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ABSTRACT: Aerodynamic resistance is one of the leading challenges to overcome in elite cycling. To optimize cycling 
aerodynamics, estimates must first be made by means of wind tunnel testing, computational fluid dynamics or track testing. 
Computational fluid dynamics (CFD) is an emerging field in analysing cycling aerodynamics. Wind and urban physics create 
conditions difficult to model in a wind tunnel environment, and while physical track and/or velodrome testing occurs in actual 
cycling environments, it is difficult to control and quantify all influencing environmental factors. CFD allows for complete 
control over all model parameters. It also allows for controlled flow conditions to quantify small aerodynamic performance 
improvements through changes in athlete posture/equipment along with extensive measurement capabilities. Modelling cyclists 
and other vulnerable road users in urban environments can complement urban designs and strategies to enhance 
pedestrian/cyclist safety in high wind conditions. Additionally, modelling the aerodynamics of bluff body objects such as a 
cyclist’s body follows a similar procedure to modelling the airflow over complex structures. This paper presents not only an in-
depth survey of existing CFD research on cycling aerodynamics and its impact on the cycling community, but also highlights 
gaps in knowledge regarding cycling aerodynamics and suggests a methodology for future research to follow. 
 
KEY WORDS: Urban Physics; Aerodynamics; Computational Fluid Dynamics; Wind tunnel; Cycling. 

 
1 INTRODUCTION 

There are several different resistive forces affecting the 
performance of cyclists; aerodynamic resistance, road 
gradient, rolling resistance, drive train and wheel bearing 
resistance. However, aerodynamic improvements, particularly 
on flat to rolling terrain, offer the greatest potential for 
improvements in cycling speed [1]. For example, at speeds in 
excess of 50 km/h the aerodynamic resistance is up to 90% of 
the total resistance experienced by the cyclist [2]. It is evident 
over the history of cycling, that significant performance gains 
have been made, primarily due to the advancement of 
technology and the understanding of the underlying physics. 
For example, a performance improvement index was 
developed by Haake [3], to allow for comparison between 
athletes, and for a comparison between sports; a higher index 
indicating a greater improvement in the sport. The results for 
cycling are impressive, with a 221% increase in the 
International Cycling Union (UCI) one-hour track cycling 
record over 111 years. Furthermore, the 4-km individual 
pursuit improved by 35% over 32 years.  

Studying the flow field around a cyclist can be 
challenging. Performing smoke tests in a wind tunnel can shed 
some light on the complex flow interactions. However, wind 
tunnel testing often presents aerodynamic improvements 
solely through evaluating drag reduction, as detailed flow 
fields can be difficult to obtain [4]. Computational fluid 
dynamics (CFD) tools can be a useful asset to study whole 
flow field data. CFD provides the ability to analyse the wake 
flows of athletes; thus, identifying the causes of drag. The 
benefits of CFD are now being widely recognized within the 
cycling industry. The use of CFD tools is also well established 
within motorsport. Other elite sports such as swimming, 

skiing, bobsleighs and to some extent running have also 
embraced its potential [5]–[8]. Olympic gold medals can be 
won by tenths of a second [7], and it is possible to use CFD to 
realise aerodynamic enhancements which lead to additional 
speed or time savings. Advances over the past two decades in 
computer hardware have had positive impacts on the 
utilisation of CFD for sports aerodynamics research, from 
motor sport applications to summer and winter Olympic 
sports [9]. A key aim of aerodynamic testing is discovering 
new cycling positions that conform to the UCI rules while 
providing aerodynamic benefits. Similar procedures have been 
found to be successful in other sports such as bobsleigh 
aerodynamics. Computational modelling in bobsleighs on the 
positioning of the internal crew members yielded significant 
aerodynamic benefits without breaching regulations [6]. 

2 CFD METHODOLOGY FOR CYCLING 

CFD has become one of the greatest assets in understanding 
cycling aerodynamics in recent years. Detailed flow-field 
information can be attained along with drag force detail on 
individual components. Defraeye et al. [4] assessed the 
accuracy of CFD for cycling applications. A scale model of a 
cyclist was used to validate CFD models using wind tunnel 
experiments. In addition to three-component forces and 
moments, high-resolution surface pressure measurements 
were taken from the scale models surface at 115 locations, 
which provided detailed information on the flow field. The 
data provided from the wind tunnel tests are used to compare 
the performance of several Reynolds-Averaged Navier 
Strokes (RANS) turbulence modelling techniques, large-eddy 
simulations (LES), and low-Reynolds number modelling 
(LRNM) and wall functions for boundary layer modelling 
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wind tunnel validation tests to the best extent, and upon 
validation, the support structures can be removed from the 
model to give a clearer indication of the flow field around a 
cyclist. 

Some wind tunnel analysis has been conducted on 
competitive hand-cycles [15], however there is no current 
knowledge or understanding of the flow around hand cycles, 
recumbents and tandems, despite a general agreement in the 
cycling world that recumbent type cycles are more 
aerodynamic than their upright counterparts [36]. Tandem 
cycling is all but untested in cycling aerodynamics to the best 
knowledge of this author. Research in this area has begun in 
NUI Galway in the form of a 4 year structured PhD 
programme. This new research will investigate the 
aerodynamics of paracycling using CFD, with a focus on 
tandem cycling. The present author gratefully acknowledges 
the funding provided by the department of Engineering and 
Informatics. 
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