
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T10:52:23Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Learning content patterns from linked data

Author(s) Muñoz, Emir

Publication
Date 2014

Publication
Information

Muñoz, Emir. (2014). Learning content patterns from linked
data. Paper presented at the Proceedings of the Second
International Conference on Linked Data for Information
Extraction - Volume 1267, Riva del Garda, Italy.

Publisher CEUR-WS.org

Link to
publisher's

version
http://dl.acm.org/citation.cfm?id=2878575.2878579

Item record http://hdl.handle.net/10379/6022

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Learning Content Patterns from Linked Data

Emir Muñoz1,2

1 Fujitsu Ireland Limited
2 National University of Ireland, Galway

E-mail: Emir.Munoz@ie.fujitsu.com

Abstract. Linked Data (LD) datasets (e.g., DBpedia, Freebase) are
used in many knowledge extraction tasks due to the high variety of do-
mains they cover. Unfortunately, many of these datasets do not provide
a description for their properties and classes, reducing the users’ freedom
to understand, reuse or enrich them. This work attempts to fill part of
this lack by presenting an unsupervised approach to discover syntactic
patterns in the properties used in LD datasets. This approach produces
a content patterns database generated from the textual data (content) of
properties, which describes the syntactic structures that each property
has. Our analysis enables (i) a human-understanding of syntactic pat-
terns for properties in a LD dataset, and (ii) a structural description of
properties that facilitates their reuse or extension. Results over DBpedia
dataset also show that our approach enables (iii) the detection of data
inconsistencies, and (iv) the validation and suggestion of new values for
a property. We also outline how the resulting database can be exploited
in several information extraction use cases.

Keywords: Content Pattern, Linked Data, Information Extraction, #LD4IE

1 Introduction

Many companies and government agencies are massively publishing data on the
Web as result of Open Data initiatives, from public and private sectors, that
enable publicly-available data to be easily accessible by other users. Hence, the
ability to extract information from those sources is becoming increasingly im-
portant in the society for driving innovation, investment and economic growth.
In the process, data publishers usually reuse and extend a public ontology/vo-
cabulary to be used when publishing data on the Web in Linked Data shape.
The recent update of the Linked Open Data (LOD) Cloud diagram1 shows that
publishers still prefer to interlink their datasets mainly to DBpedia2 and reuse
its vocabulary among other popular ones. Statistics provided by Linked Open
Vocabularies (LOV) [17] reported the existence of 446 vocabularies (by July 7th,

1 http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-RDB/ (July
2014)

2 http://dbpedia.org/About

http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-RDB/
http://dbpedia.org/About


2014) with 10 classes and 20 properties in average. These numbers reveal the
cumbersome process for any publisher —person or application— to determine
which properties or classes to use at the moment of design and publish new
datasets.

In an ideal scenario, each property existing in an ontology/vocabulary should
have attached its specification of domain and range metadata in order to in-
crease its reuse. But in practice, this is not a reality, vocabularies lack of
such definitions or guidelines for users indicating how to reuse a vocabulary.
Here, it is worth mentioning that domain and range metadata are categorized
as non-normative by RDF Schema [3, §4]. Furthermore, even in cases when
such metadata is explicitly mentioned in LD datasets, they may contain lexi-
cal errors, such as the values "’’’e-book ID:"@en and "See text"@en for the
property http://dbpedia.org/property/isbn. This kind of errors are hard to
detect in automatic extraction processes, such as the ones used by DBpedia.
Our main goal is to discover a set of syntactic patterns in the content (value)
of each property that provides content-based rules for valid values of proper-
ties, allowing the reduction of errors and increasing the quality of LD datasets.
Datatypes in Linked Data (e.g., xsd:integer, xsd:gMonthDay) allow the val-
idation of values that RDF properties can take. For instance, we can expect
that the property dbp:dateCreated should follows a syntactic pattern, such as
Number-Number-Number to cover a Year-Month-Day data field. More specifically,
a pattern such as Small Num-Small Num-Medium Num. This leads us to state our
hypothesis: In Linked Data, a given property value satisfies a fixed and small
set of lexico-syntactic patterns. In the following, we try to build a database that
contains all possible content patterns for each RDF property in a Linked Data
dataset to evaluate the former hypothesis.

Organization. In this paper, we introduce RDF, domain, and range in Sec-
tion 2. Section 3 introduces the concept of content pattern and the learning
process to extract them from LD. Section 4 describes the algorithm to construct
the database from DBpedia3 and its implementation. A discussion of some iden-
tified use cases for the patterns database is presented in Section 5. Relevant
related work is presented in Section 6, to finally conclude about our work in
Section 7.

2 Background

In this section, we briefly introduce RDF model and the main issues with the
structure of properties in current datasets of the LOD cloud.

2.1 RDF Model

The RDF data model is used in the Semantic Web to give a universal structure
to the content that enables interoperability and semantics. An RDF triple can

3 http://dbpedia.org/About

http://dbpedia.org/About


be seen as an atomic fact representing the existence of a relationship between a
subject resource and an object resource, both selected from a set of RDF terms.
The RDF terms set is the union of three pair-wise disjoint sets: U, the set of all
URI references; B, an infinite set of blank nodes; and L, the set of all literals.
The set of literals is further decomposed into the union of two disjoint sets:
Lp the set of all plain literals and Lt the set of typed literals. The mentioned
relationship can be formally represented by a tuple (s, p, o) or RDF triple where
s ∈ U∪B represents the subject, p ∈ U represents the predicate (instance of the
class property), and o ∈ U ∪B ∪ L represents the object of the triple.

This work focus on the set L, where each string value is analyzed to learn
lexico-syntactic patterns [10] that exploit the structure (grammar) of the values
for a fixed property. Hence, we do learn content-based rules that models the data
(string values) of a property, which we refer as content patterns. As mentioned
above, a literal ` ∈ L can be either plain or typed. Plain literals are composed by
plain strings, such as "Hello World", and usually are associated to a language
tag (e.g., en, es), such as "Hello World"@en and "Hola Mundo"@es for English
and Spanish, respectively. Typed literals are those that next to the lexical string
have a datatype, such as "13"^^xsd:integer, representing the number 13. These
datatypes are generally defined for XML Schema that cover numerics, booleans,
dates, times, and so forth. Plain literals without language tags are associated
to xsd:string values by default. In addition, datatypes define which lexical
forms are valid for a datatype. For instance, "Hello World"^^xsd:integer is
an invalid statement whereas that "Hello World"^^xsd:string is valid.

2.2 Domain, Range and their issues

Vocabularies and schemas in Linked Data, RDF specifically, aim to attach se-
mantics to the user-defined classes and properties. RDF Schema (RDFS) [3] is an
extension of RDF with four key terms that allow the specification of well-defined
relationships between classes and properties. The four introduced elements are:
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and rdfs:range (please
see [15] for details). Here we focus on the last two elements, namely, rdfs:domain
and rdfs:range to explain how our content patterns database can be used.
rdfs:domain is used to state that the subject of an RDF triple with property p
is a member of a given class c. Similarly, rdfs:range is used to state that the
object of an RDF triple with property p is a member of a given class c. This
allows us to put constraints, and later validate the actual types of values that
are appropriate for a given property. Thus, facilitating a checking of the datasets
to discover errors, or to suggest appropriate values for a property.

Example 1. The following RDF triples:� �
dbr:17049_Miron dbo:epoch "May 14, 2008"@en
dbr:17049_Miron dbo:apoapsis "401288344481.673828"^^xsd:double� �



describe features of the asteroid 17049 Miron4. The first triple shows
the predicate epoch5 (explained by DBpedia ontology as the “moment in
time used as a reference point for some time-varying astronomical quan-
tity”), where the domain and range of the property epoch are defined as:
http://dbpedia.org/ontology/Planet class for planets, and xsd:string for
string values, respectively6. While, the second triple shows the predicate apoap-
sis7 which does not present any description explaining its use in this context. ut

Using LOV SPARQL endpoint8, we can compute that ca. 70% of the prop-
erties have a defined domain and range. Also, that only 1.2% of the properties
contain a not empty dcterms:description; and 40.9% contain a not empty
rdfs:comment value. This shows that widely used LD datasets, such as DBpe-
dia, lack of a minimal description about what/when/how to use a given property.

3 Content Patterns

The content of a property in an RDF triple, i.e. the data string in the object
position, is considered as a sequence of characters. A lexical analysis over prop-
erties’ content generates sequences of tokens, strings generated from an alphabet
containing different types of characters: alphabetic, numeric, punctuation, etc.
This sequence of tokens defines the structure of the content in an RDF property
that is here used to identify patterns.

3.1 Learning Patterns from Linked Data

In the following, we present our method to generate the content patterns. In order
to generate these patterns, first, we need an algorithm that allows us to learn
structural information about string values. For this purpose, we do use DataProG
presented by Lerman et al. [11], and designed for wrapper maintenance, wrapper
verification and induction with an accuracy of 97%. This algorithm takes as
input a set of positive examples, and using a word-level representation, or more
accurately, a token-level representation, generates a set of lexico-syntactic rules
that the tokens follow, hereafter called content patterns or simply patterns. A
token is considered as a particular instance of a concept or type. For example,
the type Number can have 1, 25, or 40 as instances. The types of the tokens are
associated to syntactic categories as depicted in Figure 1. Each category has its
own semantics describing the datatype. For instance, Number category is divided
in three sub-categories: Small (0 - 9), Medium (10 - 1000) and Large (larger than

4 http://dbpedia.org/resource/17049_Miron
5 http://dbpedia.org/ontology/epoch
6 The consideration of an asteroid as member of the class planet stated by the example
RDF triple is not a discussion covered in this paper but it raises the question: how
a given RDF ontology represents the real world?

7 http://dbpedia.org/ontology/apoapsis
8 http://lov.okfn.org/endpoint/lov_aggregator

http://dbpedia.org/resource/17049_Miron
http://dbpedia.org/ontology/epoch
http://dbpedia.org/ontology/apoapsis
http://lov.okfn.org/endpoint/lov_aggregator


1000). Here, every string appearing in at least k examples will be represented by
a token type (see Example 2). Formally, let KT

p = {k1, k2, . . . , km} be the set of
patterns for property p in a LD dataset T , where every pattern ki is a sequence
of syntactic classes w.r.t. the ones in Figure 1.

Fig. 1: Portion of the token type syntactic hierarchy [11].

Example 2. Given a property p with values in the set Sp = {14.1, 362.5, 95.0},
the learning process should return a content pattern set: KT

p = {[Number
. Number]}. DataProG algorithm over Sp returns two content patterns:
(k1) [Number Punctuation Number], and its specification (k2) [Medium Number

. Small Number], which is fine-grained. So far, S satisfies both patterns (k1) and
(k2). But, whenever elements in the input set follows a slightly different syntax,
the set KT

p of patterns changes and becomes more general or coarse-grained. For
example, adding the element 5.3i (a imaginary number) to the former set Sp, we
have S′

p = {14.1, 362.5, 95.0, 5.3i}, which will change the last former syntactic
category (i.e. Number) in the previous patterns (k1) and (k2) for Alphanum. ut

Our test data source, i.e. DBpedia, only contains “examples” of values for
a given property. We do require that the learning patterns algorithm accepts
as input only positive examples. DataProG algorithm satisfies this requirement.
Then, it is a good choice to be used in this work for the generation of content
patterns. (Note that our method is flexible enough to accept other learning
pattern algorithms.)

4 Database Construction

In this section, we explain our methodology to build a content patterns database
from a Linked Data dataset. First, we pre-process our test dataset, i.e. DBpedia,
and present a survey of the properties found in it. Second, based on the learning
process depicted in Section 3, we introduce our algorithm for pattern extraction
in order to build the content patterns database from our Linked Data dataset.

4.1 DBpedia Properties Survey

We used DBpedia v3.9, gathered on May 2014, which contains over 2.4 billion
RDF triples with instances of 53,230 properties. To analyze each property, the



DBpedia dump was fragmented by properties in order to extract all patterns.
For one property, the analysis can be done using the following SPARQL query:� �

SELECT ?sub ?obj
WHERE { ?sub <http://dbpedia.org/property/placeOfBirth> ?obj . }� �

where we ask for all subject (?sub) and object (?obj) elements, that
appear in RDF triples where the predicate corresponds to the property
http://dbpedia.org/property/placeOfBirth.

In this work, we do use HDT (header, dictionary, triples) [7] —a compact
data structure and binary serialization format for RDF— for RDF data manage-
ment. HDT allows us to search and browse DBpedia dataset using S-P-O-like9

queries where we can indicate fixed values for any of these three positions. We
then fragment the whole dataset, generating small and manageable indices per
property. Table 1 shows the list with the top 20 most frequent properties found
in DBpedia, being the sameAs property the most frequent. This list is mainly
composed by properties coming from the most popular vocabularies: FOAF10,
Dublin Core11, OWL12, DBpedia.

Table 1: List of the top-20 most frequent properties in DBpedia.
Freq. Property

84,724,705 http://www.w3.org/2002/07/owl#sameAs

61,709,033 http://dbpedia.org/ontology/wikiPageUsesTemplate

44,603,034 http://purl.org/dc/terms/subject

42,057,021 http://dbpedia.org/ontology/wikiPageRevisionID

42,057,021 http://dbpedia.org/ontology/wikiPageID

42,056,971 http://www.w3.org/ns/prov#wasDerivedFrom

37,784,587 http://www.w3.org/2000/01/rdf-schema#label

34,226,925 http://xmlns.com/foaf/0.1/primaryTopic

34,226,925 http://xmlns.com/foaf/0.1/isPrimaryTopicOf

28,440,690 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

20,488,114 http://dbpedia.org/ontology/wikiPageExternalLink

18,674,346 http://dbpedia.org/ontology/wikiPageRedirects

12,629,958 http://dbpedia.org/property/hasPhotoCollection

10,408,296 http://dbpedia.org/property/name

8,924,014 http://xmlns.com/foaf/0.1/name

8,489,275 http://purl.org/dc/elements/1.1/rights

5,176,265 http://www.w3.org/2004/02/skos/core#broader

5,070,656 http://dbpedia.org/property/language

4,803,302 http://xmlns.com/foaf/0.1/depiction

4,803,300 http://dbpedia.org/ontology/thumbnail

Each index contains only RDF triples for a fixed property in a S-P-O order.
During our analysis we take one by one the property indices, and parse their

9 The order for each RDF triple is subject - predicate - object.
10 http://xmlns.com/foaf/spec/
11 http://dublincore.org/documents/dcmi-terms/
12 http://www.w3.org/TR/owl-ref/

http://xmlns.com/foaf/spec/
http://dublincore.org/documents/dcmi-terms/
http://www.w3.org/TR/owl-ref/


triples to extract the object position to determine whether it is a literal, URI or
blank node. We then form the set Vp of values for property p. (Blank nodes do
not contribute to our method—since they do not contain any URI or literal—, so
they are discarded. On the other hand, for URIs we can still extract some domain
patterns.) We further determine if the literals are plain or typed. From the
extracted sets L from the indeces, we could determine that 19.25% correspond
to elements in Lp (plain literals), 18.02% to elements in Lt (typed literals), and
62.73% elements that do not contain any language or datatype associated (by
default linked to xsd:string). Among the literals with an existing datatype,
the most common datatype found was xsd:integer. Table 2 shows the top 10
most frequent datatypes in DBpedia, which are mainly related with numbers,
dates and time representation.

Table 2: List of the top-10 more frequent datatypes in DBpedia.
Freq. Datatype

39,938,610 http://www.w3.org/2001/XMLSchema#integer

3,449,581 http://www.w3.org/2001/XMLSchema#double

3,268,506 http://www.w3.org/2001/XMLSchema#date

1,677,864 http://www.w3.org/2001/XMLSchema#float

1,216,821 http://www.w3.org/2001/XMLSchema#gYear

908,155 http://dbpedia.org/datatype/second

679,934 http://www.w3.org/2001/XMLSchema#nonNegativeInteger

275,376 http://www.w3.org/2001/XMLSchema#gMonthDay

204,753 http://dbpedia.org/datatype/squareKilometre

196,569 http://dbpedia.org/datatype/minute

4.2 The Algorithm

We will now design an algorithm to obtain the sets KT
p of patterns for each

property p in the dataset T . For each property we extracted the set Vp of
values that is passed as input to the learning patterns algorithm. This action
generates the content patterns per property. Algorithm 1 formalizes the approach
to construct the content patterns database. The first part of the algorithm (lines
3-6) represents the parsing of the LD dataset T , and generation of the set Vp,
filtering values that are not in L∪U. Once finished the parsing, the patterns can
be generated calling DataProG (line 9); compute their corresponding coverage
(line 10), and then write the 3-tuples into the database (line 11).

4.3 Implementation

Algorithm 1 was implemented using Java language, and tested over DBpedia
dataset. In terms of implementation, due to the size of some sets Vp, we op-
tionally optimized the processing time and memory required for the patterns
computation by truncating the size to 500 elements maximum. This should be
executed after line 7 and before line 9. In our following experiments, we applied
this optimization to meet the hardware constraints imposed by the machine
used. However, this is still an optional optimization, and can be discarded for
bigger hardware resources.



Algorithm 1 Construction of a Content Patterns Database

Input: a Linked Data dataset T
Output: a content patterns database
1: Let W be the set of all properties in T
2: Let Vp be set of values for a property p ∈ W
3: for all RDF triple (s, p, o) ∈ T do
4: if o ∈ L ∪U then
5: Vp.add(o)
6: end if
7: end for
8: for all p in U do
9: KT

p = DataProG(Vp)
10: Compute coverage (cov) for each ki ∈ KT

p

11: Write the 3-tuple (p, ki, covki) for each property/pattern into the database
12: end for

The machine used to process DBpedia and build the database was a virtual
machine running Ubuntu Linux 12.04 with an Intel i7 processor, and 8GB of
RAM memory. The source code with the implementation of the current approach
used to generate a content patterns database from a Linked Data dataset can be
found on-line in https://github.com/emir-munoz/ld-patterns. A dump of
the database is available in a tabular separated values (tsv) file, which contains
the generated patterns for DBpedia: property<tab>pattern<tab>overage,
where the metric coverage is used to measure the proportion of the dataset
for which the learning algorithm makes a prediction, i.e. all the examples that
satisfy the pattern divided by the total number of examples. The coverage metric
range is [0.0, 1.0], being 1.0 the full coverage of the data examples.

5 Discussion

In this section, we present a discussion about the possible use cases where the
generated database can be helpful. In practice, the values in the rdfs:range of
a property are not uni-type, which does not violate the formal definition of RDF
model given in Section 2. However, this is translated into properties p whose
sets Vp are composed by URIs mixed with literals and even blank nodes13.
This fact makes more challenging the reuse of many properties. The survey
performed on literals in DBpedia knowledge base showed that only ca. 40%
falls into the categories of plain and typed literals, leaving the rest, 60%, as
default literals linked to the xsd:string type. Nevertheless, we consider all of
them in our analysis and subsequent processing. When applying Algorithm 1
to DBpedia we generate the main output of this work: A database composed
by ca. 500,000 content patterns associated to properties in DBpedia, with an
average of 17.3 patterns per property. In other words, we were able to find
content patterns in properties values of a Linked Data dataset. This result comes
to validate our initial hypothesis which states that in Linked Data datasets, a

13 In LOV, 374 unique properties have a range defined as blank node.

https://github.com/emir-munoz/ld-patterns


given property satisfies a small set of lexico-syntactic patterns whenever the
range of the property is not an empty value or blank node.

We report in Table 3 few examples of content patterns extracted for eight
properties. Each pattern is accompanied by its coverage measure. We can notice
that the patterns of some properties are easy to deduce, such as dbp:barcode
or dbo:address, and not easy at all in other cases, such as dbp:admCtrOf,
dbp:1stishhead or dbp:2006MeanHhIncome. In the latter cases, it is hard even
to figure out the context where those properties are used. This lead us to define
and discuss a set of use cases where it is handy to count with such database.

Table 3: Examples of content patterns identified.
Property Content Patterns Coverage

dbp:barcode LARGE/FLOAT NUMBER 1.0

dbo:address

NUMBER FIRST UPPERCASE FIRST UPPERCASE 0.318
ALPHANUMERIC FIRST UPPERCASE Road 0.056
ALPHANUMERIC FIRST UPPERCASE Street 0.044

dbp:admCtrOf

ALPHA of ALL LOWERCASE significance of FIRST UPPERCASE 0.298
FIRST UPPERCASE District 0.272
Town of ALPHA significance of FIRST UPPERCASE 0.206

dbo:editorTitle

FIRST UPPERCASE 0.978
Editor 0.79
Editor - in - Chief 0.282

dbo:isbn

ALPHANUMERIC - NUMBER - NUMBER - NUMBER 0.56
NUMBER - NUMBER - NUMBER - NUMBER 0.56
ALPHANUMERIC 978 - SMALL NUMBER - NUMBER - NUMBER - SMALL NUMBER 0.046

dbp:1stishhead

vol . SMALL NUMBER 0.54
ALPHA . SMALL NUMBER 0.54
vol . SMALL NUMBER cont . 0.02

dbp:2006MeanHhIncome

LARGE/FLOAT NUMBER 0.682
ALPHANUMERIC / A 0.122
ALPHANUMERIC Available 0.108

dbp:dateCreated

NUMBER 0.873
MEDIUM NUMBER 0.731
MEDIUM NUMBER - SMALL NUMBER - SMALL NUMBER 0.233

To guide our discussion, we present a list with some identified use cases:

1. The database can facilitate user searches to discover and reuse existing prop-
erties. Similar to a search by example, given an example value the user can
search for all the patterns that cover that example.

2. As a derivation of the previous use case, this database can facilitate a human-
understanding of the lexicon of properties existing in a Linked Data dataset
in general beyond the simple and not self-explanatory label.

3. The database can be used to check atypical values (outliers) inside the
same knowledge base, based on the most in/frequent patterns. The outliers
might correspond to errors because of failures in an automatic extraction, or
changes/updates in the lexicon of properties that will require to re-run the
Algorithm 1 to generate a new database.

4. Most ambitiously, the database obtained can help to the automatic gen-
eration of schemas from tabular data. For example, when trying to con-
vert CSV to RDF format using the SPARQL-based data mapping language
TARQL [5], users need to define how each column will be represented in
RDF.



5. In terms of information extraction, this database can be used for instance in
the table extraction problem. In a table, the columns with string values can
be mapped to RDF properties, by matching the cell values with patterns in
the database. This might help to improve the recall measure when performing
approaches like the one described in [14].

6. Document wrappers will also benefit from this database. Extracted values
by a wrapper, via CSS or XPath queries over HTML pages can be validated
against the corresponding patterns.

Fig. 2: Wrapper use case for the database.

A practical example is shown in Figure 2, where the lexical patterns database
is generated from a Linked Data dataset, and used to validate extracted data
by a wrapper. Consider as example, a wrapper that extracts data from the
business card (hCard) of a person embedded in his HTML page, that contains
the following attributes and values:� �

E-mail: user1@domain.com
Given name: John
Surname: Snow
Web address: www.jsnow.com� �

we could use the attributes (properties) name and its values to generate an RDF
representation of this data. The first field, E-mail can be mapped to dbp:email

that is further associated with the following patterns in our database:� �
ALPHANUMERIC PUNCTUATION ALL_LOWERCASE PUNCTUATION ALL_LOWERCASE
ALPHANUMERIC @ ALL_LOWERCASE . ALL_LOWERCASE� �

By using a conversion of the patterns to regular expressions (cf. [9]) we can check
that this attribute value, user1@domain.com, match both regular expressions,
and then conclude that it is valid since it satisfies the content patterns. Therefore,
the extraction task is successfully achieved and we can represent the extracted
data in RDF as:� �

_:l1 dbp:email "user1@domain.com"@en .� �
were :l1 is a blank node (in the subject position) that represents the business
card itself. The same process can be followed for the other attributes. In practice,
RDF vocabularies to model information extraction tasks, like this barely showed
here, are needed. This is still an open research area that could help adding some



metadata regarding the variables involved in the extraction, or even to assign
URIs to identify common IE modules.

6 Related Work

A significant amount of research activity have been made in the topic of pattern
recognition (see [2,12], among others). Pattern-based extraction of information
and the use of lexico-syntactic patterns are far from new and have been used
in a variety of tasks [10,4,16]. In information extraction, patterns are widely
used on the Web [6,1]. Within the range of uses for patterns, [6,13] reported a
reasonable success in ontology creation and population. Recently, Linked Data
has been exploited as a background knowledge base to support wrapper induction
[8], HTML tables interpretation [14], among other tasks. However, as far as we
know, this paper is the first to explore the learning of lexico-syntactic patterns
from string data embedded in LD datasets for validation. Our approach was
inspired by algorithms proposed for wrapper induction [11,8], and a previous
work focused on RDF extraction from Wikipedia tables [14].

7 Conclusions and Future Work

In this paper, we presented a method to build a content patterns database gen-
erated exclusively from DBpedia knowledge base, but applicable to any Linked
Data dataset. By exploiting the implicit grammar present in the content of RDF
properties whose range is in the set of literals and URIs, we could generate con-
tent patterns for such properties. These syntactic patterns are rich sources to be
used in Information Extraction tasks as shown in this paper. Furthermore, we
present some possible use cases where the database can be exploited.

To the best of our knowledge, our work is the first in conducting an extraction
over properties with textual values; and also the first in generate a content
pattern database from Linked Data datasets.

As future work, we identified two major directions in which our work can be
extended and/or improved: (1) The content patterns database can be used in
the evaluation of the knowledge base used to build the former. In other words,
we can perform a checking of the RDF triples examining cases where the object
values do not comply with the most common generated patterns. This will guide
us to a consistency analysis of the knowledge represented by the LD dataset,
where this can be cleaned increasing its value. This task also will give insights
on common errors incurred in automatic extractions from semi-structured data
sources. (2) The consideration of other LD datasets besides DBpedia, such as
Freebase could help to enrich in both size and quality dimensions the database,
making it more valuable.

Acknowledgments. The author would like to thank Mario Arias for his work
in HDT software and, Bianca Pereira and the anonymous reviewers for the con-
structive comments and suggestions to improve the paper. This work has been



supported by KI2NA project funded by Fujitsu Laboratories Limited and Insight
Centre for Data Analytics at NUI Galway (formerly known as DERI).

References

1. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open Infor-
mation Extraction from the Web. In: Proceedings of the 20th International Joint
Conference on Artifical Intelligence. IJCAI’07, San Francisco, CA, USA, Morgan
Kaufmann Publishers Inc. (2007) 2670–2676

2. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

3. Brickley, D., Guha, R., McBride, B.: RDF Schema 1.1. http://www.w3.org/TR/

rdf-schema/ (February 2014)
4. Brin, S.: Extracting Patterns and Relations from the World Wide Web. In: Selected

Papers from the International Workshop on The World Wide Web and Databases.
WebDB ’98, London, UK, UK, Springer-Verlag (1999) 172–183

5. Cyganiak, R.: SPARQL for Tables: Turn CSV into RDF using SPARQL syntax.
https://github.com/cygri/tarql (August 2013)

6. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.M., Shaked, T., Soder-
land, S., Weld, D.S., Yates, A.: Web-scale Information Extraction in Knowitall:
(Preliminary Results). In: Proceedings of the 13th International Conference on
World Wide Web. WWW ’04, New York, NY, USA, ACM (2004) 100–110

7. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary RDF Representation for Publication and Exchange (HDT). Web Semantics:
Science, Services and Agents on the World Wide Web 19 (2013) 22–41

8. Gentile, A.L., Zhang, Z., Augenstein, I., Ciravegna, F.: Unsupervised Wrapper
Induction Using Linked Data. In: Proceedings of the 7th International Conference
on Knowledge Capture. K-CAP’13, New York, NY, USA, ACM (2013) 41–48

9. Goyvaerts, J., Levithan, S.: Regular Expressions Cookbook - Detailed Solutions
in Eight Programming Languages, Second Edition. O’Reilly (2012)

10. Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In:
Proceedings of the 14th Conference on Computational Linguistics. COLING ’92,
Stroudsburg, PA, USA, Association for Computational Linguistics (1992) 539–545

11. Lerman, K., Minton, S.N., Knoblock, C.A.: Wrapper maintenance: A machine
learning approach. J. Artif. Int. Res. 18(1) (February 2003) 149–181

12. Liu, B.: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data.
Data-Centric Systems and Applications. Springer (2011)

13. Maynard, D.: Using Lexico-Syntactic Ontology Design Patterns for Ontology Cre-
ation and Population. In: Proc. of the Workshop on Ontology Patterns. (2009)

14. Muñoz, E., Hogan, A., Mileo, A.: Using Linked Data to Mine RDF from
Wikipedia’s Tables. In: Proceedings of the 7th ACM International Conference
on Web Search and Data Mining. WSDM’14, New York, NY, USA, ACM (2014)
533–542

15. noz, S.M., Pérez, J., Gutierrez, C.: Simple and Efficient Minimal RDFS. Web Se-
mantics: Science, Services and Agents on the World Wide Web 7(3) (2009) 220–234
The Web of Data.

16. Soderland, S.: Learning Information Extraction Rules for Semi-Structured and
Free Text. Mach. Learn. 34(1-3) (February 1999) 233–272

17. Vatant, B., Vandenbussche, P.Y.: Linked Open Vocabularies (LOV). http://lov.
okfn.org/ (July 2014)

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
https://github.com/cygri/tarql
http://lov.okfn.org/
http://lov.okfn.org/

	Learning Content Patterns from Linked Data

