Pearson Correlation Evaluation Results
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Figure 7.8: Pearson Correlation Vs β
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Figure 7.9: Average Data Transfer Volume Vs the spreading factor of Datasets (order by the
spreading factor value)

to predict the most relevant source for each subquery. Table 7.5 shows a high positive cor-

relation between data transmission and spreading factor metrics. It implies that there is a

fairly strong relationship between data transmission and spreading factor metrics.

Overall,the data transmission increases gradually in line with the spreading factor of

a dataset. However, the data transmission rises dramatically for GD distribution. This

indicates that in the context of federated SPARQL queries, data clustering based on its

property and class is better than data clustering based on related entities such as Graph

Partition. The reason for this is that the source selection in federated query engine depends

on classes and properties occurrences. Furthermore, when the federated engines generate

query plans, they use an optimisation technique based on the statistical predicates and

classes (Chapter 3).

7.4 Conclusion

We have implemented various data distribution strategies to partition classes and properties

over dataset partitions in the previous chapter. We introduced two notions of dataset met-

rics, namely the spreading factor of a dataset and the spreading factor of a dataset associated

with the query set. These metrics expose the distribution of classes and properties over the



7.4. Conclusion 112

PD TD CD TD3 TD2 ED HD2 HD GD

Dataset Partitions

0E+00

500E+03

1E+06

2E+06

2E+06

2E+06

3E+06

4E+06

4E+06

A
v
e
ra

g
e
 D

a
ta

 T
ra

n
s
m

is
s
io

n
 (

B
y
te

s
)

Splendid

DARQ

Figure 7.10: Average Data Transfer Volume Vs the Q-spreading factor of Datasets associated
with the Queryset(order by the spreading factor value)

dataset partitions. Our experiment results revealed that the class and property distribution

affects the communication cost between the federated engine and SPARQL endpoints. Par-

titioning triples based on properties and classes can minimize communication cost. However,

such partitioning can also reduce the performance of SPARQL endpoints within the federa-

tion infrastructure. Further, it can also influence the overall performance of the federation

framework.



Chapter 8

QFed: Query Benchmark Generator

Based on Metrics and Characteristics

of a dataset *

This thesis particularly observes three main components of benchmark: metric, dataset and

query as shown in Figure 1.2. In the previous chapters, we have presented metrics (Chapter 4)

for evaluating a federated SPARQL queries framework. We then concentrate on the dataset

component in Chapter 5, 6 and 7. In this chapter, based on our findings in the previous

chapter, we propose QFed for generating queries for benchmarking federated engines.

Most of the existing benchmark systems rely on a set of predefined static queries over a

particular set of data sources. Such benchmarks are useful for comparing general purpose

SPARQL query federation systems such as FedX, SPLENDID etc. However, special purpose

federation systems such as TopFed, SAFE etc. cannot be tested with these static benchmarks

since these systems only operate on the specific data sets and the corresponding queries. To

facilitate the process of benchmarking for such special purpose SPARQL query federation

systems, in this chapter we propose QFed, a dynamic query set generator for federated

SPARQL query benchmarks. QFed takes into account the key characteristics of the dataset

as well as SPARQL queries which has a direct impact on the performance evaluation of

federated engines. QFed considers SPARQL query characteristics such as the number of

sources the query spans, the type of triple pattern joins (start, path, and hybrid [Saleem

et al., 2013b]), the use of different SPARQL clauses, the number of query triple patterns,

shared variables, etc for SPARQL query generation. Among various metrics in Chapter 4 that

*Parts of this chapter have been published as [Rakhmawati et al., 2014c]

113
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can measure performance of the federated engine, we only focus on the data communication

cost in this work. The difference between a single RDF repository and a query federation

framework is the federation frameworks require communication between the federated engine

and a group of SPARQL endpoints. Hence, the cost of data communication is a critical metric

to take into account.

8.1 Query Requirements For Federation Framework

Benchmark

In this section, we investigate the essential requirements that need to be considered for

the generation of queries for assessing federation frameworks. For benchmarking federated

SPARQL queries, we draw on existing work from [Montoya et al., 2012c] and [Görlitz et al.,

2012]. who provide the following list of query requirements for benchmarking federated

SPARQL queries (Number 1 to 4). Requirement number 5 (Object value types) is our

contribution.

1. Various Dataset. It should be possible to generate queries from any given dataset. If

we implement a new system, it is better to test the system with our own dataset in

order to close to a real implementation.

2. Number of source span. A federated SPARQL query is one that span over at least two

data sources. Therefore, the benchmark queries should span over varying number of

sources, i.e., between two up to total number of sources in benchmark.

3. Complexity. Query complexity can be defined in terms of the total number of triple

patterns used, use of different SPARQL clauses, and the type of joins (e.g., subject-

subject, subject-object etc.) used between query triple patterns. A benchmark query

set should have varying number of triple patterns and should cover maximum SPARQL

clauses and the type of joins between triple patterns.

4. Selectivity/Result-set Size. The query result-set size depends upon the size of datasets

and the selectivity of triple patterns. The benchmark queries should have varying

result-set sizes ranging from small to big data queries. A query with low selectivity

can consume a lot of bandwidth during query execution since a high number of rows

may be retrieved.
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QFED

RDF RDF

Parameters:
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Property Distribution
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Join Pattern types: 

Subject-Subject, Object-Object, Subject-Object

Query

Set

Figure 8.1: QFed Input Output Diagram

5. Object value types. With respect to the communication cost, we add object value types

as one of the requirements. An object can be either an URI, a blank-node or a literal. A

literal object typically has more characters than a URI object. Consequently, querying

such literal objects can lead to increased bandwidth usage.

8.2 Query Set Generation

8.2.1 Methodology

To generate queries, we use the following method: Given a set of sources, we create query

templates based on particular join patterns. Since we don’t only want to create a join

between sources, we also expand the query by adding more triple patterns. In order to add

those triple patterns and to take into account the cost of data communication, we use two

predicate selection strategies: not considering the property distribution and considering the

property distribution. To further increase the communication cost, we also use big literal

object values (explained in Equation 8.1). Furthermore, in order to change the selectivity

value of a query, we cover two widely used keywords: FILTER and OPTIONAL. Additionally,

we analyse the effect of these keywords on the data communication cost. In short, the input

and output QFed diagram can be found in Figure 8.1.

In summary, our query set generation steps are described as follows:

1. In the data preprocessing stage, we calculate relevant parameters for query set gener-
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siderdrug:450

dailymeddrug:363

diseasesome:382

sider:drug
dailymed:drug

diseaseome:disease

rdf:type

rdf:type

rdf:type

 "Femring"

rdfs:label

 "Vivelle"

sider:drugName

dailymed:name

"Vivelle (Patch, Extended Release)"

rdfs:label

"dosage...."

dailymed:possibleDiseaseTarget

dailymed:dosage

"Estrogen resistance"
rdfs:label

dailymedingredient:estradiol

dailymed:activeIngredient

diseaseClass:Endocrine
diseasesome:class

Figure 8.2: Dataset Example

ation, namely the occurrence and frequency.

2. We identify a list of joins that can be found between two entities from two different

sources based on the subject-object join pattern, the subject-subject join pattern and

the object-object join pattern. After that, we create a set of query patterns between the

two entities which form that join pattern. This step will be explained in Section 8.2.3.

3. We add more query patterns to create a star shape where the second entity from the

previous step becomes the centre of the shape. The star shape is useful to retrieve

a list of information related to the second entity. The query patterns that are added

to the query consist of a URI and a literal object value. The predicates of the query

patterns are selected based on two methods that will be explained in Section 8.2.4.

8.2.2 Data Preprocessing

Before the query set generation, we pre-process all datasets involved to determine the char-

acteristics of the datasets. We calculate the occurrences of predicates and classes as follows:

Definition 8.1 Let D be a set of sources that are used in the federation framework, let P be

a set of known predicates and let C be a set of known classes. Then the occurrence θP (p,D)

of predicates p in the dataset D is computed as

θP (p,D) = |
⋃
∀d∈D{d|p ∈ P (d)}|

and the occurrence θC(c,D) of class c in the dataset D is calculated as

θC(c,D) = |
⋃
∀d∈D{d|c ∈ C(d)}|
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Note that we calculate the occurrence of classes and predicates regardless of the fre-

quencies of classes and predicates in each data-source. Our occurrence calculation aims to

measure how the predicate and class are spread across the datasets; because a federated

engine — the query mediator — generally uses a data catalogue which contains a list of

predicates and classes. In other words, in this work, the occurrence is related to the distri-

bution of properties and classes. Based on our previous work in Chapter 7, if the classes and

predicates are distributed over the dataset, the federated engine will send a request to more

than one dataset in order to detect the most relevant sources for a subquery. In addition, we

compute the total frequencies of predicates and classes in the dataset since they are highly

associated with the number of intermediate results that are received by the federated engine

during query execution.

Definition 8.2 Given dataset D = {d1, d2, · · · , dn}, the frequency fC(c,D) of class c in the

dataset D is defined as

fC(c,D) =
∑

d∈D
∑

t∈d

{
1 if ∃s : t = (s,rdf:type, c)

0 otherwise

Definition 8.3 Given dataset D = {d1, d2, · · · , dn}, the frequency fP (p,D) of predicate p

in the dataset D is defined as

fP (p,D) =
∑

d∈D
∑

t∈d

{
1 if ∃s, o : t = (s, p, o)

0 otherwise

Consider Figure 8.2 as a dataset example, θP (rdfs:label, D) and fP (rdfs:label, D)

is equal to 3, while θC(dailymed:drug, D) and fC(dailymed:drug, D) is equal to 1.

8.2.3 Query Join Pattern Types

A BGP (Section 2) might share one or more of the same variables with other BGPs either

in the subject, predicate or object position. These shared variables create a conjunctive

query. There are six types of join triple patterns based on the position of the variable in the

pattern: Subject-Subject, Predicate-Predicate, Object-Object, Subject-Predicate, Subject-

Object, and Predicate-Object. The following are examples of join triple patterns:

• Subject-Subject The two following BGPs share variable in the subject position (?s).

select ∗
{

?s dailymed:possibleDiseaseTarget diseasesome:382 .
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?s rdfs:label ?o .

}

• Predicate-Predicate The following SPARQL query aims to retrieve two different sub-

jects with the same predicate (?p).

select ∗
{

{ ?s1 ?p "Vivelle" . }
UNION

{ ?s2 ?p "Femring" . }
}

• Object-Object The following SPARQL query aims to retrieve two different subjects

with the same object (?o).

select ∗
{

?s1 sider:DrugName ?o.

?s2 rdfs:label ?o .

}

• Subject-Predicate The following SPARQL query finds a property (?sp) that is defined

as rdfs:property.

select ∗
{

?sp a rdfs:property .

?s ?sp ?o .

}

• Subject-Object The following SPARQL query connects two BGPs by using variable in

the object position (?o).

select ∗
{

?s dailymed:possibleDiseaseTarget ?o .

?o rdfs:label ?label .
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}

• Predicate-Object The following SPARQL query connects two BGPs by using variable

in the object position and predicate position.

select ∗
{

?s1 ?OP ?o .

?s2 ?p ?OP .

}

In this work, we only consider Object-Object, Subject-Subject, Subject-Object join types

since real world queries rarely join a shared variable in the predicate position [Arias et al.,

2011]. We will explain how we create these three join patterns as follows:

1. Subject-Object

In federated SPARQL queries, the Subject-Object join pattern is normally used for

discovering a relationship between two datasets. This join pattern uses links amongst

datasets (Chapter 5) which are generated by publishers. An example is given by

owl:sameAs and dailymed:possibleDiseaseTarget in Figure 8.2. In the context of

a federated SPARQL query, a link refers to a predicate which joins two entities that

are located in different sources (Definition 5.2). In this chapter, we identify the two

entities (s1 and s2) that are connected by the link. More precisely:

Definition 8.4 Let D be a dataset and d1, d2 ∈ D be two different data sources.

Then the set of triples SO(d1, d2) is formally defined as follows:

SO(d1, d2) = {(s1, p1, s2)|(s1, p1, s2) ∈ d1 ∧ ∃p2, o2(s2, p2, o2) ∈ d2}

Informally the subject/object join pattern contains all triples from d1 that contains a

link that joins entity s1 in source d1, such that s1 connects to an entity s2 in source d2.

For subject-object joins, we provide two templates: 1) joining two classes (Fig-

ure 8.3(a)), and 2) joining an entity with a class (Figure 8.3(b)). The first query

template is a low selectivity query because it maps all entities that are instance of

class c1 in source d1 to all entities in the source d2. c1 is one of the classes in source

d1. Based on those templates, we create a new query in two steps. In the first step, we
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identify two entities from two different sources that belong to SO(d1, d2). After that,

we create query patterns that connect those two entities as shown in Algorithm 8.1.

The second step is a process to create a star shape where s2 is the center of the star

shape. The step will be described later in Section 8.2.4. The big literal object will not

be added in the first template, thus we disable bigliteral option in the star function.

The following query pattern is an example of the first query template which joins all

entities in class dailymed:drug with entities in class diseasome:disease because the

value of the object are guaranteed to be instance of the diseasome:disease.

?vs1 a dailymed:drugs .

?vs1 dailymed:possibleDiseaseTarget ?vs2 .

We only generate the first query template if we discover more than one triples in

SO(d1, d2) which the subjects are instance of the same class. According to [Arias et al.,

2011], the pattern Constant subject-Constant predicate-Variable Object is widely used

in DBPedia queries. Therefore, we also create the second query template with the aim

of joining an entity in a source to other classes in other sources. The query pattern

shown below provides the second template that connects entity dailymeddrug:363 to

all entities in diseasome:disease.

dailymeddrug:363 dailymed:possibleDiseaseTarget ?s2 .

Algorithm 8.1: Subject-object Join Pattern
Require: d1, d2
Require: isbigliteral
Require: isdistribution /* the first step */

1: for all (s2, rdftype, c2) ∈ d2 do
2: for all (s1, rdftype, c1) ∈ d1 do
3: if (s1, p1, s2) ∈ SO(d1, d2) then
4: q1=”?vs1 rdf:type ”+ c1”. ?vs1 p1 ?vs2 .” /* the first template */
5: q2=”s1 ”+”p1 ?vs2 .” /* the second template */

/* the second step */
6: q1=q1+star(false,isdistribution,s2)
7: q2=q2+star(isbigliteral,isdistribution,s2)
8: end if
9: end for

10: end for
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Figure 8.3: Federated Query Templates

2. Object-Object

In order to deal with the problem of lack of availability of interlinks amongst sources,

we also generate a query that merges two sources by using an object comparison. We

create an object-object join pattern from two sources where two triple patterns share

the same variable. We initially construct a list of quadruples OO(D) each made up

of two pairs: a pair consisting of a subject and an object that are located in a single
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source and a pair consisting of a subject and an object from another source that have

the same object value.

Definition 8.5 Let D be a finite set of data-sources in a federation framework. Then

the list of quadruples OO(D) for creating an object-object join pattern is formulated

as:

OO(D) =
⋃
d1,d2∈D{(s1, p1, s2, p2)|∃o1(s1, p1, o1) ∈ d1 ∧ ∃o1(s2, p2, o1) ∈ d2}

Algorithm 8.2: Object-object Join Pattern
Require: d1, d2
Require: isbigliteral
Require: isdistribution

1: for all (s1, rdftype, c1) ∈ d1 do
2: for all (s2, rdftype, c2) ∈ d2 do
3: if (s1, p1, s2, p2) ∈ OO(D) then
4: q1=”?vs1 rdf:type ”+c1+”. ?vs1 ”+p1+” ?o . ?s2 rdf:type ”+c2+”. ?vs2

”+p2”” ?o .” /* first template */
5: q2=s1+” ”+ p1+” ?o . ?vs2 rdf:type ”+c2+”. ?vs2 ”+p2+” ?o .” /* second

template */
6: q1=q1+star(false,isdistribution,s2)
7: q2=q2+star(isbigliteral,isdistribution,s2)
8: end if
9: end for

10: end for

Like the Subject-Object join pattern, we propose two query templates: 1) join two

classes (c1 and c2) from different sources (Figure 8.3(e)) and 2) join an entity (s1) in

a source to a class c2 in another source. As shown in Algorithm 8.2, we also perform

two steps. The first step constructs the object-object join pattern, while the second

step creates the star shape. The following triple patterns is an example of the first

template query for object-object join pattern. All entities that are instances of the

class sider:drug are mapped to entities that are instances of class dailymed:drugs,

where sider:drugName object’s value is the same as dailymed:name object’s value.

?vs1 a sider:drug .

?vs1 sider:drugName ?o .

?vs2 a dailymed:drugs .

?vs2 dailymed:Name ?o .
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In the second template, the first line of the triple patterns shown above is removed and

variable ?vs1 is replaced by siderdrug:450. Hence, the selective value of the following

query that is developed from the second template is higher than the selective value of

the first template.

siderdrug:450 sider:drugName ?o .

?vs2 a dailymed:drugs .

?vs2 dailymed:Name ?o .

3. Subject-Subject

Having the same subject located in multiple sources normally happens when a source

is divided into several partitions for a special reason such as data clustering. A subject-

subject join pattern is usually used for smushing data1 that has the same identifier.

To begin with, we create a list of subjects SS(D) that are located in multiple sources

as follows:

Definition 8.6 Let D be a finite set of data-sources in a federation framework. Then

the list of subjects SS(D) for creating a subject-subject join pattern can be formulated

as:

SS(D) =
⋃
d1,d2∈D{s1|∃p1, o1(s1, p1, o1) ∈ d1 ∧ ∃p2, o2(s1, p2, o2) ∈ d2}

Algorithm 8.3: Subject-subject Join Pattern
Require: D, d1, d2
Require: isbigliteral
Require: isdistribution

1: for all s1 ∈ SS(D) do
2: for all (s1, p1, o1) ∈ d1 do
3: for all (s1, p2, o2) ∈ d2 do
4: q1=”?vs1 ”+p1+” ?o1. ?vs1 p2 ?o2 .”
5: q1=q1+star(isbigliteral,isdistribution,s2)
6: end for
7: end for

8: end for

4. Hybrid Join

1RDFSmushing: http://www.w3.org/wiki/RdfSmushing

http://www.w3.org/wiki/RdfSmushing
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The aforementioned query templates only merge data from two sources. To merge data

from more than two sources, we combine the object-object join pattern query template

and subject-object query template. In the first step, we create a similar query template

to the path that joins an entity to a class in the object-object template (Figure 8.3(b)).

Then, we iterate each predicate of s2 in the PObjType(s2, d2) to find the predicate that

also belongs to SO(d2, d3) (Algorithm 8.4 line 4-9).

Algorithm 8.4: Hybrid Join Pattern
Require: d1, d2, D
Require: isbigliteral
Require: isdistribution

1: for all (s1, rdftype, c1) ∈ d1 do
2: for all (s2, rdftype, c2) ∈ d2 do
3: if (s1, p1, s2, p2) ∈ OO(D) then
4: for all p3 ∈ PObjType(s2, d2) do
5: for all d3 ∈ D do
6: if d3 6= d2 ∧ d3 6= d1 then
7: s3 = {s3|(s2, p3, s3) ∈ SO(d2, d3) ∧ s3 6= s1}
8: if s3 6= ∅ then
9: q1=s1+” ”+ p1+” ?o . ?vs2 rdf:type ”+c2+”. ?vs2 ”+p2+” ?o .

?vs2 ”+ p3+” ?vs3”
10: q1=q1+star(false,isdistribution,s2)
11: q1=q1+starH(isdistribution,s3)
12: end if
13: end if
14: end for
15: end for
16: end if
17: end for

18: end for

In order to avoid a reciprocal query to the first source, we reject a predicate whose

object equals to entity s1 which is the subject of the first source. Let s3 be an object

of a triple in source d2 whose predicate is an element of SO(d2, d3), then we use the

same procedure (Section 8.2.4) to select a predicate that will be the part of the final

query triple pattern. For the final query pattern, we only choose a predicate with the

literal object value or URI object value to reduce the complexity of the query.
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8.2.4 Star shape Creation

After creating the join patterns above, we add triple patterns for creating a star shape by

using the star function (Algorithm 8.5). In order to create the star shape, we perform two

steps: 1) identify object type of the predicate and 2) select the suitable predicate that will

be added.

Object Value Types

There are three types of objects that are defined in our works: u for URI, l for literal and bl

for big literal. A big literal object (bl) is a literal which has more characters than a predefined

value Z. The value of Z can vary depending on the dataset. The motivation for adding a big

literal object value in the query pattern is to assess how to optimise a federated engine to

deal with the cost of data communication. The function typef(o,D) is a function to decide

the type of a value of object o in dataset D which is defined as follows:

typef(o,D) =


u if o ∈ U
l if o ∈ L ∧ length(o) < Z

bl otherwise

(8.1)

Let s be a subject in source d, the set of pairs of predicates and its object value type

PObjType(s, d) can be formulated in Equation 8.2.

PObjType(s, d) = {(p, typef(o, d))|∃(s, p, o) ∈ d ∧ p 6= rdf:type} (8.2)

For instance, as shown in Figure 8.2, diseasesome:382 has two properties: rdfs:label

and diseasesome:class (except for rdf:type). Thus, PObjType(diseasesome:382, d) is

{(rdfs:label,l),(diseasesome:class,u) }.

The Predicates Selection

The objective of the predicate selection is to find suitable predicates for triple query

patterns that are added to the query. We propose two approaches for predicate selec-

tion: 1) not considering the property distribution (ND) 2) considering the property dis-

tribution (D). In the first approach, we just do an iteration for each pair of the pred-

icate and its object type for entity s in PObjType(s, d) (see Algorithm 8.5 line 4-17).

The iteration will stop once we get a predicate with a URI object value and a pred-
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Algorithm 8.5: Star Function
Require: isbigliteral /* bigliteral flag */
Require: isdistribution /* property distribution flag */
Require: d /* source */
Require: s /* entity */

1: q=””
2: blvalue=lvalue=uvalue=false
3: if (isdistribution=false) then
4: for all (p, type) ∈ PObjType(s, d) do
5: if (type=b and isbigliteral=true and blvalue=false) then
6: q=q+”?s2 p ?bl”
7: blvalue=true
8: else if (type=l and lvalue =false) then
9: q=q+”?s2 p ?l”

10: lvalue=true
11: else if (uvalue=false) then
12: q=q+”?s2 p ?u”
13: uvalue=true
14: else if ((blvalue=true or lvalue=true) and uvalue=true ) then
15: break looping
16: end if
17: end for
18: else
19: pu = 0 /* the distribution of property for a URI object */
20: pl = 0 /* the distribution of property for a literal object */
21: pb =0 /* the distribution of property for a big literal object */
22: blvalue=lvalue=uvalue=””
23: for all (p, type) ∈ PObjType(s, d) do
24: pd=distribution(p)
25: if (type=bl and isbigliteral=true and pd > pb) then
26: blvalue=p
27: pb=pd
28: else if (type=l and pd > pl) then
29: lvalue=p
30: pl=pd
31: else if (type=u and pd > pu) then
32: uvalue=p
33: pu=pd
34: end if
35: end for
36: if (isbigliteral=false) then
37: q=”?s2 pl ?l . ?s2 pu ?u .”
38: else
39: q=”?s2 pb ?bl . ?s2 pu ?u . ”
40: end if
41: end if

42: return q
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Algorithm 8.6: Star Function for Hybrid Join
Require: isdistribution /* property distribution flag */
Require: d /* source */
Require: s /* entity */

1: q=””
2: lvalue=false
3: uvalue=false
4: if isdistribution=false then
5: for all (p, type) ∈ PObjType(s, d) do
6: if (type=l and lvalue =false) then
7: q=q+”?s2 p ?l”
8: lvalue=true
9: else if (type=u and uvalue=false) then

10: q=q+”?s2 p ?u”
11: uvalue=true
12: else if (lvalue=true) or uvalue=true) then
13: break looping
14: end if
15: end for
16: else
17: pu = 0 /* the distribution of property for a URI object */
18: pl = 0 /* the distribution of property for a literal object */
19: lvalue=””
20: uvalue=””
21: for all (p, type) ∈ PObjType(s, d) do
22: pd=distribution(p)
23: if (type=l and pd>pl) then
24: lvalue=p
25: pl=pd
26: else if (type=u and pd>pu) then
27: uvalue=p
28: pu=pd
29: end if
30: end for
31: if pl¿pu then
32: q=”?s2 pl ?l .”
33: else
34: q=”?s2 pu ?u . ”
35: end if
36: end if

37: return q
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icate with a literal object value. If the big literal option is enabled, we iterate over

PObjType(s, d) until we discover a predicate with the big literal object value and a pred-

icate with the URI object value. If we cannot find a predicate with the big literal ob-

ject value, we choose a predicate with literal object value instead. For instance, we

create a subject-object query from the Dailymed and Diseasome sources based on the

data from Figure 8.2. The results of SO(Dailymed,Diseasome) is { dailymeddrug:363,

dailymed:possibleDiseasetarget, diseasome:382 }. Then, we find all predicates that

belong to diseasome:382 by using PObjType(diseasome:382 , Diseasome). Suppose we

obtain (diseasome:size,l), (rdfs:label,l), (diseasome:class,u) sequentially, we only

choose diseasome:size and diseasome:class. The rdfs:label is not selected since its

position is after the diseasome:size position. As a result, we generate the query shown in

Listing 8.1.

Listing 8.1: Example of a Subject-Object join pattern Query

select * {

?vs1 a dailymed:drugs .

?vs1 dailymed:possibleDiseaseTarget ?vs2 .

?vs2 diseasome:class ?u .

?vs2 diseasome:size ?l .

}

Listing 8.2: Example of an Object-Object join pattern query

select * {

?vs1 a sider:drug .

?vs1 sider:drugName ?o .

?vs2 a dailymed:drugs .

?vs2 dailymed:Name ?o .

?vs2 dailymed:activeIngredient ?u .

?vs2 dailymed:dosage ?bl .

}

The second approach chooses the predicate p with the highest occurrence θP (p,D)

since federated engines generally exploit a data catalogue that contains the list of pred-

icates to select a relevant source for a query. Using predicates that are distributed

over the dataset will increase the cost of data communication between the federated en-

gine and SPARQL endpoints [Rakhmawati et al., 2014b]. Suppose we create a feder-
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ated query by implementing an object-object join pattern from the Sider and Daily-

med sources in Figure 8.2. The OO(D) produces {siderdrug:450, sider:drugName,

dailymeddrug:363 ,dailymed:Name } since sider:drugName and dailymed:Name have

the same objects value (Vivelle). As the next step, we find all predicates for entity

dailymeddrug:363 and their object value type: PObjType(dailymeddrug : 363, Dailymed).

We get PObjType(dailymeddrug:363, Dailymed) = {(dailymed:activeIngredient, u),

(rdfs:label, l), (dailymed:dosage, bl), (dailymed:possibleDiseaseTarget, u)}. In this

query generation, we pick dailymed:activeIngredient and dailymed:dosage, since we

consider the predicate occurrence and the big literal option. Although rdfs:label occur-

rence is higher than dailymed:dosage, the dailymed:dosage is preferred to rdfs:label

since we give higher priority to the predicate with the big literal than to the predicate with

the higher predicate occurrence.

In the next example, we extend our previous federated query example to create a hybrid

join query. One element of PObjType(dailymeddrug:363, Dailymed) is dailymed:possibleDiseaseTarget

which is also a predicate that points to diseasome:382 at the Diseasome source. Therefore,

we can create a subject-object join pattern by using dailymed:possibleDiseaseTarget. As

shown in the first example, we retrieve values of PObjType(diseasome:382, Diseasome) =

{(diseasome:size, l), (rdfs:label, l), (diseasome:class, u)}. Since θP (rdfs:label) is

greater than θP (diseasome:size) and θP (diseasome:class), we choose rdfs:label to

be the predicate for the triple pattern with a URI object value. Note that, for the hybrid

join, we disregard the type of object value (see Algorithm 8.6). Furthermore, in order to

simplify the query, we do not select a predicate with the big literal value.

The last example is a subject-subject join pattern federated query. Suppose that the re-

lated triples with dailymeddrug:363 as the subject that are located in two different sources,

(dailymeddrug:363,dailymed:name,"Vivelle") is in the first source and the rest of the

triples are in the second source. If we also enable big literal parameters, then we can create

the query shown in Listing 8.3.

Listing 8.3: Example of a Subject-Subject join pattern query

select * {

?s dailymed:Name ?l .

?s dailymed:possibleDiseaseTarget ?u .

?s dailymed:dosage ?bl .

}



8.2. Query Set Generation 130

Listing 8.4: Example of a hybrid join pattern query

select * {

disease:382 sider:drugName ?o .

?s2 a dailymed:drugs .

?s2 dailymed:Name ?o .

?s2 rdfs:label ?LITERAL .

?s2 dailymed:possibleDiseaseTarget ?s3 .

?s3 rdfs:label ?LITERAL3 .

}

Listing 8.5: Example of a federated SPARQL query using the FILTER and OPTIONAL Key-
words

select * {

?s1 a dailymed:drugs .

?s1 dailymed:possibleDiseaseTarget ?s2 .

?s2 diseasome:class ?u .

OPTIONAL{ ?s2 diseasome:size ?l . }

FILTER (?l >= 1)

}

8.2.5 Queryset Generation Extension

Queryset Threshold

Since the number of entities is quite large, we limit the number of queries based on two

parameters: a) the frequency of predicates (Fp(p,D)) and b) the number of entities in each

class. The goal of the first parameter is to take a subset of SO(d1, d2), OO(D) or SS(D)

Listing 8.6: Example of a federated SPARQL Query using the SERVICE keyword

select * {

SERVICE<http://localhost/dailymed/sparql> {

?s1 a dailymed:drugs .

?s1 dailymed:possibleDiseaseTarget ?s2 . }

SERVICE<http://localhost/diseasome/sparql> {

?s2 diseasome:class ?u .

?s2 diseasome:size ?l .

} }
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that will be processed in the query generation. The subset consists of the top-K predicates

with the highest Fp(p,D). We expand the results of the first parameter into several query

generations. However, we give the second parameter as a constraint to limit the number of

entities of each class. We restrict only n entities for each class with the same predicates to

be generated since several entities in the same class may have the same predicate, which is

also part of SO(d1, d2) or OO(D).

A predicate that belongs to an entity does not always belong to another entity, even

when they are in the same classes. In order to retrieve more query results, we provide the

OPTIONAL keyword that is inserted in the one of triple patterns that is associated to entity

s′. The OPTIONAL and FILTER keywords are only applicable for joining inter-class query

templates (Figure 8.3(a) and 8.3(e)) since those two templates cover all entities in the same

class. We only apply the FILTER keywords in queries that contain a literal with integer

value. To find the constraint value for a FILTER expression, we choose the median value of

a set of literal answers. Then, we use the greater than or equal to sign (≥) in the FILTER

expression. An example of a query using the OPTIONAL and FILTER keywords can be found

in Figure 8.5.

The SPARQL 1.1 standard is supported in most SPARQL endpoint servers (Chapter 3).

We can execute federated SPARQL queries by using the SERVICE keywords in SPARQL

1.1 standard. Therefore, we also provide a query that contains the SERVICE keyword to

asses the federated engine that supports SPARQL 1.1 features. This implies that our query

can be executed in a federated engine that does not support a transparent query interface.

8.2.6 Comparison of Splodge, Lidaq and QFed

To the best of our knowledge FedBench [Schmidt et al., 2011b] is the only SPARQL query

federation benchmark; it provides 16 static queries for querying multiple static real sources

(Chapter 4). DAW [Saleem et al., 2013b] provides a set of static queries based on character-

istics of BSBM queries [Bizer and Schultz, 2009] from four public datasets. The queries cover

most SPARQL operators and keywords. However, all the queries are statically generated

and are not complex enough to match the real world queries (maximum of 4 triple patterns

per query). SPLODGE [Görlitz et al., 2012] offers a tool that can generate a query set based

on some characteristics of the datasets. LidaQ [Umbrich et al., 2012a] also provides a query

set generation tool for federated query based on three query templates. Both SPLODGE

and LidaQ rely on the links (e.g owl:sameAs) between datasets. Since not all entities are

interlinked with each other, we propose a query set generator that does not only use links
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Lidaq Splodge QFed
Join pattern between different
datasets

S-O S-O S-S,O-O,S-O

Maximum Triple patterns 3 unlimited 7
Predicate Unbound and

bound predi-
cates

Bound
predicate

Bound predi-
cate

Keywords Supported X X Filter, Op-
tional, Ser-
vice

Object value types X X Literal, URI
Selectivity X X X
Number of sources X X X

Table 8.1: Features and Capabilities of QFed, Lidaq and Splodge. S=Subject,O=Object

like Lidaq and SPLODGE, but also uses object and subject comparisons between two and

three sources. SPLODGE generates unlimited triple patterns since it attempts to link all

sources in a dataset. However, it does not reflect a real world query. Therefore, QFed is

designed to create a query with a limited number of queries (maximum 7 triple patterns).

Table 8.1 compares the features and capabilities of QFed, Lidaq and Splodge. As shown in

the table, these query generators produce different queries. Hence, in our evaluation, we will

not compare the performance of these query generators in producing queries.

8.3 Evaluation

The first objective of our evaluation is to show that our generated queries can return results

that involve more than one data source. Another objective is to demonstrate the effect of:

1) the big literal object value, 2) predicates occurrence, 3) FILTER keyword, and 4)OPTIONAL

keyword on the performance of a federated engine especially on cost of data communication.

The results of this evaluation can give a consideration how to create a query for assessing a

performance of a federated engine.

8.3.1 Experimental Setup

This section describes the evaluation system for running our query set on the federated

engines. The code for generating the queries can be found at https://github.com/nurainir/

QFed.

https://github.com/nurainir/QFed
https://github.com/nurainir/QFed
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Dataset

Our dataset consists of four life science datasets: Dailymed, Drugbank, Diseasesome and

Sider. These datasets are interlinked with each other using a number of predicates, as previ-

ously shown in Figure 3.2. Additionally the same object values can be found in these datasets;

these values, such as rdfs:label, dailymed:name and drugbank:interactionDrug1, can

be used federated SPARQL queries. Due to the problem of unavailability of triples with

the same subject at different datasets, we divide the Drugbank dataset into two partitions.

We distributed the triples that are related to class Drug to all partitions evenly. We then

add the triples that contain drug interactions, references and Enzim classes to partition one,

and add the rest of the triples to partition two. In total, we have 5 SPARQL endpoints for

accessing five data-sources.

System

We set up five Fuseki2 engines on a Linux virtual machine for storing five datasets. We bound

Fuseki to five different ports. The evaluation result will not be influenced by the machine

because we only measure the data throughput of the federated engine and SPARQL endpoint.

On a separate virtual machine, we installed FedX[Schwarte et al., 2011] and Fuseki as the

federated engines. In this evaluation, we do not compare the performance of Fuseki and

FedX. We run queries containing the SERVICE keyword on Fuseki, whereas queries without

the SERVICE keyword are executed on FedX. We choose FedX as the federated engine since

it is able to support most of the operators and keywords in the SPARQL 1.1 standard.

Metrics

We assess the performance of FedX and Fuseki based on the following two metrics: data

transmission, and run time. The data transmission refers to the amount of data sent and

received between the federated engine and SPARQL endpoints measured in byte during

query execution. The run time is started when the federated engine receives a query from

the client and ended when it dispatches the query results to the client. The data transmission

is closely related to our goal of investigating the impact of: 1) big literal object values, 2) the

distribution of the predicates, and 3) OPTIONAL and FILTER keywords on the performance of

a federated engine.

2http://jena.apache.org/documentation/serving_data/

http://jena.apache.org/documentation/serving_data/
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Query set #Queries #S-S #O-O #S-O #H
Threshold of Classes 2 and Properties 2 159 3 52 98 6
Threshold of Classes 3 and Properties 3 202 3 69 124 6

Table 8.2: The list of Query-set Generation (S-S=Subject-Subject Join,O-O=Object-Object
Join,S-O=Subject-Object Join,H=Hybrid Join)

Query set 3 BGPs 4 BGPs 5 BGPs 6 BGPs 7 BGPs
Threshold of Classes 2 and Properties 2 70 35 32 16 6
Threshold of Classes 3 and Properties 3 99 33 48 17 5

Table 8.3: The Number of BGPs for each queries in the query set

Query set

In total, we produced 11552 queries in 64 categories. We distinguish the categories based

on the query threshold, the existence of big literal objects value, OPTIONAL and SERVICE

keywords. Although we insert SERVICE and OPTIONAL keywords, the average predicate oc-

currence and number of queries stay the same. We only list 2 query set categories in Table 8.2

for simplicity. Table 8.4 provides the statistics of the OPTIONAL, FILTER and big literal object

value usage in the query set. Only a few of the queries contain the FILTER keyword, since

it only applies to the query pattern containing a literal with an integer value. As shown

in Table 8.3, QFed produces queries that consist of three to seven triple patterns. Some

examples of the queries can be found in Appendix B.3. Due to the limitations of Fuseki for

running a query, we also append LIMIT keywords for the queries that run on Fuseki. Each

query is executed three times and is limited to 10 minutes of execution each time.

8.3.2 Results and Discussion

The main goal of including the SERVICE keyword in a query is to ensure that the query covers

more than one dataset. If Fuseki returns an empty result for a query with the SERVICE

keyword, this means that the query does not involve more than one dataset. The results of

SERVICE query execution show that only 0.07% out of the queries generated failed to return

answers.

In order to distinguish each query set category, we name the query sets as follows: the

Label C following a digit represents the constraint of number entities for each class. By

adding the label P and following with the digit, we limit the number of properties based

on their frequencies. B, the final label, denotes a query set that contains big literal object
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Query Set OPTIONAL/FILTER/BIGLITERAL
C2P2 0/0/0

C2P2B 0/0/61
C2P2BF 0/5/61
C2P2BO 51/0/61

C2P2BOF 51/5/61
C2P2F 0/5/0
C2P2O 53/0/0

C2P2OF 53/5/0
DC2P2 0/0/0

DC2P2B 0/0/61
DC2P2BF 0/5/61
DC2P2BO 51/0/61

DC2P2BOF 51/5/61
DC2P2F 0/5/0
DC2P2O 53/0/0

DC2P2OF 53/5/0
C3P3 0/0/0

C3P3B 0/0/83
C3P3BF 0/6/83
C3P3BO 50/0/83

C3P3BOF 50/6/83
C3P3F 0/6/0
C3P3O 52/0/0

C3P3OF 52/6/0
DC3P3 0/0/0

DC3P3B 0/0/83
DC3P3BF 0/6/83
DC3P3BO 50/0/83

DC3P3BOF 50/6/83
DC3P3F 0/6/0
DC3P3O 52/0/0

Table 8.4: Statistical queries containing FILTER, OPTIONAL and big literal object value
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values. In our evaluation, we add labels O, F and B to denote query with OPTIONAL, FILTER

keywords and big literal object value respectively. For instance, C2P2B means that the

number of entities for each class is two, the number of properties is two and we consider a

big literal object value while creating query patterns.

As shown in Figure 8.4, the replacement of the literal object value with the big literal

object value led to an increase in the data transmission volume between the Fuseki and

SPARQL endpoints. The OPTIONAL and FILTER keywords do not contribute to increasing

the communication cost since we added the LIMIT keyword for the query with the SERVICE

keyword. The LIMIT keyword aligns the selectivity values of queries with the same ID

among categories. There is not much difference between a query concerning the property

distribution(D) and a query that does not take account of the property distribution(ND).

The reason is that Fuseki does not have a source selection mechanism; rather the user has to

define the source of each subquery beforehand. As such, the distribution of properties does

not influence the communication cost.
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Figure 8.4: Average Volume Data Transmission on Fuseki Execution (in bytes)

Due to time out issues and Java memory heap space problems, FedX failed to execute

5.68% of the queries. We eliminated all the failed query results along with all the queries

that have the same IDs with the failed ones. A selectivity value of the query is low when

an OPTIONAL keyword is added to the query, as a result, the response time and the data

transmission volume increase as shown in Figures 8.5(a)- 8.6(b). The use of big literal

objects also causes an increase in data transmission volume (Figures 8.5(b) and 8.6(b)), but

if a query with a small literal object has a smaller selectivity value than a query with the big
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literal value, then in some cases, they require almost the same bandwidth consumption. If

the property distribution is considered, the FedX performance gets worse because FedX has

to interrogate more SPARQL endpoints to execute a single query. The addition of a FILTER

keyword in a query can cut the number of intermediate results and eventually reduces the

communication cost between the FedX and SPARQL endpoints.
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Figure 8.5: FedX Execution Results For Threshold 2
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8.4 Conclusion

This chapter presented QFed, a tool for generating the queries to assess the performance of a

federated engine. The query generation strategy considers the distribution of the predicates

as a characteristic of the dataset. To measure the cost of data communication, we added

big literal objects, and FILTER and OPTIONAL keywords in queries. In order to integrate

data from different sources, we identified subject-object, subject-subject and object-object

join patterns. The experimental results show that big literal objects have a significant

impact on Fuseki performance since Fuseki executes a query that declares SPARQL endpoints

before execution. The use of predicates that are distributed over the dataset, the big literal

object, FILTER keyword and OPTIONAL keyword in the query influence the volume of

data transmission between the FedX and the SPARQL endpoints and the FedX response

time. By adding an OPTIONAL keyword in a query, the performance of FedX is more

significantly getting worse than the addition of a big literal value in a query since it can

reduce the selectivity value of a query.



Chapter 9

Discussion and Conclusions

The increasing attention on federated SPARQL query systems create the need for benchmark-

ing these systems to evaluate their performance. Compared to traditional relational database

benchmarking, federated SPARQL query system benchmarking are still in its infancy. Eval-

uating a federated SPARQL system is a big challenge since it consists of heterogeneous and

distributed systems. Apart from that, performance of the federated SPARQL system can be

influenced by of the components in that system. These conditions have motivated this work.

The main research question of this thesis, presented in Section 1.1, asks:

How can we design a comprehensive SPARQL query federation

benchmark based on the dependencies between the metrics, dataset

and queries?

Summary of Contributions

First of all, in order to benchmark a federated SPARQL system, we need to understand

various types of federated systems and the differences between them. Hence, we conducted

a survey of the existing federated engines and compared their behaviours and approaches to

handling SPARQL queries in Chapter 3. We classified these engines into three architecture

categories namely executor, rewriter, and planner architectures.

To address our research question, we described and worked on the three core components

of a benchmark system as shown in Figure 1.2, namely metrics, queries and datasets. We

describe each of these components in turn.

139



140

Metrics

In Chapter 4, we studied the state of the art in both single RDF repository and distributed

RDF repositories benchmarks. Our study focused primarily on the metrics, dataset and

queries that are used in those benchmark suites. The findings about dataset and queries

were used in the subsequent chapters of this thesis. We then discussed the basic performance

metrics that can be measured in a federated SPARQL query environment based on our

investigation in Chapter 3.

Continuing, based on the data transactions between a federated engine and SPARQL

endpoints, we introduced a set of independent metrics that are not influenced by the federated

SPARQL query environment. We also investigated semi-independent metrics that take into

account SPARQL endpoints as one of the factors that contributes to the performance of

a federated SPARQL query framework. These metrics are derived from the independent

metrics.

To evaluate the performance of a federated engine, it is necessary to run more than

one query. The queries should have various complexity values (see Page 63). In order to

avoid trade-off between query set results after merging the results, we proposed a composite

metric that assigns different weight values for each query before summing those queries

results up into a single value. We then combined different performance metrics into a single

performance value by using the geometric mean. The motivation behind this approach is to

give a meaningful performance summary and this ultimately helps us to compare amongst

the performance of different federated systems.

Dataset

The dataset component is presented in three chapters: Chapters 5, 6 and 7. First, in

Chapter 5, we discussed the impact of interlinking between sources on the performance of a

federated engine. As one of the characteristics of a dataset, a link can aid in merging data

from multiple sources. We investigated the costs and benefits of the presence of the links in

a federated SPARQL query by running three differences experiments.

Thereafter, in Chapter 6, we introduced six approaches to partitioning a dataset for

benchmarking a federated SPARQL query system; these were inspired from a single RDF

repository clustering partition. Those approaches are graph partition, class partition, entity

partition, property partition, triples partition and hybrid partition. We also provided a

lightweight tool to generate a dataset by using those approaches.
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Finally, Chapter 7 presented a notion — called the spreading factor of a dataset — to

analyse the distribution of classes and properties throughout the dataset. There are two

types of the spreading factor metric: 1) the spreading factor of the whole dataset regardless

of the existence of the query set; 2) the spreading factor of a dataset associated with the

particular query set that is used in the evaluation. We ran an evaluation to investigate the

relationship between the spreading factor and the performance of a federated engine. This

evaluation relied on our work in Chapter 6 because we used nine datasets based on our

approaches from Chapter 6. Our experimental results showed that the class and property

distribution affect the communication cost between a federated engine and the SPARQL

endpoints.

Queries

Our final contribution is to generate queries for benchmarking a federated SPARQL query

system; this was presented in Chapter 8. We identified the possible patterns used to join

data from multiple sources, in particular between two or three sources. The queries are

generated based on the characteristics of a dataset as well as the performance metric. With

respect to the characteristics of a dataset, we consider the distribution of the properties , and

frequencies of the properties as the parameters for query generation. We also cover two widely

used keywords in SPARQL queries: FILTER and OPTIONAL. Those keywords may influence

the selectivity of a query. Hence, this eventually affects the volume of data transmissions

which is one of the performance metrics for benchmarking a federated SPARQL system. In

addition, we include a big literal option for assessing the performance of a federated engine in

processing large data. Our experimental results showed that QFed can successfully generate

a large set of meaningful federated SPARQL queries that can be used in the performance

evaluation of different federated SPARQL query engines.

9.1 Future Directions

In this thesis, we have presented a comprehensive evaluation of the federated SPARQL query

system by observing three different benchmark components. Next, we look at what we think

are important future directions arising from the work presented in this thesis.
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Data Quality

One of parameter of a good benchmark for a database is the quality of the data produced

by the system. The speed of a federated engine to return back the query result will not

matter, if the query result is not correct. Therefore, we used the number of results and the

accuracy as the data quality metrics in Chapter 5. Another data quality metric that should

be considered is the freshness of the query results. The freshness-rate is the ratio of extracted

elements that are up-to-date, i.e. their result values equal to the SPARQL endpoint [Peralta,

2006]. Although a federated engine accesses data from the SPARQL endpoint directly, the

freshness of the query result may be compromised if the data catalogue is not up-to-date.

Updating a data catalogue uses an expensive query. Therefore, it generally only updates

periodically.

Cover more basic performance metrics

Even though we have mentioned many basic performance metrics in Chapter 4, we did not

use all of them such as CPU usage and memory usage in our evaluation since we were

concerned with the independent metrics. We only used the response time since it is widely

used in most of current evaluations that are reported in Table 4.1.

Another important metric for a querying system is query throughput, which is defined as

the number of queries that can be executed in a given period of time. This metric becomes

more important once parallel queries are allowed to come through the system at once. The

best throughput can be achieved when the system can execute many concurrent tasks in

the same time. For the moment, our evaluation does not calculate the query throughput.

Rather, we run a single query individually to investigate the effect of each query regardless

of other queries. It is difficult to determine the factors that influence the performance while

running several queries at once.

SPARQL Endpoint Performance Assessment

Building a holistic benchmark is a hard task. As of this writing, we assess the SPARQL

endpoint performance from the federated engine side. Assessing SPARQL endpoint perfor-

mance is a non-trivial task since it is normally located in different machines. There should be

a synchronisation between a federated engine benchmark system and a SPARQL endpoint

benchmark system. Further, it is difficult to assess federated SPARQL query performance

that uses public SPARQL endpoints as the data provider because we cannot deploy the



9.1. Future Directions 143

SPARQL endpoint benchmark system in a public SPARQL endpoint.

Heterogeneous Systems

Our evaluation used the same software for all SPARQL endpoint servers. Thus, the SPARQL

endpoint performance is only influenced by the hardware and characteristics of the dataset

that are stored in the server. It will be a large evaluation task to carry out an evaluation

with various systems. To investigate the impact of the SPARQL endpoint server, we should

conduct a set of experimental systems that represent all combinations of SPARQL endpoint

server, hardware and characteristics of the dataset. We can adopt [Kjernsmo and Tyssedal,

2013] to create a set of experiments with various combinations.

Metric

We have introduced the notion of composite metric in Chapter 4 which refers to a metric

that merges the performance values for a single metric into a single value. Sometimes, it

is hard to compare the performance of different federated engines against each other based

on different metrics. Thus, it is necessary to formulate a composite metric that combines

different metrics into a single value. It is better to allow the user to assign a weight for

each metric before merging them in a single value since choosing a metric is an individual

decision.

Query

How to generate queries for benchmarking a federated SPARQL query framework is still

an open question. There are some requirements that have not been addressed yet by our

system (QFed) such as the number of query patterns. Apart from that, we have primarily

focused on the SELECT query form which is a read-only operation. Since SPARQL 1.1 also

supports update operations such as INSERT and DELETE, we see a great need for evaluating

those update operations queries.

Benchmark Community Acceptance

As we pointed out in Chapter 1, a benchmark should be accepted by the community tar-

geted. There should be a public system that stores the configuration of evaluations. These

configurations can be useful for other communities to re-run the same evaluation. As a



result, the community can clarify the results from previous evaluation.

Comparison with other benchmarks

As of this writing, to the best of our knowledge, FedBench is the only completed benchmark

system that is intended for a federated SPARQL system. It is worth comparing FedBench

to our system while running an evaluation.

Components integration

As reported in Chapter 4, a benchmark suite consists of metrics, queries and dataset. Apart

from that, it provides a test driver to help users to assess the performance of a system

automatically. At present, we have not integrated the metrics, query generator and dataset

generator into a single system yet. Our systems are developed separately.
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“If we wait for the moment when everything, absolutely everything

is ready, we shall never begin.”

—Ivan Turgenev
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Zemánek, J. and Schenk, S. (2008). Optimizing sparql queries over disparate rdf data sources

through distributed semi-joins. In International Semantic Web Conference (Posters &

Demos).



Appendix A

Prefixes

Herein, we enumerate the prefixes used throughout this thesis to abbreviate URIs.

Prefix URI
dailymed: http://wifo5-03.informatik.uni-mannheim.de/dailymed/resource/dailymed/

dailymeddrug: http://wifo5-03.informatik.uni-mannheim.de/dailymed/resource/drugs/

dailymeding: http://wifo5-03.informatik.uni-mannheim.de/dailymed/resource/ingredients/

dailymedorg: http://wifo5-03.informatik.uni-mannheim.de/dailymed/resource/organizations/

dbpedia: http://dbpedia.org/resource/

disease: http://wifo5-03.informatik.uni-mannheim.de/diseasome/resource/diseases/

diseasome: http://wifo5-03.informatik.uni-mannheim.de/diseasome/resource/diseasome

drugbank: http://wifo5-03.informatik.uni-mannheim.de/drugbank/resource/drugbank/

drugbankdrug: http://wifo5-03.informatik.uni-mannheim.de/drugbank/resource/drugs/

foaf: http://xmlns.com/foaf/0.1/

owl: http://www.w3.org/2002/07/owl#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

sider: http://wifo5-03.informatik.uni-mannheim.de/sider/resource/sider/

siderdrug: http://wifo5-03.informatik.uni-mannheim.de/sider/resource/sider/drugs/

xsd: http://www.w3.org/2001/XMLSchema#

Table A.1: Used prefixes
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Appendix B

Query Set

B.1 Dailymed Queries

The following queries are used in the evaluations in Chapter 4 and 7.

Listing B.1: 16 Dailymed Queries

#Query 1

select ∗
{

?drug a dailymed:drugs .

?drug dailymed:activeingredient ?active .

}

#Query 2

select ∗
{

?organization a dailymed:organization .

?organization dailymed:producesdrug ?drug .

}

#Query 3

select ∗
{

dailymeddrug:1008 ?p ?o .

}
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#Query 4

select ∗
{

?drug ?p dailymeding:Phenytoin Sodium

}

#Query 5:

select ∗
{

?thing rdfs:label ?label

}

#Query 6

select ∗
{

?drug a dailymed:drugs .

?drug rdfs:label ?label .

}

#Query 7

select ∗
{

?org a dailymed:organization .

?org rdfs:label ?label .

}

#Query 8

select ∗
{

?drug a dailymed:drugs .

?drug dailymed:routeofadministration <http://www4.wiwiss.fu−berlin

.de/dailymed/resource/routeofadministration/intramuscular> .

?drug dailymed:representedorganization <http://www4.wiwiss.fu−
berlin.de/dailymed/resource/organization/hospira\%2c inc.> .

}

#Query 9
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select ∗
{

?drug a dailymed:drugs .

?drug dailymed:routeofadministration <http://www4.wiwiss.fu−berlin

.de/dailymed/resource/routeofadministration/intramuscular> .

?drug rdfs:label ?label .

}

#Query 10

select ∗
{

?drug a dailymed:drugs .

?drug dailymed:possiblediseasetarget disease:1883 .

?drug rdfs:label ?label .

}

#Query 11

select ∗
{

?drug a dailymed:drugs .

?drug dailymed:activeingredient ?active .

?active rdfs:label ?label .

}

#Query 12

select ∗
{

?drug a dailymed:drugs .

?drug dailymed:representedorganization ?org .

?org rdfs:label ?label .

}

#Query 13

select ∗
{

dailymeddrug:1905 dailymed:representedorganization ?org .

?org dailymed:producesdrug ?otherdrug .
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}

#Query 14

select ∗
{

dailymeddrug:3369 dailymed:representedorganization ?org .

?org dailymed:producesdrug ?otherdrug .

}

#Query 15

select ?drugname ?orgname

{
?drug dailymed:representedorganization ?org .

?drug rdfs:label ?drugname .

?org rdfs:label ?orgname .

}

#Query 16

select ?drugname ?ingridient

{
?drug dailymed:activeingredient ?active .

?drug rdfs:label ?drugname .

?active rdfs:label ?ingridient .

}

B.2 Link and No Link Queries

The following queries are used in the evaluations in Chapter 5.

Listing B.2: Link and No Link Queries

#Query 1a

select distinct ?siderdrug ?drugname

{
drugbankdrug:DB00316 rdfs:label ?drugname .

?siderdrug a sider:drugs .

?siderdrug rdfs:label ?drugname .
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}

#Query 1b

select distinct ?siderdrug ?drugname

{
drugbankdrug:DB00316 owl:sameAs ?siderdrug .

?siderdrug a sider:drugs .

?siderdrug rdfs:label ?drugname .

}

#Query 2a

select distinct ?siderdrug ?drugname

{
drugbankdrug:DB00984 rdfs:label ?drugname .

?siderdrug a sider:drugs .

?siderdrug rdfs:label ?drugname .

}

#Query 2b

select distinct ?siderdrug ?drugname

{
drugbankdrug:DB00984 owl:sameAs ?siderdrug .

?siderdrug a sider:drugs .

?siderdrug rdfs:label ?drugname .

}

#Query 3a

select distinct ?anydrug ?drugname

{
siderdrug:951 rdfs:label ?drugname .

?anydrug a drugbank:drugs> .

?anydrug rdfs:label ?drugname .

}

#Query 3b

select distinct ?anydrug ?drugname

{
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siderdrug:951 owl:sameAs ?anydrug .

?anydrug a drugbank:drugs> .

?anydrug rdfs:label ?drugname .

}

#Query 4a

select distinct ?anydrug ?drugname

{
siderdrug:727 rdfs:label ?drugname .

?anydrug a dailymed:drugs .

?anydrug dailymed:name ?drugname .

}

#Query 4b

select distinct ?anydrug ?drugname

{
siderdrug:727 owl:sameAs ?anydrug .

?anydrug a drugbank:drugs .

?anydrug rdfs:label ?drugname .

}

#Query 5a

select distinct ?anydrug ?drugname

{
dailymeddrug:60 dailymed:genericMedicine ?drugname .

?anydrug a drugbank:drugs .

?anydrug rdfs:label ?drugname .

}

#Query 5b

select distinct ?anydrug ?drugname

{
dailymeddrug:60 dailymed:genericDrug ?anydrug .

?anydrug a drugbank:drugs .

?anydrug drugbank:brandName ?drugname .

}



B.3. QFed Queries 163

#Query 6a

select distinct ?anydrug ?drugname

{
dailymeddrug:3460 dailymedname ?drugname .

?anydrug a drugbank:drugs .

?anydrug rdfs:label ?drugname .

}

#Query 6b

select distinct ?anydrug ?drugname

{
dailymeddrug:3460 dailymed:genericDrug ?anydrug .

?anydrug a drugbank:drugs .

?anydrug rdfs:label ?drugname .

}

B.3 QFed Queries

There are many queries that are generated by QFed. We will show some of those queries as

follows:

Listing B.3: Example of a subject-object join pattern query that joins a class to entities and

uses SERVICE keywords

select ∗ {
service<http://localhost:8001/dailymed/query> {

?s1 a dailymed:drugs .

?s1 dailymed:possibleDiseaseTarget ?s2 . }
service<http://localhost:8002/disease/query> {

?s2 diseasome:associatedGene ?URI .

?s2 diseasome:classDegree ?LITERAL .

}
}

Listing B.4: Example of a subject-object join pattern query that joins a class to entities

select ∗ {
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?s1 a dailymed:drugs> .

?s1 dailymed:possibleDiseaseTarget ?s2 .

?s2 diseasome:associatedGene ?URI .

?s2 diseasome:classDegree ?LITERAL .

}

Listing B.5: Example of a subject-object join pattern query that joins a class to entities and

uses an OPTIONAL keyword

select ∗ {
?s1 a dailymed:drugs> .

?s1 dailymed:possibleDiseaseTarget ?s2 .

?s2 diseasome:associatedGene ?URI .

OPTIONAL {
?s2 diseasome:classDegree ?LITERAL .

} }

Listing B.6: Example of a subject-object join pattern query that joins a class to entities and

uses a FILTER keyword

select ∗ {
?s1 a dailymed:drugs> .

?s1 dailymed:possibleDiseaseTarget ?s2 .

?s2 diseasome:associatedGene ?URI .

?s2 diseasome:classDegree ?LITERAL .

FILTER(?LITERAL >= 2) .

}

Listing B.7: Example of a subject-object join pattern query that joins amongst entities and

uses a big literal object

select ∗ {
dailymeddrug:1004 dailymed:genericDrug ?s2 .

?s2 drugbank:casRegistryNumber ?URI .

?s2 drugbank:absorption ?BIGLITERAL .

}
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Listing B.8: Example of a object-object join pattern query that joins amongst entities and

uses a big literal object

select ∗ {
dailymeding:Amcinonide rdfs:label ?o .

?s2 a <http://www4.wiwiss.fu−berlin.de/drugbank/vocab/resource/

class/Offer> .

?s2 drugbank:genericName ?o .

?s2 drugbank:casRegistryNumber ?URI .

?s2 drugbank:absorption ?BIGLITERAL .

}

Listing B.9: Example of a hybrid join pattern query that joins amongst entities

select ∗ {
<http://www4.wiwiss.fu−berlin.de/diseasome/resource/genes/HMS>

rdfs:label ?o .

?s2 a dailymed:drugs> .

?s2 dailymed:name ?o .

?s2 dailymed:activeIngredient ?URI .

?s2 dailymed:fullName ?LITERAL .

?s2 dailymed:genericDrug ?s3 .

?s3 drugbank:casRegistryNumber ?URI3 .

}

Listing B.10: Example of a subject-subject join pattern query

select ∗ {
?s drugbank:interactionDrug1 ?URI .

?s drugbank:interactionDrug2 ?URI2 .

?s drugbank:text ?BIGLITERAL .

}
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Dataset

Herein, we provide the statistical information about our dataset that are used in our evalu-

ation in Chapter 7.

Dataset Partition 1 Partition 2 Partition 3
CD 147245 11212 5773
GD 26767 58657 97380
TD 54759 54759 54758
TD2 10 10 10
TD3 54760 54756 54760
HD 54744 54744 54786
HD2 54749 54749 54779
PD 52510 56507 55259
ED 119261 34502 10513

Table C.1: List of Number of Triples in each dataset.

166



167

Dataset Partition 1 Partition 2 Partition 3
CD 2 1 1
GD 5 4 5
TD 4 0 2
TD2 10 10 10
TD3 5 8 0
HD 2 2 6
HD2 2 3 4
PD 0 0 6
ED 4 3 4

Table C.2: List of Number of Classes in each dataset.

Dataset Partition 1 Partition 2 Partition 3
CD 26 3 4
GD 27 26 28
TD 13 3 17
TD2 10 10 10
TD3 21 17 3
HD 26 26 28
HD2 27 26 28
PD 14 9 5
ED 27 26 5

Table C.3: List of Number of Properties in each dataset.

Dataset Partition 1 Partition 2 Partition 3
CD 4308 4066 711
GD 1893 4628 9090
TD 5058 4176 8882
TD2 10 10 10
TD3 5076 8328 4176
HD 1630 1580 5915
HD2 2836 4260 4692
PD 9085 4311 9125
ED 3533 3144 2540

Table C.4: List of Number of Entities in each dataset.
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The accuracy results

We carried out an experiment in Chapter 5 which investigates the impact of the links on the

accuracy of federated SPARQL query results. The following are the queries along with its

results:

Listing D.1: Query asking for a list of Branded Drug and its Generic Drug based on its

inactive ingredients

select ?brandname ?genericname {
?drug a dailymed:drugs .

?drug rdfs:label ?brandname .

?drug dailymed:inactiveIngredient ?ingredients .

?ingredients rdfs:label ?genericname .

?anydrug a drugbank:drugs .

?anydrug rdfs:label ?genericname .

}
limit 10

The query results:

Listing D.2: Query asking for a list of Branded Drug and its Generic Drug based on the

active ingredients

select ?brandname ?genericname {
?drug a dailymed:drugs .

?drug rdfs:label ?brandname .

?drug dailymed:activeIngredient ?ingredients .

?ingredients rdfs:label ?genericname .
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Branded Drug Generic Drug Validation
Evista (Tablet) Lactose False

Lisinopril (Tablet) Mannitol False
Triamcinolone Acetonide (Cream) Lactic Acid False

Aminonide (Cream) Lactic Acid False
Fluocinolone Acetonide (Cream) Citric Acid False

Acetaminophen and Codeine Phosphate (Solution) Sucrose False
Capoten (Tablet) Lactose False

Macrotec Acetic Acid False
Uniretic Lactose False

Sodium Acetate Acetic Acid False

?anydrug a drugbank:drugs .

?anydrug rdfs:label ?genericname .

}
limit 10

The query results:

Branded Drug Generic Drug Validation
Gabapentin (Capsule) Gabapentin True

ZESTORETIC (Tablet) Lisinopril False
Lisinopril (Tablet) Lisinopril True

Ketoconazole (Tablet) Ketoconazole True
Zazole (Cream) Terconazole True

Lovastatin (Tablet) Lovastatin True
Capoten (Tablet) Captopril True

Lovastatin (Tablet) Lovastatin True
Aminonide (Cream) Amcinonide True

Temazepam (Capsule) Temazepam True

Listing D.3: Query asking for a list of Branded Drug and its Generic Drug based on active

Moiety

select ?brandname ?genericname {
?drug a dailymed:drugs .

?drug rdfs:label ?brandname .

?drug dailymed:activeMoiety ?ingredients .

?ingredients rdfs:label ?genericname .

?anydrug a drugbank:drugs .
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?anydrug rdfs:label ?genericname .

}
limit 10

The query results:

Branded Drug Generic Drug Validation
Evista (Tablet) Raloxifene True

Gabapentin (Capsule) Gabapentin True
Vasocidin (Solution) Prednisolone False

Pergolide Mesylate (Tablet) Pergolide True
Galantamine (Tablet) Galantamine True

Penicillin V Potassium (Tablet) Penicillin V True
ZESTORETIC (Tablet) Lisinopril False

”SEROQUEL (Tablet & Coated)” Quetiapine True
Acebutolol Hydrochloride (Capsule) Acebutolol True

Bacitracin (Ointment) Bacitracin True

Listing D.4: Query asking for a list of Branded Drug and its Generic Drug by using

dailymed:genericDrug link

select ?brandname ?genericname {
?drug a dailymed:drugs .

?drug rdfs:label ?brandname .

?drug dailymed:genericDrug ?anydrug .

?anydrug rdfs:label ?genericname .

}
limit 10

The query results:

To validate the query result, we ask two following healthcare experts:

1. Arief Budi Santosa

Work: Kepanjen Hospital, Malang, East Java, Indonesia

Education:

• Cardiologist, Airlangga University, Surabaya, East Java, Indonesia (-present)

• Medical Education, Hang Tuah University, Surabaya, East Java, Indonesia ()
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Branded Drug Generic Drug Validation
Leflunomide (Tablet) Leflunomide True

”Arava (Tablet & Film Coated)” Leflunomide True
Zazole (Cream) Terconazole True

Terconazole (Suppository) Terconazole True
Zazole (Suppository) Terconazole True

”Lozol (Tablet & Film Coated)” Indapamide True
”ZOCOR (Tablet & Film Coated)” Simvastatin True

Halotestin (Tablet) Fluoxymesterone True
ANDROXY (Tablet) Fluoxymesterone True

COSMEGEN Dactinomycin True

2. Aslihan Beyan

Work: Pharmacist in Turkish Ministry of Health - Health Research Department

Education: Master Degree, Natural Products Chemistry and Pharmacognosy, Ankara

University, Institute of Health Science (1996-2000)
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