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ABSTRACT 
 
The automated identification and quantification of illicit materials using Raman spectroscopy is of significant importance 
for law enforcement agencies.  This paper explores the use of Machine Learning (ML) methods in comparison with standard 
statistical regression techniques for developing automated identification methods. In this work, the ML task is broken into 
two sub-tasks, data reduction and prediction. In well-conditioned data, the number of samples should be much larger than 
the number of attributes per sample, to limit the degrees of freedom in predictive models. In this spectroscopy data, the 
opposite is normally true. Predictive models based on such data have a high number of degrees of freedom, which increases 
the risk of models over-fitting to the sample data and having poor predictive power. In the work described here, an approach 
to data reduction based on Genetic Algorithms is described. For the prediction sub-task, the objective is to estimate the 
concentration of a component in a mixture, based on its Raman spectrum and the known concentrations of previously seen 
mixtures. Here, Neural Networks and k-Nearest Neighbours are used for prediction. Preliminary results are presented for the 
problem of estimating the concentration of cocaine in solid mixtures, and compared with previously published results in 
which statistical analysis of the same dataset was performed. Finally, this paper demonstrates how more accurate results 
may be achieved by using an ensemble of prediction techniques. 
 
Keywords: Forensic science; Narcotics; Regression; Raman; Spectroscopy; Machine Learning; Ensemble; Genetic 

Algorithm; Neural Network. 
 
 

1. INTRODUCTION 
 
Raman spectroscopy is being used in forensic science research for the identification and analysis of narcotics, explosives, 
polymers, and other materials.1  Raman spectra are unique and are based on the vibrational motions of molecules, which 
provides a chemical fingerprint suitable for identification and discrimination of a wide range of materials.2  Furthermore, the 
development of fiber optic Raman probes will allow the implementation of portable devices for in-situ examination of 
suspect materials including narcotic.3  Examples of illicit narcotics analysed by Raman spectroscopy in the laboratory 
include cocaine,4 heroin, 5 and amphetamines in both solid and solution.6, 7 In reality, however, the composition of seized 
drug samples can very enormously and it is unlikely that suspect materials will contain only one or two pure diluents.  The 
vast range of possible diluents and impurities that may be present pose several problems for the use of Raman spectroscopy 
for the quantitative and qualitative analysis of illicit drugs.  Difficulties include the presence of fluorescent materials, which 
obscure Raman peaks, overlap of diluent with narcotic Raman peaks, and variations in signal quality. 
 
To help overcome these problems many investigators a have turned to advanced computational methods to improve the 
quantitative and qualitative capability of Raman spectroscopy. For quantitative measurements, the use of chemometrics 
(multivariate analysis) has been demonstrated in the prediction of fuel composition,8 metabolites in urine,9 and cocaine. 10, 11 
In our previous work, we have employed traditional chemometric methods (Partial Least Squares) for the development of 
quantitative models for predicting cocaine concentration in solid mixtures.10, 11 Unfortunately, as the mixtures become more 



complex, the computational efficiency and the accuracy decreases. In an order to overcome these problems, this study 
examines the use of Machine Learning (ML) methods to develop more accurate quantitative methods. In addition, this paper 
demonstrates how higher accuracies may be achieved by using an ensemble method that combines the predictions from 
multiple methods. 
 
 

2. EXPERIMENTAL 
 
2.1 Apparatus and materials 
 
The modular instrument used for near-IR Raman spectroscopy has been described previously.10 All spectra were recorded at 
a set interval of 450-1100 cm-1 (510 data points) and a resolution of ~ 4 cm-1. The exposure time was set at 30 seconds for 
all samples. Three Raman spectra at different surface locations were recorded for each sample to minimize the effect of 
sample morphology. Features in the spectra caused by cosmic rays incident on the detector were manually removed using 
the EasyPlot software package (ver. 3.00-7, Spiral Software+MIT). The three spectra were co-added, averaged, and 
smoothed over a five-point range. These spectra were then divided by a normalized white light spectrum to correct for 
detector response. 
 
Anhydrous D-glucose (BDH), Cocaine hydrochloride and caffeine (Sigma-Aldrich) were reagent grade and were used as 
received. The sample set (see Table 1) covered a representative range of concentrations and mixtures with the sample 
mixtures (10-30 mg total weight) being made up by mixing known weights of drug and diluent, followed by grinding in an 
agate mortar and pestle to ensure sample homogeneity by thorough mixing of components. The mixtures were transferred to 
clean stainless steel hexagonal sample holders with an internal diameter of ~ 2 mm and tamped into place.  
 
2.2 Software and Hardware 
 
Chemometric analysis was performed using the Unscrambler (V7.5, CAMO ASA, Trondheim, Norway) multivariate 
analysis software package. Neural Network analyses were performed using the Stuttgart Neural Network Simulator14 and 
Genetic Algorithm populations were bred using the GA Playground software12. Other software, including the 
implementation of the k-NN algorithm (Sec. 3.2), was developed for this project by the authors. Machine Learning analyses 
were carried out on a desktop PC and on NUI Galway’s Origin high-performance multi-processor computer. 
 
 

3. MACHINE LEARNING ANALYSES 
 
3.1 Overview 
 
In this study, the ML analyses have focused on predicting the concentration of cocaine in a sample containing a mixture of 
components, by examination of the sample’s Raman spectrum. As mentioned in the Introduction, the analyses involved two 
phases: data reduction and prediction. Data reduction involves simplifying the data to improve the accuracy of prediction 
and reduce computational effort, as is discussed in detail in Sec. 3.3. Statistical and other transforms may be used for data 
reduction, but in this work feature selection was used, which is a simple form of data reduction whereby some of the input 
features are selected for use in prediction and the rest are ignored. 
 
Prediction involves building a model of how Raman spectra relate to cocaine concentration, and then using this to predict 
the concentration of new samples. Details of the prediction methods are presented in Sec. 3.2. Although prediction and 
feature selection are discussed separately below, the two sub-tasks were actually interlinked, as the feature selection was 



optimised to improve predictive performance, as discussed in Sec. 3.3. All analyses were based on the 36 samples used were 
those listed in Table 1, with 510 data points per sample.  
 

% Cocaine % Caffeine % Glucose % Cocaine % Caffeine % Glucose 

54.24 23.14 22.62 29.47 9.43 61.1 

80.58 8.86 10.56 33.46 20.89 45.65 

70.35 17.24 12.41 28.06 8.52 63.42 

71.10 9.15 19.75 13.39 15.45 71.16 

56.26 10.62 33.12 20.0 10.34 69.66 

61.92 19.23 18.85 29.96 29.32 40.72 

74.25 19.37 6.38 25.60 18.40 56.0 

61.48 29.11 9.41 21.98 20.32 57.70 

49.96 10.74 39.30 22.32 28.46 49.22 

50.57 19.39 30.04 11.75 30.53 57.72 

48.34 41.65 10.01 31.11 38.93 29.96 

42.88 10.02 47.10 19.46 39.80 40.74 

40.30 19.36 37.34 29.90 50.33 19.77 

39.33 30.46 30.21 21.19 29.0 49.81 

40.11 39.74 20.15 9.92 38.64 51.44 

40.74 49.34 9.92 9.84 50.49 39.67 

10.85 10.95 78.20 100.00 0.00 0.00 

0.00 100.00 0.00 0.00 0.00 100.00 

Table 1:  Chemical composition of samples used in the study. 

 
3.2 Prediction Methods 
 
Two regression methods have been evaluated in this study: 
 

1 k-Nearest Neighbours 
2 Feed-Forward Neural Networks 

 
Neural Networks are a popular ML technique for non-linear mapping of inputs to outputs. Based on highly simplified 
models of the operation of the brain, each neuron in the network has a set of inputs that are weighted and summed, and a 
non-linear threshold function is applied to the result to produce an output value. In a feed-forward network, the neurons are 
arranged in layers, with each layer’s outputs providing the inputs for the following layer. In this study, the inputs to the first 
layer are the Raman spectral data points and the final output is an estimate of cocaine concentration. The number of hidden 
(i.e. intermediate) layers and number of neurons per hidden layer have been varied in experiments. Training a neural 
network involves adjusting the weights on each neuron’s inputs until the outputs are as close as possible to their expected 
values. In this work, the Resilient Backpropogation (RProp) algorithm13 has been used for training the network, as 
preliminary experiments indicated that it achieved relatively fast convergence and was not overly sensitive to parameter 
settings. The Stuttgart Neural Network Simulator14 was used for this work. 



 
The k-Nearest Neighbours algorithm, as described by Mitchell15, works by comparing a sample to be classified with known 
samples, identifying the k samples that are nearest to the new one, and estimating the cocaine concentration of the new 
sample by averaging them. In this work, cosine and Euclidian distance measures were used, and the averages were weighted 
by the inverse of distance. In preliminary experiments, various values of k (number of neighbours) were tried, and k=3 was 
selected for the main experiments. 
 
These two methods were selected because they contrast strongly with each other: kNN is an instance-based learner, is fast, 
is deterministic and is particularly sensitive to irrelevant and correlated attributes. Neural networks are model-based, are 
slower, may converge to local maxima, and are less sensitive to irrelevant/correlated attributes although they also benefit 
from feature selection. However, neural networks are able to represent complex non-linear relationships in data, giving good 
performance on a wide range of prediction tasks. 
 
3.3 Feature Selection Methods  
 
In a ‘typical’ ML application with well-conditioned data, the number of cases is much larger than the number of attributes 
per case. In this study, however, there are 36 cases with 510 attributes per case. For many ML techniques, this causes 
problems. For example, a neural network with 510 inputs, 10 neurons in a single hidden layer, and 1 output layer would 
have over 5000 degrees of freedom, which with just 36 cases will most often result in convergence to a poor local 
minimum. Accordingly, feature selection has been used to reduce the number of attributes per case. The following 
approaches to feature selection have been assessed: 
 

1 Local Maxima 
2 Optimal Search using a Genetic Algorithm 
 

In each case, the impact of the feature selection methods on the performance of the ML algorithms has been assessed, as 
discussed in Section 4 below. For purposes of comparison, the ML algorithms have also been applied without any feature 
selection. 
 
The Local Maxima approach involved selecting all points that appeared as peaks (defined as having at least two points on 
each side with lower values) on the spectrum of the 100% cocaine sample, but excluding minor peaks below the average 
value. This resulted in the selection of 17 points. 
 
The Optimal Search approach was more sophisticated. The objective here was to find a set of attributes that was as small as 
possible, with as high accuracy as possible measured relative to a learning algorithm. The optimal search was performed 
using a Genetic Algorithm (GA), which is a technique based on the paradigm of biological evolution16. The essential idea is 
that a population of potential solutions to a problem is created, and the fitness of each individual is assessed by calculating 
the how appropriate it is for the problem. The fittest individuals are carried forward to the next generation, and the new 
generation’s population is augmented by crossover (producing new individuals that combine features of existing 
individuals) and mutation (random changes to an individual). The initial population is created at random, and bred for a 
large number of generations until it reaches steady state. This is termed a wrapper approach to feature selection, as the GA 
is wrapped around the learning algorithm. 
 
In the first set of GA experiments, the learning algorithm chosen as the target for the accuracy measure was k-Nearest 
Neighbours (kNN), as it runs fast and is known to be sensitive to cross-correlated attributes. Each individual consisted of a 
string of 510 binary digits, representing a configuration with some attributes selected and others not, depending on whether 



the corresponding digit in the bit-string was 1 or 0. The fitness of each individual was assessed by measuring the 
performance of kNN with the indicated set of attributes selected, and giving a penalty based on the number of attribute 
selected, to encourage the development of individuals that selected the best set of attributes and to favour the selection of as 
few attributes as possible. Populations were bred using the GA Playground software12, a general-purpose Genetic Algorithm 
toolkit implemented in Java, which the authors interfaced to their own kNN software. Repeated runs were carried out with 
various population sizes, crossover rates, mutation rates, and penalties. 
 
In the second set of GA experiments, a neural network was the target learning algorithm. Because of the relative slowness 
of neural network training, the fitness function was based on the sum of the squared error in training, since full cross-
validation for the 36 samples would have taken 36 times longer. Likewise, the 510 attributes per sample were reduced to a 
representative set of less than 10%, comprising local maxima, local minima and some intermediate points. In addition, 
because comparisons across networks with different sets of input attributes were being performed, a fixed number of hidden 
nodes was used for all networks and all networks were trained for the name number of epochs. Having a penalty term to 
encourage solutions with fewer attributes was not found to be beneficial in the neural network case. 
 
3.4 Ensembles 
 
Ensemble methods are currently an active area of research within machine learning. An ensemble is a learning algorithm 
that uses a set of predictors and combines their predictions through a voting scheme to arrive at a decision. Ensembles 
produce more accurate results than their individual members provided that they are accurate (i.e. their performance is better 
than random) and diverse (i.e. different members make different errors on new data)17. A good overview is given by 
Dietterich 18. Ensembles are usually constructed by producing variations on a single classifier, for example by training 
several neural networks using different feature subsets for each. In this study, however, completely different prediction 
methods are used for constructing the members of the ensemble. 
 
 

4. RESULTS & DISCUSSION 
 
4.1 Results of Feature Selection 
 
Figure 2 illustrates the effect of the feature selection features on the Raman spectrum of a pure cocaine sample. Without any 
feature selection, the full spectrum of 510 points is used. If the maxima are used, this reduces the data set to 17 points per 
sample, corresponding to the local maxima of the pure cocaine sample (even though these may not be maxima in other 
samples). The plot also shows the results of the GA optimisation when the kNN algorithm and the NN algorithm are each 
used as targets for the optimisation procedure. Lines connect the points to make them easier to identify. These two results 
provide an interesting contrast with each other: for kNN, the optimal solution is a set of just four points, three of which are 
clustered around the largest peak at 996 cm-1. For the neural network, on the other hand, the optimal solution does not use 
points on that peak at all, instead being based on other local maxima and local minima of the spectrum.  
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Figure 1:  Results of attribute selection procedures. 

 
4.2 Results of Analyses 
 
Table 2 summarises the performance of the kNN and neural network methods, when combined with the different attribute 
selection strategies, and also includes the performance of the Partial Least Squares technique as applied to this dataset 
previously by the authors11. For each combination of prediction method and attribute selection technique, the table lists the 
number of attributes selected, the root mean squared error of prediction (RMSEP) and the absolute maximum error in 
prediction (MaxErrP). In all cases, the prediction procedure was standard leave-one-out cross-validation: for each sample in 
turn, that sample was removed from the set and the remainder was used to build a model, which was then used to predict the 
concentration of cocaine in the sample that had been removed. For the NN and PLS methods, calibration statistics (RMSEC 
and MaxErrC) are also listed: these are found from using all samples together to build a model, and then using the model to 
predict the concentration of each sample in turn. In the NN case, this is essentially the training error of the method. For the 
kNN algorithm, calibration statistics are not meaningful – for the 1-neighbour case, if the sample to be predicted is 
available, the kNN algorithm will have zero error. As is typical of neural networks, it can be seen in rows 5-7 that 
calibration statistics are much better than prediction statistics, because of the way the network can represent nonlinear data 
accurately. 
 
Examining Table 2, it is seen that the kNN and NN methods both benefit from careful selection of attributes, as reflected in 
reduced values for RMSEP and MaxErrP when GA-based selection is used compared to when no selection or simple 
maxima-based selection is used. In the best case, the NN outperforms the PLS method both in terms of root mean squared 
error and maximum error. However, the performance of the kNN method is not quite as good. Overall, the best-case 
performance of all methods are quite similar; it appears that all methods are fundamentally limited by a lack of information 



stemming from having such a limited dataset. Figure 2 shows, for each sample, its measured concentration of cocaine 
plotted against its value as predicted by the best-case neural network with GA feature selection. While there is some scatter 
around the dashed centreline, the plot shows a strong correlation between predicted and actual values, as indicated by the 
low RMSEP and MaxErrP values reported in Table 2. 
 

Prediction Method 
Attribute 
Selection 

No. of  
Data Points 

RMSEC  
% 

MaxErrC 
% 

RMSEP  
% 

MaxErrP 
% 

k-Nearest Neighbours None  510  —  — 8.911 24.467 
 Maxima  17  —  — 7.674 24.690 
 GA  4  —  — 5.837 24.690 

Neural Network None  510 1.324 3.942 7.727 25.038 
 Maxima  17 3.922 12.003 6.108 19.351 
 GA  15 2.583 5.642 5.206 11.628 

Partial Least Squares  510 4.655 13.522 5.225 17.286 

Table 2:  Results of analyses using various prediction methods and attribute selection schemes. Note that correlation is 
not meaningful for the kNN algorithm. Figures for the PLS method are included for comparison. 
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Figure 2:  Predicted versus measured concentration of cocaine using GA with Neural Network. 

 
 



4.3 Combining Predictors in an Ensemble 
 
As was explained in Sec. 3.4, an ensemble is a committee of predictors, where the opinion of each member of the ensemble 
is sought when performing predictions. In this case, it is proposed to use the kNN, NN and PLS algorithms as members of 
the ensemble, and to simply average the predictions from each to arrive at a final prediction. (It would be possible to use a 
weighted average if independent experiments had established the relative accuracy of each, but lack of data prevents that 
from being done in this case.)  
 
As was mentioned previously, for the accuracy of an ensemble to be greater on average than that of any of its members, it is 
necessary and sufficient that each member is accurate and that the predictions produced by members are diverse17. Figure 3 
shows superimposed plots of predicted versus measured concentration of cocaine, similar to the plot of Figure 2. In Figure 
3, results are shown for the partial least squares method (hollow square) and kNN algorithm (hollow triangle) as well 
repeating the neural network result (hollow circle). It is clear from the plot that the three methods are better than random 
and that their predictions are diverse: there is at least 15% difference in some predictions. Hence, it is reasonable to 
construct an ensemble from the three algorithms. Accordingly, Figure 3 also shows the performance of the ensemble that 
results from averaging predictions from the three methods (solid square). Corresponding statistics are presented in Table 3. 
As Figure 3 shows, performance on predicting concentration of the 100% cocaine is not good, particularly for the kNN 
method, as this requires significant extrapolation. Since predictions at such high concentrations are of less practical 
significance than at low concentrations, Table 3 also lists statistics when the 100% cocaine sample is excluded, denoted 
RMSEP* and MaxErrP*.  
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Figure 3:  Predicted versus measured concentration of cocaine using each of the three algorithms individually (hollow 
symbols) and when all three are combined in an ensemble (solid square). 



 
Method RMSEP % MaxErrP % RMSEP* % MaxErrP* % 

Partial Least Squares 5.225 17.286 4.421 10.446 
Neural Network 5.206 11.628 4.901 10.634 
k-Nearest Neighbours 5.837 24.690 4.199 10.203 

Ensemble 4.857 17.868 3.891 9.549 

Table 3:  Performance of individual prediction methods and of an ensemble that averages predictions  
of the three methods. 

 
As Table 3 shows, overall performance of the ensemble is better than that of any of the individual members, as shown by 
the RMSEP values. Naturally, the MaxErrP of the ensemble cannot be as good as that of the best individual member, since 
it averages values from all members. Nonetheless, it is seen that ensemble has a significant ameliorating effect on an 
individual bad value such as the MaxErrP of the kNN algorithm. 
 
 

5. CONCLUSIONS 
 
This paper has investigated the application of Machine Learning techniques for prediction and data reduction to the task of 
predicting the concentration of cocaine in solid mixtures, using on Raman spectroscopy. The study has shown that good 
results are achievable by Neural Networks and k-Nearest Neighbours, provided that data reduction is used to improve the 
dimensionality of the data. In this study, the data reduction took the form of selecting specific wavelengths and discarding 
all others. This selection process was optimised by using a Genetic Algorithm, which in combination with the Neural 
Network method produced greater prediction accuracy than the Partial Least Squares method. The resulting predictors are 
simple, basing their predictions on a small number (less than 20) of data points. Accordingly, after the models have been 
built the classifiers operate rapidly, and they could be implemented on hardware for portable probes because they just a 
small number of simple mathematical operations (addition and multiplication). 
 
This paper has also demonstrated how an ensemble of different predictors can be used to produce predictions that are better 
than any one of the individual predictors, though naturally this comes at the cost of increased computational effort in 
constructing multiple predictors.  
 
It appears that all prediction methods considered in this study are fundamentally limited by the lack of information inherent 
in a limited test dataset of just 36 samples of various concentrations of cocaine, glucose and caffeine. To achieve 
substantially improved prediction accuracies, a much more comprehensive database of samples and their Raman spectra 
would be required. In addition, further samples would be necessary for independent verification of the performance of the 
prediction methods. Fortunately, in a real-world application, the number of samples available would be continually 
expanding as new samples would be analysed on an ongoing basis from law-enforcement seizures and similar sources.  
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