<table>
<thead>
<tr>
<th>Title</th>
<th>Protein interactions in physiological environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kyne, Ciara</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2016-06-03</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/5860</td>
</tr>
</tbody>
</table>

Some rights reserved. For more information, please see the item record link above.
Protein Interactions in Physiological Environments

Ciara Kyne

National University of Ireland, Galway

PhD, 2016
Protein Interactions in Physiological Environments

PhD Thesis

This thesis was prepared at the School of Chemistry, National University of Ireland, Galway, from October 2011 to February 2016.

I declare that the work included in this thesis is my own work and has not been previously submitted for a degree to this or any other academic institution.

Cover Art: Unravelling the Gordian knot of biochemistry (based on the illustrations of David Goodsell, the Scripps Research Institute)

Ciara Kyne
Born in Galway 1989
Summary of Contents

The interactions of three proteins (ΔTat-GB1, cytochrome c and flavodoxin) were explored in *Escherichia coli* cells and extracts. The results indicate features of the physicochemical basis for protein assembly in the complex cytoplasm. Some of this work featured as a highlighted article in Protein Science.¹ Although key principles of molecular recognition have been gleaned from ‘reductionist’ studies performed in dilute solution, physiologically-relevant insights require protein characterisation under native or near-native conditions.² In particular, knowledge of the low-specificity ‘quinary’ interactions that dynamically organise the cytoplasm is scarce.

In-cell NMR indicated that all three proteins interact pervasively with the cytoplasm, despite their different sizes and surface properties. NMR, size exclusion chromatography (SEC) and/or native gel electrophoresis was used to probe the physicochemical basis for the interactions of each test protein in *E. coli* extracts.¹,³ The charge of cytochrome c and four of its mutants was determined by membrane confined electrophoresis. These findings indicate the effects of decreased charge on cytochrome c interactions in extracts. The weak, low-specificity cytochrome c-flavodoxin complex was studied in volume-occupied solutions to dissect the effects of the cytoplasmic architectures on this ‘quinary-like’ interaction.³ The intricate interplay of charge, hydrophobic interactions and preferential hydration in governing cytoplasmic interactions is emphasised. These findings provide fresh evidence in support of a physicochemical model for cytoplasmic structuring.

A novel strategy for 19F tryptophan incorporation in *E. coli* was also developed which involved the addition of 30-60 mg/L of the tryptophan precursor 5-fluoroindole to the growth medium.⁴ 19F tryptophan-labelled flavodoxin and GB1 were subsequently studied by 19F NMR in *E. coli*⁴ or extracts.³

Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Grasping the Nature of the Cell Interior</td>
<td>21</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Specific Ion Effects on Macromolecular Interactions in the E. coli Cytoplasm</td>
<td>39</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Charge Determination of Cytochrome c and its Mutants: Implications for Cell Extract Interactions</td>
<td>59</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Simple and Inexpensive Incorporation of 19F-Tryptophan for Protein NMR Spectroscopy</td>
<td>87</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Studies of Quinary-Like Interactions in E. coli Extracts</td>
<td>107</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Effects of Crowding and Confinement on a Quinary-Like Interaction</td>
<td>121</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td>149</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>163</td>
</tr>
</tbody>
</table>
Introduction
Introduction

Composition of the Escherichia coli Cytoplasm

This thesis focuses on assessing protein interactions in physiological environments such as the E. coli cytoplasm. The composition of E. coli cells is relatively well-defined, making it a useful model for molecular biology, genetics, biotechnology and cellular physicochemistry. The cytoplasm, which accommodates the majority of biochemical activity, is replete with small molecules (including ions and metabolites) and macromolecules (including proteins and nucleic acids). How does this complex mixture of interacting components capacitate the living cell? In this section the main components of the cell are introduced briefly. The cited papers and reviews provide more details for the interested reader.

The total inorganic ion concentration of the E. coli cytoplasm is 300 mM. At a concentration of 100-250 mM, K⁺ is the most abundant inorganic ion. Considerable differences in the total intracellular Mg²⁺ concentration have been reported (e.g. 20-100 mM). Importantly, most intracellular Mg²⁺ is associated with nucleic acids and, thus, the concentration of ‘free’ Mg²⁺ is ~1 mM. Other ions, such as Cl⁻, Na⁺, Ca²⁺, and phosphates (H₂PO₄⁻/HPO₄²⁻/PO₄³⁻) are present in low mM quantities. The total concentration of several transition metals (such as Fe²⁺, Zn²⁺, Cu⁺ and Mn²⁺) have been estimated at sub μM in E. coli. Notably, the concentration of free transition metals is low due to their high affinities for metal-binding proteins and their poor water solubility at neutral pH. The concentrations of over 100 metabolites from glucose-fed, exponentially growing E. coli have been determined. The E. coli metabolome is dominated by a limited number of compound classes such as nucleotides, amino acids, and central carbon intermediates (e.g. glutamate, shikimate and citrate). The total metabolite concentration reaches up to 300 mM in the E. coli cytoplasm with approximately a third of this comprising glutamate. Putrescine, glutathione, fructose 1,6 bisphosphate and adenosine triphosphate (ATP) are the next most abundant metabolites at intracellular concentrations of 30, 17, 15 and 10 mM, respectively. Importantly, ion and metabolite concentrations in the E. coli cytoplasm are governed by the extracellular environment and consequently tend to fluctuate. For instance, the K⁺ and glutamate concentration in E. coli cells increased from 0.23 to 0.93 M and from 0.03 to 0.26 M, respectively when the osmolality of the growth medium was increased from 0.1 to 1.1 molal. Similarly, the pH of the E. coli cytoplasm is governed by the
The extracellular environment and can range from 6.0-8.0. Physiologically-
relevant changes in the ionic strength and pH of the cytoplasm modulate its dielectric
constant (and therefore the strength of charge-charge interactions) and conductivity.5,13

The *E. coli* cytoplasm is extremely crowded with macromolecules.14,15 For
instance, a single *E. coli* cell contains 2.4 million protein molecules which
 correspond to > 4,000 different proteins and a concentration of 200-320 g/L (volume
of cell ~2 fl.).16,17 *E. coli* contain a single, circular 4.6 Mbp chromosome, which
condenses upon binding to nucleoid associated proteins (NAPs) and by supercoiling
to form the nucleoid architecture.18 The concentration of DNA and RNA in *E. coli* is
11-18 and 75-120 g/L, respectively.5,16 The high degree of volume occupancy (20-
40%)14,19 means that the average distance between macromolecules in the cytoplasm
is on the same order of magnitude as their molecular diameters. Macromolecular
crowding has at least two consequences. Firstly, the space occupied by
macromolecules in the crowded cell interior cannot be accessed by other
macromolecules.14 Thus, macromolecular crowding imposes physical barriers to
molecular diffusion,20,21 leading to non-uniform macromolecular partitioning
throughout the cytoplasm and the formation of microcompartments or
 microenvironments.22 Moreover, steric repulsion increases the thermodynamic
activity of biomolecules,15 which is defined as the number of molecules of the solute
per unit available volume. However, macromolecular crowding effects do not
originate solely from repulsive forces, because the cell interior is chemically diverse
and biomolecular surfaces are interactive. The abundant, heterogeneous surface area
and high collision frequency (10^9-10^10 collisions/second)23 of macromolecules *in vivo*
promotes myriad, cooperative weak interactions. Moreover, crowding decreases
the protein concentration required to induce phase separation.24,25 Liquid-liquid
phase separation has been demonstrated *in vivo* and the resulting dynamically
responsive, membraneless bacterial microcompartments characterised (see below).26
Thus, biomolecular interactions dynamically organise the cytoplasm to form local
microenvironments which likely have unique viscosities, pH and dielectric
properties.
Molecular Organisation in Synthetic Cells: Biological Implications

Molecular self-organisation is a hallmark of living systems. Although the basic molecular composition of the *E. coli* cytoplasm is known, knowledge of the physicochemical mechanisms governing molecular organisation *in cellulo* is scant. Studies of the physicochemical properties of the cell interior are often precluded by cellular complexity. Bottom-up approaches, which involve the *de novo* construction of synthetic cells from a few components,\(^{27}\) offers a simplified route toward the systematic exploration of intracellular molecular organisation. Minimally, cells are defined as semi-permeable compartments. Compartmentalisation therefore always features as a fundamental element of synthetic cells.\(^{28,29}\) In nature, phospholipids self-assemble to form bilayer membranes and, accordingly, liposomes (lipid bilayer membrane-enclosed vesicles) have been used extensively in the construction of synthetic cells. For instance, Miyata and Hotani encapsulated G-actin into 1:1 (wt:wt) dimyristoyl phosphatidyicholine/cardiolipin liposomes at 0 °C and initiated actin polymerisation by increasing the temperature to 30 °C.\(^{30}\) Actin bundle formation conferred the otherwise flaccid liposomes with mechanical stiffness and novel morphologies (*e.g.* dumbbell or disk shapes).\(^{30}\) Similar lipid vesicles have been used extensively for studies of biochemical function (*e.g.* exocytosis,\(^{31}\) protein synthesis\(^{32,33}\) and origin of life studies\(^{29,34}\)). Comparatively fewer investigations have explored the fundamental physicochemical principles that govern molecular organisation in lipid vesicles. In 2005, Long *et al.* demonstrated the utility of bottom-up cell constructions for studies of molecular self-assembly by investigating the partitioning of polyethylene glycol (PEG) and dextran in synthetic cells.\(^ {35}\) The resulting solution phase-separated within narrow temperature ranges to form a dextran-rich phase (or microenvironment) in the centre of the liposome which was surrounded by the immiscible PEG-rich phase. This partitioning influenced the distribution of added proteins (*e.g.* streptavidin) or DNA depending on their affinities for dextran or labelled-PEG (*e.g.* biotinylated-PEG). Although partitioning of the neutral polymers occurred in the absence of lipid bilayer confinement over a timescale of hours to days, it took minutes in the lipid vesicle.\(^ {35}\) Moreover, in these synthetic cells, phase separation was induced by increasing the external osmotic pressure (with 0.25 M sucrose). The role of semi-permeable lipid bilayer encapsulation in orchestrating and accelerating intracellular chemistry was
demonstrated. Moreover, this study indicated that reversible phase separation could enable dynamic microcompartmentation in cellulo.35

A ‘cell structure mimic’ was later presented by Marguet and colleagues who encapsulated poly(trimethylene carbonate)-b-poly(L-glutamic acid) polymersomes into a giant, poly(butadiene)-b-poly(ethylene oxide) polymersome.36 Although exhibiting Brownian motion in the giant, 20 \(\mu \text{M} \) vesicle, the diffusion of the encapsulated nano-sized polymersomes was \(\sim 7 \) times slower when the giant vesicle was loaded with 300 g/L dextran.36 Moreover, the polymersomes were immobile in giant vesicles containing 2\% w/v alginate (\(p_I = 5.4 \)). Together these findings demonstrate that crowding and confinement were efficiently mimicked in this synthetic cell.36 So far, these systems have been employed as scaffolds for studies of enzymatic reactions with a view to developing functionalised synthetic cells (nanoreactors).37 However, they may also serve as useful systems for studies of the effects of key organisational features on the self-assembly of added biomolecules. Indeed, biosupramolecular assembly has been explored in related systems recently. Peters and co-workers investigated the pH-sensitive interaction between an oligohistidine-tagged fluorescent protein (td-Tomato) and a Nickel(II) nitrilotriacetic acid (Ni-NTA)-presenting lipid on the inner membrane of a semi-permeable giant vesicle.38 Encapsulated alcohol dehydrogenase (ADH) was used to alter the luminal pH, upon addition of NAD(H) and the conversion of small molecule substrates (\textit{i.e.} ketones or alcohols are reduced or oxidized by ADH, respectively which, in turn, increases or decreases the pH).38 The assembly of td-Tomato and Ni-NTA was inhibited at low pH (< 5.0) but promoted at pH 7.0 and the assembly/disassembly could be cycled several times within a single study indicating its dynamic nature.38 This system therefore provides an ideal template on which studies of molecular recognition in more complex intracellular environments can be built.

Although synthetic polymers were employed in the above examples of microcompartmentalised cells, phase separation-induced microcompartmmentation can also be mediated by proteins.39 For instance, the disordered elastin-like proteins (ELPs) containing repeat pentapeptide units VPGXG (X = any nonproline amino acid) can undergo a reversible phase transition, resulting in the formation of aqueous two-phase systems. Several stimuli induce phase transitioning \textit{e.g.} temperature, ionic strength and pH.40 Phase transitioning is dependent on ELP chain length,
concentration and ‘guest’ residue composition. In 2009, Ge et al. demonstrated that GFP-ELP fusion proteins (where valine, alanine and glycine occupy the guest position) induce the formation of liquid-liquid phase transitions in *E. coli* and tobacco cells to produce aqueous microcompartments that exclude ribosomes and nucleic acids. This finding indicated that aqueous two-phase transitioning can occur in the cytoplasm.

The physiological-relevance of phase transitions in the formation of proteinaceous membraneless compartments (*e.g.* nucleolus, Cajal bodies and stress granules) has been demonstrated in the past decade by several independent studies. Specific solutes (*e.g.* RNA and proteins) preferentially partition within the phase separated, micron-scale ‘droplets’ to generate a unique microenvironment with specific function. Typically, low complexity, unstructured protein domains mediate the assembly of the highly dynamic droplets. Due to their structural plasticity and multispecificity, intrinsically disordered regions (IDRs) are amenable to multifarious interactions. This suggests that various mechanisms may govern droplet formation. The role of electrostatics in droplet assembly has been identified, which coincides with the fact that IDRs are enriched in charged residues. Recently, Nott and co-workers studied human Ddx4-mediated droplet formation *in vitro* and in HeLa cells. The droplets were readily reconstituted *in vitro* with internal dynamics and a thermal stability closely similar to that observed in live cells. Moreover, a truncated Ddx4 variant comprising the unstructured N-terminus (Ddx4^N1_) displayed similar phase behaviour to the wild type. The transition temperature of Ddx4^N1_ decreased with increasing ionic strength (*i.e.* by 25 °C when the ionic strength was increased by 100 mM). This finding suggests that charge-charge interactions are important in mediating droplet formation. Ddx4^N1_ is composed of ‘clustered charge motifs’ enriched in either cationic or anionic residues. Upon mutating Ddx4^N1_ such that it retained all of the same residues (and a similar pI) but not its charge-dense clustering, the protein could no longer form droplets. The significance of charge-clustering in Ddx4^N1_-based droplet assembly *in vivo* is therefore apparent and is consistent with the role of compositionally biased charge regions in many regulatory proteins. The prevalent role of attractive, multivalent charge-charge interactions between biopolyelectrolytes in droplet formation makes them reminiscent of complex coacervates, *i.e.* charge-mediated liquid-liquid phase separation.25,52,53
Lessons from *in vitro* studies of complex coacervates, which are relatively well-studied in polymer chemistry,25,54 should therefore guide our exploration of protein-based liquid droplets *in vivo*. For instance, Semenov and co-workers noted that oppositely charged (polyglutamate/polylysine) polypeptide coacervates disassembled in the presence of trypsin.55 This finding prompted Aumiller and Keating to explore other modes of enzymatic action, namely phosphorylation/dephosphorylation, on phase-forming biopolymer systems.56 The RNA/arginine based peptide system did not phase separate after phosphorylation of a peptide serine but droplet formation was reobserved upon dephosphorylation.56 These findings suggested a role for phosphatase and kinase activity in directing the reversible formation of liquid droplets. Moreover, several factors influenced the composition of the coacervates including: peptide sequence and/or charge, degree of multivalent interactions, peptide phosphorylation state, and RNA sequence. The sensitivity of the coacervates likely supports the dynamic, responsive nature of physiological droplets, which may reduce the probability of rare nucleation events leading to aggregation in the protein-rich droplets.24

Protein interactions leading to phase-separated microcompartmentation will become important experimental systems for exploring spatiotemporal molecular self-organisation in live cells. These systems will offer unique insights into the physicochemical nature of the cytoplasm and distinct microenvironments. However, studies of droplet-forming proteins are still in their infancy. Similarly, investigations of the physicochemical basis of biomacromolecular assembly in intact cells are rare. Transmembrane protein machines, by comparison, are routinely studied in proteoliposomes,57 which are crude cell mimics. These machines often use structural reorganisations to effect their function *in vivo*. Knowledge of the interaction changes of such proteoliposome systems in response to altered luminal compositions may therefore provide useful insights into intracellular physicochemistry. For instance, some transmembrane proteins, such as the bacterial ATP-dependent glycine betaine transporter OpuA, contain a cytoplasmic module that activates transport in response to elevated luminal ionic strengths (*e.g.* $>$ 200 mM). OpuA activation is not observed at increased concentrations of electroneutral osmolytes, confirming the role of charge-charge interactions in governing OpuA activity.58–60 Additionally, the activation threshold of OpuA (*i.e.* ionic strength conducive to OpuA activation)
increases with increasing concentration of anionic lipids in the liposome.58 This result indicates that charge-charge interactions between the lipid head groups and the cystathionine \(\beta\)-synthase (CBS) module are implicated in OpuA activation. Indeed, charge-charge interactions appear to regulate the activity of three well-studied bacterial transporters.61 This finding led Poolman, Spitzer and Wood to model transporter systems as “on-off electrostatic switches”, in which the conformation of the cytoplasmic transmembrane protein module is governed by charge-charge interactions with the membrane.61 In the case of OpuA, cationic regions on the CBS surface engage in attractive charge interactions with anionic lipid head groups at low ionic strengths (\textit{e.g.} 100 mM) and lock the system in an inactive configuration. At elevated ionic strengths (\textit{e.g.} 260 mM) counter ion interactions with the membrane and the CBS module decrease their surface charge densities, disrupting the membrane-protein interaction. The CBS module then favours a ‘relaxed’ conformation which is linked to system activation. Transporter modules that contain anionic surface charge densities are expected to have an opposite ‘switching logic’.61 In this case the charge repulsion between the anionic membrane and module favours a relaxed conformation of the module corresponding to transporter inactivation. Increased ionic strength reduces the anionic surface charge densities of the module and lipid head groups allowing cations to mediate module-lipid interactions. These interactions lead to a locked conformation which facilitates transporter activation.

Notably, the activation of OpuA takes place over a narrow, physiological ionic strength range \textit{i.e.} from 100-260 mM where the Debye-length shifts from \(\sim 10\) to \(\sim 6\) Å, respectively.61 However, the Debye-length is calculated from the linear Poisson-Boltzmann equation which becomes inconsistent at higher electrostatic potentials.61 Therefore, the authors also used the Dissociative Electrical Double Layer (DEDL) theory,62 to calculate a second parameter, the co-ion exclusion boundary, which is the average distance from a charged surface over which co-ions are excluded. The sum of the Debye-length and the co-ion exclusion boundary gives a more accurate value for the distance from the charged surface over which electrostatic forces apply. Poolman, Spitzer and Wood found that the co-ion exclusion boundary for two anionic species decreases with increasing ionic strength and equals zero when \(I = 260\) mM.61 This finding indicates that an anionic surface no longer electrostatically repels a second anionic group at \(I = 260\) mM and the two
surfaces can therefore approach each other. By comparison, at $I = 100$ mM, the co-ion exclusion boundary increases the Debye-length by ~ 5 Å. These calculations quantitatively support the experimental findings for OpuA indicating that physiologically-relevant ionic strength changes can facilitate the charge-charge screening-based activation mechanism of bacterial transporters.

Intracellular Organisation: The Abundance of Macromolecular Clusters

Investigations of the physicochemical underpinnings of bacterial osmosensor activation provoked the construction of an electrochemical model for cytoplasmic structuring. Although the experimental data inspiring this model pertains to a single, functional class of transmembrane proteins, the co-ion exclusion boundary calculations are generally applicable. Moreover, the case for the significance of charge-charge interactions in governing macromolecular assembly in the cytoplasm is implied from the strongly Coulombic nature of the cell interior. For example, 70% of *E. coli* proteins are acidic and, along with the anionic groups of nucleic acid and lipid bilayers, generate negatively charged microenvironments throughout the cytoplasm. Positively charged proteins and counter-ions are expected to partially neutralise the negative charge to form local, supercrowded ‘clusters’ which are characterised by a net negative charge (Figure 1). Anionic cluster surfaces are surrounded by ionic atmospheres enriched in counter-ions (cations). Screening decreases the distance over which electrostatic forces apply (i.e. the Debye-length). However, the average intermolecular distances are similar to the Debye-length at physiological ionic strengths (~ 10 Å) making screened electrostatic interactions significant. Thus, neighbouring clusters electrostatically repel each other, preventing erratic, aggregation and non-specific, physiologically-detrimental interactions.

Several lines of experimental evidence support the existence of clusters. Elowitz *et al.* used fluorescence recovery after photobleaching (FRAP) to determine that the apparent diffusion co-efficient of GFP in living *E. coli* cells was ~ 11 times less than that measured in water. This finding indicated that diffusion in the cytoplasm is hampered by macromolecular crowding. Interestingly, His-tagged GFP diffusion was reduced by up to 40% in *E. coli* compared to the WT protein. This result suggests that pervasive interactions involving the GFP His-tag and other
Introduction

Macromolecules and/or clusters hamper the diffusion of the variant. Pulsed-FRAP and confocal microscopy experiments by van den Bogaart and co-workers showed that GFP, when evenly distributed throughout the E. coli cytoplasm, had an apparent diffusion co-efficient of 3.2 μm² s⁻¹ which represents the average from a broad distribution of values (0.1 to 24 μm² s⁻¹). This distribution indicated that GFP diffusion is likely dependent on its local microenvironment, and decreases due to interactions with other macromolecules. Pulsed-FRAP measurements demonstrated that the diffusion co-efficient of GFP decreased by a factor of 10 when the NaCl concentration of the cell resuspension buffer was increased by 250 mM, corresponding to an osmotic upshift of 0.42 Osm. This finding indicates that physiologically-relevant changes in macromolecular crowding can have dramatic effects on macromolecular interactions (e.g. steric repulsion) and thus, diffusion.

Figure 1. A millisecond snapshot of the cytoplasm at a region (~80 nm x 60 nm) peripheral to the nucleoid. Proteins, nucleic acids and their complexes are shown. The plasma membrane and cell wall are not depicted. Unequal, non-random crowding imposed by charge-charge interactions and steric repulsion leads to the formation of macromolecular clusters that interact to form functional regions in vivo. Macromolecular clusters structure the cytoplasm into a supercrowded cytogel and a dilute cytosol, the boundary between these zones is indicated by the dashed lines. Electrolytes and ions occupy the cytosolic ’pools’ and pathways. Single-headed arrows show the diffusion of free macromolecules to/from the cytogels. Double-headed arrows show metabolite flows that arise due to enzymatic reactions. Ionic flows between pools are represented by equilibrium arrows. Figure adapted from Spitzer and Poolman’s representation.
The promise of NMR spectroscopy for the atomic-level assessment of a single test protein in living cells is hampered by the inability to detect most globular proteins by standard heteronuclear single quantum correlation (HSQC) measurements. Several groups have independently identified that extensive weak interactions between test proteins and high molecular weight assemblies in the cell interior slow the rate of test protein tumbling causing unfavourable relaxation properties and severe 1H line broadening. This limitation provides striking evidence for the abundance of large assemblies (i.e. clusters) in cells. For instance, in 2011 Wang and co-workers compared the in-cell 1H, 15N HSQC spectra of several globular proteins of similar size but varying surface properties. Although all three proteins produce high quality NMR spectra in vitro, only GB1 (B1 domain of protein G; 6.2 kDa; $pI = 4.3$) and NmerA (N-terminal metal-binding domain of mercuric ion reductase; 6.9 kDa; $pI = 7.2$) were detectable in E. coli. Ubiquitin (8.7 kDa; $pI = 5.7$) was invisible by in-cell NMR. Relative to their sharp in vitro spectra, significant resonance broadening was observed for both GB1 and NmerA in live cells. Interestingly, GB1 gave rise to a higher quality in cell spectrum than NmerA. A GB1 dimer (12.5 kDa) containing a single residue linker had a rotational correlation time twice that of GB1 in vitro but yielded a sharper spectrum than NmerA in E. coli. This indicates that the difference in NmerA and GB1 size was not responsible for the substantial difference in the quality of the in-cell spectra. A GB1-L$_{15}$NmerA fusion protein, in which each domain fold is identical to the native protein, was also detectable in E. coli. Notably, the peak intensities corresponding to NmerA residues were lower than those of GB1. Additionally, the peaks corresponding to NmerA backbone amides were weaker than those of side chain amides. The relaxation of side chain amide nuclei are governed mainly by their high degrees of internal motion and therefore are not as dramatically affected by decreased rates of protein tumbling. These findings confirm that decreased rotational correlation times cause the increased line broadening effected in cells. GB1 is ‘biologically inert’ i.e. does not interact with other macromolecules in E. coli and GB1 line width increases in E. coli are likely affected mainly by intracellular viscosity. Thus, by comparing GB1 1HN line widths as a function of glycerol concentration (i.e. sample viscosity) with those measured for GB1 in E. coli, the apparent intracellular viscosity was determined to be 8-11 times that of water. Calculations of the per-residue NmerA 1HN line widths expected at the intracellular viscosities underestimated the degree of
line broadening observed in the in-cell NmerA spectrum. This finding indicated that factors other than viscosity, namely intermolecular interactions, influence NmerA tumbling. Advances in sensitivity-enhancing NMR pulse sequences are now facilitating important breakthroughs for in-cell NMR. For example, Majumder and co-workers recently used 1H,15N cross-correlated relaxation-enhanced polarization transfer (CRINEPT) heteronuclear multiple-quantum coherence (HMQC) transverse relaxation-optimised spectroscopy (TROSY) experiments to study the weak interactions of 4 ‘sticky’ proteins (thioredoxin, FKBP, adenylate kinase, ubiquitin) in live cells. They demonstrated that protein-RNA interactions comprise a major component of cytoplasmic assemblies and found that each protein, although < 30 kDa in size, had an apparent molecular weight of > 1 MDa in vivo. These data support the idea that macromolecules assemble into functional clusters in vivo. Moreover, chemical shift perturbation mapping indicated that the known, specific binding surfaces of the test proteins were involved in their weak, pervasive or ‘quinary’ interactions. This finding suggests that trends in molecular recognition, mainly indentified from crystal structure analysis, are borne out within clusters.

The Bipartite Structure of the Cytoplasm

Spitzer and Poolman suggest that macromolecular clustering leads to the formation of complementary dilute pools and their interconnecting channels (Figure 1). These uncrowded regions are reservoirs of electrolytes and metabolites such as K$^+$, ATP, ADP, glutamate, H_2PO_4^-, and HPO_4^{2-}. Freely diffusing protein and RNA molecules are likely found in pools and pathways, and thus, facilitate localisation by the ‘diffusion and capture’ mechanism (Figure 1). Evidence for pool and pathway structures in vivo comes from pulsed-FRAP studies of fluorescently-labelled glucose in *E. coli* at different extracellular osmolalities. The apparent diffusion co-efficient of glucose was 50 μm2 s$^{-1}$ under normal osmotic conditions and 4.3 μm2 s$^{-1}$ in cells osmotically upshifted with 2 M NaCl. Confocal microscopy confirmed that the fluorescently-labelled glucose explored the entire cytoplasmic space under osmotically stressed conditions. By comparison, the diffusion co-efficient of GFP dropped to 0.001 μm2 s$^{-1}$ when the external osmolality was increased using 0.5 M NaCl and the distribution of GFP became uneven due to exclusion by the nucleoid region. Thus, although macromolecular diffusion in vivo is hampered by the
presence of other biopolymers, especially under conditions of osmotic upshift, small molecules remain highly mobile. The topology of pools and pathways are defined by the charged surfaces of the macromolecular clusters and the plasma membrane (Figure 1). Importantly, each pool has a unique composition and electrochemical gradients therefore exist between pools, driving the flow of electrolytes via channels (Figure 1). The geometry and electrostatic potential of the cluster surfaces (i.e. pool and channel boundaries) also direct the transport of small molecules by means of steric and charge-charge repulsion or attraction.

The non-random structure of the cytoplasm into (i) cytogel (clusters) and (ii) cytosol (pools and pathways) phases facilitates the dynamic, responsive nature of intracellular chemistry which depends on variables such as growth stage and extracellular conditions such as temperature, water activity\(^{86}\) ionic strength\(^{21}\) and pH.\(^{87}\) For instance, variations in cytoplasmic pH and ionic strengths will change the electrostatic potential of macromolecular surfaces leading to cluster rearrangements. Cohen et al. recently captured cluster rearrangements using in-cell NMR.\(^{87}\) They found that a GB1 variant (GB1 K10H) could be detected by the \(^1\)H, \(^15\)N HSQC experiment in \textit{E. coli} cells when the intracellular pH was 7.5.\(^{87}\) Upon decreasing the intracellular pH to 6.0 the HSQC spectrum of GB1 K10H deteriorated and the protein was undetectable in \textit{E. coli} at pH 5.0.\(^{87}\) Indeed, at lower pH values, the net charge of anionic proteins in \textit{E. coli} (and GB1 K10H) decreases and charge-charge repulsions are likely diminished leading to more extensive macromolecular interactions. Cluster rearrangements are expected to alter pool and pathway dimensions and compositions. This intracellular reorganisation maintains cell viability in unfavourable environments \textit{e.g.} pH extremes.

In conclusion, several lines of experimental evidence support Spitzer and Poolman's model of the bacterial cytoplasm. This comprehensive model therefore provides useful insights into the physicochemical basis for molecular assembly \textit{in vivo}. The model also allows for the qualitative assessment of the physiological validity of data acquired under simplified cell-like conditions and acts as an important reference when designing experiments of increased intracellular-relevance.
Scope of this Thesis

In vivo, molecular interactions beget function. Proteins, the cell’s most abundant and diverse macromolecule, interact with a cohort of biomolecules to orchestrate cellular processes. Knowledge of protein interactions and other physiological processes have been derived mostly from studies of isolated molecules in idealised solutions. However, fundamental protein properties e.g. charge, stability, diffusion and activity are influenced by the surrounding environment. Thus, the behaviour of proteins in complex, physiological milieus and simplified in vitro conditions can vary drastically. In the wake of post-reductionist biochemistry, protein characterisations are increasingly performed under conditions that mimic important facets of the cell interior. This thesis explores protein interaction propensities under native and native-like conditions. The goal was to establish the fundamental physicochemical properties that govern protein interactions in conditions akin to the bacterial cytoplasm. This knowledge may advance the current understanding for cytoplasmic structuring and quinary interactions (Chapters 2, 3, 5, 6). A facile route for 19F-protein labeling was also developed by coaxing E. coli to incorporate a fluorinated amino acid precursor (Chapter 4). This method will extend the application of in-cell protein NMR. Revisionism is becoming increasingly important in the development of frameworks and ‘dream experiments’ relevant to in-cell physicochemistry. Accordingly, in Chapter 1, I present a historical review outlining the landmark discoveries that have shaped our current perception of the organised cell interior. Useful model systems, experiments and philosophies are also suggested.

Model Proteins

The interaction propensities of unrelated, single-domain proteins were studied under conditions akin to the E. coli cytoplasm. By using test proteins with different surface properties (Figure 2), general conclusions could be extracted regarding the origin of protein stickiness in complex environments (see Discussion). GB1 is the B1 domain of streptococcal protein G (Figure 2A). GB1 and its mutants are model systems for studies of protein folding and design. Owing to its high solubility and stability, GB1 is a well-established solubility tag, and can be heterologously expressed in E. coli to high concentrations (i.e. 100 mg/L culture). It is an αβ protein that contains a
Introduction

four-stranded β-sheet and a four-turn α-helix.98 GB1 contains 56 amino acids (6.23 kDa) and is anionic at neutral pH (pI = 4.396). It is devoid of proline, serine, cysteine, histidine, arginine and prosthetic groups. Thus, its net charge is conferred by three protonatable residue types: aspartate (7); glutamate (3) and lysine (6). GB1 is an important model protein for \textit{in vitro} and \textit{in-cell} NMR studies.73,74,96,99 It is considered a ‘biologically inert’ protein (\textit{i.e.} unsticky surface),74,99 possibly due to its small size and anionic nature. The GB1 mutant used herein (GB1-QDD) has the T2Q, N8D and N37D mutations, which prevents N-terminal methionine cleavage and deamidation across all pH values.96 ΔTat-GB1 is an N-terminal fusion protein of GB1-QDD and the disordered, arginine-rich nuclear localisation signal of HIV-1 Tat (GRKKRRERRRA).76,100 It is small (7.7 kDa) and has a theoretical pI of 8.2 and is undetectable by \textit{in-cell} NMR spectroscopy,76 indicating that it interacts extensively with cytoplasmic macromolecules.

\textbf{Figure 2.} Cartoon and electrostatic surface representations of the model proteins \textbf{A} GB1; \textbf{B} cytochrome c and \textbf{C} flavodoxin. The haem and flavin mononucleotide cofactors of cytochrome c and flavodoxin are represented as black sticks or spheres.

Cytochrome c101 is the most abundant protein in the mitochondrial intermembrane space (IMS) where it transfers electrons between complex III and IV of the respiratory chain to facilitate ATP synthesis.102 It is also implicated in apoptosis where it oxidizes cardiolipin which leads to the release of proapoptotic
Introduction

Saccharomyces cerevisiae cytochrome c is an all α protein composed of a series of α-helices and reverse turns (Figure 2B). It contains 108 amino acids (12.6 kDa) and is lysine-rich (pI = 9.6). Cytochrome c has 34 protonatable residues: aspartate (4); glutamate (7); lysine (16); arginine (3) and histidine (4). The majority of cytochrome c’s cationic residues are located in a large patch that surrounds the exposed haem edge (Figure 2B). This charged patch mediates cytochrome c interactions with small molecule (e.g. calixarene, porphyrin) and macromolecular partners. As a model NMR and electron transfer protein, cytochrome c has been employed extensively in the NMR characterisation of transient protein-protein interactions. Moreover, cytochrome c’s electron transfer capabilities and its ability to interact non-specifically with anionic molecules has led to its application in biosensor construction. For example, cytochrome c interactions with DNA, bilirubin oxidase, polyaniline sulfonic acid, and p-sulfonatocalix[4]arene have been used to generate electroactive assemblies on electrodes. Cytochrome c is not detectable by NMR in living E. coli cells or their extracts, owing to its pervasive, non-specific interactions with E. coli macromolecules.

In E. coli, flavodoxin is an electron donor involved in the reductive activation of several enzymes including: pyruvate formate-lyase, anaerobic ribonucleotide reductase and B12-dependent methionine synthase. E. coli flavodoxin is an α/β protein containing five parallel beta strands flanked on both sides by helices (Rossman fold; Figure 2C). It contains 175 amino acids (20.1 kDa) and is anionic at neutral pH (pI = 3.5). Flavodoxin has 55 protonatable residues: aspartate (20); glutamate (17); lysine (6); arginine (4) and histidine (5). In flavodoxin, the non-covalently bound flavin mononucleotide (FMN) cofactor is enveloped by contiguous anionic and hydrophobic surface patches (Figure 2C). Chemical shift perturbation mapping experiments revealed that the FMN-containing face of flavodoxin mediates its interactions with partner proteins. Given the abundance of proteins containing the ancestral α/β topology, flavodoxin is frequently employed in protein folding studies and, owing to its three-state folding mechanism, investigations of molten globules. Notably, flavodoxin can fold in the absence of its FMN cofactor. Thus, the apoflavodoxin-FMN interaction represents an important case study for protein-cofactor recognition. Flavodoxin cannot be
detected by NMR in living *E. coli* cells (P.B. Crowley; personal communication) indicating that it is sticky, despite having a densely negatively charged surface expected to electrostatically repel the majority of *E. coli* macromolecules.

In this thesis, the NMR detectability of all three proteins (ΔTat-GB1, cytochrome *c* and flavodoxin) was tested inside living *E. coli* cells and cleared cell lysates (*i.e.* extracts). Extracts are crude mimics of the heterogeneous, complex cytoplasm but can be manipulated to facilitate investigations of physiologically-relevant protein interaction propensities. In Chapter 2 the interactions of ΔTat-GB1 in extract ‘clusters’ were investigated using a combination of NMR and size exclusion chromatography (SEC) studies. This system was used to address three central points: (i) what was the contribution of simple charge-charge interactions, (ii) did the arginine-rich motif interact preferentially with a specific class of macromolecule and (iii) could specific ions disrupt these ΔTat-GB1-containing assemblies?

The interactions of a second cationic protein, cytochrome *c*, were subsequently explored in *E. coli* extracts (Chapters 3 and 5). Previously, Crowley and co-workers used size exclusion chromatography (SEC) and mutagenesis experiments to demonstrate that cytochrome *c* formed high molecular weight complexes with *E. coli* macromolecules. The role of simple charge-charge interactions in governing cytochrome *c* interactions was identified therein. This knowledge motivated a comparison of cytochrome *c* charge in dilute solution and in *E. coli* extracts at a physiological ionic strength (100 mM; Chapter 3). To this end, membrane confined electrophoresis (MCE) and native gel electrophoresis was used. The MCE work was performed in collaboration with Ms. Kiara Jordan, Dr Dana Filoti and Prof. Thomas Laue at the University of New Hampshire. This work aimed to address the following questions (i) what is the effective charge of cytochrome *c* and charge inverted mutants (arginine/lysine→glutamate) at a physiological ionic strength, (ii) is cytochrome *c* charge modulated by different ions or (iii) sequestration by clusters in *E. coli* extracts (iv) can specific ions disrupt cytochrome *c* interactions with other macromolecules and (v) how does charge affect the ‘stickiness’ of the charge inverted cytochrome *c* mutants in *E. coli* extracts?
Native gel electrophoresis was also used to explore flavodoxin’s net charge in (i) dilute solution, (ii) in the presence of cytochrome c and (iii) in extracts (Chapter 5). Intriguingly, in the presence of flavodoxin, cytochrome c charge is modified to an extent comparable to that observed in E. coli extracts (Chapter 6). This led to the of the non-cognate, cytochrome c-flavodoxin interaction to represent a quinary81 interaction. The effects of macromolecular crowding and gel confinement on the weak interaction were explored using the 1H, 15N HSQC NMR experiment, which can discriminate between dynamic and permanent complexes (Chapter 6).

Recently 19F NMR has emerged as a powerful method for studies of protein behaviour in complex, physiological environments owing to the fact that it is often amenable to HSQC-undetectable proteins.130,131 Chapter 4 presents a novel strategy for protein labeling with fluorotryptophan in E. coli BL21, the organism of choice for recombinant protein production. The work aimed to identify whether (i) 5-fluoroindole, a fluorinated tryptophan precursor, could be incorporated into protein synthesis, (ii) whether inhibitors of aromatic amino acid biosynthesis were required, (iii) if this labeling strategy could be used to express proteins with a high tryptophan occurrence frequency or (iv) if this strategy was suited to cultures that constitutively express proteins.
Chapter 1
Grasping the Nature of the Cell Interior

The material in this chapter is from:

Abstract

Current models of the cell interior emphasise its crowded, chemically complex nature and dynamically organised structure. Although the chemical composition of cells is known, the cooperative intermolecular interactions that govern cell ultrastructure are poorly understood. A major goal of biochemistry is to capture these myriad interactions \textit{in vivo}. We consider the landmark discoveries that have shaped this objective, starting from the vitalist framework established by early natural philosophers. Through this historical revisionism, we extract important lessons for the bioinspired chemists of today. Scientific specialisation tends to insulate seminal ideas and hamper the unification of paradigms across biology. Therefore, we call for interdisciplinary collaboration in grappling with the complex cell interior. Recent successes in integrative structural biology and chemical biology demonstrate the power of hybrid approaches. The future role of the (bio)chemist and model systems are also discussed as starting points for \textit{in vivo} explorations.
Introduction

Biochemistry is now resolutely focused on the exploration of biomolecules in physiological environments23,90 and future advances require a comprehensive understanding of the emergent physicochemical properties of the cell interior. Remarkably, this grand challenge predates post-reductionist biochemistry, with musings of molecular organisation \textit{in vivo} reported as early as 1917.132 Herein, the roots of the current view of the cell interior are traced from the opposing vitalistic and mechanistic theories of early life scientists. Such an historic overview reveals how certain approaches have hindered (and continue to hinder) the discovery. For instance the significance of large, macromolecular machines and pervasive weak interactions were realised slowly, despite compelling evidence. Intensive scientific specialisation and a predominantly introspective focus apparently deterred the unification of biological frameworks. This contrasts sharply with exciting structural insights achieved recently from the harmonisation of experimental practices. We therefore emphasise the need for interdisciplinary collaboration and unified frameworks in the exploration of the complex cell interior. We describe useful model systems and future experiments for the biologically-inspired chemist exploring the molecular sociology of the cell.

The Rise and Fall of Vitalism

Organic Synthesis Redefines Chemistry Natural philosophy defined living systems as possessing a mysterious, animating vital force. These vitalistic perceptions were challenged during the Scientific Revolution (1550–1700) when the increased rationality of modern science led to a new world view equating the universe to a machine.133 Descartes conceived that organic bodies were complex mechanical systems that could be fully explained in terms of physics.133 A quote from the 17th century physician Malphighi captures the mechanistic view:

‘Nature, in order to carry out the marvellous operations in animals and plants, has been pleased to construct their organised bodies with a very large number of machines, which are of necessity made up of extremely minute parts so shaped and situated, such as to form a marvellous organ, the composition of which are usually invisible to the naked eye, without the aid of the microscope.’134
The notion of organic machines was readily adopted in the field of anatomy, which explored the morphological structure and mechanical nature of the human body. However, failure to apply the machine concept to phenomena, such as development and reproduction, supported the notion of irreducible complexity in living systems. From the late 18th to the early 20th centuries, life was believed to arise from a ‘vital force’ that could not be understood in terms of fundamental physical laws.91,135–137 Inaccessible to scientists, the vital force was believed necessary to synthesise organic compounds and to orchestrate biological processes. However, in the 1820s Wöhler prepared oxalic acid and urea from inorganic starting materials, indicating that the vital force was not critical for the synthesis of organic compounds.137 Together with Kolbe’s synthesis of acetic acid using coal in 1845,138 a new definition of organic compounds emerged along with distinctions between organic chemistry and physiology.136,137 Organic chemistry pertained to the study of compounds derived from nature while physiology involved the study of tissues. This compartmentalisation separated chemistry from studies of the living world.

The Chemical Underpinnings of Vital Activity With chemical endeavours redirected toward the development of purely chemical theories, such as elemental composition, isomerism and reactivity; the notion of vitalism persisted as an explanation for physiological phenomena.136 The microscopic visualisation of cells led to the emergence of cell theory,139,140 the discovery of cellular substructures and eventually questions on the nature of cellular fluids. For instance, in 1831 Brown identified the nucleus as an essential component of cells (Figure 1, top).140 In 1844 von Mohl used the term ‘protoplasm’ to describe the active, fluid component of the cell.140 The protoplasm was considered to be a reservoir of stored energy from which ‘shapely forms’ are constructed.141 Around 1850, the protoplasmic theory of life emerged to postulate that all vital activities operate in the protoplasm.142 Accordingly, the physical and chemical origins of life were sought through protoplasmic investigations. Studies by Hofmeister in 1867 further characterised the protoplasm as a viscous aqueous solution ‘…possessing in a remarkable degree the properties of a colloid. It is a mixture of different organic matters, among which albuminoids and members of the dextrine group are always present’.141 In Goodale’s 1889 review, the protoplasm was defined as a complex, fibrous mesh, containing ‘numerous cognate proteids’.141 While the protoplasm was defined as the medium in
which cellular activities are performed, aspects of the chemical nature of the protoplasm were identified and a physicochemical basis for vital activity was inferred. The field of colloid chemistry emerged with a view to advancing the knowledge of physiological processes. However, the lack of basic chemical concepts (e.g. covalent bonding, electronegativity, pH) coupled with the absence of structural knowledge meant that the application of colloidal science to the protoplasm was slow to develop. Thus, the metaphysical notion of vitalism endured, with declining levels of approval, until the 1920’s.

Crucial evidence against vitalism emerged in 1897 when Buchner identified zymase activity in yeast extracts. The chemical activity of non-living, disrupted cells proved that a vital force did not govern life. This finding rendered cellular processes susceptible to scientific investigation. In 1912, Loeb dismissed vitalism as an anthropomorphic interpretation of life ‘characteristic of all explanations of nature in the pre-scientific period’ which survived due to the ‘the interest of the layman (in questions of life and death) to a greater extent than possibly any other purely theoretical problem’. Loeb consolidated several embryological studies to prove the physicochemical nature of egg activation by sperm in marine organisms i.e. the chemistry of the beginning of life. Similarly, the status quo of protoplasmic understanding and vitalism is well-illustrated in Czapek’s 1915 review of physiological phenomena in plants. At this time, chemical analyses, by Reinke and Rodewald, revealed that proteins constitute 75% of the slime mould protoplasm while the remainder was composed of fatty acids, carbohydrates and inorganic compounds. The lack of novel chemical components suggested that the ‘peculiarities of the protoplasm’ arose due to its integral, colloidal structure combined with its chemical nature. Such prescience was supported by efforts to dispel Reinke’s claims that the vital properties of the protoplasm are lost upon cell death. The interplay of chemistry, ‘correlation’ and ‘regulation’ were deemed important in governing cellular processes. A polemical rebuke of vitalism was presented by Troland in 1917 who found that ‘more frequently than during the nineteenth century, men eminent in biology seem to quail before the complexity and delicacy of the life process, and, while uttering mechanistic truths about life, to offer them as sacrifices to a spirit of vagueness and discouragement’. Inspired by the ‘intellectual avalanche’ effected by progress in theoretical physics, Troland
attempted to unite biological phenomena like chromatin ‘reduplication’ with physicochemical concepts such as surface heterocatalysis.132 The ‘enzyme theory of cell life’ was thus established (see below). His call for new ‘physico-chemical conceptions in terms of which a chaos of biological facts, already at hand, can be explained, or systematized’ captured the increased consciousness of the need for chemistry in protoplasmic exploration.132 Accordingly, the vitalist philosophy depreciated rapidly and the field of biochemistry advanced toward studies of enzymes.

Opposing Views of the Cell Interior

The Protoplasm: Bag of Enzymes or Organised Laboratory? Although formerly thought to play a minor role in extracellular hydrolysis only, the crucial importance of enzymes in protoplasmic activity was established by Buchner’s cell-free fermentation.144,149 The putative role of enzymes in other physiological processes, such as germ-cell development,150 gained momentum. The enzyme theory of cell life emerged to propose that life ‘is fundamentally a product of catalytic laws acting in colloidal systems of matter’ (Figure 1, middle).141,147 Buchner’s findings also demonstrated the possibility to study physiological processes outside cells. This subverted the protoplasmic theory of cell structure in which physiological processes were thought to occur only in the intact protoplasm. Indeed, the emerging view of the cell tended to disregard
Grasping the Nature of the Cell Interior

protoplasmic singularity and suggested that biological reactions were governed by random encounters and simple, mass action relationships (i.e. the bag of enzymes view; Figure 1). Meanwhile, several preeminent scientists proposed the drastically different notion that the molecular-level organisation of the cytoplasm supported cellular complexity. For example, upon establishing the enzyme theory of cell life Troland affirmed that ‘it can hardly be doubted that the complex mechanisms of mitosis rests upon definite structural machinery, established by long periods of evolution’. In 1919, Ritter suggested that the cell interior was replete with ‘highly differentiated’ molecules of varying molecular weight dispersed throughout co-existing phases. The resulting ‘metaplasmic constituents’ acted simultaneously to generate ‘special apparatus and an organised laboratory’. Peters later elaborated on this view by suggesting that surface effects direct the formation of ‘an organised network of protein molecules, forming a three dimensional mosaic extending throughout the cell’. The mosaic was purported to constrain proteins, regulating their activity and allowing for rapid information transduction.

Experimental Support for Molecular Organisation In Vivo Several lines of experimental evidence later supported the theories of Troland, Ritter and Peters. For example, the importance of subcellular structure in maintaining the integrity of metabolic phenomena was demonstrated by Krebs. In 1938, upon combining oil drops with lysed Asterias oocytes, Kopac noted the formation of a protein film at the oil-protoplasm interface (the oil droplet surface became crinkled, i.e. the Devaux effect). A similar phenomenon was observed for oil droplets in aqueous protein solutions. However, in unlysed cells, the injected oil droplet remained spherical and the Devaux effect was never observed suggesting the lack of freely diffusing proteins in the intact protoplasm. Thus, protein confinement in vivo was demonstrated. Working around the same time, Cori et al. found that glycogen synthesis from glucose-1-phosphate could not be studied in crude muscle extracts due to a competing reaction which converted glucose-1-phosphate to glucose-6-phosphate. This indicated the sensitivity of glycogen synthesis to cell disruption. Green isolated mitochondria in the late 1940s and identified the tricarboxylic acid cycle proteins within. This finding suggested the ubiquity of protein confinement and colocalisation in vivo. Similarly, in the 1960s, whole cell centrifugation studies by Zalokar and Kempner and Miller demonstrated the reversible stratification of
the cell contents. Notably, the cytoplasm stratum was devoid of free proteins and ribonucleic acid which were instead found in the mitochondrial, ribosomal or nuclear strata. This finding suggested that macromolecules did not diffuse randomly in the cytoplasm. Kempner and Miller, like Zalokar, concluded that ‘the entire macromolecular apparatus is associated with large particulates as a basic structure of cellular organisation’. Moreover, the authors suggested the advantages of such organisation in reducing the dimensionality and directing substrate diffusion directly between metabolically-related enzymes. This supported Yanofsky’s earlier studies of the two-enzyme tryptophan synthase system in which the intermediate, indole, was never detected free in solution during the reaction sequence. In the 1960s and 1970s, Srere noted that the high apparent concentration of various enzymes in vivo was equal to or greater than the corresponding substrate concentration and thus Michaelis-Menten assumptions (i.e. excess of substrate) were not valid. The growing knowledge of enzyme-effector interactions also suggested the complex, competitive nature of each step in a metabolic pathway, warranting studies of increased physiological relevance. Srere postulated that enzymes assembled into multimeric complexes to facilitate the vectorial flow of substrates and/or intermediates along a metabolic pathway. Enzyme organisation was predicted to decrease the diffusion time of substrates and/or intermediates between pathway steps, to stabilise transient intermediates and to minimise cross-reactions with competing pathways. The kinetic advantages of an immobilised system of malate dehydrogenase and citrate synthase over the free enzyme system was subsequently demonstrated. In 1982, McConkey used O’Farrell gels to compare the molecular weight and isoelectric points of soluble protein mixtures extracted from CHO and HeLa cells. Over 50% of the hamster cell proteins had human homologues. This result indicated the evolutionary tendency toward isoelectric point conservation suggesting that the rate of cellular protein evolution involving charged amino acid mutations are lower than expected. McConkey predicted that most cellular proteins interact extensively and transiently with other macromolecules to produce a functional ‘quinary’ structure that constrains protein evolution by only accommodating mutations with no functional implications i.e. non-interacting sites.
The Reductionist Roots of Structural Biology

Protein Crystallisation Engenders Structural Biology

Despite strong evidence to support the abundance of functional macromolecular assemblies in vivo, biochemistry developed mainly from the view that cells were membrane-enclosed bags of homogenous cytosol in which polymers and metabolites diffused randomly to interact with each other. The lack of order in this ‘random’ cytoplasm led to the idea that it was unnecessary to study protein behaviour in the context of the intracellular environment. Buffered aqueous solutions became the preferred milieu for the characterisation of pure proteins. Thus, biochemistry tended toward reductionist studies focused on a single macromolecule in ideal solutions. For instance, in 1892 Osborne published protocols for protein purification from plant seeds. Crystallisation, typically limited to haemoglobin and albumin, was used extensively by Osborne as a means of protein purification for further chemical analyses. Additionally, the large number of proteins purified by Osborne disproved the notion that only a few distinct proteins existed in nature. Protein crystallisation facilitated seminal studies of protein behaviour. For example, in 1926 Sumner used crystallisation to purify jack bean urease. The redissolved urease catalysed urea degradation, indicating that the catalytic activity of enzymes arises from the protein and not from co-purified organic compounds. The first diffraction pattern from a protein crystal (pepsin) was reported by Crowfoot and Bernal in 1934 and the crystal structure of myoglobin was solved thereafter. X-ray crystallography gave birth to the structural biology revolution, which focused on understanding macromolecular structure, function and interactions at the atomic level. The tens of thousands of macromolecular structures solved by X-ray crystallography have revealed the roles of non-covalent interactions, the hierarchical order of protein structure, trends in molecular recognition and insights into protein function. In the 1950s Linderstrøm-Lang identified that amide hydrogens exchange constantly with solvent hydrogens. Linderstrøm-Lang measured the rate of hydrogen-deuterium exchange for several proteins in vitro to explore the extent of hydrogen bonding within protein structures. The dependence of amide hydrogen exchange on conformational fluctuations of the protein was inferred, providing evidence for the dynamic nature of proteins. The horse oxyhaemoglobin crystal structure refined by Perutz et al. contained regions devoid of...
electron density, supporting further the notion of protein structural flexibility.176 Similarly, significant conformational differences were observed in the early crystal structures for deoxy and oxyhaemoglobin, indicating the role of conformation change and dynamics in protein function.176 Thus, solution-based studies of protein structure were required to reinforce the structural information derived from crystals and to explore the dynamic nature of proteins.

Solution-State Studies and Supramolecular Machines In the 1970s Wüthrich established two-dimensional nuclear magnetic resonance (NMR) spectroscopy as a powerful tool for solution studies of protein structure.177 Early NMR structure determinations focused on the *Antennapedia* homeodomain (HD) and the operator DNA.178 The importance of dynamic structural features in protein-DNA recognition was revealed, representing some of the earliest insights into the biological significance of disordered motifs.179 However, studies of protein structural disorder (intrinsically disordered proteins) and the consequent transformative impact on the protein-structure function paradigm would not emerge for another 10-20 years.5,179,180 Instead, NMR studies of protein-DNA interactions marked a surge toward the exploration of DNA-processing assemblies. Interest in such supramacromolecular assemblies arose from the newfound appreciation of their critical role in the orchestration of cellular processes. An early demonstration of the autonomous, modular and cooperative nature of functional assemblies or ‘protein machines’ was made by Alberts who presented the DNA replication apparatus (comprising > 40 proteins; Figure 2B) at a Cold Spring Harbour Symposium on Quantitative Biology.181 Alberts urged biochemists to ‘think of molecular genetics in terms of “protein machines” rather than in terms of sequential reactions that are carried out by individual proteins’.181 This provocative insight emphasised the need for ordered, sophisticated machinery in complex living systems which resulted in ‘freeing the biological process from the necessity of relying on random motions’.181 In essence, Alberts’ work helped re-establish a mechanistic view of the cell. The advantages of elaborate protein machines were implied. For example, the spatiotemporal clustering of functionally related macromolecules increases the probability and rate of productive encounters.164 The enhanced specificity afforded by the cooperative interactions of multi-component protein machines resolved questions of how weak, moderately specific interactions (e.g. transcription factor-
Grasping the Nature of the Cell Interior

DNA binding) became functional in vivo. Conversely, the advantages of weak interactions for the regulation and reorganisation of protein machines were realised. Thus, although the importance of macromolecular machines was well-appreciated by 1990, an understanding of the mechanisms underlying their concerted function remained elusive.

Lessons from Macromolecular Machines: Shaping Future Experiments

Integrated Approaches for the Interpretation of Macromolecular Machines In the past 20 years, the ubiquity of macromolecular machines has been demonstrated. The advent of tandem affinity chromatography coupled with mass spectrometry has served to identify hundreds of protein machines in yeast and other organisms. Size exclusion chromatography and fluorescence detected analytical ultracentrifugation studies have also confirmed the abundance of high molecular weight assemblies in concentrated E. coli extracts. Fluorescence studies of protein and metabolite diffusion in vivo has demonstrated the sieve-like properties of the cytoplasm due to volume exclusion imparted by intracellular assemblies and microenvironments. In-cell NMR spectroscopy has also indicated that high molecular weight assemblies pervade the cytoplasm. These assemblies hamper the detectability of most globular proteins by standard NMR experiments. Several lines of experimental evidence supports the weak, responsive nature of these machines which cannot withstand even gentle lysis protocols. For example, Benknovic and co-workers used fluorescence microscopy to identify cytoplasmic clusters containing enzymes involved in de novo purine biosynthesis in HeLa

Figure 2. Development of the ‘biological machine’ concept: A, Vaucanson’s mechanical duck (1739) was a symbol for the Cartesian machine. Built from hundreds of interacting parts, this automaton pretended to mimic digestion. B, Alberts’ representation (1984) of a macromolecular machine, the T4 replication fork. Figure reproduced with permission from reference 181, copyright Cold Spring Harbour Laboratory Press.
Although difficult to reconstitute in vitro, the ‘purinosome’ is dynamically regulated in vivo by changes in cytoplasmic purine levels. Advances in cryo-electron microscopy (cryo-EM), small angle X-ray scattering (SAXS), fluorescence-based techniques, single molecule microscopy and electron tomography have revealed, in exquisite detail, the structural and mechanical aspects of several large macromolecular machines such as the ribosome, spliceosome, proteasome, nucleosome and cytoskeletal filaments. Common mechanistic elements, such as NTP hydrolysis-coupled conformational changes, have also emerged. Although mainstream structural biology methods have revealed snapshots of the interactions that glue specific macromolecular machines at distinct points in their operation, investigations of these interactions have yet to extend beyond phenomenological analyses. A major goal of biomacromolecular science now is to systematically interpret these myriad, time-evolving interactions to establish a hierarchy of attractive and repulsive physicochemical forces that shape cellular machinery. This knowledge will progress our understanding of biomolecular assembly in vivo.

Exciting technological advances and the harmonisation of experimental practices promise to fulfil this objective. For instance, the recent inaugural wwPDB Hybrid/Integrative Methods Task Force workshop addressed the development, validation and curation of integrative structural models. The standardisation of methods will foster the use of integrative approaches to explore macromolecular machines. Since a structural model can be generated from each experimental dataset, an ensemble of structural models can be developed. Accordingly, the accuracy and precision of the structural models can be assessed to facilitate an efficient, unbiased investigation of physiologically-relevant features of machine architectures. Similarly, hybrid mass spectrometry experiments can be encoded into structural restraints for modelling analysis. These models can be integrated with EM envelopes or crystal structures to enhance model accuracy by revealing regions of structural flexibility and transient complexes or intermediates.

Capturing Quinary Structure Intracellular assemblies are not wholly represented by the permanent machinery characterised thus far. Indeed, ‘molecular sociology’ in the cell is dominated by transient, quinary interactions that link and extend machines to produce functional molecular communities or hyperstructures. These architectures span nanometer to micrometer length-scales with lifetimes...
ranging from nanoseconds to several minutes. Thus, quinary structure serves to bridge the molecular and cellular worlds. To understand quinary structure the emergent physicochemical properties of the cell interior must be identified. This cannot be accomplished by reductionist dissections. The grand challenge is to capture dynamic intracellular structures \textit{in vivo} directly as they form and function. Indeed, the power of in-cell NMR spectroscopy for the characterisation of intracellular properties and global features of quinary structure has been demonstrated recently. For example, the Pielak group have illustrated the role of charge (and cytoplasmic pH) in governing quinary structure in \textit{E. coli}.87,198 Majumder and co-workers found that protein-RNA interactions comprise a major component of quinary structure.79 Several systems have potential as useful models of quinary structure. For instance, membraneless organelles are intracellular phase-separated liquid droplets enriched in specific molecules.46 Recently, Molliex \textit{et al.} identified that weak interactions of the low complexity domain (LCD) of hnRNPA1 can orchestrate the dynamic assembly of cytoplasmic stress granules, a form of membraneless organelle.24 The mechanism of granule assembly and cytoplasmic structuring appears to be linked to the LCD interaction propensities. Similarly, Nott and co-workers have identified that Ddx4-mediated droplet formation is dependent on the interactions of “clustered charge motifs” enriched in either cationic or anionic residues.49 Thus, low-complexity systems which are critically important for the assembly of microscale structures \textit{in vivo} are ideal candidates for the exploration of quinary structure.

Methods that illustrate the entire constellation of biomolecules \textit{in vivo} will enhance our understanding of the “biological glue”.90 Notably cryo-EM199 and cryo-electron tomography (ET)200 have revealed aspects of vitrified cell ultrastructure. In particular, major advancements in specimen preparation and electron detection methods allow for the acquisition of 3D structural information on the macromolecular architecture of cells to nanometer resolution by cryo-ET.201 For instance, Asano and co-workers recently used cryo-ET to compare the conformations of single- and double-capped 26S proteasomes in vitrified hippocampal neurons.202 The authors identified that only 20\% of proteasomes were engaged in substrate processing, which suggests that the capacity of the proteasome system is not fully exploited in healthy cells.202 The ability to capture and compare the macromolecular
architectures comprising unique cellular states has led to the use of cryo-ET as a molecular diagnostics tool.203 Despite the obvious promise of such techniques, further experimental progress is required to capture the co-operative molecular (re)arrangements that define functional regions in living cells.90,197 These prospective techniques must reveal dynamic information about the emergent, biased molecular distributions that arise due to the integrated array of quinary interactions. To acquire this knowledge, hybrid methods will be necessary and the collaboration of physicists, cell biologists and (bio)chemists must be forged.23,90,197 Mathematical analyses will be required to integrate changes in molecular distributions and interactions with specific cellular outputs (\textit{e.g.} energy consumption, local pH changes). Advances in computational horsepower and algorithms showcase the utility of \textit{in silico} methods for exploring macromolecular interactions leading to microenvironment formation and cytoplasmic physicochemistry. In 2010, McGuffee and Elcock used atomically detailed structures in the construction of a model containing 50 different types of \textit{E. coli} macromolecules and GFP.204 Intermolecular interactions were calculated on an atom-by-atom basis. Notably, the known translational and rotational diffusion coefficients for GFP could not be reproduced by modelling the electrostatic and steric interactions within the system.204 Realistic GFP diffusion co-efficients were obtained only when short-range attractions between exposed hydrophobic groups were included in the model.70,204 Similarly, by accounting for steric and hydrodynamic interactions, Hasnain’s coarse-grained models of the \textit{E. coli} cytoplasm accurately reproduced \textit{in vivo} diffusion coefficients of GFP.205 More recently an atomistic model of the \textit{Mycoplasma genitalium} cytoplasm was constructed using physiologically-relevant concentrations of (homology-modelled) proteins, RNA, metabolites and ions.206 This system represents a useful starting point for future simulations.

\textbf{The Role of the (bio)Chemist in Post-Reductionist Protein Science}

Though considered irrelevant to studies of life processes in the 1800s, chemistry continues to play a central role in the elucidation of physiological events today. Indeed, over the past two decades, chemistry has merged with cell biology, biochemistry and pharmacology to facilitate the molecular-level exploration of biological processes.207 The resulting field of chemical biology has produced salient technologies including the RNA interference revolution,208 genome mining209 and
bioorthogonal chemistry. Chemical genetics, the small molecule-based phenotype screening methodology, has identified novel therapeutics and provided structural and functional insights into intracellular machinery. Future developments in the field will involve harnessing the explorative role of small molecules. To date, compound libraries used for high-throughput screens consist of simple, heteroaromatic molecules suited to a limited number of macromolecular targets. By synthesising compounds with increasing structural complexity, akin to natural products, a broader range of macromolecules may be targeted. The scope of the small molecule approach must also extend beyond druggability. For instance, the interaction propensities of several supramolecular receptors (e.g. calixarenes, cucurbiturils, molecular tweezers) have been identified. These may be applied as in vivo probes of distinct binding epitopes and quinary interactions.

Just as supramolecular chemistry is inspired by biology, there now arises the need for cell biologists to observe chemical systems for rudiments of emergent physicochemical characteristics. Supramolecular chemistry is veering toward the development of increasingly complex, far-from-equilibrium systems akin to those observed in nature. For instance, the methylation of a dicarboxylic acid eliminates electrostatic repulsion between the molecules to facilitate gelation in the presence of a methyl iodide ‘fuel’. Gel disassembly occurs when the MeI is consumed. Given the abundance of D/E-methylation in eukaryotic proteins, including intermediate filament and cytoskeleton remodelling proteins, studies of this artificial system may enhance our understanding of how methylation modulates supramacromolecular assemblies and cytosolic phase separation. The use of structural cell mimics, such as the crowded or confined polymersomes presented by Marguet and colleagues, could be used for bottom-up investigations of assembly and emergent properties in microspaces. For instance, a series of different crowders could be used in such systems to approximate the effects of different microenvironments (e.g. cationic, anionic, hydrophobic) on the biophysical properties of a test protein (e.g. diffusion, apparent molecular weight, thermodynamic stability). In addition to yielding information on the emergent properties of a cell-like system, this approach may also be used to advance macromolecular crowding theory and to address the significance of the depletion effect in cellulo. Increasingly complex physicochemistry could be achieved in cell mimics by incorporating phase-
separating macromolecules.\(^{35,223}\) Apart from the aforementioned droplet-forming proteins,\(^{24,46,49}\) other simple, liquid-liquid phase separating systems could be employed in such studies. Aumiller’s cationic peptide/RNA droplets are an especially attractive system owing to the ability to control droplet assembly by peptide phosphorylation.\(^{56}\) Similarly, Koga’s poly-\(\alpha\)-L-lysine/mononucleotide droplets are sensitive to pH, temperature and ionic strength and, thus, provide a means to explore molecular organisation across a variety of conditions.\(^{52,224}\)

Past and Present Philosophies: Notes for the Bioinspired Scientist

A cursory comparison of the literature from the early 20th and 21st centuries reveals important philosophical differences in the treatment of scientific data. Early biochemists such as Loeb, Troland and Peters consolidated findings from several domains (e.g. genetics, chemistry, colloidal science, enzymology) to extrapolate broad biological implications. Troland emphasised the value of logical speculation in solving fundamental biological questions. Speculation overcomes ‘the inertia of the human imagination, which does not immediately outline a plan for a machine to accomplish a definite purpose, even when it is provided with all of the principles of mechanics’\(^{132}\). Similar views were held by Peters and Loeb who, like Troland, also called for comprehensive physiocochemical frameworks in elucidating cellular processes.\(^{132,143,153}\) By the mid 20th century, developments in chemical theories (e.g. atomic theory, covalent and non-covalent bonding, thermodynamics) and protein and nucleic acid analyses led to an unprecedented breadth of biochemical data. As a result, several biochemical fields emerged (e.g. enzymology, metabolism, genetics, pharmacology, neurochemistry and cell, molecular and structural biology) each with a unique intellectual framework and goals. Specialisation and ‘fervent reductionism’\(^{89}\) led to increasingly introspective themes and pragmatic approaches toward theory development. Parsimonious data interpretation substituted speculative abstraction to reveal many (isolated) intricacies of biochemical phenomena. Although insightful, such inward focus precluded the deduction of broad implications and the unification of biological frameworks. Thus, although now ‘provided with all of the principles of mechanics’ biochemists cannot currently ‘outline a plan for a machine to accomplish a definite purpose’ \textit{in vivo}.\(^{132}\)
In the advent of post-reductionist biochemistry, we recognise the need for harmonised experimental practices and intellectual frameworks in the exploration of the cell interior. Revisionism also emphasises the importance of sharing hypotheses in the development of new collaborations and frameworks. An especially poignant example of the power of abstraction is found in Spitzer and Poolman’s electrochemical model of the cytoplasm.63,65 By considering known biophysical parameters (\textit{e.g.} intracellular macromolecular concentrations, proteome \textit{pI} distributions) and clues from bacterial osmosensors, Spitzer and Poolman propose that macromolecular crowding and charge-charge repulsion structure the cytoplasm. This model has helped to establish a physicochemical framework on which future advancements can be built. This model has also helped to foster our current perception of the cell as a bustling metropolitan city,148 maintained by myriad discrete interactions and dynamic infrastructures (Figure 1, bottom). This industrio-urban perception captures the triumphs of human society engendered by communication and imagination. This image also symbolises the promise of our future in-cell endeavours, which rely on the extensive integration of several scientific communities and creative approaches toward grasping the cell’s molecular sociology.
Chapter 2
Specific Ion Effects on Macromolecular Interactions in *E. coli* Extracts

The material in this chapter is from:

Abstract

Protein characterisation in situ remains a major challenge for protein science. Here, the interactions of ΔTat-GB1 in E. coli cell extracts were investigated by NMR spectroscopy and size exclusion chromatography (SEC). ΔTat-GB1 was found to participate in high molecular weight complexes that remain intact at physiologically-relevant ionic strengths. This observation helps to explain why ΔTat-GB1 was not detected by in-cell NMR spectroscopy. Extracts pretreated with RNase A had a different SEC elution profile indicating that ΔTat-GB1 predominantly interacted with RNA. The roles of biological and laboratory ions in mediating macromolecular interactions were studied. Interestingly, the interactions of ΔTat-GB1 could be disrupted by biologically-relevant multivalent ions. The most effective shielding of interactions occurred in Mg$^{2+}$-containing buffers. Moreover, a combination of RNA digestion and Mg$^{2+}$ greatly enhanced the NMR detection of ΔTat-GB1 in cell extracts.
Introduction

As early as 1930, it was surmised that biomolecules assemble into ‘organized networks’ that form a three dimensional mosaic extending throughout the cell.153 Despite such prescience, the nature of intracellular macromolecular organisation remains poorly understood.15,19,23,65,75,89,91,225,226 This knowledge gap is a result of the reductionist approach of investigating pure proteins under dilute, artificial conditions.23,89 While the study of pure proteins remains important it is now appreciated that the biophysical properties of proteins inside cells are modulated by the supercrowded, heterogeneous cytoplasm.65,75,86,89,226 Though daunting, the need for intracellular protein characterisation is apparent. Over the past decade or so, in-cell NMR spectroscopy has emerged to address this challenge.73–75,77,78,128,227–237

Interestingly, in-cell NMR has confirmed the presence of abundant non-specific interactions inside cells, which can hamper the detection of proteins by 1H,15N HSQC and related experiments.73–75,77,78,229,233–237 Furthermore, NMR studies have suggested that extensive interactions also prevail in cell extracts, which mimic the heterogeneous, complex nature of the cytoplasm.73,74,77,127,232,238,239 For instance, Sarkar and co-workers describe the preparation of a dialysed, lyophilised \textit{E. coli} extract and its effect on barley chymotrypsin inhibitor 2 (CI2) stability at extract concentrations of 100 and 130 g/L.127 Mass spectrometric and proteomic analysis revealed that the ‘reconstituted cytosol’ contained 233 proteins.127 This mixture included 33 of the most abundant \textit{E. coli} proteins,127 making it a reasonable representation of the \textit{E. coli} proteome. CI2 was destabilised by 0.5-0.8 kcal/mol in the extracts due to weak, non-specific interactions with \textit{E. coli} macromolecules.127

Later, Sarkar also showed that the destabilisation effected by \textit{E. coli} proteins was mitigated by physiologically-relevant concentrations of glycine betaine.238 Thus, extracts retain essential characteristics of the cytoplasm and can be treated with exogenous components to foster an improved understanding of intracellular physicochemistry.

Size exclusion chromatography (SEC) of whole cell extracts provides a simple means to dissect macromolecular interactions under native-like conditions.74,240 Importantly, the elution buffer can be selected to test the effects of biologically-relevant ions, ionic strength and pH. Recently, Crowley used SEC to characterise the interactions of cytochrome \textit{c} and GB130 in concentrated \textit{E. coli} extracts.
GB1 eluted from the SEC column at a volume corresponding to the pure protein, indicating that GB1 does not interact with E. coli cytosolic macromolecules. Under the same conditions, cytochrome c eluted with an apparent molecular weight > 150 kDa indicating its participation in high molecular weight complexes. When the SEC buffer contained 200 mM NaCl, cytochrome c eluted at its expected position suggesting that charge-charge interactions drive the complexation process. Similarly, SEC revealed that point and multiple charge-inverted mutants (arginine/lysine→glutamate) of cytochrome c eluted with lower apparent molecular weights (i.e. reduced complexation) than the wild type. This difference in protein ‘stickiness’ tallied with observations by in-cell NMR spectroscopy. While in-cell ¹H, ¹⁵N HSQC spectra can be obtained on GB1, cytochrome c and its mutants were undetectable. However, the triple cytochrome c mutant was detectable by NMR in E. coli extracts. Taken together these data show that extensive complexation rendered cytochrome c undetectable by in-cell NMR. Moreover, the utility of combining SEC and NMR for dissecting the interaction mechanisms of proteins in cell extracts was demonstrated.

Here, the influence of the nuclear localisation signal (NLS) of HIV-1 Tat on protein interactions in E. coli cell extracts has been explored. An 11 residue Arg-rich sequence based on the Tat NLS was fused to the N-terminus of GB1 to form ∆Tat-GB1. Despite high expression levels it was not possible to obtain a ¹H, ¹⁵N HSQC spectrum of ∆Tat-GB1 either in cells or in untreated cell extracts. SEC studies revealed that ∆Tat-GB1 interacted extensively with E. coli macromolecules. To determine the nature of these interactions different SEC buffers were employed. Combinations of 16 ions were tested at the physiologically-relevant ionic strength of 100 mM. Previously reported differences in the ‘shielding’ properties of physiological and laboratory ions prompted the investigation of both types and the results have been analysed in light of the Collins model. Hofmeister effects, which occur at ionic strengths > 200 mM, were not relevant to the present study. The digestion of nucleic acids revealed that ∆Tat-GB1 was predominantly bound to RNA and these interactions could be further disrupted by Mg²⁺ or succinate (Succ²⁻) at an ionic strength of 100 mM (35 mM MgCl₂ or Na₂Succ). Interestingly, ∆Tat-GB1 could be detected by NMR in extracts that were treated with RNase A and 10 mM MgCl₂. This supports recent evidence that the
NMR detection of proteins in cells is hampered by non-specific interactions74,75,127,228 akin to those expected to promote intracellular organisation.23,65,81,89,90,226 Herein, cell extract NMR is demonstrated as a viable alternative to in-cell methods, especially for the investigation of macromolecular interactions.

Materials and Methods

Mutagenesis The 11 amino acid sequence GRKKRRERRRA (based on the NLS of HIV-1 Tat)241 was introduced at the N terminus of GB1 between Met1 and Gln2 to yield ΔTat-GB1. The PCR product was digested with NdeI and SacI, cloned into a modified pET3a vector28 and sequence verified to yield pΔTat-GB1.

Protein Expression *E. coli* BL21 (DE3) was transformed with the vector pΔTat-GB1, which contains the ampicillin resistance gene. Cultures were grown as described previously74 and 15N-enriched ΔTat-GB1 was produced using a two step expression procedure.74,226 Briefly, a single colony was used to inoculate an overnight Luria Bertani (LB) preculture supplemented with 75 µg/mL carbenicillin and 2 mM MgCl$_2$ and grown overnight at 30 °C with 300 rpm shaking. The preculture was diluted 1:100 with LB to produce the day culture. Note that all cultures described hereafter were supplemented with carbenicillin and MgCl$_2$ at the concentrations described above and incubated at 37 °C with 300 rpm shaking. When the optical density of the culture at 600 nm (O.D.\textsubscript{600}) reached 0.6-0.9 the cells were harvested by centrifugation (4500 rpm, 10 °C, 25 minutes) and resuspended in 1 L minimal medium (50 mM Na$_2$HPO$_4$, 50 mM KH$_2$PO$_4$, 2 g/L (15NH$_4$)$_2$SO$_4$, 2 g/L D-glucose, 20 mM sodium citrate pH 7.0, 20 mM sodium succinate pH 7.0, 1 x 5052,250 30 mg thiamine). 30 minutes after resuspension and reincubation, ΔTat-GB1 over-expression was induced with 1 mM isopropyl-β-D-1-thiogalactoside (IPTG). After 4 hours of over-expression the culture was divided between 20 x 50 mL falcon tubes and the cells harvested by centrifugation (4500 rpm, 10 °C, 25 minutes). Each cell pellet was resuspended to 1 mL in 20 mM KH$_2$PO$_4$, 50 mM NaCl, pH 6.0 before freezing. Extracts containing unlabelled ΔTat-GB1 were prepared by directly inducing the LB day culture with 1 mM IPTG after an O.D.\textsubscript{600} of 0.6-0.9 was reached. After 4 hours of over-expression the cells were harvested in 50 mL aliquots (as described above) and resuspended to 1 mL in 20 mM Tris-HCl, 50 mM NaCl, pH 7.0 before freezing.
Cell Extract Preparation for SEC Cell extracts were prepared as described with the following changes: Lysis was completed by thawing the cell suspension, adding a few crystals of DNase I or RNase A, and sonicating. The extract was obtained by centrifugation (14,000 rpm for 20 min). The stability of the extracts was temperature dependent. Precipitation occurred after 30 min incubation at 30 °C while the extracts remained stable for >6 hours at 20 °C. Sample stability was optimized by preparing the extracts at 20 °C directly prior to use.

Size Exclusion Chromatography SEC was performed on an Äkta FPLC at 21 °C using an XK 16/70 column (1.6 cm diameter, 65 cm bed height) packed with Superdex 75 (GE Healthcare). A continuous flow rate of 1.5 mL/min was employed and the column was equilibrated with 150 mL buffer prior to sample injection. Cell extract samples (850 μL) were injected onto the column and 1 mL fractions were collected. SEC experiments were performed on cell extracts grown on rich or 15N labelled medium. Sample elution was monitored at 280 nm. The elution buffer was 20 mM Tris-HCl plus a salt at 100 mM ionic strength (unless otherwise indicated). The pH was adjusted to 7.0 and the buffers were filtered and degassed. To confirm reproducibility, the SEC experiments were performed at least three times for each condition tested.

Cell Slurry Preparation for In-Cell NMR Four hours post-induction, 50 mL *E. coli* culture aliquots expressing ΔTat-GB1 were harvested (1500 rpm, 20 °C, 15 minutes) and the pellet was gently resuspended in a final volume of 0.5 mL containing 20% D2O.

Cell Extract Preparation for NMR The extracts used for the NMR experiments were produced from a 1 L stock culture. Here, the cell pellet was resuspended in 20 mM KH2PO4, 50 mM NaCl, pH 6.0. Owing to the temperature-dependent stability of the extracts, a fresh sample was used for each HSQC measurement (acquisition time ~20 min at 30 °C) and precipitation was avoided during data acquisition. Nucleic acid degradation was achieved by adding a few crystals of DNase I and/or RNase A to the extracts and incubating for 30 min at 20 °C prior to spectral acquisition. The extracts were spiked with the following salts: MgCl2, Na2Succ or Na3Cit at an ionic strength of 100 mM. 1.5-3.0 M stock solutions of the salts were used so that <15 mL
volumes were added and the extract was diluted by < 3%. Extracts typically had a pH of 6.5 (± 0.05 pH units).

NMR Spectroscopy 1H, 15N HSQC (watergate) spectra251 were acquired at 30 °C with 8 scans and 64 increments on a Varian 600 MHz Spectrometer equipped with a HCN probe or a cold probe. Data processing was performed in Biopack (with linear prediction in the 15N dimension) and NMRPipe.43 The spectra were analysed using CCPN.252 All spectra were contoured identically (Figures 1, 6-8). In-cell 1H, 15N HSQC spectra were acquired as described.74 To avoid leakage, careful sample handling was required to prepare the cell slurry.74,75,230,232

Gel Electrophoresis 15% polyacrylamide gel electrophoresis (SDS-PAGE) with Coomassie blue staining was used to analyse the protein content of the cell extracts and the SEC fractions. Cell extract samples were diluted fourfold while the SEC fractions were concentrated threefold prior to loading.

Results and Discussion

ΔTat-GB1 is Undetectable by In-Cell NMR Figure 1A shows the in-cell 1H, 15N HSQC spectrum of over-expressed ΔTat-GB1 in the *E. coli* cytosol. The cell suspension contained ~1 mM ΔTat-GB1, which is ~fiftyfold greater than the detection limit. Unlike GB1,$^{73,74,229-231}$ ΔTat-GB1 was not detected in cells or cell extracts even with sensitivity enhanced measurements251 on a 600 MHz spectrometer equipped with a cold probe. The peaks observed in the in-cell spectrum for ΔTat-GB1 are due to mobile side chain amides and/or 15N- metabolites.226 Purified ΔTat-GB1 yielded a high quality spectrum similar to that of GB1 (Figure 1B). We, and others, have shown the deleterious consequences of high molecular weight complex formation for in-cell NMR.$^{73-75,77,78,228,233-237}$ The lack of an in-cell spectrum for ΔTat-GB1 suggests that it interacts with macromolecules in the *E. coli* cytosol.
Interactions of ΔTat-GB1 with Cytosolic Macromolecules To investigate the nature of ΔTat-GB1 interactions, SEC was performed on cell extracts containing the overexpressed protein. The total macromolecular concentration of the extracts was comparable to that of the *E. coli* cytosol, thus preserving the effects of macromolecular crowding on protein interactions. Pure ΔTat-GB1, a 7.7 kDa protein, eluted from the Superdex G75 column at a volume of ~80 mL, in agreement with molecular weight standards. However, the SEC elution profile for ΔTat-GB1 in cell extracts revealed a different pattern. ΔTat-GB1 interactions with nucleic acids were probed by SEC studies on cell extracts that were digested with (i) RNase A or (ii) DNase I (the cell lysis step involved sonication, which also

Figure 1. 1H, 15N HSQC spectra of (A) a suspension of *E. coli* cells containing overexpressed ΔTat-GB1 and (B) purified ΔTat-GB1.
Specific Ion Effects on Macromolecular Interactions in *E. coli* Extracts

fragments DNA). When extracts were treated with RNase A, the SEC elution profile revealed ∆Tat-GB1 in many fractions with the greatest amount in fractions 65-75 close to where small proteins (20-30 kDa) typically elute (Figure 2). In contrast, when extracts were treated with DNase I, the majority of ∆Tat-GB1 eluted in the void volume (45 mL fraction) corresponding to high molecular weight complexes > 150 kDa (Figure 2, 100 mM NaCl data). It can be concluded that a substantial portion of ∆Tat-GB1 binds to RNA and/or ribosomes (the most abundant ribonucleoprotein, containing ~60% ribosomal RNA) in *E. coli*. Although this system lacks physiological Tat partners, ∆Tat-GB1 interactions with RNA still occurred. This is consistent with Tat NLS binding to the HIV ‘TAR’ RNA.\(^ {253–255}\) Notably, the interactions remained intact after cell lysis and exposure to the SEC column, suggesting relatively high affinity complexes. Hereafter, all SEC experiments were performed on cell extracts treated with DNase I only. This reduced the viscosity of the samples (necessary for SEC) without compromising prominent ∆Tat-GB1 interactions with RNA.

Effect of Ionic Strength on ∆Tat-GB1 Interactions

To test the effects of biologically relevant ionic strengths, including those observed under osmotic stress,\(^ {16,19}\) SEC was performed at 50, 100, and 200 mM NaCl. As the NaCl concentration was increased, the amount of ∆Tat-GB1 in the 45 mL fraction decreased and there was a concomitant increase of ∆Tat-GB1 in the 50-60 mL fractions. At 200 mM NaCl, fraction 60 contained the largest amount of ∆Tat-GB1 (Figure 2).

Figure 2. SEC elution profiles of *E. coli* cell extracts containing over-expressed ∆Tat-GB1. The extracts were treated with RNase A or DNase I and the SEC buffers contained 50, 100, or 200 mM NaCl. The gel lanes are labelled; MM: molecular weight marker; CE: cell extract; 45–80: fraction volume (mL). The arrow marks the migration position of ∆Tat-GB1.
Although the ΔTat-GB1 interactions with RNA were sensitive to ionic strength the protein was never observed in the 80 mL fraction, where pure ΔTat-GB1 eluted. Thus, even at increased concentrations, NaCl was incapable of completely liberating ΔTat-GB1 from its interaction partners. This observation suggests that the complexes are not simply charge-charge in nature. It is likely that additional non-covalent interactions stabilise complexes containing ΔTat-GB1. This is consistent with the fact that Tat NLS is rich in arginine, a uniquely versatile residue in its contribution to protein interactions. Apart from charge-charge interactions, the guanidinium group is a pentadentate hydrogen bond donor that forms cation-π bonds with aromatic groups including the nucleotide bases in RNA.

Specific Ion Effects on Complexes Containing ΔTat-GB1 To identify which ions, if any, disrupt the interactions of ΔTat-GB1 with E. coli RNA, SEC buffers containing different salts were tested. For the majority of the salts investigated, at an ionic strength of 100 mM [Na₂HPO₄, CH₃COONa, Na₂SO₄, NaF, GuanCl, KI, NaSCN], the SEC elution profiles of E. coli cell lysates containing over-expressed ΔTat-GB1 were observed.
Specific Ion Effects on Macromolecular Interactions in *E. coli* Extracts

Na$_2$SO$_4$, NaF, guanidine hydrochloride (GuanCl), KI, NaSCN (Figure 3), guanidine thiocyanate (GuanSCN, Figure 4), NH$_4$)$_2$SO$_4$, NH$_4$Cl, (data not shown), KGlu (Figure 5), the elution profiles were closely similar to the 100 mM NaCl data (Figure 2). In many profiles the amount of ΔTat-GB1 in fraction 45 was identical, within error, to the cell extract (Figures 2-5). Even buffers containing 100 mM Guan$^+$ salts, which might be expected to compete with the arginine-driven interactions, failed to dissociate the complexes (Figures 3 and 4). Interestingly, disruption did occur at 200 mM GuanSCN (Figure 4). Notably, at this ionic strength the Hofmeister effect may contribute to the observed decrease in ΔTat-GB1 complexation. Guan$^+$ and SCN$^-$ are Hofmeister chaotropes capable of unfolding macromolecules249 and thus, altering their interaction propensities. KGlu is an abundant salt present at concentrations upwards of 100 mM in *E. coli*. In buffers containing 100

![Figure 4. SEC elution profiles of *E. coli* cell lysates containing over-expressed ΔTat-GB1. The SEC buffer contained either 100 or 200 mM guanidine thiocyanate. The migration pattern is distorted by the guanidine.](image)

![Figure 5. Elution profiles for SEC buffers containing physiological ions potassium glutamate, sodium succinate, or magnesium chloride at an ionic strength of 100 mM. The arrow marks the migration position of ΔTat-GB1.](image)
(Figure 5) or 200 mM K\textsubscript{Glu} (not shown), \Delta\text{Tat-GB1} eluted in the high molecular weight fractions. The lack of dissociation in the presence of an abundant cellular ion supports the idea that \Delta\text{Tat-GB1} interacts extensively with \textit{E. coli} macromolecules inside cells.74 The most effective shielding of \Delta\text{Tat-GB1} interactions occurred with divalent cations. In Mg2+-containing buffers, \Delta\text{Tat-GB1} eluted in the 75-85 mL fractions corresponding to the pure protein (Figure 5). The identity of the protein was confirmed by NMR spectroscopy; the 75-85 mL fractions yielded a 1H, 15N HSQC spectrum similar to that in Figure 1B. A similar result was observed in Ca2+-containing buffers (data not shown). The elution profiles obtained in buffers containing di/tri-carboxylates were also noteworthy for the absence/reduction of \Delta\text{Tat-GB1} in the 45 mL fraction (See data for Succ2-, Figure 5). Perhaps di/tricarboxylates are effective at disrupting \Delta\text{Tat-GB1} interactions because they compete with the backbone phosphates of nucleic acids for the Tat NLS. Herein, the effects of both physiological (\textit{e.g.} K+, Mg2+, Glu-, Succ2-) and laboratory ions (\textit{e.g.} Guan+, Na+, Cl-, F-, I-, SCN-) were tested by SEC. Although common laboratory ions are often used to adjust the ionic strength of buffers in biological studies, recent investigations have shown that they do not accurately mimic the effects of physiological ions.74,244–247 The laboratory ions tested by SEC were ineffective at shielding \Delta\text{Tat-GB1} interactions with \textit{E. coli} RNA. Although similar results were observed for the major cellular ions K+ and Glu-, the multivalent ions Mg2+, Ca2+, Succ2- and citrate (Cit3-) shielded \Delta\text{Tat-GB1} interactions. Thus, it is important to consider the effects of numerous (biological) ions in the assessment of macromolecular interactions.

Cell Extract NMR Studies Recapitulate the Nature of \Delta\text{Tat-GB1} Interactions

While SEC can reveal the individual mechanisms governing a protein’s interaction propensities in extracts, NMR can reveal how these mechanisms interrelate and manifest. Thus, \Delta\text{Tat-GB1} interactions with nucleic acids and specific ions were also investigated in cell extracts by NMR (Figure 6). The extracts contained over-expressed \Delta\text{Tat-GB1} and were untreated, treated with a nuclease (DNase I or RNase A) and/or spiked with a salt (MgCl\textsubscript{2}, Na\textsubscript{2}Succ or Na\textsubscript{3}Cit) at an ionic strength of 100 mM. Careful extract preparation was implemented to avoid sample precipitation (see Materials and Methods). Owing to the predominance of \Delta\text{Tat-GB1} interactions with
Specific Ion Effects on Macromolecular Interactions in *E. coli* Extracts

RNA, the effect of RNase A incubation times on ΔTat-GB1 interactions was also assessed by NMR. Spectra were obtained on extracts after incubation with RNase A for 30 and 60 min at 20 °C (Figure 7). The results were closely similar suggesting...
that the effects of RNase A digestion had culminated by 30 min. Figure 6A shows the 1H, 15N HSQC spectrum for ΔTat-GB1 in an untreated cell extract. Compared to the in-cell data (Figure 1A), a marked improvement in spectral quality was evident in the extract. However, the spectrum did not resemble that of purified ΔTat-GB1 (Figure 1B) because many amide resonances were broadened beyond detection. The spectra of extracts after RNA digestion or spiking with MgCl$_2$, Na$_2$Succ or Na$_3$Cit (Figure 6) were comparable to the spectrum from the untreated extract. This indicates that ΔTat-GB1 interacts with RNA despite digestion or the addition of ‘shielding’ ions. Spectra were also obtained on extracts treated with RNase A and MgCl$_2$, Na$_2$Succ or Na$_3$Cit (Figure 6). The presence of MgCl$_2$ resulted in a dramatic improvement in spectral quality, yielding a HSQC spectrum similar to purified ΔTat-GB1 (Figure 1B). Importantly, 10 mM MgCl$_2$ was sufficient to effect this substantial improvement in the spectrum (Figure 8). Similar spectral improvements were not effected in extracts spiked with 1 mM MgCl$_2$, which corresponds to the concentration of free Mg$^{2+}$ in the E. coli cytoplasm.7 The carboxylate anions Cit$^3^-$, and to a lesser extent Succ$^2^-$, also gave rise to spectral improvements with the appearance of additional ΔTat-GB1 resonances and narrower line widths (Figure 6). Together, these data confirm that ΔTat-GB1 interactions with
RNA (and the formation of high molecular weight complexes) render it undetectable by in-cell NMR.

The Interaction Propensity of ΔTat-GB1 in Extracts

The grand challenge of protein science is to decipher how macromolecular interactions drive subcellular architectures and biological processes. Such knowledge relies on *in vivo* studies. However, semi-reductionist approaches are also helpful to determine the physicochemical basis of macromolecular interactions in biological milieus. Herein, SEC and NMR were used to investigate the interaction behaviour of ΔTat-GB1 in *E. coli* extracts. Importantly, ΔTat-GB1 and *E. coli* RNA are not natural partners. This facilitated the assessment of pervasive, non-specific interactions involving this model RNA-binding motif in a biological environment. The stickiness of the Tat NLS was demonstrated in that its interactions were dissociated in the presence of Mg$^{2+}$, which interacts strongly with biological oxyanions (*i.e.* phosphates and carboxylates). For instance, a frequent mode of Mg$^{2+}$-phosphate interaction involves bidentate chelation by phosphate anions of adjacent nucleotides (Figure 9A).

![Figure 9. Mg$^{2+}$ chelation by (A) adjacent RNA phosphates oxyanions and (B) side chain carboxylates (PDB ID = 1jjj and 1sjc, respectively). Mg$^{2+}$-binding nucleotides and residues are shown as sticks. Atoms are coloured grey, C; blue, N; orange, P; red, O. The black and red spheres represent the Mg$^{2+}$ and water oxygen, respectively. Dashed lines indicate interatomic distances < 2.7 Å.](image-url)
Mg\(^{2+}\)-binding structural motifs in proteins are not well understood but Mg\(^{2+}\)-binding sites are typically observed at loops and involve clusters of anionic sidechains which complement the octahedral co-ordination shell of Mg\(^{2+}\), usually in combination with water oxygens (Figure 9B) or amide carbonyl oxygens.\(^{260,261}\)

The disruptive effect of Mg\(^{2+}\) emphasises the importance of Arg-oxyanion salt bridges in driving \(\Delta\)Tat-GB1 interactions and suggests that Arg-phosphate salt bridges drive complexation between \(\Delta\)Tat-GB1 and RNA in \textit{E. coli}. Together with Mg\(^{2+}\) addition, RNA digestion was necessary for the NMR detection of \(\Delta\)Tat-GB1 in cell extracts. This supports the idea that multiple RNA phosphates neutralise the disordered, poly-cationic Tat NLS.\(^{262}\) Notably, this binding mode differs from that reported for the specific Tat-TAR complex.\(^{253-255}\) Although Arg/Lys-phosphate contacts have been linked with ‘nonspecific’ protein-RNA binding (Figure 10),\(^{255,258}\) recent evidence shows that some RNA-binding proteins interact at sites lacking defined recognition elements.\(^{263}\)

Preferential Ion Pairing in Cell Extracts To identify whether the specific ion effects are corroborated by established ion-pairing rules at physiological ionic strengths, our findings are assessed in light of the Collins model.\(^{246-248}\) Hofmeister
effects (which occur at ionic strengths > 200 mM) are not relevant to the data presented here and will not be discussed.246,249 Collins’ “Law of matching water affinities” classifies ions as kosmotropes (small, charge dense and strongly hydrated) and chaotropes (larger, less charge dense and weakly hydrated by rapidly exchanging water molecules). Preferential interactions are observed between species of equivalent hydration and opposite charge. Kosmotrope-kosmotrope interactions are more favorable than kosmotrope-water interactions due to the high charge density and small ionic radii of the kosmotropic pair. Chaotropes interact weakly with water and so, preferentially pair, allowing for the formation of more energetically favourable water-water interactions. Kosmotrope-chaotrope pairs are unfavourable compared to their hydrated ionic counterparts and therefore tend not to interact.

As per the Collins model, the guanidinium groups in the Arg-rich Tat NLS are chaotropic (weakly hydrated) and should preferentially interact with weakly hydrated anions. I- and SCN- might therefore be expected to dissociate complexes containing \(\Delta\text{Tat-GB1}\). However, at 100 mM ionic strength these anions failed to compete with \textit{E. coli} RNA for binding to \(\Delta\text{Tat-GB1}\) (Figure 3 and 4). Similarly, efforts to break \(\Delta\text{Tat-GB1}\) interactions using simple physiological anions3,225,245 such as \(\text{HPO}_4^{2-}\), Acetate (Ac-; Figure 3) and Glu- (Figure 5) were also ineffective. By comparison, di/tricarboxylate anions such as Succ2- (Figure 5) disrupted a substantial proportion of the \(\Delta\text{Tat-GB1}\) complexes. Correspondingly, the majority of \textit{E. coli} macromolecules contain negatively charged patches that, like polycarboxylate anions, are kosmotropic and multivalent.3,65,68,225 Mg2+, the most strongly hydrated of all biological cations, is a ‘Collins counterion’ compatible with biological phosphate and carboxylate oxyanions (Figure 9).225,245 The disruptive effect of Mg2+ is therefore consistent with the idea that the Tat NLS binds RNA phosphates in \textit{E. coli} extracts. While the preferential Mg2+-phosphate interaction is consistent with the Collins model, the Arg-oxyanion salt bridge represents a chaotrope-kosmotrope ion pair that is deemed energetically unfavorable.246–248 We surmise that the high effective concentration247,264 of positive charge (8 Arg and Lys residues) renders the NLS an effective oxyanion (\textit{i.e.} kosmotrope) binder. Our data are part of a growing repertoire that suggests that preferential ion interactions between macromolecular charge clusters deviate from those predicted by the Collins model, which holds well for simple systems.244 A more advanced model that incorporates not only the ion
properties, but also the charge density/distribution at the protein surface is necessary to describe systems of biological complexity.

Conclusions

All cellular processes are governed by the intricate interplay of electrolyte and macromolecular interactions.23,65,89,91,225 The abundance of high molecular weight assemblies \textit{in vivo} is well-appreciated and the inability to detect most globular proteins by in-cell NMR supports this idea.73,74,77,78,128,226–237 Herein, ΔTat-GB1 stickiness was explored in \textit{E. coli} cells and extracts by an enhanced sensitivity HSQC experiment. The protein was undetectable in these physiological environments (Figure 1A, 6-8) indicating that it interacts pervasively and non-specifically with \textit{E. coli} macromolecules. A previously described SEC technique74 showed that ΔTat-GB1 interactions were disrupted upon RNA digestion (Figure 2), suggesting that the protein forms high molecular weight complexes with RNA in the extracts. These interactions likely prevail in living \textit{E. coli} cells and render the protein undetectable by in-cell NMR spectroscopy. Changes in the SEC buffer salts and ionic strengths were used to explore the physicochemical origin of ΔTat-GB1 interactions. Complexes containing ΔTat-GB1 remained intact in the presence of a range of different ions including the biologically abundant potassium glutamate (Figures 2-5). Likewise, high concentrations (200 mM) of the laboratory salt NaCl did not liberate ΔTat-GB1 (Figure 2). Instead, low concentrations of Mg2+ were effective in disrupting the complexes (Figure 5). Divalent cations interact strongly with biological oxyanions247 apparently dissociating Tat NLS-oxyanion interactions in the process. Similarly, di/tricarboxylate anions successfully competed with the anionic surface patches of \textit{E. coli} macromolecules to interact with the Tat-NLS (Figure 5). Importantly, ΔTat-GB1 was NMR detectable in extracts only after the addition of > 10 mM MgCl\textsubscript{2} and RNA digestion (Figure 6).

Together, these data suggest an interaction mechanism for the Tat NLS was in the \textit{E. coli} extracts. For example, the need for RNA digestion implies that the chelate effect drives ΔTat-GB1 interactions with \textit{E. coli} RNA. The need for the phosphate binding cation, Mg2+, suggests that Arg-phosphate salt bridges mediate the interactions of ΔTat-GB1 with RNA. These data contrast with the Collins model of preferential ion pairing246–248 and suggest that specific ion effects must be re-
evaluated to explain the differential binding phenomena observed for densely charged protein surfaces at physiological ionic strengths in crowded cell environments. SEC rivals other interactomic techniques in that it can dissect the interaction propensities of a protein in the context of specific ion effects. Cell extract NMR can reveal how the interaction mechanisms of a protein are borne out in a cell-like environment. When combined, these techniques allow for the extensive exploration of molecular ‘cross talk’ under native-like conditions which, in turn, help us to delve deeper into the post-reductionist era of protein science.
Chapter 3
Charge Determination of Cytochrome c and its Mutants: Implications for Cell Extract Interactions

Manuscript in preparation
Abstract

A major goal of protein science is to develop electrochemical frameworks that describe protein interactions in the complex, volume-occupied cell interior. Such frameworks warrant a comprehensive understanding of protein electrostatics which give rise to the potential energies governing non-covalent interactions. Charge is the only electrostatic property that can be accurately measured. Thus, studies of protein charge are an important foundation on which electrochemical frameworks can be built. Here, the charge of cytochrome c and charge-inverted (R/K→E) mutants are reported. The apparent charge of cytochrome c is salt-dependent and preferential cytochrome c-anion interactions are revealed. Native gel electrophoresis, together with knowledge of the cytochrome c and mutant charges, have been applied to explore the origin of cytochrome c stickiness in E. coli cell extracts.
Introduction

Protein Charge Measurements are Necessary to Elucidate Colloidal Protein Properties Protein interactions mediate all cellular processes. Protein-macromolecule interactions are stabilised by several types of non-covalent interactions (e.g. charge-charge, hydrogen bonding, van der Waals interactions and the hydrophobic effect). The stability and specificity of complexes are determined by different relative contributions of each interaction type. However, the role of attractive charge-charge interactions in electrostatically steering oppositely charged partners toward productive docking geometries (i.e. increasing k_{on}) is well-established in vitro. The physiological significance of charge-charge interactions is implicit in their long-range nature and the abundantly Coulombic character of physiological environments. For instance, protein charge produces a potential energy ‘halo’ that extends from the van der Waals surface of the protein for up to 10 Å at physiological ionic strengths. A similar distance separates macromolecules in high-concentration systems such as the cytoplasm. Thus screened charge-charge interactions are of biological importance. Furthermore the E. coli cytoplasm is replete with anionic macromolecules suggesting that charge-charge repulsion is critical in stabilising the cytoplasm against random aggregation.

At a local level, the high surface-to-volume ratios and chemically heterogeneous nature of the cytoplasm promotes multifarious, attractive macromolecular interactions. These co-operative interactions lead to the formation of macromolecular clusters or microenvironments and can be conducive to phase separation. Indeed, the discovery of cytoskeletal structures and proteins containing membraneless organelle-forming motifs in the E. coli cytoplasm supports the idea that it is a sol/gel (i.e. colloid). Accordingly, Laue and Demeler considered aspects of colloid and surface chemistry as a starting point for tackling the ‘Gordian Knot of in vivo chemistry’. Colloidal chemistry typically explores the electrostatic properties of the system components to elucidate its physicochemical characteristics (e.g. stability). Proximity energies represent the sum of the potential energies arising due to the electrostatic properties of macromolecular surfaces. To date, charge is the only proximity energy that can be measured accurately. Knowledge of protein charge is therefore fundamentally important in developing the “proximity
energy framework\(^{23}\) describing protein behaviour in complex, colloidal systems like the cytoplasm.

Exploring Protein Charge using Membrane Monfined Electrophoresis Several free-solution electrophoresis methods exist for protein charge determination including capillary electrophoresis (CE),\(^{272}\) electrophoretic light scattering (ELS)\(^{271}\) and membrane confined electrophoresis (MCE).\(^{129}\) MCE is the most straightforward method for the accurate determination of protein electrophoretic mobility (\(\mu\)) and effective electrical valence (\(Z_{\text{eff}}\)).\(^{129,271,273}\) Protein valence is the ratio of its Coulombic charge, \(Q\), to the elementary proton charge, \(Q_p\) (both in Coulombs). The effective electrical valence is the formal valence reduced by the shielding effects of the Debye-Hückel counter-ion cloud and the electrophoretic effect.\(^{271,274}\) MCE instrumentation facilitates two types of experiment: steady state electrophoresis (SSE) and real-time electrophoretic mobility (REM). In both experiments, macroions are confined within a quartz cuvette which is sealed at either end by semi-permeable membranes. An electric current is passed through the cuvette, establishing an invariant electric field along its length. In the applied electric field, macroions migrate toward the oppositely charged electrode. At regular time intervals, fixed wavelength absorbance scans are acquired at distinct points across the cuvette. The resulting absorbance profile shows the macroion concentration distribution along the cuvette. In SSE experiments, the magnitude of the applied electric field is relatively low (i.e. 0.05-0.2 V/cm) and macroion flux in the electric field is countered by macroion flux due to diffusion.\(^{129}\) When the steady state is reached (10-12 hours), the flux of ions due to electrophoresis is balanced by the flux due to diffusion and a stable macroion concentration gradient forms in the cuvette. At the steady state all system properties, including the macroion concentration gradient, are invariant over time and the macroion no longer contributes to the net current at any point in the cuvette. The macroion concentration gradient is exponential with respect to the \(x\)-axis (position in cm) and can be fit to the following equation to yield the effective charge:

\[
c(x) = c_0 \exp\left[Z_{\text{eff}} \frac{E}{k_B T} (x-x_0)\right]
\]
where: \(\sigma \) = baseline offset (cm\(^{-1} \)), \(c_0 \) = concentration at reference point \(x_0 \) (mg/mL), \(Z_{\text{eff}} \) = effective electrical valence, \(x_0 \) = arbitrary initial reference point (cm), \(T \) = temperature (K), \(E \) = electric field (V/cm), and \(k_B \) = Boltzmann’s constant (1.3807 \(\times \) 10\(^{-23} \) J/K).

REM experiments are faster than SSE experiments (~40 minutes versus 10-12 hours) and determine the electrophoretic mobility of the macroion by applying a strong electric field (i.e. 2.5-25 V/cm) forcing the macroion toward one end of the cuvette. The electrophoretic mobility (\(\mu \)) of the macroion is its velocity per unit electric field (in cm\(^2\)/V.s) and can be calculated by measuring sequential intensity scans and subtracting each scan from the previous one to yield the time-derivative of the macroion concentration distribution. \(Z_{\text{eff}} \) can be calculated from \(\mu \) as:

\[
Z_{\text{eff}} = \mu f
\]

where: \(f = 6\pi\eta R_s \), \(\eta \) = solvent viscosity (g/cm.s), and \(R_s \) = stokes radius of the protein (cm).

Ion Binding Modulates Protein Charge MCE determines the ‘charge structure’ of a protein,\(^{271}\) which is the macromolecule’s formal charge modified by bound ions. Two types of ion binding contribute to protein charge structure. Firstly, ions can interact with specific sites on a protein surface. For instance, the intracellular Ca\(^{2+} \) receptor calmodulin has four well defined binding sites in which Ca\(^{2+} \) is co-ordinated in a pentagonal bipyramidal geometry by specific main and side chain oxygens (Figure 1).\(^{275}\) The second type of ion binding is non-specific or ‘territorial’ and is not typically evident in protein structures determined by X-ray crystallography. Territorially-bound ions do not occupy a specific site on the protein but instead bind diffusely to regions of high charge density on the protein surface.\(^{273}\) Charge dense protein surfaces may be characterised by the presence of at least two charges separated by < 3 Å at physiological ionic strengths.\(^{271}\) Territorial ions can exchange with solvent ions but no net change in protein charge is effected due to this exchange. Territorial ions reside within the protein solvation layer and diffuse with the protein. Thus, because proteins continuously bind to and release counter-ions, several distinct charged species can predominate during the course of the MCE experiment. Therefore, the MCE-determined charge value reports on the average charge of the macroion. Note, the Debye-Hückel counter-ion cloud refers to the
imbalance of co- and counter-ions surrounding the protein. The counter-ion cloud does not contribute to the charge structure of a protein but assembles as a result of it.271,273 Thus, Debye-Hückel counter-ions are distinct from site-bound and territorial ions. The Debye-Hückel-Henry approximation can be used to adjust for the effects of the Debye-Hückel counter-ion cloud yielding the formal or Debye-Hückel-Henry valence:

\[Z_{DHH} = \mu f \left[\frac{1 + k_D \alpha}{H Q_p} \right] \]

where: \(k_D = \) inverse Debye length (cm\(^{-1}\)), \(\alpha = \) Stokes radius of protein + counter-ions (cm), \(H = \) Henry’s function (unitless) which accounts for the electrophoretic effect.276 Two phenomena comprise this effect (i) the distortion of the electric field lines due to the presence of a non-conducting species such as a protein and (ii) momentum transfer from the flow of counterions proximal to the non-conducting species.277

Currently, all free-solution electrophoresis techniques are applicable only to pure, dilute protein samples and are unsuited to studies of complex, volume-occupied solutions. However, changes to the electrophoresis buffer salts, ionic strength and pH can reveal variations in the protein charge resulting from ion-protein interactions. Given the ubiquity of ion-protein interactions in nature,61,87,279 such knowledge has significant physiological implications. For instance, cytochrome \(c \) is the most abundant protein in the mitochondrial intermembrane space (IMS)280 where it transfers electrons between complex III and IV of the respiratory chain. Porin channels (or voltage-dependent anion channels) in the mitochondrial outer membrane regulate the flux of metabolites and...
ions (< 5 kDa; e.g. ATP and Ca$^{2+}$) between the cytoplasm and the IMS. Thus, cytochrome c functions across a range of ionic strengths (100-150 mM) and metabolite compositions. Indeed, the role of electrostatics in modulating cytochrome c interactions with its cognate and non-physiological partners is well established.

Charge Governs Cytochrome c Stickiness in E. coli Extracts Previously, Crowley and co-workers used size exclusion chromatography (SEC) to demonstrate that charge-inverted mutations (K/R→E) decreased the stickiness of cytochrome c in *Escherichia coli* extracts. The three charge inverted mutants were: a single (R13E), double (R13E/K73E) and triple (R13E/K73E/K87E) mutant where residues 13, 73 and 87 comprise the known binding site of cytochrome c (Figure 2).

When WT cytochrome c-containing extracts were loaded on to an SEC column equilibrated in low ionic strength buffer (20 mM KH$_2$PO$_4$, 50 mM NaCl, pH 6.0), cytochrome c (12.7 kDa) eluted with an apparent molecular weight > 44 kDa. Thus, cytochrome c co-eluted with other *E. coli* macromolecules as part of a high molecular weight assembly. In the same SEC buffer the single mutant eluted in fractions corresponding to high and low molecular weight species while the double mutant eluted with an apparent molecular weight of 10-44 kDa. The triple mutant eluted at the expected volume (75-80 mL) corresponding to the monomeric molecular weight of cytochrome c. These elution patterns indicate that the net charge of cytochrome c governs the extent to which it interacts with other macromolecules. WT cytochrome c, the most cationic of the series, is the stickiest. The authors rationalised this finding by considering the electrostatic nature of the *E. coli* cell interior, which is replete with anionic macromolecules that likely interact non-specifically with cytochrome c. The decrease in cytochrome c charge effected by the mutations decreases the protein’s propensity to interact with anionic macromolecules. Accordingly, the triple mutant did not interact with *E. coli* macromolecules. This result indicates that cytochrome c complexation in extracts is governed by attractive charge-charge interactions. Similarly, WT cytochrome c eluted in the 75-80 mL fractions when extracts were treated with a higher ionic strength buffer (20 mM KH$_2$PO$_4$, 200 mM NaCl, pH 6.0). The disruption of cytochrome c interactions effected at increased ionic strengths supports the idea that
cytochrome c interacts with anionic macromolecules via simple charge-charge interactions.

Herein, MCE was used to determine the charge of cytochrome c in the presence of different salts, at the physiologically-relevant ionic strength (I) of 100 mM. Importantly, the cytochrome c charge was found to be substantially lower than that predicted from its primary structure. Preferential ion interactions with the cytochrome c surface were also identified. Notably, sulfate anions bind tightly to cytochrome c, forming a charge-neutral species. This finding coincides with a known sulfate binding site in the crystal structure for cytochrome c.287 The charge-inverted cytochrome c mutants were investigated by MCE also. The decrease in cytochrome c charge effected by each mutation correlated with the decreased stickiness of the mutants in concentrated E. coli extracts.74 The charge and interactions of cytochrome c and the mutants were explored by using native gel electrophoresis and SEC both in dilute solution and in E. coli extracts. The effects of a physiologically relevant-milieu on cytochrome c charge were revealed, and the implications for charge-based intracellular assemblies were considered.

![Figure 2. Electrostatic surface representations of WT cytochrome c and the charge inverted mutants, where positive and negative potentials are coloured blue and red, respectively. The exposed haem edge is shown as black spheres. The position of lysine residues are indicated.](image)

Materials and Methods

Protein Production and Purification *S. cerevisiae* cytochrome c and its mutants were expressed and purified according to previously described methods.74,287 The single and triple cytochrome c mutants were provided by Madeleine Mallon and Róise McGovern. The ¹H,¹⁵N HSQC NMR spectra of the mutants are comparable to that of WT cytochrome c indicating that no gross structural changes occurred due to mutagenesis.74
Cytochrome c Charge and Interactions in *E. coli* Extracts

MCE Buffer Preparation Buffers were prepared on the day of use with distilled, deionised water. Each buffer contained 10 mM Bis-TRIS Propane (BTP) plus salt at an ionic strength of 100 mM. The pH was adjusted to 7.0 before the buffers were filtered and degassed. Buffer conductance was determined at 20 °C using a VWR1054 conductivity meter with a platinum probe. Average conductivities for the KCl, KNO3, K2SO4 and MgCl2-containing buffers are given in Table 1.

<table>
<thead>
<tr>
<th>MCE Buffer Salt (I = 100 mM)</th>
<th>Average Conductivity (mS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>12.00</td>
</tr>
<tr>
<td>KNO3</td>
<td>11.73</td>
</tr>
<tr>
<td>MgCl2</td>
<td>7.44</td>
</tr>
<tr>
<td>K2SO4</td>
<td>7.22</td>
</tr>
</tbody>
</table>

MCE Membrane Preparation Spectra/Por Biotech Regenerated Cellulose Dialysis membranes with a MCWO = 8-10 kDa were soaked in H2O for 5 minutes prior to cutting with a stainless steel punch. Membrane discs of 5 mm diameter were thus generated. The membrane disks were boiled in H2O for 10 minutes then cooled and stored at 4 °C.

Membrane Confined Electrophoresis Comprehensive descriptions of the MCE instrument have been reported previously. All MCE experiments were performed at 20 °C following at least 2 hours of complete system equilibration in which a constant flow of buffer (at 10 mL/hour) was used to condition the sample-confining membranes. Protein samples were typically studied at a concentration of 1 mg/mL. During REM experiments, currents of ± 1 mA were applied across the cuvette such that electric fields of ± 2-2.5 V/cm were achieved. Initially, both positive and negative electric fields were applied to each sample and 250 absorbance scans (at 230 nm) were acquired for each electric field. The values presented herein represent an average of at least two measurements with an error of < 30%. Proteins that did not form concentration gradients in response to positive or negative electric fields at magnitudes of either 2-2.5 or 20-25 V/cm or during SSE experiments were taken to have a charge of ~0. MCE is unsuited to systems in dynamic equilibrium. Thus, to ensure that the charge-neutral proteins were monomeric during the MCE experiments, measurements were also performed at concentrations below the critical
aggregation concentration of most proteins \(i.e.\) 0.1 (8.3 nM) and 0.05 mg/mL (4.2 nM). SSE was also performed on the proteins that appear to be charge-neutral by MCE.\(^{129,271}\) SSE experiments were performed in electric fields of ± 187 and 374 mV/cm over 24 hours and absorbance scans were acquired every 15 minutes.

The MCE data were analysed using the Spin Analytical MCE Analysis Software. The electrophoretic mobility was converted to \(Z_{\text{eff}}\) and \(Z\) using ZUtilities (available at http://www.rasmb.org/). A radius \((R_s)\) of 1.65 nm\(^{105,288}\) was used for cytochrome \(c\) and the charge inverted mutants. Moreover, anionic radii of 0.121, 0.129 and 0.230 nm were used for Cl\(^-\), NO\(_3^-\) and SO\(_4^{2-}\), respectively.\(^{246}\)

Sedimentation-Velocity Analytical Ultracentrifugation SV-AUC experiments were performed using a Beckman Coulter XL A analytical ultracentrifuge. Data were acquired at 50,000 rpm at 20 °C in 100 mM KCl, 10 mM BTP, pH 7.0. Samples were equilibrated to 20 °C prior to ultracentrifugation. Sedimentation was monitored using absorbance scans at 550 nm and a pathlength of 1.2 cm. At this wavelength, the reduced cytochrome \(c\) haem has an extinction coefficient of 27.5 mM\(^{-1}\)cm\(^{-1}\).\(^{289}\) Sample concentrations of 0.5, 0.15 and 0.05 mg/mL were studied. The data were fit using SEDFIT\(^{290}\) and plotted in GUSSI.

E. coli Extract Preparation Cell pellets for SEC were prepared as previously described\(^{74}\) but with the following changes: the cell pellet from 50 mL of \(^{15}\)N minimal medium culture was resuspended in 1 mL of 20 mM Na\(_2\)HPO\(_4\), pH 7.0 and frozen overnight. After thawing, cell lysis was completed by sonication. The cell slurry was treated with 10 \(\mu\)g/mL DNase I or RNase A and centrifuged for 30 minutes at 20,000 x g at room temperature. The supernatant contained cytochrome \(c\) and was loaded onto a SEC column. For agarose gel electrophoresis, DNase I-treated \(E. coli\) extracts were prepared as above but from 50 mL of saturated cultures (LB medium, O.D.\(_{600} = 6-7\)).\(^{291}\) The extract samples were spiked with cytochrome \(c\) or a mutant at a working concentration of 0.2 mM. Extracts prepared from cells over-expressing cytochrome \(c\) were unstable and precipitation was observed after incubation for 40 minutes at room temperature or 30 °C. The extracts were stable for over 6 hours when stored on ice. Extracts prepared from saturated \(E. coli\) cells were stable for up to 8 hours when stored on ice or at room temperature. The extract was
less stable after the addition of cytochrome \(c \) \textit{i.e.} precipitation was observed after 1.5 hours at 30 °C.

Native Gel Electrophoresis 20 μL samples of 0.2 mM cytochrome \(c \) or the charge inverted mutants were analysed in 2% agarose gels (13.5 cm x 14.0 cm) prepared in 20 mM Na₂HPO₄, or 20 mM Tris-HCl at pH 7.0. Gels were equilibrated in the electrophoresis buffer for 30 minutes at 4 °C prior to running at a constant voltage (100 V) for 30 minutes at 4 °C. The buffer temperature was 6-12 °C after electrophoresis, indicating that the gels were not heated substantially during the experiment. The gels were imaged directly after electrophoresis using a flatbed scanner. Each gel image was processed identically using Adobe Photoshop. Importantly, changes to the colour balance, saturation, brightness and contrast were applied uniformly across the images. Tools that skew the tonal range or colour balance within an image (e.g. exposure, levels or curves) were avoided.

Size Exclusion Chromatography The SEC buffer preparation, column and experimental conditions have been described previously (Chapter 2). 74,100

Cell Extract NMR Spectroscopy Cell extracts were prepared for NMR as described above from pellets obtained from 50 mL cultures of cytochrome \(c \)-expressing cells and also from saturated \textit{E. coli} cultures spiked afterwards with 0.3 mM ¹⁵N-labelled cytochrome \(c \). The addition of 35 mM MgCl₂ was achieved by spiking the extracts with 6.4 μL of a 3 M MgCl₂ stock solution. ¹H, ¹⁵N TROSY-selected HSQC spectra292 were acquired at 30 °C with 16 scans and 64 increments on a Varian 600 MHz Spectrometer equipped with a HCN cold probe. The spectra were processed as previously described (Chapter 2).

Results and Discussion

Cytochrome \(c \) Charge is Lower than Calculated & Salt-Dependent REM-MCE was used to determine the electrophoretic mobility of cytochrome \(c \) in 10 mM BTP at pH 7.0 in the presence of KCl, KNO₃, MgCl₂ or K₂SO₄ at an ionic strength of 100 mM. Table 2 lists the \(\mu \), \(Z_{\text{eff}} \) and \(Z_{\text{DHH}} \) and corresponding charge (Q) values for cytochrome \(c \) in each buffer. The \(Z_{\text{eff}} \) was approximately 3 times less than the \(Z_{\text{DHH}} \) as predicted from MCE theory. 271
Table 2. Average values for cytochrome c μ, Z_eff, Z_DHH, Q_eff and Q_DHH determined at 20 °C from at least 2 measurements. The values have an error of < 30%.

<table>
<thead>
<tr>
<th>MCE Buffer Salt (I = 100 mM)</th>
<th>μ (cm²/V.s)</th>
<th>Z_eff</th>
<th>Z_DHH</th>
<th>Q_eff (C)</th>
<th>Q_DHH (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>5.82 x 10⁻⁵</td>
<td>1.08</td>
<td>3.10</td>
<td>1.73 x 10⁻¹⁹</td>
<td>4.97 x 10⁻¹⁹</td>
</tr>
<tr>
<td>KNO₃</td>
<td>5.47 x 10⁻⁵</td>
<td>1.04</td>
<td>3.00</td>
<td>1.67 x 10⁻¹⁹</td>
<td>4.81 x 10⁻¹⁹</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>4.58 x 10⁻⁵</td>
<td>0.87</td>
<td>2.50</td>
<td>1.39 x 10⁻¹⁹</td>
<td>4.01 x 10⁻¹⁹</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>~ 0</td>
<td>~ 0</td>
<td>~ 0</td>
<td>~ 0</td>
<td>~ 0</td>
</tr>
</tbody>
</table>

The Innovagen Protein Calculator (http://pepcalc.com/protein-calculator.php) was used to calculate the cytochrome c valence at pH 7.0 using model pKₐ values for the ionisable side chains (Table 3). A value of 8.2 was obtained which deviates substantially from the effective and Debye-Hückel-Henry valence determined by REM (Table 2). The relatively high errors (15-30 %) associated with the measurements reported herein supports the idea that cytochrome c charge is low at physiological ionic strengths. Typically, the error associated with MCE measurements is < 10%. However, cytochrome c’s low charge causes its mobility due to diffusion to counter its mobility in the applied electric field under the standard MCE conditions (see Materials and Methods). This leads to the formation of broader boundaries. The disparity between the calculated and experimentally determined charge values arises from two sources. Firstly, amino acid pKₐ’s can shift from model values due to the local electrostatic potential effected by protein folding. Secondly, valence calculations are based on the incorrect assumption that only proton binding modulates protein charge.

Table 3. Model pKₐ values for ionisable groups in proteins.

<table>
<thead>
<tr>
<th>Amino Acid Side Chain</th>
<th>pKₐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-terminus</td>
<td>8.96</td>
</tr>
<tr>
<td>Arginine</td>
<td>12.50</td>
</tr>
<tr>
<td>Lysine</td>
<td>10.54</td>
</tr>
<tr>
<td>Histidine</td>
<td>6.04</td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>4.31</td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>3.90</td>
</tr>
<tr>
<td>C-terminus</td>
<td>2.16</td>
</tr>
</tbody>
</table>

Previously, Winzor reported an effective valence of 9.7 for Equus caballus cytochrome c in 10 mM acetate at pH 4.7. E. caballus and S. cerevisiae cytochrome c display > 60% sequence homology and are expected to have similar charge structures. The difference in buffer conditions (ionic strength and pH) used herein and by Winzor likely give rise to the dramatic valence differences. This
suggests that cytochrome c valence is mitigated by interactions with anions. Accordingly, the valence of cytochrome c was determined in different salts at identical ionic strengths (100 mM; Table 2) and its valence decreased in the order KCl ≈ KNO₃ > MgCl₂ > K₂SO₄. These data illustrate a progressive increase in anion association to cytochrome c. Importantly, interactions with the divalent SO₄²⁻ neutralise the protein. The preferential sulfate-cytochrome c interaction coincides with the sulfate binding site observed in the crystal structure of cytochrome c (PDB ID = 1ycc; Figure 3A). This structural evidence indicates that the sulfate is a site-bound ion. Several cytochrome c structures contain site-bound sulfates. For example, the crystal structure of Crithidia fasciculata cytochrome c is noteworthy for the presence of seven site-bound sulfates which mediate trimer formation in the asymmetric unit (Figure 4). The neutralisation of cytochrome c by interactions with sulfate ions is reminiscent of cytochrome c camouflage effected by weak interactions with p-sulfonatocalix[4]arene. Interestingly, a similar, lysine-rich site is occupied by the sulfate anion (PDB code = 1ycc; Figure 3A) or a sulfonate group from p-sulfonatocalix[4]arene (PDB code = 3tyi; Figure 3B) in both crystal structures. Efforts to determine the cytochrome c valence by MCE in a buffer containing 6.7 mM (I = 100 mM) p-sulfonatocalix[4]arene were hampered by the fact that the calixarene interacted strongly with the confining membrane, obstructing ion flux. Similarly, the effects of the physiologically-relevant phosphate and polycarboxylate anions could not be studied. However, the data indicate the significance of direct, site-specific sulfate interactions with the cytochrome c surface. Free solution electrophoresis also identified preferential interactions between sulfate and the cationic proteins RNase and lysozyme from hen egg white or T4

![Figure 3](source.png)

Figure 3. Crystal structures of a lysine-rich patch of *S. cerevisiae* or *E. caballus* cytochrome c showing similar A. sulfate (1ycc), B. p-sulfonatocalix[4]arene (3tyi) and C. phosphate binding sites (3nbs). Atoms are coloured as per Figure 1 but with yellow representing sulfur. Water molecules are omitted for clarity.
bacteriophage. The significance of tight, direct sulfate interactions with cationic surface patches is thus suggested.

Owing to their tetrahedral geometry, similar radii and anionic nature, sulfates and phosphates tend to interact with similar protein surface patches (Figure 5). For instance, the C$^\alpha$NN structural motif recognizes sulfates and phosphates as well as cofactor and nucleotide phosphates. This motif consists of a tripeptide segment which co-ordinates the anions using three invariant main chain atoms. The first invariant position is occupied by the C$^\alpha$ atom of the first segment residue while the second and third positions are held by the backbone N atoms of the second and third segment residues. The main chain N-H forms hydrogen bonds with separate phosphate oxygens while the C$^\alpha$-H engages in a weak C-H…O hydrogen bond with the proximal phosphate oxygen. The C$^\alpha$NN binding motif is often located at the amino terminal end of an α-helix which has a positive dipole moment.

Interestingly, a C$^\alpha$NN binding motif involving Lys4 recognises the sulfate/sulfonate groups in the *S. cerevisiae* cytochrome c crystal structures (Figure 5A), suggesting that this site is optimised for anion recognition. Although phosphates have not been observed in a *S. cerevisiae* crystal structure, the domain-swapped dimer of *E. caballus* cytochrome c is noteworthy for the presence of a phosphate ion bound to the lysine-rich cytochrome c surface (Figure 3C and 5B). The phosphate is co-ordinated by a salt bridge with
K100 and hydrogen bonds with the side chains of Y97, E104 and a water molecule (PDB code = 3nbs; Figure 5B). This site is in close proximity to the sulfate binding site in the *S. cerevisiae* structure (S-P distance = 11.8 Å in the aligned structures), indicating that the lysine-rich cytochrome *c* surface patch can recognise phosphates such as the phospholipid phosphate groups in the mitochondrial IMS. Indeed, two phospholipid binding sites have been postulated for cytochrome *c* with the lysine-rich surface patch is expected to interact with anionic phospholipid phosphates.

Valence of Cytochrome c and its Charge-Inverted Mutants Protein characterisation under conditions of reduced charge can reveal the importance of electrostatics in governing protein behaviour. While pH changes are typically used to modulate protein charge, this can incidentally alter other physicochemical protein properties (*e.g.* hydrodynamic radius) producing results that cannot be wholly linked to protein surface charge. Charge inverted mutants offer an elegant alternative by mutating selected charged residues on the protein scaffold to residues of opposite charge. The effects of charge inversion on cytochrome *c* interactions in concentrated cell extracts were previously explored by Crowley and co-workers. Replacing cationic residues for Glu reduced the extent to which the protein interacted with *E. coli* macromolecules. Indeed, the implications of
charge inversion are apparent during purification. The more negatively charged the cytochrome c mutant, the weaker it interacts with the negatively charged carboxymethyl cellulose (CM) resin. WT cytochrome c elutes from a CM column at \sim300 mM NaCl, 20 mM KH$_2$PO$_4$ pH 6.0. The single and double mutants elute at \sim200 and \sim100 mM NaCl, respectively. The triple and quadruple mutants interact weakly with the carboxymethyl resin even in the absence of NaCl at 20 mM KH$_2$PO$_4$, pH 5.0 and elute when the pH is increased to 6.0. Given the obvious importance of charge in governing cytochrome c behaviour, the μ of each mutant was quantified by MCE in 100 mM KCl, 10 mM BTP, pH 7.0 (Table 4). KCl was selected as an electrolyte because the electrophoretic transport properties of K$^+$ and Cl$^-$ are equal in magnitude but opposite in sign thus preventing detrimental electroosmotic flows.297

<table>
<thead>
<tr>
<th>Cytochrome c</th>
<th>Z_{cal}</th>
<th>μ (cm2/V.s)</th>
<th>Z_{eff}</th>
<th>Z_{DHH}</th>
<th>Q_{eff} (C)</th>
<th>Q_{DHH} (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>8.2</td>
<td>5.82 x10$^{-5}$</td>
<td>1.08</td>
<td>3.10</td>
<td>1.73 x10$^{-19}$</td>
<td>4.97 x10$^{-19}$</td>
</tr>
<tr>
<td>R13E</td>
<td>6.2</td>
<td>3.74 x10$^{-5}$</td>
<td>0.71</td>
<td>2.02</td>
<td>1.14 x10$^{-19}$</td>
<td>3.24 x10$^{-19}$</td>
</tr>
<tr>
<td>R13E/K73E</td>
<td>4.2</td>
<td>2.42 x10$^{-5}$</td>
<td>0.46</td>
<td>1.32</td>
<td>0.737 x10$^{-19}$</td>
<td>2.11 x10$^{-19}$</td>
</tr>
<tr>
<td>R13E/K73E/K87E</td>
<td>2.2</td>
<td>\sim0</td>
<td>\sim0</td>
<td>\sim0</td>
<td>\sim0</td>
<td>\sim0</td>
</tr>
<tr>
<td>R13E/K73E/K87E/K100E</td>
<td>0.2</td>
<td>\sim0</td>
<td>\sim0</td>
<td>\sim0</td>
<td>\sim0</td>
<td>\sim0</td>
</tr>
</tbody>
</table>

Table 4 summarises the μ, Z and Q values for cytochrome c and the charge-inverted mutants. The calculated valences (Z_{cal}) are also listed. Note that exact μ values for the triple and quadruple mutants could not be determined by REM or SSE. Both experiments rely on the formation of a macroion concentration gradient against a membrane boundary in response to an electric field.129,273,274 Macroions with an average charge \sim0 do not form electrophoretic concentration gradients. Their mobility is instead governed by thermal motion which disfavours concentration gradient formation. A range of electric fields were tested in MCE-REM studies of triple and quadruple cytochrome c mutants (see Materials and Methods) but a concentration gradient never formed. Similarly, a concentration gradient did not form during SSE experiments. Together, these findings suggest that the triple and quadruple mutants have an average charge of \sim0. Proteins with a charge \sim0 tend to self-associate in solution.305 Sedimentation-velocity analytical ultracentrifugation
was therefore used to determine the oligomeric state of WT cytochrome \(c \) and the double and quadruple mutants. Concentrations of 0.5, 0.15 and 0.05 mg/mL were studied for each protein in 10 mM BTP, 100 mM KCl, pH 7.0. In each case a single species was identified with an average sedimentation coefficient (s) of 1.74 that corresponds to the molecular weight of the protein monomers (Figure 6). This confirms that the charges of monomeric proteins are probed in this MCE study. The calculated and experimentally-determined valence for each protein reveals the same overall pattern: WT cytochrome \(c \) has the highest valence followed by the single, double and triple/quadruple mutants respectively. However, the calculated valences are substantially greater than the measured values and overestimate the extent to which the net valence of cytochrome \(c \) is reduced by each mutation. For instance, the \(Z_{\text{cal}}/Z_{\text{DH}} \) ratio for cytochrome \(c \) and the single and double mutants are 2.65, 3.07 and 3.18 respectively. The variation between the ratios indicates the poor correlation between predicted and measured valences, which are likely due to disparate charge distributions in the protein. The limitations of charge/valence predictions based on the primary structure and model \(pK_a \) values are thus highlighted.

Specific Ion Effects on Cytochrome \(c \) Interactions in \(E. \ coli \) Extracts SEC was used to explore specific ion effects on WT cytochrome \(c \) interactions in \(E. \ coli \) cell extracts. In an SEC buffer containing 20 mM Na\(_2\)HPO\(_4\), 35 mM K\(_2\)SO\(_4\) (\(I = 100 \) mM), pH 7.0 cytochrome \(c \) eluted mainly in the high molecular weight fractions (50-65 mL; Figure 7). Some cytochrome \(c \) is evident in the low molecular weight fractions (70 and 75 mL; Figure 7). A similar elution profile was obtained for SEC experiments performed in buffers containing 100 mM KCl and KNO\(_3\) but there was no cytochrome \(c \) in the 70 and 75 mL fractions. Thus, it appears as though most of the charged-based interactions of cytochrome \(c \) with \(E. \ coli \) macromolecules are not
disrupted in the presence of 35 mM K$_2$SO$_4$. Importantly, cytochrome c is not naturally expressed in *E. coli* and therefore has no cognate partners in the extracts. It is likely that the high effective concentration of negative charge found at macroanionic surface patches combined with the high surface-to-volume ratios in cell extracts renders cytochrome c interactions with macromolecules more favourable than cytochrome c-sulfate interactions. Interestingly, in SEC buffers containing 35 mM MgCl$_2$ ($I = 100$ mM) cytochrome c eluted exclusively in the low molecular weight fractions (75 and 80 mL). When these fractions were combined and exchanged into a typical NMR buffer (20 mM KH$_2$PO$_4$, 75 mM NaCl, pH 6.0), the spectrum for reduced cytochrome c was observed (Figure 8). The disruption of cytochrome c interactions with *E. coli* macromolecules in the presence of Mg$^{2+}$ is consistent with the liberation of ΔTat-GB1 from RNA-containing complexes in Mg$^{2+}$-containing buffers (Chapter 2). Owing to the large number of lysine residues at the cytochrome c surface, it is expected that lysine-phosphate and/or lysine-carboxylate interactions drive cytochrome c complexation with nucleic acids and/or proteins, respectively. To elucidate the origin of its stickiness in extracts, cytochrome c interactions with nucleic acids were probed by pretreating the extracts with

Figure 7. SEC elution profiles for cytochrome c-containing cell extracts that were pre-treated with DNase I. The buffers were 20 mM Na$_2$HPO$_4$ or Tris-HCl (pH 7.0) and contained KCl, KNO$_3$, MgCl$_2$ or K$_2$SO$_4$ at an ionic strength of 100 mM. The arrow marks the migration position of cytochrome c. The gel lanes are labelled; MM: molecular weight marker; CE: cell extract; 45–80: fraction volume (mL).
nucleases (RNase A or DNase I) prior to SEC in a buffer of 20 mM Na₂HPO₄, 100 mM KCl, pH 7.0. In each case, cytochrome c eluted in the high molecular weight fractions (Figure 7; RNase A-treated extract data not shown). The inability to disrupt cytochrome c-containing complexes by digesting nucleic acids indicates that it interacts mainly with anionic proteins. Thus, perhaps numerous lysine-carboxylate salt-bridge interactions mediate complexation. Although protein-protein interfaces are typically devoid of lysine residues, the role of lysine in driving non-specific interactions is indicated here.

Interestingly, cytochrome c was never detectable in E. coli extracts by NMR spectroscopy, even when the extracts were spiked with 35 mM MgCl₂ (I = 100 mM), DNase I and RNase A and studied by the TROSY-HSQC experiment which is optimised for the detection of large biomolecules (Figure 8). This result indicates that, in nuclease and MgCl₂-treated extracts, cytochrome c interacts with E. coli macromolecules to form high molecular weight assemblies that tumble too slowly to be detected by NMR. Notably, SEC involves sample separation. Perhaps cytochrome c’s interactions in the extracts may be weakened but not fully disrupted in the presence of Mg²⁺ and the resulting transient (yet extensive) complexes cannot withstand exposure to the SEC column or electrophoresis.
Electrophoresis Confirms Preferential Interactions of Cytochrome c and the Mutants

Previously, Crowley and co-workers used SEC and NMR to demonstrate that charge-inverted mutations decreased cytochrome c stickiness in E. coli extracts. Although charge is a system property, the dilute solution MCE data acquired at a physiological ionic strength reveals novel aspects of the charge structure of cytochrome c and the mutants. For example, although cationic, WT cytochrome c charge is low and cytochrome c is preferentially solvated by anionic proteins in E. coli extracts. The triple mutant is charge-neutral and is therefore expected to be the least soluble of the mutants and also preferentially solvated by macromolecules. Intriguingly, cell extract SEC studies revealed that the triple mutant elutes in the low molecular weight fractions indicating that is not preferentially solvated by other macromolecules, despite its low charge. Native gel electrophoresis was used to explore the charge and interactions of cytochrome c and the mutants under conditions of greater physiological relevance (Figure 9). Protein migration was compared in dilute solution and in E. coli extracts in four different electrophoresis buffers. In keeping with the MCE data, pure cytochrome c always migrated toward the cathode with a migration distance that was short (e.g. 5 mm in 20 mM Na$_2$HPO$_4$, pH 7.0) despite the relatively high applied voltage and long measurement times (see Materials and Methods). Importantly, Crowley et al. found that pure 15N-labelled cytochrome c encapsulated in 1.5% agarose gels yielded a HSQC spectrum identical to that for cytochrome c in buffer, indicating that cytochrome c does not interact with agarose gels. Thus, cytochrome c-agarose interactions are unlikely to contribute to the poor migration of the protein. These data suggest that cytochrome c is weakly cationic (Figure 9). Flavodoxin, by comparison, is a highly anionic protein that migrates toward the anode with a migration distance that is ~ three times greater than that of cytochrome c (Chapters 5 and 6). The migration distance of cytochrome c was shorter in the presence of buffers containing K$_2$SO$_4$ and KNO$_3$ at an ionic strength of 100 mM compared to buffer alone (Figure 9). This result demonstrates the mitigation of cytochrome c charge by anions. The bands due to cytochrome c and the mutants were more diffuse in the presence of KNO$_3$ suggesting that NO$_3^-$ binds in a territorial manner to the proteins, producing several distinct charge species (Figure 9). The reduction of cytochrome c charge effected by charge inversion is also evident and the migration of triple and quadruple mutants is poor in the low ionic strength buffer and in the presence of K$_2$SO$_4$ and
Cytochrome c Charge and Interactions in E. coli Extracts

KNO₃ (Figure 9). These data indicate that the triple and quadruple mutants are charge neutral (Figure 9). In the presence of Mg(NO₃)₂ cytochrome c and the mutants migrated toward the cathode. Indeed WT cytochrome c migrated further in a buffer containing 35 mM Mg(NO₃)₂ than in a buffer lacking salt (Figure 8). This finding suggests that Mg⁡²⁺ can bind to anionic residues in WT cytochrome c and the mutants, rendering the proteins more cationic.

Cytochrome c migration was drastically different in dilute solution and in cell extracts (Figure 9). Cytochrome c migrated toward the anode in concentrated E. coli extracts in the low ionic strength buffer and in the presence of KNO₃ and K₂SO₄ (at I = 100 mM; Figure 9). This result supports earlier evidence suggesting that cytochrome c interacts extensively with anionic proteins in E coli. The resulting assemblies have a net negative charge and are reminiscent of the anionic macromolecular clusters expected to prevail in vivo. The diffuse nature of the cytochrome c band in cell extracts confirms that cytochrome c interacts non-specifically with numerous anionic proteins. The bands due to the anionic, cytochrome c-containing assemblies are generally less diffuse in the higher ionic strength buffers (where salt I = 100 mM) than in the low ionic strength buffer (where salt I = 0 mM) indicating that the anionic assemblies have a low net charge at physiological ionic strengths (Figure 9). WT cytochrome c interactions were never disrupted at higher ionic strengths, emphasising the significance of screened charge-charge interactions in driving macromolecular interactions in volume-occupied solutions. In the low ionic strength buffer, the single mutant migrates toward the anode as part of a macroanionic complex in the E. coli extract. When the buffers also contained KNO₃ and K₂SO₄, low concentrations of the unbound single mutant migrate toward the cathode also. This result indicates that the interactions between the single mutant and anionic E. coli proteins are weaker than those of WT cytochrome c at physiological ionic strengths. An even greater concentration of the double mutant migrated toward the cathode in low and higher ionic strength electrophoresis buffers indicating that its interactions with E. coli proteins were substantially weaker than those of the single mutant. The migration of the triple and quadruple mutants were closely similar in both dilute and cell extract samples irrespective of the electrophoresis buffer. This result confirmed that these mutants do not interact with E. coli macroions. Thus, they are preferentially hydrated in the
extracts. Importantly, the triple mutant contains 20 cationic residues (arginine, lysine, histidine) and 14 anionic residues (aspartate and glutamate). The heterogeneous charge distribution of the triple mutant surface (Figure 5) likely renders the protein highly soluble, despite its low net charge. Notably, glutamate and aspartate are among the most strongly hydrated side chains.309 Indeed, the solubility of RNase S\textsubscript{a} was higher for the T76E mutant than the T76R or T76K mutants at pH 4.25 (protein pI) and 7.0.310 This indicates that glutamate contributes more favourably to protein hydration than lysine or arginine. Relative to WT cytochrome \textsubscript{c}, the increasingly negative charge of the triple and quadruple mutant surfaces probably causes them to electrostatically repel anionic macromolecules in the cell extracts, rendering them preferentially hydrated in extracts.

In a buffer containing 35 mM Mg(NO\textsubscript{3})\textsubscript{2} (I = 100 mM) the migration of WT cytochrome \textsubscript{c} and the mutants is similar in extracts and in dilute samples (Figure 9). This indicates that, in extracts, the interactions of WT cytochrome \textsubscript{c} and the mutants are disrupted in the presence of Mg2+. The more diffuse nature of the red bands in the extract lanes indicate that several cationic species exist for cytochrome \textsubscript{c} and each mutant. This result may suggest that cytochrome \textsubscript{c} (and mutant) interactions with macromolecules persist. In the cell extract samples, heavy precipitates can be observed in the lane wells and migrating toward the anode in the Mg2+-containing buffer. This suggests that Mg2+ interactions with the anionic clusters in the extracts reduce the net charge of the assemblies which no longer repel each other electrostatically leading to haphazard aggregation (and cytochrome \textsubscript{c} liberation).
Figure 9. Native gels showing the migration of cytochrome c (WT) and the single (SM), double (DM), triple (TM) and quadruple mutants (QM) in buffer and in *E. coli* extracts (sample volume = 20 μL). The electrophoresis buffer contained 20 mM Na₂HPO₄ or Tris-HCl at pH 7.0 and the indicated salt at an ionic strength of 100 mM.
Broader Implications

Recently, NMR studies of the interaction between *E. caballus* cytochrome *c* and a 41 bp oligonucleotide revealed that the complex was attenuated at increased pH and ionic strengths.109 These findings indicate that charge-charge interactions facilitate cytochrome *c*-DNA complexation.109 Moreover, numerous cytochrome *c* lysines (K7, K8, K72, K73, K86, K87 and K100) were involved in the interaction with DNA,109 suggesting the significance of lysine-phosphate interactions (*i.e.* charge-charge and salt bridge) in driving complex formation. Non-specific protein-DNA interactions, which typically precede specific complexation, are also characterised by a high proportion of charge-charge interactions.83 Thus, the cytochrome *c*-DNA system may prove useful for studies of non-specific protein-DNA interactions and their role in DNA searching (*i.e.* facilitated diffusion)311 and recognition.

As a small, lysine-rich protein, cytochrome *c* is a useful model for histones which form octameric assemblies that bind to DNA. The resulting nucleosomes regulate gene expression *in vivo*.312,313 As universal eukaryotic DNA compaction factors, nucleosomes bind to DNA with relatively low sequence specificity314 and these assemblies are highly dynamic.315 The role of histone charge in regulating nucleosome stability is well-established.316–318 For instance, acetylation of lysine 53 in the globular core of *S. cerevisiae* histone H3 facilitates binding of the switch/sucrose non-fermentable (SWI/SNF) nucleosome remodelling complex and altered gene activity.319 Structural analysis of the yeast nucleosome core particle shows that lysine 53 of histone H3 is located at the entry and exit points of the wrapped DNA superhelix.320 This indicates that the Lys53-DNA phosphate interaction is disrupted upon Lys53 acetylation (due to lysine charge neutralisation) which is expected to induce partial DNA unwrapping prior to the recruitment of the SWI/SNF complex which subsequently remodels the nucleosome.

Sequence analysis of globular histone folds321 from over 500 proteins across 154 species’ revealed that sequence variation within each histone class is relatively low and tends to preserve physicochemical properties.322 Accordingly, lysine and arginine residues typically comprise ~20% of histone sequences.323 Although amenable to CE studies,324 histone charge has never been determined by CE or any other technique. However, lysine and arginine residues comprise ~18% of the *S.*
Cytochrome *c* Charge and Interactions in *E. coli* Extracts

cerevisiae cytochrome *c* sequence which is closely similar to that of histones. The MCE-determined cytochrome *c* charge values may therefore also represent histone charge under physiologically-relevant ionic strengths. For instance, histone charge may also be substantially lower than calculated. Although weak and screened charge-charge interactions are significant in crowded and confined environments, a single charge inverted mutation at the lysine-rich cytochrome *c* binding site had a notable impact on its stickiness.\(^{74}\) This supports the idea that a single, post-translational modification (e.g. acetylation, phosphorylation) may drastically attenuate histone-DNA interactions, destabilising the nucleosome.

Conclusions

It is well-established that the charge of cytochrome *c* directs interactions with cognate and non-specific partners.\(^{18,21-23}\) MCE was used to determine the valence of cytochrome *c* in four different buffers containing salts at the physiologically-relevant ionic strength of 100 mM. Charge-inverted (R/K→E) cytochrome *c* mutants were also characterised by MCE. The effective valence of cytochrome *c* was substantially lower (~eightfold) than predicted, was salt-dependent, and decreased in the following order: KCl ≈ KNO\(_3\) > MgCl\(_2\) > K\(_2\)SO\(_4\). In the K\(_2\)SO\(_4\)-containing buffer, cytochrome *c* was charge-neutral. This result indicates that sulfates interact directly with cytochrome *c* forming a neutral macroion. Other free solution electrophoresis studies have identified preferential cationic protein-sulfate interactions,\(^{246,276}\) indicating the significance of tight, direct sulfate interactions with cationic surfaces.

Cytochrome *c* is preferentially solvated by anionic macromolecules in physiological solutions.\(^{74}\) Native gel electrophoresis confirmed that cytochrome *c* interacted pervasively with *E. coli* macromolecules resulting in macroanionic assemblies akin to the clusters expected to prevail in the cytoplasm.\(^{63}\) A previously described SEC technique\(^ {74}\) revealed that cytochrome *c* interacts preferentially with *E. coli* macromolecules and that the resulting assemblies were not disrupted by the presence of SO\(_4^2-\). Thus, although the lysine-rich surface patch of cytochrome *c* recognises sulfates, non-specific interactions between the cationic residues of cytochrome *c* and clusters of negatively charged residues on anionic protein surfaces prevail in the crowded cell extracts. Cytochrome *c* interactions were not disrupted when DNA or RNA were digested, indicating that cytochrome *c* does not interact
preferentially with these macromolecules. Thus, lysine-glutamate and/or lysine-aspartate interactions likely drive cytochrome c complexation with anionic proteins. Although lysine is not frequently observed in specific protein-protein interfaces, our data indicates that lysine may be important in facilitating weak, non-specific interactions (akin to quinary interactions) in biological environments. In keeping with earlier studies (Chapter 2), the disruptive effect of Mg\(^{2+}\) was observed by SEC and electrophoresis in extracts containing cytochrome c. The triple and quadruple mutants were approximately charge neutral and unsticky in extracts. These mutants therefore remain preferentially hydrated in extracts. This finding indicates that low net charge does not explicitly render proteins preferentially solvated by neighbouring macromolecules under native-like conditions. The increased negative electrostatic surface potential of the triple and quadruple mutants causes them to repel the anionic extract macromolecules. Thus, an intricate interplay of electrostatic forces governs the surface properties and non-specific interactions of the cytochrome c mutants. The triple and quadruple mutant data emphasise the role of screened, short-range charge-charge repulsions in preventing erratic aggregation in physiological environments. The need for more advanced models describing protein surface charge density/distribution and specific ion effects is apparent.
Chapter 4
Simple and Inexpensive Incorporation of 19F-Tryptophan for Protein NMR Spectroscopy

The material in this chapter has been published in part as:

Abstract

Fluorine-containing amino acids are valuable probes for biophysical studies of protein properties. 19F-labeled protein production can require expensive reagents, time-consuming genetic manipulation and compromised expression systems. Herein, a simple method of 19F-tryptophan labelled protein production is presented. This inexpensive approach involves the use of E. coli BL21 (DE3), the workhorse of protein production, which can utilise fluoroindole for the inducible over-expression of proteins containing 19F-tryptophan.
Introduction

Protein Labelling for NMR Spectroscopy Advances in protein labelling strategies have led to a surge in isotopic labelling schemes, expanding the frontiers of protein NMR studies in vitro and in living cells.227,325–329 Strategies for protein/peptide labelling have been described for several in vitro systems including cell-free synthesis,330 total chemical synthesis331 and chemical post-modification.332 However, in vivo strategies are often preferred because they are relatively inexpensive and facilitate in-cell protein characterisation. Heterologous over-expression of labelled proteins has been described in \textit{E. coli},73,74,333,186 \textit{Brevibacillus choshinensis},334 \textit{Pichia pastoris},335 \textit{Baculovirus}-infected insect cells336 and mammalian cells.235,337 Due to its well characterised genetics and the large number of strains and cloning vectors, \textit{E. coli} remains the most extensively used system for the efficient production of recombinant proteins.

Uniformly labelled proteins can be produced in \textit{E. coli} cells cultured on 13C and/or 15N-enriched minimal medium. Amino acid-selective isotope labelling can also be achieved by protein over-expression in \textit{E. coli} grown on minimal medium supplemented with 50-100 mg/L of the labelled amino acid or biosynthetic precursor(s).227 Non-uniform isotope labelling can simplify NMR spectra by eliminating peaks from unlabeled residues. Accordingly, complications in peak assignments that result from peak overlap or chemical shift degeneracy are reduced. The protein size limit of solution state NMR is also increased. For instance, 13C-methyl groups have emerged as particularly useful NMR probes due to their high mobility, inability to undergo chemical exchange with water and the high intrinsic sensitivity conferred by the three protons coupled to a single carbon nucleus.227,328 Indeed NMR studies of the dynamics and interactions of the 20S proteosome core particle (620 kDa) were facilitated by the selective 13CH\textsubscript{3}-enrichment of isoleucine, leucine, and valine side chains, high levels of protein deuteration (which reduces dipolar relaxation, enhancing resolution and sensitivity) and the use of TROSY-type pulse sequences.338 Similarly, 13CH\textsubscript{3} Met-labelled calmodulin was used to characterise interactions with the drug phenoxybenzamine hydrochloride inside living \textit{E. coli} cells.227
Amino acid-selective isotope labelling in *E. coli* is suited to amino acids which are the terminal products of their respective biosynthetic pathways (*e.g.* lysine, arginine, histidine, cysteine, methionine). Aspartate, glutamate, glutamine, serine, glycine and threonine are precursors for the biosynthesis of other amino acids and the label can be transferred between amino acids to an undesired site (isotope scrambling). Similarly, scrambling can occur when transaminases transfer the α-amino group from one amino acid to the α-keto precursors of other amino acids. Amino acid biosynthesis is regulated by feedback inhibition, however, and amino acid scrambling can be attenuated by supplementing the growth medium with 50-100 mg/L of the other 19 unlabelled amino acids, which suppresses endogenous amino acid biosynthesis. Auxotrophic strains, which are rendered defective in the synthesis of a specific amino acid by genetic lesions, can be used in the production of selectively labelled protein. Auxotrophic *E. coli* strains must be grown in media enriched in the amino acid that cannot be biosynthesised. Some auxotrophic strains have slow growth rates and low yields and the construction of multiply auxotrophic strains normally results in reduced cell viability. A limited number of amino acid biosynthetic pathways can be suppressed by specific inhibitors leading to induced auxotrophy. For example, glyphosate inhibits 5-enolpyruvyl shikimic acid-3-phosphate synthase which is essential for aromatic amino acid biosynthesis (Figure 1). Indoleacrylic acid blocks tryptophan synthase (Figure 1). Although mainly reported for *E. coli*, fluorinated recombinant proteins have also been expressed in *Lactococcus Lactis* by inducing aromatic amino acid auxotrophism with indoleacrylic acid or glyphosate.

![Figure 1. Structures of glyphosate (left) and indoleacrylic acid (right)](image-url)
Protein Labelling with Unnatural Amino Acids The incorporation of unnatural (e.g., fluorinated, nitrobenezyl, pyridyl) amino acids by the E. coli expression machinery is typically achieved using an orthogonal tRNA/aminoolyacyl-tRNA synthetase pair that encode the unnatural amino acid.327 The rare amber codon is recognised by the orthogonal tRNA and is introduced at a single site in the gene for the target protein.339,345 For example, the tRNA\textsubscript{CUA}/Tyr tRNA synthase pair were expressed in E. coli and used in the biosynthesis of trifluoromethyl-L-phenylalanine-labelled nitroreductase.346 This technology347,348 has led to a resurgence in NMR studies of 19F-labelled proteins, which were described as early as 1974.349 Other strategies for 19F-labelling in E. coli routinely involve the incorporation of fluorinated aromatic amino acids by manipulating the Shikimate pathway of aromatic amino acid biosynthesis.325,329,342 Fluorinated aromatic amino acids are useful NMR probes as the number of aromatic amino acids in proteins is usually low, leading to facile spectral interpretation. Moreover, E. coli strains that are auxotrophic for the aromatic amino acids have been developed and inhibitors exist for several enzymes in the aromatic amino acid biosynthesis pathway.326 Additionally, \textit{m}, \textit{r}-19F-tyrosine, 4-, 5-, and 6-19F–labeled tryptophan, and \textit{m}–, \textit{o}–, and \textit{p}–19F-phenylalanine are commercially available.350

\textbf{19F NMR of Proteins} Several properties of 19F make it an attractive NMR-active (spin ½) nucleus. Firstly, fluorine is rarely present in biological systems and therefore 19F spectra have no background signals.351 Fluorine is small (van der Waals radius = 1.47 Å) and protein fluorination is therefore unlikely to induce large structural changes. 19F is 100% naturally abundant and has a high gyromagnetic ratio making it highly NMR sensitive on a par with hydrogen.347,348 The 19F nucleus has a broad chemical shift range (> 300 ppm) and is sensitive to subtle changes in the local chemical environment including protein tertiary structure. For instance, Oldfield et al. showed that six 4-fluorotryptophan residues in hen egg white lysozyme (HEWL; 14.3 kDa) were well-resolved and spanned 16.8 ppm.352 By comparison, only a single, broad peak was observed in guanidinium-chloride denatured 4-fluorotryptophan HEWL.352 This finding emphasises the fact that hydrophobic environments generally deshield fluorine nuclei, eliminating chemical shift degeneracies. Notably, the 5 or 6-fluorotryptophan residues of native, folded HEWL spanned just 2.8 and 2.4 ppm, respectively.352 2H solvent isotope shift studies (in
which solvent exposed 19F nuclei experience an upfield shift from the corresponding chemical shift in H$_2$O) and crystal structure analysis suggested that the decreased resolution observed for 5 or 6-fluorotryptophan, relative to 4-fluorotryptophan arose from their increased solvent exposure and consequent shielding.352

In the past decade, fluorine-containing proteins have found numerous applications including the study of high molecular weight proteins,346,353 protein folding,348,354–357 domain swapping,358,359 and protein-ligand binding.360,361 The 19F nucleus has been particularly useful in characterising ligand binding by G protein-coupled receptors,353 and overcoming the challenges of in-cell NMR.184,346,357 For instance, Ye and co-workers recently demonstrated the advantages of 19F-labelling over 15N, 13C, and 2H enrichment in Xenopus laevis oocytes for several test proteins.362 Unlike the 15N, 13C, and 2H enriched test proteins (GB1, ubiquitin calmodulin, protein disulfide isomerase and α-synuclein), all of the 19F-labelled test proteins were detectable in oocytes with spectra that were not compromised by background signals.362 By probing the 19F longitudinal relaxation time (T_1) of 5-fluorotryptophan or 3-fluorotyrosine labelled GB1 the authors determined that the viscosity of the oocyte cytoplasm was 1.2-1.3 times that of water.362 The 19F transverse relaxation rate (R_2) also reports on the viscosity imposed by weak interactions of the test protein with the surrounding medium. Thus, the difference in viscosities obtained from T_1 and R_2 measurements indicates the extent of test protein interactions with the cytoplasm. R_2 measurements suggest a viscosity twice that of water.362 Considering the R_2-measured viscosity experienced by GB1 in E. coli was 6-11,90,131 GB1 interactions with the oocyte cytoplasm are negligible. The authors performed 19F line shape analysis to infer that the majority of GB1 resonance broadening arises due to chemical shift disparities imposed by the numerous microenvironments harbouring GB1 throughout the cytoplasm.362 This 19F NMR study represents the first quantitative NMR evidence of the effects of intracellular inhomogeneity on protein detectability in oocytes.

Novel Routes for Producing 19F Tryptophan-Labelled Proteins Current methods to incorporate fluorine-containing amino acids are hampered by time-consuming genetic manipulation, compromised expression systems and require expensive amino acid analogues and inhibitors.325,342,346,357,358,363 An alternative strategy is to use
fluorinated biosynthetic amino acid precursors. The use of labelled precursors (*e.g.*
^{13}C pyruvate) is a well-established strategy for the production of selective ^{13}C amino acid labelling.\(^{227}\) Here, a simple method for the production of two proteins, GB1 and flavodoxin, containing ^{19}F-tryptophan in the standard, prototropic expression strain *E. coli* BL21 (DE3) is described. The advantages of selecting Trp are its lower abundance (therefore giving rise to fewer signals relative to ^{19}F-Tyr or ^{19}F-Phe) and its frequent occurrence as a hot spot residue at protein interfaces.\(^{364,365}\)

Precedent for this work comes from several lines of evidence: (1) the α-subunit of tryptophan synthase cleaves 3-indole-D-glycerol-3′-phosphate to release indole for subsequent attachment to an activated serine in the β-subunit. Crystal structure analysis reveals that the α-subunit accommodates a broad range of substrate mimics including fluorinated analogues.\(^{366,367}\) (2) *E. coli* can incorporate isotopically-enriched (^{13}C) indole to yield protein that is suited to selective NMR detection of tryptophan side chains.\(^{368}\) (3) *E. coli* M5219 (a tryptophan auxotroph) can use indole analogues (*e.g.* 7-azaindole, 4 and 5-fluoroindole) for tryptophan synthesis\(^ {369}\) and (4) halotryptophans can be produced by the addition of haloindole to *E. coli* cell lysates containing over-expressed tryptophan synthase.\(^{370}\)

Materials and Methods

Protein Production The pET3a expression vector coding for GB1 (pGB1-QDD)\(^ {96}\) contained the T7/lac promoter and the ampicillin resistance gene. GB1 was produced by transforming the vector into *E. coli* BL21 (DE3). A single colony was used to inoculate a 5 mL LB preculture containing 75 μg/mL carbenicillin and 2 mM MgSO$_4$ and grown overnight at 30 °C. All cultures were supplemented with 75 μg/mL carbenicillin and 2 mM MgSO$_4$ and incubated with 300 rpm shaking. The preculture was transferred to a 1 L LB main culture and grown at 37 °C. When an optical density at 600 nm of 0.7 was reached the cells were harvested by centrifugation at 4500 rpm, 20 °C for 25 minutes. The cells were gently resuspended in 1 L minimal medium (50 mM Na$_2$HPO$_4$, 50 mM KH$_2$PO$_4$, 2 g/L (NH$_4$)$_2$SO$_4$, 2 g/L D-glucose, 20
mM sodium citrate pH 7.0, 20 mM sodium succinate pH 7.0, 1 x 5052, 30 mg thiamine). After 30 minutes incubation at 37 °C the cells were split into 4 x 250 mL cultures (each in 2 L Erlenmeyer flask) which were either (A) unsupplemented or supplemented with (B) 120 mg/L 6-fluoro D/L-tryptophan, 60 mg/L L-tyrosine, 60 mg/L L-phenylalanine and 1 g/L glyphosate, (C) 60 mg/L 5-fluoroindole, and (D) 300 mg/L 5-fluoroindole. The 5-fluoroindole was first dissolved in 0.5 mL of dimethyl sulfoxide. GB1 over-expression was induced with 1 mM IPTG, the cells were harvested after 2 hours and resuspended in lysis buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5) before freezing.

The pET3a expression vector coding for flavodoxin (pDH07) also contained the T7/lac promoter and the ampicillin resistance gene. Flavodoxin was expressed as described for GB1 but with the following changes: the cells harvested from 400 mL of LB culture were resuspended in 500 mL minimal medium and split into 4 x 100 mL cultures (each in a 500 mL Erlenmeyer flask; the 5th 100 mL aliquot was discarded). After 30 minutes incubation the cultures were either (A) unsupplemented or supplemented with (B) 60 mg/L indole, (C) 60 mg/L 5-fluoroindole or (D) 30 mg/L 5-fluoroindole. Flavodoxin over-expression was induced with 1 mM IPTG and the cells were harvested after 4 hours before resuspending in the lysis buffer and freezing.

The pBPCYC1(wt)/3 expression vector codes for cytochrome c, cytochrome c haem lyase and the ampicillin resistance gene. This plasmid was transformed into E. coli BL21 (DE3) and a single colony was used to inoculate a 5 mL LB preculture which was incubated for 3 hours at 37 °C. 1 mL of the preculture was used to inoculate each of the following 100 mL cultures: (A) TB (terrific broth), or minimal medium that was (B) unsupplemented or supplemented with (C) 60 mg/L indole (D) 60 mg/L 5-fluoroindole or (E) 20 mg/L 5-fluoroindole. Cytochrome c was constitutively expressed in each culture for 24 hours before harvesting, resuspending in lysis buffer and freezing.

Protein Purification Cell slurries containing GB1 were thawed and added to boiling, lysis buffer (30 mL buffer per cell suspension from 1 L culture), heated to 80 °C and then cooled on ice for 10 minutes before centrifuging at 11,000 rpm, 10 °C for 15 minutes. The supernatant was loaded onto a diethylaminoethyl (DEAE)
sepharose ion exchange column equilibrated in 20 mM Tris-HCl, 50 mM NaCl, pH 7.5. GB1 was eluted using a linear gradient from 0-1 M NaCl. GB1-containing fractions were concentrated and exchanged into a low ionic strength buffer before a second round of DEAE chromatography. The GB1-containing fractions were concentrated to < 800 μL before loading onto an XK 16/70 column packed with Superdex 75 equilibrated in 20 mM KH₂PO₄, 50 mM NaCl, pH 6.0. Protein purity was assessed by SDS-PAGE.

Cell slurries containing flavodoxin were thawed and sonicated before adding 10 μg/mL DNase 1, 100 mM MgSO₄ and centrifuging at 11,000 rpm 10 °C for 40 minutes. The supernatant was treated with ammonium sulfate at 30% saturation before centrifuging at 11,000 rpm 10 °C for 40 minutes to remove the precipitate. The supernatant was dialysed overnight at 4°C against 2 L of 20 mM Tris-HCl pH 7.0. The cleared extract was loaded onto a DEAE column equilibrated in 20 mM Tris-HCl at pH 7.0 and flavodoxin was eluted using a linear gradient from 0-1 M NaCl. The flavodoxin-containing fractions were concentrated and exchanged into a low ionic strength buffer before a second round of DEAE chromatography in which flavodoxin was eluted using a linear gradient from 0-0.5 M NaCl. The flavodoxin sample was then purified by two rounds of SEC in 20 mM KH₂PO₄, 200 mM NaCl, pH 6.0. Flavodoxin-containing fractions (yellow) with an absorbance ratio A₂74/A₄67 of < 12 were pooled and exchanged into NMR buffer (20 mM KH₂PO₄, 75 mM NaCl, pH 6.0).

Mass Spectrometry The masses of unlabelled and fluorinated GB1 were determined using a Waters LCT Premier XE Time of Flight (TOF) mass spectrometer run in positive ion mode equipped with a Waters 2795 HPLC and MassLynx Software.

NMR Spectroscopy The typical NMR sample conditions comprised 0.3-0.5 mM ¹⁹F protein (GB1 or flavodoxin) in 20 mM KH₂PO₄, 50 or 75 mM NaCl, 10% D₂O at pH 6.0. The in-cell and cell extract NMR samples were prepared as described previously (Chapter 2).¹⁰⁰ Samples of the starting materials, 6-fluoro D/L-tryptophan and 5-fluoroindole (~2 mM) were prepared in the same buffer with 10% D₂O. 1D ¹⁹F spectra were acquired at 25 °C on a Varian 500 MHz spectrometer equipped with a OneNMR probe operating at 470 MHz. GB1 spectra were obtained with 512 transients, 65k points, a spectral width of 230 ppm and a delay time of 1 second. The
measurement time was approximately 14 minutes. The cell lysate sample contained ~0.1 mM GB1 and the spectrum was obtained with 2048 transients. Spectra were referenced to a 10% trifluoroacetic acid sample. Flavodoxin spectra were acquired with 1024 transients, 5435 k points and a spectral width of 231.1 ppm. A relaxation delay time of 0.7 s and an acquisition time of 0.05 s were used. Baseline correction was applied where necessary. The 19F NMR data were analysed in MestReNova. 372

1H, 15N HSQC spectra were acquired at 30 °C on a Varian 500 MHz spectrometer equipped with a HCN probe.

Results and Discussion

Expression of 19F Trp-labelled GB1 GB1 contains a single Trp residue (Figure 3) and is a model for NMR studies.74,76,96,99,358,36219F Trp-labelled GB1 was expressed in *E. coli* BL21 (DE3) cultured in minimal medium using two different labelling protocols. The first protocol involved the addition of 1 g/L glyphosate to block the Shikimate pathway. Here, the medium was supplemented also with 120 mg/L 6-fluoro D/L-tryptophan, 60 mg/L L-tyrosine and 60 mg/L L-phenylalanine. The second labelling protocol involved the addition of 60 mg/L or 300 mg/L of the tryptophan precursor 5-fluoroindole.

Figure 4 shows the expression level of GB1 in minimal medium alone and in minimal medium supplemented as described. GB1 production was comparable in all cultures, except in minimal medium containing 300 mg/L 5-fluoroindole (Figure 4, lanes D). The low yield of GB1 was similar to that observed pre-induction (Figure 4, lane R) and was mirrored in a reduced total cell mass for culture D [~0.35 g (wet weight) compared to ~0.45 g for cultures A-C]. This finding suggests that high concentrations of 5-fluoroindole inhibit cell growth. Similarly, 19F-labelled aromatic amino acids can

![Figure 3. Crystal structure of GB1 with the Trp43 side chain shown as sticks. The fluorination site of 5-fluorotryptophan GB1 is indicated by an asterisk](image-url)
Simple and Inexpensive Incorporation of 19F-Tryptophan for Protein NMR

inhibit *E. coli* growth. 325,350,363 Importantly, the yield of 19F-labeled protein from growth medium containing 60 mg/L 5-fluoroindole was comparable to that obtained from standard medium (Figure 4), suggesting that 5-fluoroindole was not toxic at this concentration. Pure protein samples were analysed by mass spectrometry and the observed masses (Table 1) indicated successful incorporation of 6-fluorotryptophan and 5-fluoroindole into B and C, respectively. 19F NMR spectra were acquired on the starting materials and the purified GB1 samples and were referenced to trifluoroacetic acid (Figure 5). The starting materials, 6-fluoro-tryptophan and 5-fluoroindole, gave rise to complex multiplets at -46.1 and -50.1 ppm, respectively (Figures 5A and 3B). GB1 produced from culture containing 6-fluorotryptophan gave rise to a signal at -45.1 ppm (Figure 5A) while GB1 produced from culture containing 5-fluoroindole gave rise to a signal at -48.2 ppm (Figure 5B), confirming the incorporation of the starting material. The chemical shifts were similar to previously reported values for proteins containing 6-fluorotryptophan 354 and 5-fluorotryptophan. 355,373,374

Figure 4. SDS-PAGE analysis of the total protein content of cell slurries prepared from minimal medium cultures (R) before and after induction. The minimal medium was (A) unsupplemented or supplemented with (B) 120 mg/L 6-fluoro D/L-tryptophan, 60 mg/L L-tyrosine, 60 mg/L L-phenylalanine and 1 g/L glyphosate, (C) 60 mg/L 5-fluoroindole, and (D) 300 mg/L 5-fluoroindole. Label numbers 1 and 2 indicate the number of hrs post induction.

![Figure 4](image)

Table 1. Observed and calculated masses for WT and 19F-GB1

<table>
<thead>
<tr>
<th>GB1 Purified from Culture</th>
<th>Calculated Mass (Da)</th>
<th>Observed Mass (Da)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6224.8</td>
<td>6224.0</td>
</tr>
<tr>
<td>B</td>
<td>6242.8</td>
<td>6241.9</td>
</tr>
<tr>
<td>C</td>
<td>6242.8</td>
<td>6244.1</td>
</tr>
</tbody>
</table>

19F NMR spectroscopy is useful for the detection of proteins inside cells. 339,362 The 19F in-cell NMR method has been developed using proteins labelled with 3-fluorotyrosine 357 and trifluoromethyl-phenylalanine 346,357 These reagents are costly and the latter system is beset with the challenges of orthogonal codons. Thus,
in addition to the NMR spectroscopic characterisation of pure 19F-labelled GB1, cell extracts containing overexpressed 19F-GB1 were also studied. The cell extract gave rise to three signals in the 1D 19F spectrum (Figure 5C), which could be assigned to 5-fluorotryptophan-labelled GB1 and free 5-fluoroindole by comparison to the spectra for the pure compounds (Figure 3B). The peak at -49.4 ppm corresponds to free 5-fluorotryptophan. The presence of a signal for 19F-GB1 in the cell extract demonstrates the utility of fluorotryptophan-labelled proteins for 19F-NMR detection of a specific protein in a complex mixture.

A 15N/19F-labelled GB1 sample was produced by expression on minimal medium containing both 5-fluoroindole and $(^{15}$NH$_4$)$_2$SO$_4$. The 1H,15N HSQC spectrum (Figure 6) displayed minor chemical shift perturbations with respect to non-fluorinated GB1 confirming that 5-fluoro-tryptophan did not induce significant structural perturbations in the protein.
Expression of 19F Trp-labelled Flavodoxin Flavodoxin contains 4 tryptophan residues (Figure 7) and has a higher tryptophan occurrence frequency (2.4%) than the average protein (1.4%).375 To demonstrate the application of the 19F-Trp labelling strategy to proteins with more than 1 tryptophan, flavodoxin was used as a test case. Figure 8 shows the expression level of flavodoxin 0-4 hours post-induction in minimal medium alone and in minimal medium supplemented with 60 mg/L indole, 60 or 30 mg/L 5-fluoroindole. The total protein content was highest in the cell slurries prepared from normal minimal medium and decreased in the following order: 60 mg/L indole > 30 mg/L 5-fluoroindole > 60 mg/L 5-fluoroindole. Since reduced flavodoxin is blue-grey in colour, the difference in flavodoxin yield from the cultures grown on minimal medium supplemented with 30 and 60 g/L 5-fluoroindole was visible also in the cell pellets (Figure 9). The standard culture and the culture containing 60 mg/L indole had comparable total protein contents (Figure 8) indicating that indole is not toxic to *E. coli* at this concentration (0.5 mM). Indeed
indole is a well-established signalling molecule involved in plasmid stability, biofilm formation, stress responses, antibiotic resistance and virulence.376 Previous studies of indole import and export in \textit{E. coli} (using cultures supplemented with 2-10 mM indole) did not report any loss of cell viability.376 This finding supports our observations. Although flavodoxin was expressed to low levels in \textit{E. coli} cultured in minimal medium containing 60 mg/L 5-fluoroindole, the total protein content of the cell slurry remained low, even four hours post induction (Figure 8).

A similar inhibitory effect was observed during the expression of the \textit{Ralstonia solanacearum} fucose-binding lectin (RSL) in minimal medium containing 60 mg/L 5-fluoroindole (P.M. Antonik and P.B. Crowley, personal communication). The expression level of RSL was higher when the minimal medium was supplemented with 30 mg/L 5-fluoroindole compared to 60 mg/L 5-fluoroindole. Curiously, GB1 expression or cell growth was not significantly compromised in medium supplemented with 60 mg/L 5-fluoroindole. Indole, and probably fluoroindole, diffuses through the \textit{E. coli} cell membrane without the need for endogenous transport machinery.376 The high level of GB1 expression in the medium containing 60 mg/L 5-fluoroindole suggests that 5-fluoroindole is not toxic to \textit{E. coli} cells at this external concentration. The disparity in cell toxicity effected in the presence of 60 mg/L 5-fluoroindole coincides with the number of tryptophans in the over-expressed test protein. GB1 has a single tryptophan while flavodoxin and RSL have 4 and 7 tryptophans, respectively. Owing to the known toxicity of fluorinated aromatic amino acids,345,350,363 it is likely that the higher toxicity is effected by the increased cytosolic concentration of 5-fluorotryptophan produced from 5-fluoroindole in response to the over-expression of flavodoxin or RSL. Given that the culture contains 5-fluoroindole, the inhibition of
cell growth is unlikely to arise from hampered indole synthesis. Perhaps the suppressed *E. coli* growth in minimal medium containing 60-300 mg/L 5-fluoroindole occurred due to the suppression of another cellular process by 5-fluorotryptophan. The toxicity of 5-fluorotryptophan is expected to arise from its interference with the conversion of anthranilic acid to indole by anthranilate synthetase.377

Figure 8. The total protein content of cell slurries prepared from minimal medium cultures 0-4 hours after the induction of flavodoxin overexpression. The minimal medium contained no additive or 60 mg/L indole, 60 mg/L 5-fluoroindole or 30 mg/L 5-fluoroindole. The gel lanes are labelled; M: molecular weight marker; 0hr-4hr: 0-4 hours post-induction. The arrow marks the migration position of flavodoxin.
19F-labelled Cytochrome c Expression Despite the fact that it contains a single tryptophan and expresses to high levels in E. coli BL21 (DE3), cytochrome c could not be expressed constitutively in E. coli BL21 (DE3) on minimal medium supplemented with 20 or 60 mg/L 5-fluoroindole. Figure 10 shows the total protein content of terrific broth (TB) and minimal medium cultures 24 hours after inoculation with 1 mL aliquots from the same preculture. Cytochrome c expression was evident in TB and in minimal medium that is unsupplemented or supplemented with 60 mg/L indole (Figure 10). The low total protein content of the minimal medium containing 20 and 60 mg/L 5-fluoroindole indicates that cell growth is inhibited by 5-fluoroindole in cultures with low cell densities. This finding was reflected in the optical density at 600 nm (Table 2). To test the effects of 5-fluoroindole on cell growth, the O.D.₆₀₀ of low density minimal medium cultures containing untransformed E. coli BL21 (DE3) cells ± 5-fluoroindole was monitored over four hours. The minimal medium cultures were prepared by performing a 1 in 100 dilution of (A) a saturated LB culture (O.D.₆₀₀ = 8) or (B) a preculture grown for three hours. Similar dilution approaches are used in the preparation of minimal medium cultures from precultures for protein (A) over-expression and (B) constitutive expression, respectively (see Materials and Methods). Notably, the O.D.₆₀₀ of the control cultures lacking 5-fluoroindole was comparable to that of the
cultures containing 30 or 60 mg/L 5-fluoroindole (data not shown). This result suggests that the expression vector and the intracellular concentration of 5-fluorotryptophan likely affect the growth of *E. coli* cultures. It can be concluded that this labelling scheme is unsuited to *E. coli* cultures that constitutively express a protein of interest.

<table>
<thead>
<tr>
<th>Culture</th>
<th>Growth Medium</th>
<th>O.D.600</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>+ Indole (mg/L)</td>
<td>4.24</td>
</tr>
<tr>
<td>Minimal medium</td>
<td>+ Indole (mg/L)</td>
<td>3.69</td>
</tr>
<tr>
<td>Minimal medium + 60 mg/L indole</td>
<td>+ 5-fluoroindole (mg/L)</td>
<td>3.64</td>
</tr>
<tr>
<td>Minimal medium + 60 mg/L 5-fluoroindole</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Minimal medium 20 mg/L 5-fluoroindole</td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10. Total protein content of *E. coli* cell slurries constitutively expressing cytochrome *c* for 24 hours in terrific broth (TB) or minimal medium alone (MM) or minimal medium supplemented with 60 mg/L indole, or 60 or 20 mg/L 5-fluoroindole. M stands for molecular weight marker.

Table 2. O.D.600 of *E. coli* cultures 24 hours post inoculation

In-cell and in vitro NMR of 19F-Trp labelled Flavodoxin The incorporation of 5-fluoroindole into flavodoxin biosynthesis is evident from the 19F spectrum of the purified flavodoxin, which contains 4 well-resolved peaks at -120.46, -122.18, -124.30 and -125.24 ppm (Figure 11A). In-cell 19F NMR has been useful for the detection of ‘sticky’ proteins that are invisible by the HSQC experiment.\(^{362,378}\) Flavodoxin was undetectable by 1H, 15N HSQC-TROSY NMR in cells and extracts
Accordingly, 19F-flavodoxin was studied by 19F NMR inside *E. coli*. The 19F spectrum obtained from a suspension of *E. coli* cells after 4 hours of flavodoxin over-expression is dramatically different to flavodoxin’s *in vitro* spectrum (Figure 11B). The peak at -125.67 ppm corresponds to free 5-fluoroindole (Figure 11C). A second peak located 0.8 ppm downfield of the 5-fluoroindole peak corresponds to 5-fluorotryptophan (Figure 11B).362 No other peaks were observed in the spectrum and thus, 19F Trp labelled flavodoxin could not be detected by NMR inside *E. coli* cells despite high levels of over-expression (see blue-grey pellet; Figure 9).

Conclusions

Labelling of a target protein is imperative for NMR studies. Since the 1970s, 19F-labelled aromatic amino acids have been employed as NMR probes for investigations of biophysical properties. More recently, the application of 19F NMR has tended toward protein recognition studies.353,359,360,373,379,380 Herein, an inexpensive, facile method of 19F Trp-labelled protein production is described which involves supplementing minimal medium with the fluorinated tryptophan precursor, 5-fluoroindole. In contrast to the standard method of fluorotryptophan incorporation, which relies on the use of tryptophan analogues and inhibitors,325,374 our method does not require inhibitors of aromatic amino acid biosynthesis. The use of 5-fluoroindole instead of 6-fluoro-D/L-tryptophan represents a ~fifteenfold decrease in costs (based on gram prices from SIGMA). The cost advantage is substantially greater when the prices of the other
conventional additives, phenylalanine, tyrosine and glyphosate are factored in. The greater ease of production of fluorine-labelled proteins will lead to advancements in 19F protein NMR. In particular, the field of in-cell NMR spectroscopy15 will benefit from the ability to produce 15N- and 19F-labelled protein samples by the simple addition of fluoroindole to the standard *E. coli* expression system. In combination with 19F NMR, 5-fluorotryptophan fluorescence could be exploited to yield a direct comparison of NMR and fluorescence-probed intracellular parameters (*e.g.* viscosity, pH), protein dynamics and interactions. The different timescales accessible to both techniques as well as their differential susceptibility to local intracellular environments could be harnessed to reveal novel aspects of quinary structure. The determination of NMR distance constraints for membrane protein structure elucidation may also benefit from more facile routes toward 19F-labelled protein production.380 Finally, it is expected that this approach will facilitate the structural characterisation of fluorine-labelled proteins, leading to an improved understanding of non-covalent interactions involving fluorine.379
Chapter 5
Studies of Quinary-Like Interactions in E. coli Extracts

Manuscript in preparation
Abstract

Intracellular protein interactions structure the cytoplasm into functional zones. A detailed knowledge of protein interactions in physiological environments will therefore enhance our understanding of cytoplasmic structure. Although the interactions stabilising protein quaternary structure are well-established from \textit{in vitro} studies, insights into the low-specificity protein-cytoplasm interactions that comprise ‘quinary structure’ are scant. This knowledge gap arises due to the significant difficulties associated with studying dynamic processes at the molecular-level \textit{in vivo}. To understand the major physicochemical features governing quinary-like structures in physiological environments, the interactions of two sticky test proteins, cytochrome \textit{c} and flavodoxin, were explored in \textit{E. coli} extracts during a series of twofold serial dilutions. To this end NMR and native gel electrophoresis were employed. The inability to disrupt cytochrome \textit{c}’s quinary-like interactions indicates that it forms relatively high affinity complexes with \textit{E. coli} macroanions. Charge is not implicated in flavodoxin’s attractive quinary interactions which were disrupted by a combination of cell lysis and stepwise dilutions. Together, the findings suggest that quinary interactions are governed by a complex interplay of non-covalent interactions that can, in the case of the anionic protein flavodoxin, be modulated by the level of macromolecular crowding.
Quinary-Like Interactions in E. coli Extracts

Introduction

Interactions beget complexity. Although often typified at the species level, this phenomenon also manifests *in cellulo* where myriad molecular interactions structure the cytoplasm into functional zones. Intracellular interactions are not limited solely to quaternary structure formation. Biomolecules tend to interact extensively *in vivo* to produce functional cytoplasmic meshworks that span distances far greater than the dimensions of oligomeric protein assemblies. The term quinary structure denotes the dynamic, weak interactions (K_d > 1 µM) that organise the cytoplasm. Considered less specific than the interactions that structure ‘permanent’ macromolecular machines, quinary interactions likely govern inter-machine cross talk and cytoplasmic responsivity. Owing to their inherent transience, quinary interactions are readily perturbed and must therefore be captured *in vivo*.

Although NMR spectroscopy is well-suited to the residue-level characterisation of transient interactions in various milieus, quinary interactions have confounded in-cell HSQC studies of globular proteins. The increased apparent molecular weights of proteins inside cells results in decreased rotational correlation times and reduced spectral quality. This shortcoming has been used to suggest the ubiquity of quinary interactions *in vivo*. In-cell NMR studies of biologically inert (‘unsticky’) proteins and their mutants have been used to explore quinary structure. For instance, Monteilth and co-workers used NMR-monitored hydrogen/deuterium exchange to study the effects of quinary interactions on the stability of GB1 and four of its point mutants in *E. coli* cells. Measurements of mutant GB1 stability in buffer revealed that the average destabilisation effected by the mutations was low. However, in the *E. coli* cytoplasm the mutations destabilised GB1 tenfold greater than in buffer due to changes in the quinary interactions of the mutated GB1. This result indicates the role of quinary interactions in altering biophysical protein properties. Importantly, the most dramatic destabilisation was effected by the charge-inverted mutant GB1 D40K in *E. coli*, suggesting the role of surface charge-charge contacts in modulating a protein’s quinary interactions and, thus, stability *in vivo*. Subsequently, Cohen and co-workers showed that the quality of the GB1 K10H HSQC spectrum deteriorates with decreasing cytoplasmic pH, indicating that surface charge neutralisation extends quinary structure. Barbieri *et al.* used mutagenesis and in-cell NMR to show that
the quinary-like interactions of the cationic human protein profilin 1 differed in human and *E. coli* cells. Profilin 1 interactions were disrupted in *E. coli* cells by mutating 4 or 5 cationic residues to uncharged or anionic residues. *E. coli* extract NMR studies indicated that, in the absence of physiological partners, profilin 1 interacted preferentially with *E. coli* RNA via arginine/lysine-phosphate salt bridge interactions. Although studies of quinary structure are in their infancy, the role of attractive charge-charge interactions in driving quinary-like interactions in the cytoplasm has been established. However, given the abundance of anionic proteins in many proteomes, knowledge of non-covalent forces governing anionic protein stickiness is also required. Thus, investigations of the low-specificity interactions of both cationic and anionic test proteins under native-like conditions remain crucial for identifying the key physicochemical forces driving ‘quinary-like’ interactions.

Herein, *E. coli* extracts are used to mimic the complex, heterogeneous cytoplasm for investigations of the quinary-like interactions of two oppositely charged proteins, cytochrome *c* and flavodoxin. Neither protein is NMR detectable in living *E. coli* cells (Chapters 3, 4 and reference 74) indicating their sticky nature. NMR and native gel electrophoresis was used to explore the physicochemical basis of cytochrome *c* and flavodoxin interactions in extracts during two-stage, twofold serial dilutions. The results indicate differences in the strength of the attractive, quinary-like interactions involving either the cationic cytochrome *c* or the anionic flavodoxin. These findings are used to consider how different levels of macromolecular crowding might differentially tune the quinary interactions of cationic and anionic proteins.

Materials and Methods

Protein Expression and Purification 15N-labelled and unlabelled *S. cerevisiae* cytochrome *c* and *E. coli* flavodoxin were expressed in *E. coli* BL21 (DE3) and purified according to standard methods (Chapters 3 and 4). Purified cytochrome *c* was oxidised with a 2-3 fold excess of K3[Fe(CN)6] at 4 °C. Cytochrome *c* and flavodoxin samples were exchanged into NMR buffer (20 mM KH2PO4, 75 mM NaCl, pH 6.0) before freezing. Protein concentrations and purity were estimated from UV-vis spectra using the extinction coefficients $\varepsilon_{550} = 27.5 \text{ mM}^{-1}$
Quinary-Like Interactions in E. coli Extracts

1 cm⁻¹ and ε₄₆₇ = 8.5 mM⁻¹ cm⁻¹ for cytochrome c and flavodoxin, respectively. Protein purity was assessed also using SDS-PAGE.

Cell Extract Preparation Cell extract samples were prepared as previously described from 50 mL LB cultures saturated with E. coli BL21 DE3 (O.D.₆₀₀ = 7; Chapter 3). The extracts were always pre-treated with DNase I and were stable for up to 8 hours when stored on ice. Directly prior to NMR or native gel electrophoresis the concentrated extracts were spiked with 0.3 or 0.2 mM of the ¹⁵N-labelled or unlabelled test protein, respectively. Cell extract dilutions were performed using 20 mM Na₂HPO₄, pH 7.0 and, for the NMR experiments, the test protein and D₂O concentration was always restored to 0.3 mM and 10 %, respectively, before the next acquisition.

NMR Spectroscopy ¹H,¹⁵N TROSY-selected HSQC spectra were acquired at 30 °C with 16 scans and 64 increments on a Varian 600 MHz Spectrometer equipped with a HCN coldprobe. The data were processed in Biopack (using linear prediction in the ¹⁵N dimension) and NMRPipe.

Native Gel Electrophoresis 20 μL samples of 0.2 mM cytochrome c and/or flavodoxin were analysed in dilute solution and in E. coli extracts by native gel electrophoresis in 2% agarose gels (13.5 cm x 14.0 cm). The gels were prepared in 20 mM KH₂PO₄, pH 6.0 or 20 mM Na₂HPO₄, pH 7.0. 100 mM KNO₃ has a relatively high conductivity and is therefore a suitable alternative to NaCl for ionic strength studies (Chapter 3). 20 mM phosphate buffers containing 100 mM KNO₃ were therefore used to produce high ionic strength buffers at pH 6.0 or 7.0. Gels were equilibrated in the selected buffer for 30 minutes at 4 °C prior to running at a constant voltage (100 V) for 30 minutes at 4 °C. The gels were imaged using a flatbed scanner directly after electrophoresis. Each gel image was processed identically using Adobe Photoshop. Importantly, changes to the colour balance, saturation and contrast were applied uniformly across the images (Chapter 3).

Results and Discussion

In-Cell NMR Recapitulates Cytochrome c and Flavodoxin Promiscuity. In-cell NMR has emerged as an effective tool to gauge the extent of test protein quinary interactions. Figure 1 compares the ¹H, ¹⁵N HSQC-TROSY
spectra for cytochrome c or flavodoxin in buffer or in live *E. coli* cells (the cytochrome c data were published previously74). Although both proteins give rise to high quality HSQC spectra in buffer they are undetectable *in cellulo*. Similarly, cytochrome c was not detectable in *E. coli* extracts, despite the use of \(^1\)H,\(^{15}\)N TROSY-HSQC experiments (Figure 2).292,391,109,392 Flavodoxin was weakly detectable in the TROSY-HSQC spectrum obtained from the concentrated extract (Figure 2). Together, these data indicate that cytochrome c74 and flavodoxin interact extensively with cytosolic macromolecules.

The NMR detectability of cytochrome c and flavodoxin was also assessed in dilute extracts (Figure 2). Two and fourfold diluted extracts were prepared by serial dilution, using 20 mM Na\(_2\)HPO\(_4\) pH 7.0 (see Materials and Methods). With each dilution, the concentration of D\(_2\)O and the \(^{15}\)N-labelled test protein was replenished to 10% and 0.3 mM, respectively. This approach facilitated a direct comparison of

Figure 1. \(^1\)H,\(^{15}\)N TROSY-HSQC spectra of cytochrome c or flavodoxin in buffer or in live *E. coli* cells. The cytochrome c spectra were published previously.74 The spectra are contoured identically.
the spectra. Cytochrome c was never detectable in the extracts suggesting that it interacts pervasively and perhaps tightly to *E. coli* macromolecules (Figure 2). This idea is supported by the fact that cytochrome c interactions with extract components are not disrupted upon cell lysis and passage through an SEC column (Chapter 3 and reference 74). The signal-to-noise ratio of the flavodoxin peaks increased with increasing dilution (Figure 2) suggesting that flavodoxin’s interactions with *E. coli* macromolecules are weak and easily perturbed. \(^{73,78,127}\) SDS-PAGE analysis of the extract samples taken directly after extract preparation and each NMR experiment indicate that no major changes in sample composition (e.g. aggregation) occur over time (Figure 3).
The Role of Charge in Protein Stickiness

Native gel electrophoresis was used to explore cytochrome \(c \) and flavodoxin charge in buffer and in \(E. \ coli \) extracts. Consistent with their calculated net charge pure flavodoxin (yellow) migrated toward the anode while pure cytochrome \(c \) (red) migrated toward the cathode in 2% agarose gels run in phosphate buffers ± 100 mM \(\text{KNO}_3 \) at pH 6.0 or 7.0 (Figure 4). The migration distance of cytochrome \(c \) was notably short compared to flavodoxin (Table 1). Indeed, membrane confined electrophoresis\(^{271,271}\) indicated that the effective charge of cytochrome \(c \) (≈+1) is up to 8 times lower than the calculated charge (+8.2) and counterion-dependent (Chapter 3). Cytochrome \(c \) has an effective charge of +1.04 in a buffer containing 100 mM \(\text{KNO}_3 \) which explains the poor migration of cytochrome \(c \) in agarose gels run under similar conditions. Given the physiological-relevance of the buffer ionic strengths,\(^{61,393}\) it is likely that cytochrome \(c \) charge is comparably low \textit{in vivo}. Flavodoxin carries more charge than cytochrome \(c \) and therefore migrates further (Figure 4; Table 1). The migration distance of cytochrome \(c \) and flavodoxin was typically twice as long in agarose gels run at low ionic strengths (\textit{e.g.} 20 mM phosphate, pH 6.0 and 7.0) than at high ionic strengths (\textit{e.g.} 20 mM phosphate + 100 mM \(\text{KNO}_3 \) Figure 4; Table 1). Moreover, in the case of cytochrome \(c \), the migration distance was also approximately twice as long in the low ionic strength buffer at pH 6.0 compared to pH 7.0 (Figure 4; Table 1).
Accordingly, cytochrome \(c \) is more cationic at lower pH values. Similarly, pure flavodoxin migrates further in the low ionic strength buffers at pH 7.0 when it is more anionic (Figure 4; Table 1). These findings emphasise the role of ions in tuning cytochrome \(c \) and flavodoxin charge and this is supported by the MCE data for cytochrome \(c \) (Chapter 3). Agarose gels run at identical pH values show similar trends in cytochrome \(c \) and flavodoxin migration at both low and high ionic strengths. However, it is useful to consider the low ionic strength data when assessing the test protein interactions in cell extracts owing to the greater migration distances of the test proteins, which can be more readily interpreted/compared.

![Figure 4. Agarose gel electrophoresis of cytochrome c (red/pink) and flavodoxin (yellow/green) in buffer or in E. coli extracts. Each sample (20 \(\mu \)L) contained 0.2 mM cytochrome c or flavodoxin and 10% glycerol. The grey boxes highlight the pure cytochrome c and flavodoxin samples. The remaining lanes contain extract samples which were loaded from left to right in order of decreasing total macromolecule concentration. Cytochrome c changes from red to pink in extracts due to reduction of the haem iron. Similarly, flavodoxin’s flavin mononucleotide group is reduced to the semiquinone species. The electrophoresis buffers were 20 mM KH\(_2\)PO\(_4\) or Na\(_2\)HPO\(_4\) pH 6.0 or 7.0, respectively.](image-url)
Table 1. Migration distance of pure cytochrome c and flavodoxin as a function of pH and ionic strength

<table>
<thead>
<tr>
<th>[KNO₃]/ mM</th>
<th>Migration Distance at pH 6.0/mm</th>
<th>Migration Distance at pH 7.0/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7.5</td>
<td>4.0</td>
</tr>
<tr>
<td>100</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Cytochrome c</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>17.0</td>
<td>8.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Flavodoxin</td>
<td>8.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

In *E. coli* extracts, cytochrome c migrated toward the anode at pH 6.0 and 7.0 (Figure 4). This indicates that quinary-like interactions between cytochrome c and *E. coli* macromolecules result in assemblies with a net negative charge. In the concentrated extracts a substantial proportion of cytochrome c was observed in the loading well suggesting that it participated in assemblies that are either charge-neutral or too large to migrate through the agarose gel pores (pore radius ~360 nm). Despite containing identical cytochrome c concentrations (0.2 mM), the 2-fold serially diluted extracts had a decreased amount of cytochrome c in the loading well (Figure 4), indicating that dilution partially disrupted the large complexes. However, cytochrome c consistently migrated toward the anode, even in extracts diluted fourfold. This result, in agreement with the cell extract NMR studies (Figure 2), suggests that quinary-like cytochrome c-macromolecule interactions pervade under native-like conditions despite different degrees of macromolecular crowding and total protein concentration. Moreover, the resulting complexes were always anionic. In the 2-fold diluted extracts, more cytochrome c was evident in the loading well at pH 6.0 than at pH 7.0. Thus cytochrome c appears to engage in high molecular weight complexes at pH 6 that are not completely disrupted by a 2-fold dilution. At pH 7.0, the complexes are weaker. This finding coincides with recent work by Cohen *et al.* showing that quinary interactions were more extensive at lower pH values. Flavodoxin migration was essentially unaltered by cell extracts. This suggests that attractive charge-charge interactions do not drive flavodoxin interactions in extracts as expected for such a highly anionic protein in a largely anionic environment.

The Nature of Cytochrome c & Flavodoxin’s Quinary-Like Interactions

Cytochrome c and flavodoxin are oppositely charged proteins (Figure 5) that engage in pervasive interactions with cytoplasmic macromolecules in *E. coli* cells and extracts. Cytochrome c is lysine rich and was never NMR detectable in cell extracts during a two-stage, twofold serial dilution (Figure 2). Previously, the role of charge
in driving cytochrome \(c\) stickiness in extracts was demonstrated by SEC and NMR.\(^7\) The greater the number of charge inverted mutations introduced to the cytochrome \(c\) surface, the less sticky the protein.\(^7\) A triple cytochrome \(c\) mutant (R13E/K73E/K87E) was NMR detectable in concentrated extracts.\(^7\) Native gel electrophoresis confirmed that the triple and quadruple mutants are charge-neutral and hydrated in extracts (Chapter 3). Together these data indicate the role of several lysine residues in governing cytochrome \(c\) interactions with anionic \(E.\ coli\) proteins. However, unlike arginine, lysine is not typically observed at specific protein-protein or crystal packing interfaces indicating that it is an unsticky residue.\(^8,36^5\) The residues that are most frequently observed at protein-protein interfaces include tryptophan, tyrosine, histidine, phenylalanine, arginine, cysteine, methionine, isoleucine, leucine and valine. Arginine, glutamine and the abovementioned hydrophobic residues most frequently comprise crystal packing interfaces.\(^8,36^5\) Thus, surface representations of cytochrome \(c\) and flavodoxin prepared according to Janin’s amino acid interface propensity scale\(^8\) suggest that cytochrome is less sticky than flavodoxin (Figure 5). The cell extract studies presented herein and by Crowley and co-workers\(^7\) indicate that cytochrome \(c\) is highly sticky. This finding emphasises the fact that protein stickiness is a system property that must be characterised in native-like environments. Under volume-occupied, physiological

![Figure 5. Electrostatic (top) and ‘sticky’ surface (bottom) representations of cytochrome \(c\) (A) and flavodoxin (B). In the sticky surface representations, residues are coloured according to the interface propensity scale devised by Janin and co-workers.\(^8\) The residues most frequently observed at protein-protein interfaces are coloured magenta. The figure was generated in Pymol. The co-factors are shown as black spheres.](image-url)
conditions, lysine-rich surface clusters, although rare,51,395 are apparently important mediators of quinary-like interactions. The quinary-like interactions of cytochrome \textit{c} are relatively strong because the protein was never liberated from macromolecular assemblies in cell extracts during dilution experiments. The pervasive nature of cytochrome \textit{c} interactions coincides with the expected role of small cationic proteins in maintaining the structure of protein-protein interaction networks and clusters.396

Like cytochrome \textit{c}, flavodoxin engages in extensive attractive interactions with \textit{E. coli} macromolecules and is weakly NMR detectable in concentrated extracts. This finding is counterintuitive, as flavodoxin’s highly anionic surface might suggest that its quinary-like interactions would be dominated by charge-charge repulsion with the abundant macroanions. However, agarose gel analysis indicated that charge is not implicated in flavodoxin’s attractive quinary interactions (Figure 4). This finding is also supported by numerous in-cell NMR studies of anionic and NMR undetectable test proteins.73,184,397,398 Importantly, the flavodoxin surface contains clusters of ‘sticky’ residues that are frequently observed in protein-protein and crystal packing interfaces (Figure 5). These clusters likely mediate flavodoxin’s interactions with macromolecules in the crowded cell extracts. Most of these clusters contain hydrophobic residues, some of which and are known to mediate flavodoxin’s interactions with its anionic cofactor flavin mononucleotide (e.g. W57 and Y94).125 The expected role of hydrophobicity and other short-range non-covalent interactions307 in governing flavodoxin stickiness is supported by its increasing NMR detectability during serial dilution experiments. Serial dilutions decrease the total macromolecular concentrations of the extracts which leads to decreased levels of macromolecular crowding and increased intermolecular distances. Accordingly, short-range, attractive interactions are abolished upon diluting the extracts while long-range charge-charge repulsions between flavodoxin and other macroanions predominate. The liberated flavodoxin molecules then have sufficient rotational freedom for its spectrum to be observed in the dilute extracts.78,127,384

The modulation of flavodoxin interactions by different levels of macromolecular crowding suggests an important role for promiscuous anionic protein surfaces in mediating weak interactions in the responsive, abundantly anionic cytoplasm. Recently, Xu and co-workers explored the spatiotemporal dynamics of proteins and their interaction networks in a virtual cytoplasm to understand the
physicochemical basis for functional efficiency *in cellulo*. Upon varying protein copy numbers relative to physiologically-accurate values determined for yeast, the authors used coarse-grained modelling to approximate the electrostatic and van der Waals interactions between the proteins (and ribosomes). These simulations revealed that the highest number of interacting proteins was observed only when physiologically-accurate protein copy numbers were employed. Moreover, the distributions of protein charge and molecular weight in the theoretical proteome were not random. Larger proteins were typically anionic and presented large collision cross-sections which likely mediate low-specificity quinary interactions. Smaller proteins were usually cationic and more frequently collided with other macromolecules. The flavodoxin data support the notion that anionic protein surfaces engage in weak macromolecular interactions that are readily perturbed (*i.e.*, by a local decrease in macromolecular crowding levels) in cells replete with anionic macromolecules. The pervasive nature of cytochrome *c* interactions in extracts emphasises the role of small cationic proteins in maintaining the architecture of interaction networks. The lower abundance of cationic proteins in many proteomes, is expected to reflect the need for highly dynamic clusters which is frequently afforded by anionic macromolecules.

Conclusions

Knowledge of quinary structure will advance our understanding of cellular phenomena. Insights into quinary structure are hampered, however, by a paucity of robust experimental techniques and computational models suited to studies of complex living systems. A semi-reductionist approach was therefore employed for the exploration of the physicochemical origin of cytochrome *c* and flavodoxin’s extensive quinary-like interactions with *E. coli* extracts. Different non-covalent interactions appear to drive the attractive quinary-like interactions of both test proteins in *E. coli* extracts. This finding corresponds with the different surface properties of cytochrome *c* and flavodoxin (Figure 5). The data support the expected role of cationic proteins in structuring cytoplasmic assemblies through pervasive, attractive charge-charge interactions. The role of anionic proteins in mediating cooperative short-range macromolecular interactions in the cytoplasm is also
suggested. The abundance of anionic macromolecules \textit{in vivo} emphasises the importance of dynamic macromolecular interactions, which are easily perturbed \textit{i.e.} by different levels of macromolecular crowding, and therefore essential for cytoplasmic responsivity.
Chapter 6
Effects of Crowding and Confinement on a Quinary-Like Protein-Protein Interaction

Manuscript in preparation
Abstract

In vivo studies are necessary to simultaneously capture the myriad, weak biomolecular interactions that govern quinary structure. However, investigations of weak interactions in physiologically-relevant solutions may reveal novel physicochemical aspects of quinary or cytoplasmic structure. It is well-appreciated from in vitro studies that electron transfer (ET) proteins interact weakly with several cognate partners, making them excellent models for studies of ‘quinary-like’ protein interactions. Herein, the quinary-like interaction of two oppositely-charged ET proteins, cytochrome c and flavodoxin was studied in environments with varying degrees of cytoplasmic mimicry. A combination of 1H, 15N HSQC and 19F NMR spectroscopy confirmed that cytochrome c and flavodoxin interact weakly in buffered solutions to produce a non-cognate complex. This quinary-like interaction was also investigated by NMR and electrophoresis in volume-occupied solutions. The data suggests that quinary-like interactions involving oppositely-charged partners are stabilised by moderate levels of macromolecular crowding and gel confinement. The biological implications of our findings are considered.
Introduction

The exquisite precision of intracellular processes is not only dependent on the formation of highly specific, stable assemblies. Collections of weak, co-operative interactions result in the assembly of dynamic microenvironments and quinary structure that mediates most cellular events.81,87,90,198 The disinclination to consider quinary structure has arisen mainly from the difficulties associated with the characterisation of dynamic microenvironments in the complex cell interior. Moreover, the weak nature of quinary interactions suggests that they may be disrupted by cell lysis81 or skewed by test protein over expression, which is necessary for in-cell studies using low sensitivity techniques. Accordingly, quinary interactions are poorly understood.90

In the wake of post-reductionist biochemistry, the need for an increased understanding of quinary structure is apparent.23,89 Such knowledge will bridge the gap between \textit{in vitro} and \textit{in vivo} biochemistry and enrich biologically-inspired fields such as supramolecular chemistry and chemical biology.213,216,399 Several groups have therefore called for the development of new technologies suited to the study of weak interactions and short-lived microenvironments \textit{in vivo}.23,89,90,400 Despite the current absence of such technological advancements, key physicochemical mechanisms involved in quinary structure formation have been identified by in-cell and cell extract NMR studies.74,79,87,100,198,384 For instance, many of these studies have indicated that (attractive and repulsive) charge-charge interactions are important in the regulation of quinary structure. Indeed, the role of charge-charge interactions in quinary structure formation was invoked during its original definition.81 McConkey predicted that extensive, charge-based protein interactions lead to the formation of quinary structure which constrained protein evolution by only accommodating mutations at non-interactive sites.81 New avenues related to quinary structure investigation have been opened by the exploration of the dynamic protein interactions that mediated liquid droplet formation in physiological environments.24,46,49 These studies also indicate that attractive charge-charge interactions, typically involving low-complexity unfolded domains, drive droplet assembly and governs their unique compositions.24,49 Indeed, the highly ionic nature of the cell interior5,64 and the highly charged surfaces of hub proteins401 supports the global importance of charge-charge interactions in regulating quinary structure.
A second defining feature of quinary interactions is their transient nature.\cite{81,90} Structural analyses of the transient interactions of hub proteins suggests some of their key features and may be pertinent to quinary interactions.\cite{401} Global protein flexibility and an abundance of charged residues were identified. Accordingly, the authors observed a high frequency of charge-charge, charge-polar and polar-polar contacts at the interface of transient hub complexes relative to stable hub complexes.\cite{401} These features are expected to facilitate the competitive regulation of transient hub complexes with neighbouring partners and water.\cite{401} Electron transfer (ET) complexes, such as those observed in photosynthesis and respiration, are the paradigm for transient protein-protein interactions. With flat, poorly packed interfaces,\cite{83,266} ET complexes are considered the epitome of fast dissociation ($k_{\text{off}} > 1000 \, \text{s}^{-1}$) and low-specificity.\cite{268,402} These features enable dynamic and reversible interactions with multiple partners which is of obvious relevance to quinary structure. The similarity between ET and quinary (or quinary-like) interactions is also reflected in their similar K_d values. Lantham and Kay performed NMR-monitored titrations of 13C methyl-labelled calmodulin with concentrated $E. \text{coli}$ extract aliquots to obtain a ‘minimum average’ effective K_d for the calmodulin-extract interaction, which was $\sim 0.2 \, \text{mM}$.\cite{388} ET complexes typically have K_d values in the high μM-low mM range.\cite{268}

In vitro studies have yielded important insights into the physicochemical basis for low-specificity protein-protein complexes that may be used as a springboard for the exploration of quinary-like interactions in physiologically-relevant environments. Confined and/or crowded samples such as polyacrylamide gels (PAGs)\cite{403} and synthetic\cite{404} or protein\cite{237} crowders, are well-established proxies for the volume-occupied cell interior. However, reports describing the influence of confinement on protein-protein interactions are sparse, despite compelling evidence for the enhanced protein stability,\cite{389,403,405} folding rates\cite{406} and activity\cite{407} effected in confined environments. It is generally accepted that the stability of high-affinity, heterodimeric protein-protein interactions remains closely similar in dilute and crowded solutions.\cite{221} Some low affinity complexes appear to be significantly affected. For instance, aggregation was observed for the low-affinity CyPet and YPet FRET pair in samples crowded with $> 250 \, \text{g/L} \, \text{PEG} \, 1000$ or 8000.\cite{404} By contrast, the weak interaction between the ε and θ subunits of the $E. \text{coli}$ DNA polymerase III
holoenzyme was stabilised by 1 kcal/mol in the presence of 100 g/L Ficoll or Dextran (both 70 kDa).408 The stability of the weak, cognate cytochrome \textit{f}-plastocyanin complex was unaffected in 50-70 g/L Ficoll70 and Dextran70.409 Thus, within physiologically-relevant concentration ranges (50-400 g/L),410 macromolecular crowding appears to differentially tune the stability of transient protein complexes. Although macromolecular crowding has a mild effect on the stability of specific complexes,408,409 quinary interactions are weak and easily perturbed, indicating that they may be relatively non-specific.81,87 Thus, knowledge of the effects of crowding and confinement on a low-specificity protein-protein interaction may reveal novel aspects of quinary structure.

Herein, the non-cognate ET pair, cytochrome \textit{c} and flavodoxin were employed as models of a quinary-like interaction for studies in volume-occupied (\textit{i.e.} crowded and confined) solutions (Figure 1). It is well established from standard solution studies that these oppositely charged proteins interact transiently with each other286,411 and with various cognate partners110,121. 1H, 15N HSQC and 19F NMR was used to assess the cytochrome \textit{c}-flavodoxin interaction in buffer and in volume-occupied solutions. Macromolecular crowders were used at concentrations precluding polymer overlap (\textit{i.e.} 100 g/L),237,412,390 such that the crowders behaved as mainly as individual particles and not confining networks. Polyacrylamide gels (PAGs) were used as a confining medium. This approach afforded the comparison of crowding and confinement effects on the cytochrome \textit{c}-flavodoxin complex. Interestingly, the cytochrome \textit{c}-flavodoxin interaction appeared to be stabilised in crowded or confined solutions. The stabilisation of a weak, low-specificity protein-
protein interaction in crowded or confined milieu supports the idea that charge-based quinary interactions are controlled by changes in intracellular volume occupancy. This mechanism may be used to stabilise quinary interactions involving oppositely charged proteins which are expected to be important in structuring macromolecular networks.396

Experimental Design: Separating Crowding from Confinement. Synthetic polymer solutions exhibit different phase behaviours within the defined concentration ranges: dilute, semidilute and concentrated.237,390,412 In dilute regimes, polymer molecules behave mainly as independent, crowding entities.390 In semi-
polymer of \(N \)-vinylpyrrolidone. Ficoll70 is a branched sucrose polymer that is considered ‘globular’ relative to most other synthetic polymers. BSA is an anionic, globular protein (67 kDa, pI 4.7) that interacts non-specifically with many proteins and is therefore a more biologically-relevant crowder. The effect of confinement on the cytochrome \(c \)-flavodoxin interaction was explored in 8% PAGs which are neutral and have average pore dimensions of 8-12 nm similar to the cytoskeleton.

Materials and Methods

Protein Expression and Purification. \(^{15} \)N-labelled and unlabelled \(S. \) cerevisae cytochrome \(c \) and \(E. \) coli flavodoxin were expressed in \(E. \) coli BL21 (DE3) and purified according to standard methods (Chapters 3-5). 19F-tryptophan labelled flavodoxin was expressed in minimal medium containing 30 mg/L 5-fluoroindole (as per Chapter 4).

Crowder Stock Preparation. Ficoll70, polyvinylpyrrolidone 40 (PVP40) and bovine serum albumin (BSA) were purchased from Sigma Aldrich. 300 mg of each crowder was dissolved in ~1 mL Millipore water and dialysed against 2 L of Millipore water for 24 hours at 4 °C. The dialysate was concentrated to < 900 \(\mu \)L (miVac Duo Centrifugal Concentrator, Genevac), combined with 100 \(\mu \)L of 10 X NMR buffer and adjusted to pH 6.0 and a final volume of 1 mL.

PAG Preparation. Polyacrylamide gels containing \(^{15} \)N-labelled test proteins were prepared directly in NMR tubes. Given the importance of pH in modulating protein interactions and quinary structure, PAG preparation was modified to ensure optimal pH control. A 30% acrylamide/bisacrylamide (SIGMA) mixture was dissolved to 8, 10 or 12% in NMR buffer containing 10% \(D_2 \)O, ~10 mM TEMED and 0.001% riboflavin. The sample pH was adjusted to 6.0 prior to the addition of cytochrome \(c \) and/or flavodoxin. Acrylamide polymerisation was photoinitiated in 5 mm NMR tubes using 254 nm light for 40 minutes (Rayonet RMR 200 Photochemical Reactor). Flavodoxin-containing acrylamide mixtures were prepared and irradiated as described above but without riboflavin. PAGs did not form, confirming that the flavin mononucleotide group of flavodoxin is not implicated in acrylamide polymerisation, despite being chemically-related to the photoinitiator,
riboflavin. In keeping with earlier reports389 higher concentration PAGs (> 10%) were difficult to prepare and fractured during polymerisation.

NMR Spectroscopy NMR samples typically contained 0.3 mM labelled protein and 10% D\textsubscript{2}O in NMR buffer at pH 6.0. The sample pH was monitored before and after each experiment. Notably, the pH remained stable and rarely required alteration. 1H, 15N watergate251 or TROSY-selected292 HSQC spectra were acquired at 30 °C with 16 scans and 64 increments on a Varian 600 MHz Spectrometer equipped with a HCN coldprobe. The data were processed in Biopack (using linear prediction in the 15N dimension) and NMRPipe.386 The spectra were analysed using CCPN.252 1D 19F spectra were acquired at 25 °C on a Varian 500 MHz Spectrometer equipped with OneNMR probe. Spectra were acquired with 1024 transients, 5435 k points and a spectral width of 231.1 ppm. A relaxation delay time of 0.7 s and an acquisition time of 0.05 s were used. Baseline correction was applied where necessary. The 19F NMR data were analysed in MestReNova.372

Phase separation The hanging drop vapour diffusion method was used to observe phase separation in 0.3-1.2 mM samples of the test proteins at 21 °C. Drops were prepared by combining 1 \textmu l of a cytochrome c-flavodoxin mixture with 1 \textmu l of the reservoir solution containing 20 mM KH\textsubscript{2}PO\textsubscript{4}, 75 mM NaCl, and 100 g/L crowder (Ficoll70, PVP40 or BSA) at pH 6.0. Control drops containing either 0.3-1.2 mM cytochrome c or flavodoxin were prepared as above.

Results and Discussion

Cytochrome c and Flavodoxin Interact Transiently in Buffer Using NMR-monitored titrations the cytochrome c-flavodoxin interaction was explored in a buffer of 20 mM KH\textsubscript{2}PO\textsubscript{4}, 75 mM NaCl at pH 6.0. The total ionic strength of 100 mM represents the lower limit of physiological relevance.61,393 Ideally, the complex should be characterised at physiological pH (7.4), however, amide proton exchange of cytochrome c resonances corresponding to binding site residues precludes characterisation at this pH (data not shown).415 Additionally, flavodoxin is most stable at pH 6.2119 so to optimise sample stability and NMR data collection, a pH of 6.0 was chosen. Figure 3 shows regions from overlaid 1H, 15N HSQC cytochrome c spectra during a titration with unlabelled flavodoxin. Several cytochrome c resonances showed gradual chemical shift changes with increasing flavodoxin
concentration (Figure 3). This feature is characteristic of a fast exchange process on the NMR time scale and, in agreement with earlier studies, indicates that the cytochrome c-flavodoxin complex is transient. A general broadening of the resonances was also observed (i.e. average linewidth increase of 75%; Table 1), which is consistent with the reduced tumbling rates associated with complex formation (cytochrome \(c = 12.6 \) kDa; flavodoxin = 20.1 kDa; cytochrome \(c \) flavodoxin complex = 32.7 kDa). The binding sites of cytochrome \(c \) were mapped according to the significant chemical shift changes effected during the NMR-monitored titrations (Figure 4). The chemical-shift map defines the cytochrome \(c \) binding site as a contiguous, charged patch surrounding the solvent-exposed haem co-factor (Figure 4). This is the known lysine-rich cytochrome \(c \) binding site.

Figure 3. Regions from the overlaid \(^1\)H, \(^{15}\)N HSQC spectra of \(^{15}\)N-labelled cytochrome \(c \) during a titration with unlabelled flavodoxin.
Figure 4. **Upper:** Plot of chemical shift perturbations measured for cytochrome c backbone amides in the presence of 2 equivalents of flavodoxin. Cytochrome c residues are numbered from −5 to 103. Blanks correspond to proline residues 25, 30, 71 and 76 and glycines 83 and 84, which were undetectable. During the titration, lysines 72 and 79 broadened beyond detection. The dashed and solid lines are the average chemical shift changes observed in the 1H and 15N dimensions, respectively. **Lower:** Space-filling representation of cytochrome c highlighting the flavodoxin binding patch. Residues for which the amide resonance had a significant chemical shift perturbation ($\Delta \delta$ 1H \geq 0.03 or 15N \geq 0.1 ppm) are in blue. The haem edge is black.
Table 1. Line-widths (Hz) of 22 non-overlapping cytochrome c 1H resonances in 20 mM KH2PO4, 75 mM NaCl, pH 6.0 in the free form or in complex with 2 equivalents of flavodoxin.

<table>
<thead>
<tr>
<th>Residue</th>
<th>Pure cytochrome c (Hz)</th>
<th>Cytochrome c + flavodoxin (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-3</td>
<td>13.7</td>
<td>22.2</td>
</tr>
<tr>
<td>K-2</td>
<td>20.0</td>
<td>29.3</td>
</tr>
<tr>
<td>A-1</td>
<td>12.3</td>
<td>21.4</td>
</tr>
<tr>
<td>L9</td>
<td>15.2</td>
<td>32.7</td>
</tr>
<tr>
<td>T12</td>
<td>17.8</td>
<td>36.4</td>
</tr>
<tr>
<td>Q16</td>
<td>14.4</td>
<td>36.0</td>
</tr>
<tr>
<td>R38</td>
<td>19.7</td>
<td>27.3</td>
</tr>
<tr>
<td>G45</td>
<td>19.4</td>
<td>27.8</td>
</tr>
<tr>
<td>Y46</td>
<td>20.2</td>
<td>27.8</td>
</tr>
<tr>
<td>S47</td>
<td>19.4</td>
<td>30.8</td>
</tr>
<tr>
<td>A51</td>
<td>13.6</td>
<td>25.9</td>
</tr>
<tr>
<td>N52</td>
<td>17.2</td>
<td>35.5</td>
</tr>
<tr>
<td>K55</td>
<td>13.7</td>
<td>24.8</td>
</tr>
<tr>
<td>V57</td>
<td>18.5</td>
<td>25.1</td>
</tr>
<tr>
<td>L58</td>
<td>17.6</td>
<td>26.7</td>
</tr>
<tr>
<td>E61</td>
<td>14.7</td>
<td>35.0</td>
</tr>
<tr>
<td>G77</td>
<td>21.4</td>
<td>28.5</td>
</tr>
<tr>
<td>L85</td>
<td>21.1</td>
<td>40.1</td>
</tr>
<tr>
<td>E90</td>
<td>15.7</td>
<td>31.4</td>
</tr>
<tr>
<td>Y97</td>
<td>15.7</td>
<td>35.5</td>
</tr>
<tr>
<td>K100</td>
<td>16.4</td>
<td>27.3</td>
</tr>
<tr>
<td>E103</td>
<td>15.5</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Average line-width (Hz)*

<table>
<thead>
<tr>
<th>Cytochrome c</th>
<th>Cytochrome c + flavodoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 17.0 ± 2.7</td>
<td>= 29.7 ± 5.1</td>
</tr>
</tbody>
</table>

* Error represents standard deviation of the mean

19F tryptophan-labelled flavodoxin was also studied by NMR during a titration with unlabelled cytochrome c. Four well-resolved peaks were observed in the 19F-flavodoxin NMR spectrum (Figure 5). Despite their simplicity, the 19F-flavodoxin spectra capture several features evident in the corresponding 2D NMR-monitored titration experiment. Broadening of all 19F-flavodoxin peaks was observed upon binding to cytochrome c (average 19F linewidth increase of 56%; Table 2), and one peak shifted significantly during the titration (Figure 5, Table 2). Crystal structure analysis revealed that two of the tryptophans, W57 and W120, are solvent exposed and that only W57 is proximal to the exposed flavin mononucleotide edge (Chapter 4, Figure 7). The fluorine atom of 5-fluorotryptophan 57 is expected to be within van der Waals distance of the solvent exposed flavin methyl groups and likely reports on cytochrome c binding.
Table 2. δ (ppm) and line-widths (Hz) of the 19F peaks of flavodoxin in 20 mM KH$_2$PO$_4$, 75 mM NaCl, pH 6.0 in the free form or in complex with 2 equivalents of cytochrome c.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Pure flavodoxin</th>
<th>Flavodoxin + cytochrome c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-120.46</td>
<td>-120.43</td>
</tr>
<tr>
<td>2</td>
<td>-122.18</td>
<td>-121.91</td>
</tr>
<tr>
<td>3</td>
<td>-124.29</td>
<td>-124.32</td>
</tr>
<tr>
<td>4</td>
<td>-125.23</td>
<td>-125.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>19F line-width (Hz)</th>
<th>19F line-width (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36.4</td>
<td>75.5</td>
</tr>
<tr>
<td>2</td>
<td>31.0</td>
<td>59.7</td>
</tr>
<tr>
<td>3</td>
<td>37.1</td>
<td>56.3</td>
</tr>
<tr>
<td>4</td>
<td>29.1</td>
<td>49.3</td>
</tr>
</tbody>
</table>

Average line-width (Hz)*
- Pure flavodoxin: 33.4 ± 4.0
- Flavodoxin + cytochrome c: 60.2 ± 11.1

* Error represents standard deviation of the mean

Figure 5. Overlaid 19F spectra of pure 5-fluorotryptophan flavodoxin in buffer and in the presence of 0.5, 1.0 or 2.0.

The cytochrome c-flavodoxin interaction was also explored in 2% agarose gels. Notably, Pastore and co-workers previously determined that the pore sizes of 1.5-4% agarose gels were too large to serve as a confining medium for smaller proteins (*e.g.* hen egg white lysozyme) and peptides.\(^{416}\) Owing to the relatively small sizes of cytochrome c and flavodoxin, the 2% agarose electrophoresis gels are not expected to induce physiologically-relevant confinement effects but, instead, likely reveal aspects of the cytochrome c-flavodoxin interaction pertinent to dilute solutions. Figure 6 shows the migration of cytochrome c, flavodoxin and the complex at different protein ratios. The band due to free, cationic cytochrome c diminishes as a function of increasing flavodoxin concentration. Similarly, the band due to free flavodoxin becomes less intense with increasing cytochrome c concentration (Figure 6). The anionic orange band at 6.25 mm corresponds to the mixture of cytochrome c and flavodoxin in the complex. By adjusting the colour
balance of the gel image to highlight cyan, blue and green hues, the complex band separates into its red (cytochrome c) and orange (complex) components (Figure 6). The transient nature of the complex is confirmed by the streaking and separation of the ‘complex’ band due to cytochrome c dissociation. Taken together the NMR and electrophoresis data indicate that, in buffer, the cytochrome c-flavodoxin complex proceeds transiently via their known electron transfer sites.74,268,109,121

Control NMR Experiments. Control 1H, 15N HSQC spectra were acquired for cytochrome c in the presence of 100 g/L crowders and 8% PAG (Figure 7). The spectra obtained in crowded or confined media were closely similar to the corresponding spectra obtained in buffer alone (Figure 7). Preliminary studies indicate that 15N-flavodoxin spectra were comparable in dilute solution and in crowded and confined conditions also (data not shown). These results indicate that the structures of cytochrome c and flavodoxin remain unperturbed in crowded or confined environments. Moreover, the absence of significant chemical shift changes for cytochrome c in the crowded and confined samples suggests that cytochrome c-crowder and cytochrome c-gel interactions were minimal under these conditions (Figures 7 and 8). The average cytochrome c 1HN line widths were calculated from 22 non-overlapping resonances in each control spectrum (Table 3). Cytochrome c becomes reduced during PAG preparation and a slightly different set of resonances were used for the extraction of 1HN data from the reduced cytochrome c HSQC. In crowded and confined solutions the average line widths for cytochrome were greater by 1.1-7.2 Hz than in buffer alone (Tables 1 and 3). In the case of the synthetic

![Figure 6. Cytochrome c and flavodoxin migration as a function of complex formation. 1 equivalent (1 Eq) corresponds to a concentration of 0.2 mM. The electrophoresis buffer was 20 mM KH\textsubscript{2}PO\textsubscript{4}, pH 6.0. Each sample (volume = 20 \textmu L) contained 10% glycerol. The colour balance of the entire gel image has been adjusted to highlight blue, green and cyan hues.](image)
crowder solutions and PAGs, average linewidth increases of 1.1-1.6 Hz were observed (Table 3). Previously, it was found that cytochrome c experienced significant chemical shift perturbations (0.1 ppm 1H and 0.3 ppm in 15N dimension) and a general linewidth increase of up to 35% in the presence of 300 g/L polyethylene glycol (PEG; Mn = 8 kDa). The insignificant chemical shift changes observed for cytochrome c in the presence of 100 g/L PVP40, Ficoll70 or the PAG as well as the ~5-10% average increase in 1HN linewidth suggest that cytochrome c does not interact with the neutral, highly soluble synthetic polymers or the gel at the concentrations employed herein. The linewidth increases likely arise from the increased viscosity of the crowded solutions. The average line width for cytochrome c resonances increased by ~40% in the presence of 100 g/L BSA compared to in buffer. At equal g/L concentrations however, solutions crowded with BSA are less viscous than solutions crowded with PVP40 or Ficoll70. Thus, the increased rotational correlation time of cytochrome c in the presence of 100 g/L BSA arises from weak cytochrome c-BSA interactions. This idea is supported by the observation that the average cytochrome c line width decreased by ~10% when the ionic strength of the 100 g/L BSA solution was increased by 50 mM (Table 3). This suggests that screening of the charge-charge interactions weakens the BSA-cytochrome c interaction. Comparison of the chemical shift perturbation plots for cytochrome c in the presence of BSA (Figure 8) or flavodoxin (Figure 4) shows that the magnitude of cytochrome c chemical shift changes were insignificant in the BSA solution compared to those observed at 2 molar equivalents of flavodoxin. The small chemical shift changes observed in the presence of a large excess of BSA ($\Delta\delta$ 1HN$_{Avg}$ = 0.0032 or 15N$_{Avg}$ = 0.018 ppm) indicate that the cytochrome c-BSA interaction is substantially weaker than the cytochrome c-flavodoxin interaction. This finding is in agreement with earlier work by Li and Pielak, who determined that the BSA-CI2 interaction has a K_d of 35 mM. Comparably small chemical shift changes were observed for cytochrome c in the presence of 100 g/L PVP40 and Ficoll70 (data not shown).
Figure 7. 1H, 15N HSQC spectra for cytochrome c in NMR buffer ± crowders (at 100 g/L) or 8% PAG. The spectra are contoured identically. Cytochrome c was oxidized prior to each experiment but becomes reduced during PAG preparation, producing a different HSQC. To eliminate background signals from PAG amides, NH$_2$-deslected HSQC experiments are used for data collection of PAG samples. Accordingly, side chain amides are not detected in PAGs.
Table 3. Line-widths (Hz) of 22 non-overlapping cytochrome c ^{1}HN resonances in crowded or confined solutions containing 75 mM NaCl, 20 mM KH$_2$PO$_4$, pH 6.0

<table>
<thead>
<tr>
<th>Residue</th>
<th>PVP40</th>
<th>Ficoll70</th>
<th>BSA</th>
<th>BSA‡</th>
<th>Residue</th>
<th>PAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-3</td>
<td>14.7</td>
<td>14.2</td>
<td>17.5</td>
<td>17.6</td>
<td>K-2</td>
<td>19.9</td>
</tr>
<tr>
<td>K-2</td>
<td>20.8</td>
<td>20.8</td>
<td>24.4</td>
<td>23.3</td>
<td>G6</td>
<td>19.3</td>
</tr>
<tr>
<td>A-1</td>
<td>13.7</td>
<td>12.4</td>
<td>18.1</td>
<td>16.1</td>
<td>A7</td>
<td>15.2</td>
</tr>
<tr>
<td>L9</td>
<td>17.7</td>
<td>16.9</td>
<td>28.9</td>
<td>23.4</td>
<td>T12</td>
<td>19.0</td>
</tr>
<tr>
<td>T12</td>
<td>19.9</td>
<td>19.0</td>
<td>26.4</td>
<td>24.2</td>
<td>R13</td>
<td>22.6</td>
</tr>
<tr>
<td>Q16</td>
<td>16.3</td>
<td>16.9</td>
<td>23.1</td>
<td>20.1</td>
<td>Q16</td>
<td>13.5</td>
</tr>
<tr>
<td>R38</td>
<td>20.3</td>
<td>19.7</td>
<td>22.7</td>
<td>21.4</td>
<td>T19</td>
<td>24.8</td>
</tr>
<tr>
<td>G45</td>
<td>19.4</td>
<td>20.6</td>
<td>25.7</td>
<td>23.5</td>
<td>G23</td>
<td>20.7</td>
</tr>
<tr>
<td>Y46</td>
<td>21.0</td>
<td>20.7</td>
<td>23.6</td>
<td>22.1</td>
<td>G24</td>
<td>19.1</td>
</tr>
<tr>
<td>S47</td>
<td>21.5</td>
<td>21.0</td>
<td>25.2</td>
<td>23.9</td>
<td>K27</td>
<td>20.6</td>
</tr>
<tr>
<td>A51</td>
<td>15.3</td>
<td>14.3</td>
<td>19.5</td>
<td>17.6</td>
<td>V28</td>
<td>16.1</td>
</tr>
<tr>
<td>N52</td>
<td>19.3</td>
<td>17.8</td>
<td>26.2</td>
<td>21.8</td>
<td>S40</td>
<td>16.1</td>
</tr>
<tr>
<td>K55</td>
<td>15.9</td>
<td>14.5</td>
<td>19.8</td>
<td>18.3</td>
<td>G45</td>
<td>18.9</td>
</tr>
<tr>
<td>V57</td>
<td>20.8</td>
<td>19.9</td>
<td>21.7</td>
<td>22.0</td>
<td>Y46</td>
<td>19.1</td>
</tr>
<tr>
<td>L58</td>
<td>18.6</td>
<td>18.4</td>
<td>22.5</td>
<td>22.1</td>
<td>S47</td>
<td>19.5</td>
</tr>
<tr>
<td>E61</td>
<td>16.0</td>
<td>16.3</td>
<td>22.9</td>
<td>19.4</td>
<td>L58</td>
<td>19.2</td>
</tr>
<tr>
<td>G77</td>
<td>23.8</td>
<td>22.6</td>
<td>29.0</td>
<td>27.4</td>
<td>W59</td>
<td>16.4</td>
</tr>
<tr>
<td>L85</td>
<td>22.0</td>
<td>21.8</td>
<td>30.4</td>
<td>25.6</td>
<td>N63</td>
<td>17.3</td>
</tr>
<tr>
<td>E90</td>
<td>17.8</td>
<td>16.8</td>
<td>32.1</td>
<td>26.0</td>
<td>N70</td>
<td>14.9</td>
</tr>
<tr>
<td>Y97</td>
<td>17.7</td>
<td>18.1</td>
<td>26.67</td>
<td>21.9</td>
<td>K73</td>
<td>17.7</td>
</tr>
<tr>
<td>K100</td>
<td>18.2</td>
<td>18.2</td>
<td>23.5</td>
<td>20.8</td>
<td>F82</td>
<td>17.2</td>
</tr>
<tr>
<td>E103</td>
<td>17.6</td>
<td>16.1</td>
<td>21.3</td>
<td>18.3</td>
<td>E103</td>
<td>16.1</td>
</tr>
</tbody>
</table>

Average ^{1}HN line-width (Hz)

- PVP40 = 18.6 ± 2.6
- Ficoll70 = 18.1 ± 2.7
- BSA = 24.1 ± 3.9
- BSA‡ = 21.7 ± 3.0
- PAG = 18.3 ± 2.6

* Error represents standard deviation of the mean

‡ Solutions contained 100 g/L BSA, 125 mM NaCl, 20 mM KH$_2$PO$_4$, pH 6.0
Effects of Crowding and Confinement on the Cytochrome c-Flavodoxin complex. 1H, 15N HSQC spectra were acquired for 15N cytochrome c in the presence of 1 equivalent of unlabelled flavodoxin in dilute, crowded and confined conditions (Figure 9). Notably, severe broadening was observed for most of the cytochrome c resonances in volume-occupied solutions containing flavodoxin (Table 4) with 19-24 peaks broadened beyond detection in each case. Such acute broadening is characteristic of high affinity complexes in slow exchange on the NMR timescale.80,392,308,419 Given that cytochrome c and flavodoxin interact more strongly with each other than with the crowders or the gel (Figures 3-8), it is likely that the spectral deterioration arises from the enhanced stability of the cytochrome c-flavodoxin complex in crowded and confined environments. The cytochrome c spectra were partially restored when the ionic strength of the solutions was increased by 50 mM (\textit{i.e.} total buffer composition = 20 mM KH$_2$PO$_4$, 125 mM NaCl, pH 6.0) and the cytochrome c-flavodoxin interaction was disrupted (Figure 9 and Table 4).
Figure 9. 1H, 15N HSQC (identically contoured) spectra for 15N cytochrome c in the presence of 1 equivalent of flavodoxin in dilute, crowded or confined (8% PAG) conditions, as indicated. The crowder concentration was always 100 g/L. The samples used to generate the spectra in the left hand column had a total ionic strength of 100 mM (20 mM KH$_2$PO$_4$, 75 mM NaCl, pH 6.0). The spectra in the right hand column were acquired from the same samples after spiking with an additional 50 mM NaCl.
Effects of Crowding and Confinement on a Quinary-Like Interaction

Table 4. Linewidths (Hz) of cytochrome c 1HN resonances in samples containing 1 molar equivalent of flavodoxin + 100 g/L crowder in moderate and increased‡ ionic strengths

<table>
<thead>
<tr>
<th>Residue</th>
<th>PVP40</th>
<th>PVP40‡</th>
<th>Ficoll70</th>
<th>Ficoll70‡</th>
<th>BSA</th>
<th>BSA‡</th>
<th>Residue</th>
<th>PAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-3</td>
<td>26.0</td>
<td>25.3</td>
<td>27.9</td>
<td>23.5</td>
<td>27.8</td>
<td>25.2</td>
<td>K-2</td>
<td>29.0</td>
</tr>
<tr>
<td>K-2</td>
<td>41.5</td>
<td>31.3</td>
<td>35.1</td>
<td>31.9</td>
<td>37.9</td>
<td>29.1</td>
<td>G6</td>
<td>16.2</td>
</tr>
<tr>
<td>A-1</td>
<td>29.1</td>
<td>25.1</td>
<td>27.4</td>
<td>21.5</td>
<td>25.1</td>
<td>23.5</td>
<td>A7</td>
<td>27.6</td>
</tr>
<tr>
<td>L9</td>
<td>38.7</td>
<td>37.6</td>
<td>44.3</td>
<td>36.5</td>
<td>26.6</td>
<td>37.1</td>
<td>T12</td>
<td>42.6</td>
</tr>
<tr>
<td>T12</td>
<td>33.7</td>
<td>46.7</td>
<td>34.9</td>
<td>28.6</td>
<td>37.9</td>
<td>34.0</td>
<td>R13</td>
<td>35.0</td>
</tr>
<tr>
<td>Q16</td>
<td>43.3</td>
<td>45.3</td>
<td>46.7</td>
<td>40.7</td>
<td>42.3</td>
<td>33.4</td>
<td>Q16</td>
<td>27.6</td>
</tr>
<tr>
<td>R38</td>
<td>45.3</td>
<td>32.3</td>
<td>36.5</td>
<td>29.2</td>
<td>30.3</td>
<td>28.2</td>
<td>T19</td>
<td>20.1</td>
</tr>
<tr>
<td>G45</td>
<td>47.1</td>
<td>29.9</td>
<td>39.5</td>
<td>36.1</td>
<td>34.9</td>
<td>29.2</td>
<td>G23</td>
<td>29.9</td>
</tr>
<tr>
<td>Y46</td>
<td>41.1</td>
<td>32.3</td>
<td>31.6</td>
<td>25.7</td>
<td>31.0</td>
<td>26.1</td>
<td>G24</td>
<td>35.4</td>
</tr>
<tr>
<td>S47</td>
<td>36.9</td>
<td>33.2</td>
<td>37.1</td>
<td>31.8</td>
<td>37.2</td>
<td>31.5</td>
<td>K27</td>
<td>37.4</td>
</tr>
<tr>
<td>A51</td>
<td>40.2</td>
<td>29.9</td>
<td>35.7</td>
<td>25.8</td>
<td>39.0</td>
<td>24.6</td>
<td>V28</td>
<td>28.5</td>
</tr>
<tr>
<td>N52</td>
<td>26.5</td>
<td>37.6</td>
<td>44.6</td>
<td>27.6</td>
<td>41.0</td>
<td>32.0</td>
<td>S40</td>
<td>22.5</td>
</tr>
<tr>
<td>K55</td>
<td>39.1</td>
<td>32.6</td>
<td>29.8</td>
<td>32.0</td>
<td>35.9</td>
<td>25.5</td>
<td>G45</td>
<td>33.4</td>
</tr>
<tr>
<td>V57</td>
<td>37.7</td>
<td>32.5</td>
<td>34.5</td>
<td>30.6</td>
<td>39.2</td>
<td>28.9</td>
<td>Y46</td>
<td>25.9</td>
</tr>
<tr>
<td>L58</td>
<td>32.0</td>
<td>33.6</td>
<td>32.2</td>
<td>28.6</td>
<td>31.4</td>
<td>30.5</td>
<td>S47</td>
<td>33.9</td>
</tr>
<tr>
<td>E61</td>
<td>43.2</td>
<td>41.8</td>
<td>33.7</td>
<td>40.3</td>
<td>64.1</td>
<td>30.9</td>
<td>L58</td>
<td>30.5</td>
</tr>
<tr>
<td>G77</td>
<td>49.2</td>
<td>37.7</td>
<td>33.0</td>
<td>28.0</td>
<td>48.8</td>
<td>30.0</td>
<td>W59</td>
<td>37.4</td>
</tr>
<tr>
<td>L85</td>
<td>15.7</td>
<td>17.4</td>
<td>16.7</td>
<td>34.6</td>
<td>39.1</td>
<td>40.9</td>
<td>N63</td>
<td>36.2</td>
</tr>
<tr>
<td>E90</td>
<td>39.5</td>
<td>34.2</td>
<td>36.9</td>
<td>34.2</td>
<td>34.1</td>
<td>25.5</td>
<td>N70</td>
<td>30.0</td>
</tr>
<tr>
<td>Y97</td>
<td>32.7</td>
<td>47.5</td>
<td>39.5</td>
<td>30.7</td>
<td>54.3</td>
<td>42.0</td>
<td>K73</td>
<td>32.8</td>
</tr>
<tr>
<td>K100</td>
<td>31.2</td>
<td>28.8</td>
<td>32.0</td>
<td>30.8</td>
<td>35.9</td>
<td>34.5</td>
<td>F82</td>
<td>29.5</td>
</tr>
<tr>
<td>E103</td>
<td>37.0</td>
<td>29.2</td>
<td>30.6</td>
<td>27.0</td>
<td>35.6</td>
<td>28.1</td>
<td>E103</td>
<td>33.3</td>
</tr>
</tbody>
</table>

Average 1HN line-width (Hz)

- PVP40 = 37.0 ± 7.8
- PVP40‡ = 33.7 ± 7.2
- Ficoll70 = 35.0 ± 6.5
- Ficoll70‡ = 30.7 ± 5.0
- BSA = 37.7 ± 9.0
- BSA‡ = 30.5 ± 5.0
- PAG = 30.7 ± 6.1

* Error represents standard deviation of the mean

‡ Solutions contained 100 g/L crowder, 125 mM NaCl, 20 mM KH$_2$PO$_4$, pH 6.0

Crowding Effects Corroborated by Native Gels and Phase Separation. Figure 10 shows the control electrophoresis gels of cytochrome c or flavodoxin in buffer and in 100 and 400 g/L PVP40, Ficoll 70 and BSA at pH 6.0. Flavodoxin migration was essentially identical in buffer and in solutions containing crowders at 100 g/L. The migration distance of cytochrome c decreased by ~25 % in the presence of 100 g/L BSA, probably due to weak cytochrome c-BSA interactions. Interestingly, interactions with BSA do not alter the electrophoretic mobility of cytochrome c to the same degree as interactions with flavodoxin. This data is in keeping with the NMR results, indicating that the cytochrome c-BSA interaction is significantly weaker than the quinary-like cytochrome c-flavodoxin interaction. Cytochrome c migration was also impeded in the presence of 100 g/L PVP40, the most viscous crowder solution.417 The differential effect of 100 g/L PVP40 on cytochrome c and flavodoxin mobility in agarose gels results from the different net charges on the
protein. The electrophoretic mobility of a protein depends directly on its effective charge and solution viscosity \((\mu = z_{\text{eff}} \cdot 6 \pi \eta R_s) \). Since flavodoxin has a higher effective charge than cytochrome \(c \), it will migrate further in viscous solutions compared to the weakly charged cytochrome \(c \). Indeed, flavodoxin migration was unaffected in solutions containing 420 g/L glycerol, which has a higher viscosity than 100 g/L samples of Ficoll70 and BSA. By comparison, cytochrome \(c \) mobility was hampered at 350 and 420 g/L glycerol (Figure 11). Importantly, at a macromolecular crowder concentration of 400 g/L, both cytochrome \(c \) and flavodoxin mobility were substantially impeded due to crowding, confinement and viscosity with the largest effects imposed by BSA (Figure 10). This recapitulates the importance of studying crowding effects below the overlap concentration (~100 g/L) of synthetic polymers.

![Figure 10. 2% Agarose gel electrophoresis of cytochrome \(c \) or flavodoxin in dilute and crowded samples containing 20 mM KH\(_2\)PO\(_4\) pH 6.0 (sample volume = 20 \(\mu \)L). The concentration of the crowder samples is indicated. The electrophoresis buffer was 20 mM KH\(_2\)PO\(_4\) pH 6.0. Note that the lanes labelled PVP and Ficoll contain the crowders PVP40 and Ficoll70, respectively. Lanes labelled “Buffer” refer to dilute samples.](image)

100 g/L Crowder

400 g/L Crowder

Buffer PVP Ficoll BSA Buffer PVP Ficoll BSA
The cytochrome c-flavodoxin complex was also explored under dilute and crowded conditions by native gel electrophoresis (Figure 12). The rendered gel image dissects the ‘complex’ band into the red and orange components due to free and flavodoxin-bound forms of cytochrome c, respectively. It is difficult to observe differences in the relative proportion of free and bound cytochrome c in buffer and in solutions containing 100 g/L PVP40 or Ficoll70. This result is likely due to the fact that the synthetic crowders are charge neutral and will not migrate in the applied electric field. The effect of the crowders is therefore lost as the complex migrates into the gel. A significant increase in the intensity of the orange, complex band can be observed in solutions containing 100 g/L BSA (Figure 12). This suggests that the greatest complex stabilisation is effected by the most physiologically-relevant crowder and that this finding is pertinent to cytoplasmic interactions. Phase separation experiments were used to explore the effects of 100 g/L PVP40, Ficoll70 and BSA on cytochrome c and flavodoxin solubility (Figure 13). Intriguingly, drops that contained a synthetic crowder plus cytochrome c and flavodoxin showed orange liquid phase separations or amorphous precipitates between 2 and 4 days after setup (Figure 13). The control drops (one protein only) remained clear during this time. Precipitates were notably slower to form in the presence of 100 g/L BSA, suggesting that, although the cytochrome c-flavodoxin complex is favoured in solutions crowded with BSA, precipitation is attenuated.
Effect of Volume Occupancy on the Quinary-Like Interaction of Oppositely Charged Partners

Although studies of quinary structure are in their infancy, early investigations have indicated the critical role of charge in regulating quinary structure. Similarly, cell extract NMR, SEC and native gel electrophoresis revealed that the attractive quinary-like interactions involving cytochrome c and E. coli macromolecules were governed by charge (Chapters 3 and 5; reference 74). Intriguingly, these pervasive interactions were not disrupted in fourfold diluted extracts (Chapter 5). This finding suggests that charge-based quinary-like interactions are stabilised by physiological environments. This idea contrasts with
the expected ubiquity of weak interactions in forming quinary structure. This hypothesis prompted an investigation of the interaction between the oppositely charged cytochrome c-flavodoxin pair in volume-occupied conditions. As ET proteins, these partners are considered the paradigm for weak interactions.

NMR-monitored titration studies in dilute, buffered solutions indicated that the cytochrome c-flavodoxin interaction is transient. Native gel electrophoresis showed that the complex is anionic in nature which was reminiscent of the anionic cytochrome c-containing complexes identified in *E. coli* extracts (Chapters 3 and 5). This finding recapitulated the suitability of the cytochrome c-flavodoxin interaction as a mimic of those governing quinary structure. Notably, the 1H, 15N spectrum for cytochrome c showed dramatically-increased line-widths in the presence of 1 molar equivalent of flavodoxin and 100 g/L crowders or in an 8% PAG (Table 4). This spectral feature is frequently observed for static complexes, indicating that the cytochrome c-flavodoxin complex is stabilised in volume-occupied solutions. This stabilisation was partially mitigated by an ionic strength increase of 50 mM (total $I = 150$ mM). Thus, ionic strength changes may counteract the stabilising effects of macromolecular crowding. However, it is likely that the disruptive effect of the physiologically-abundant anion, glutamate, is less pronounced than that of chloride. The enhanced stability of the cytochrome c-flavodoxin complex effected in volume-occupied solutions may therefore represent an important mechanism for driving charge-based quinary interactions. Indeed, the interactions of small basic proteins are expected to be of critical importance in structuring macromolecular networks. Thus, the stabilisation of charge-based complexes may act to preserve formative elements of quinary structure.

Conclusions

A major goal of biochemistry is to develop molecular-level models of the cell. Although achieving this aim ultimately relies on sophisticated *in vivo* measurements, valuable information may also be gleaned from studies of model proteins/systems in increasingly native-like environments. This approach may also help to bridge the gap between *in vitro* and *in vivo* biochemistry. Herein, the complex between cytochrome c and flavodoxin was explored in dilute and volume-occupied solutions. We propose that this interaction, involving oppositely charged ET proteins, is a model for a
quinary-like interaction owing to the dynamic nature and low specificity of many ET complexes. The data suggest that the complex is stabilised in crowded and confined conditions. This stabilisation is especially apparent in the presence of BSA, a physiologically-relevant, anionic protein crowder. This finding challenges the notion that all quinary structure-forming interactions are weak and dynamic, emphasising the complex nature of cytoplasmic structure and its effect on predicted ‘weak’ interactions.
Overview

Protein interactions are a crucial component of all cellular phenomena. The vast majority of knowledge relating to protein interactions has come from studies performed in dilute, simple solutions. However, it is now appreciated that protein behaviour in vivo may be modified by low-specificity interactions with the complex, volume-occupied cytoplasm. Studies of these pervasive ‘quinary’ interactions are in their infancy but it is expected that quinary interactions organise the cytoplasm into spatiotemporal functional zones. Knowledge of the physicochemical basis of quinary interactions will therefore provide unprecedented insight into the molecular underpinnings of intracellular processes. The aim of this work was to advance the current understanding of quinary interactions and cytoplasmic structure by exploring the interaction propensities of three test proteins (ΔTat-GB1, cytochrome c and flavodoxin) in the E. coli cytoplasm and other physiological environments. Owing to its suitability for studies of transient protein interactions at atomic-level resolution, NMR spectroscopy was used. Indeed, in-cell NMR spectroscopy has emerged as a useful indicator of test protein ‘stickiness’ whereby sticky proteins tend to engage in high molecular weight assemblies that tumble too slowly to be detected by HSQC NMR and related experiments. The test proteins employed herein differ in size, pI and surface charge density (Introduction) and were therefore expected to exhibit different degrees of stickiness and NMR detectability in E. coli and extracts. However, as observed previously for cytochrome c, ΔTat-GB1 and flavodoxin were completely undetectable by in-cell NMR (Chapter 2 and 5). This finding indicates that all three test proteins engage extensively in attractive quinary interactions with E. coli macromolecules.

ΔTat-GB1’s quinary-like interactions were assessed in concentrated E. coli extracts using size exclusion chromatography (SEC; Chapter 2). SEC revealed that ΔTat-GB1 (7.7 kDa) interacted pervasively with E. coli macromolecules in DNase I-pretreated extracts, despite the absence of physiological partners for the Tat motif. The resulting high molecular weight assemblies (> 44 kDa) were not disrupted during SEC in buffers containing (i) 50-200 mM NaCl or 100 mM of (ii) the physiologically abundant salt KGluc or (iii) most laboratory ions. ΔTat-GB1 interactions were disrupted when the extracts were pretreated with RNase A or
during SEC in a buffer containing 35 mM MgCl$_2$ ($I = 100$ mM). These findings indicate that ΔTat-GB1 interacted preferentially with $E. coli$ RNA. Given the affinity of Mg$^{2+}$ for phosphate oxyanions, the data suggest that Mg$^{2+}$ disrupts ΔTat-GB1 interactions with $E. coli$ RNA by displacing arginine-phosphate salt bridges. ΔTat-GB1 was rendered NMR detectable in $E. coli$ extracts pretreated with RNase A and spiked with > 10 mM MgCl$_2$. The need for both RNA digestion and Mg$^{2+}$ indicates the role of the chelate effect264 in driving numerous arginine-phosphate salt bridge interactions between the disordered arginine-rich motif of ΔTat-GB1 and the RNA backbone. This finding coincides with the role of arginine/lysine-phosphate interactions in driving non-specific protein-RNA interactions258,420 and also agrees with the idea that some RNA-binding proteins interact at sites lacking defined recognition elements.263 The identification of ΔTat-GB1 interactions with RNA is also consistent with recent evidence indicating that protein-RNA interactions are an important component of quinary structure.79 Moreover, similar arginine-rich peptide/RNA systems have been used to explore the roles of charge, multivalency and structural plasticity in facilitating supramacromolecular system assembly (i.e. reversible compartmentalisation).56 Studies of such processes in composite, native-like environments may reveal the effects of quinary interactions on transitions facilitating micrometer-scale architecture formation from Ångström-scale structures.

Previously, cell extract NMR and SEC were used to identify the role of charge in driving non-specific interactions between cytochrome c and $E. coli$ macromolecules.74 Chapter 3 describes how electrophoresis was used to explore cytochrome c charge in buffer and in extracts. Membrane confined electrophoresis (MCE) revealed that, in a buffer containing 100 mM KNO$_3$ at pH 7.0, the effective valence of cytochrome c is +1.04. This value is ~8 times lower than the calculated charge (based on the primary structure). Moreover, cytochrome c valence is dependent on the buffer composition. For instance, cytochrome c was charge neutral in the presence of 35 mM K$_2$SO$_4$ ($I = 100$ mM), indicating that SO$_4^{2-}$ binds tightly to cytochrome c, neutralising its charge. In agreement with the MCE data, native gel electrophoresis showed that cytochrome c migrated toward the cathode (Chapters 3, 5 and 6). The migration distance of cytochrome c was notably short in native gels (compared to flavodoxin) and was dependent on buffer, ionic strength and pH. In $E. coli$ extracts, cytochrome c migrated toward the anode, indicating that it interacted
with macroanions to produce anionic assemblies. Indeed, cytochrome c was identified in anionic assemblies at pH 6.0 or 7.0 in two- and fourfold serially diluted samples. Similarly, cytochrome c was never NMR detectable in extracts despite dilution of the cellular components. These data indicate that cytochrome c interactions with $E. coli$ macroanions are relatively strong. SEC was used to identify whether cytochrome c interactions in extracts could be disrupted by DNase I or RNase A pretreatment or by charge neutralisation in buffers containing 35 mM K$_2$SO$_4$. In each case, cytochrome c eluted in the high molecular weight fractions, suggesting that it interacts preferentially with $E. coli$ proteins. Cytochrome c interactions were disrupted during SEC in buffers containing of 35 mM MgCl$_2$ but the protein was not NMR detectable in extracts spiked with MgCl$_2$.

Using SEC, Crowley identified that single (R13E), double (R13E/K73E) and triple (R13E/K73E/K87E) cytochrome c mutants showed progressively fewer interactions in $E. coli$ extracts. The role of charge-charge interactions in governing cytochrome c stickiness was suggested. These mutants, and a quadruple (R13E/K73E/K87E/K100E) mutant, were characterised by MCE in a buffer containing 10 mM BIS-TRIS propane, 100 mM KCl pH 7.0 (Chapter 3). The effective valences of WT cytochrome c and the single, double, triple and quadruple mutants were 1.08, 0.71, 0.46, 0 and 0, respectively. In keeping with Crowley’s SEC findings, native gel electrophoresis showed that cytochrome c’s interactions with $E. coli$ proteins diminished further with each additional K/R→E mutation. Despite their net charge of zero and expected low solubilities, the triple and quadruple mutants were not preferentially solvated by $E. coli$ macromolecules. They are preferentially hydrated. This finding coincides with the fact that glutamate is one of the most strongly hydrated side chains and that the replacement of surface residues to glutamate can enhance protein solubility.

Although undetectable in living $E. coli$ cells, flavodoxin was weakly detectable in $E. coli$ extracts and substantial improvements in peak linewidths and signal-to-noise ratios were effected in two- and fourfold serially diluted extracts (Chapter 5). Native gel electrophoresis revealed that flavodoxin migration was unaltered by cell extracts indicating that the role of charge was minimal in driving non-specific flavodoxin interactions in extracts as expected for such a highly anionic protein.
Native gel electrophoresis showed that WT cytochrome c interacts with flavodoxin to produce an anionic complex reminiscent of the anionic, cytochrome c-containing assemblies identified in *E. coli* extracts (Chapters 5 and 6). This finding suggests that the low-specificity cytochrome c-flavodoxin interaction is a useful model for ‘quinary-like interactions’. Although it is well-established that the cytochrome c-flavodoxin complex is transient in dilute solution, NMR studies revealed that the complex is stabilised by crowding or gel confinement. Notably, a low degree of crowding (100 g/L) was sufficient to produce a tight complex. Native gel electrophoresis suggested that the greatest complex stabilisation was effected by the anionic protein BSA. This latter result, in particular, highlights the importance of using physiologically-relevant sample compositions.

The exploration of cell extracts was presented herein as a means of overcoming the debilitating effects of intracellular complexity on biophysical methods routinely used to study protein interactions. The combined use of SEC, NMR and native gel electrophoresis facilitated the dissection of ∆Tat-GB1, cytochrome c and flavodoxin interaction propensities in physiological solutions. A novel, inexpensive strategy for protein labelling with fluorotryptophan was also presented (Chapter 4), that involves supplementing minimal medium with 30-60 mg/L of the fluorinated tryptophan precursor 5-fluoroindole and no other additives. This method is suited to systems that over-express proteins and will extend the utility of 19F NMR spectroscopy for the investigation of biophysical protein properties under native-like conditions.

Comparison of Test Protein Surfaces: Insights into Quinary-Like Interactions

Biomolecular interactions are an inevitable consequence of the high surface-to-volume ratios imposed by macromolecular crowding. Consideration of protein surfaces and their known interaction propensities in physiological media may help to elaborate the principles of quinary-like interactions. The three test proteins studied herein displayed different degrees of stickiness and NMR detectability in concentrated *E. coli* extracts. They can be ranked cytochrome c > ∆Tat-GB1 > flavodoxin in order of decreasing stickiness. This rank also tallies with the isoelectric point (Table 1), suggesting an over-arching role of protein charge in governing stickiness. This idea is consistent with the fact that cationic surface patches are a
major contributor to *E. coli* protein insolubility during over-expression in cell free expression systems. Cytochrome *c* was never NMR detectable in extracts, despite spiking with Mg\(^{2+}\) or extract dilution. This indicates that cytochrome *c* interacts most pervasively with *E. coli* macromolecules, probably due to its overall high surface charge density (12.6 kDa, up to 21 cationic residues at physiological pH). The stickiness of ΔTat-GB1 is conferred solely by the 11-residue arginine-rich Tat motif which can adopt α-helical or random coil conformations, depending on its environment. ΔTat-GB1 was detectable in extracts pretreated with RNase A and spiked with MgCl\(_2\). Thus, despite the high local charge density of the short Tat-motif, ΔTat-GB1 is probably less sticky than cytochrome *c* due to its lower total number of cationic residues. Although highly anionic, flavodoxin was only weakly detectable in extracts. GB1, by comparison, is highly detectable by NMR in *E. coli* cells and extracts despite having a higher pI than flavodoxin. GB1 never formed a boundary during MCE experiments, indicating that it is charge neutral at a physiologically-relevant ionic strength and pH. This challenges the idea that protein stickiness correlates solely with net charge. Surface properties other than protein charge must therefore tune stickiness. For instance, flavodoxin is larger than GB1 (Table 1). Thus, flavodoxin has a larger surface area with which to engage in cooperative, attractive interactions. Interestingly, ~1/3 of ionisable residues in both flavodoxin and GB1 are cationic at physiological pH. However, GB1 lacks arginine residues, while flavodoxin has 4 arginines. Given arginine’s versatility in its contribution toward protein interactions, its frequent role as a hot spot residue and in the cationic surfaces patches of proteins that are poorly soluble during cell-free expression, the difference in arginine content may partly explain the difference in stickiness observed for flavodoxin and GB1.

Table 1. Ionizable residues, pI and accessible surface areas of GB1 and the test proteins.

<table>
<thead>
<tr>
<th>Number of residues</th>
<th>GB1-QDD</th>
<th>ΔTat-GB1</th>
<th>Cytochrome c</th>
<th>Flavodoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Lysine</td>
<td>6</td>
<td>8</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Histidine</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Aspartate</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Glutamate</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>Isoelectric point</td>
<td>4.5</td>
<td>8.2*</td>
<td>9.6</td>
<td>3.5</td>
</tr>
<tr>
<td>Surface Area (Å(^2))</td>
<td>3700</td>
<td>~ 6500</td>
<td>6100</td>
<td>8000</td>
</tr>
</tbody>
</table>

* pI calculated using ProtParam (ExPASy)
Discussion

Majumder and co-workers recently used in-cell NMR spectroscopy to identify the binding sites of four sticky proteins in *E. coli* and HeLa cells. They found that protein quinary interactions involved their known binding sites, suggesting that trends in protein recognition identified *in vitro* also govern quinary structure. For instance, it is likely that quinary structure may be specified by electrostatic interactions between hydrophilic groups but stabilised by hydrophobic interactions. Evidence for the importance of co-operative, low-specificity hydrophobic interactions comes from in-cell NMR studies indicating that a large hydrophobic surface patch of ubiquitin mediates its quinary interactions. Weaker ubiquitin-cytoplasm interactions resulted from mutating hydrophobic residues in the ‘sticky’ ubiquitin surface. A cursory glance at the hydrophobicity of the test protein surfaces indicates that flavodoxin has the greatest number of hydrophobic patches followed by cytochrome *c* and then GB1 (Figure 1). Non-specific interactions between flavodoxin and *E. coli* macromolecules may therefore involve its hydrophobic surface patches, providing another explanation for the increased stickiness of flavodoxin relative to GB1. Flavodoxin has 13 solvent exposed hydrophobic residues, many of which are clustered (e.g. W56, Y57 and Y58) and involve residues most frequently observed at protein-protein interfaces: valine, leucine, isoleucine, phenylalanine, tryptophan and tyrosine. GB1 contains only 4 surface exposed hydrophobic residues: I6, L7, V29 and V54. Cytochrome *c* contains 7 solvent exposed hydrophobic residues amongst those frequently observed at protein-protein interfaces. Four of these residues (V28, Y48, Y74 and F82) line the haem exposed edge in a non-contiguous manner. The role of cationic side chains in governing cytochrome *c* stickiness indicates that its non-clustered hydrophobic residues are not implicated in quinary interactions. Clustered hydrophobic surface residues such as those observed on flavodoxin likely drive hydrophobic quinary interactions. This idea relates to a computational simulation of the *E. coli* cytoplasm by McGuffee and Elcock showing that the known translational and rotational diffusion coefficients for GFP could not be reproduced by modelling the electrostatic and steric interactions between the 50 most abundant *E. coli* proteins. Realistic GFP diffusion co-efficients were obtained only when short-range attractions between exposed hydrophobic atoms were included in the model.
Knowledge of the effective valence and cell extract interactions of cytochrome c and its charge inverted mutants emphasise the need to consider protein solubility and amino acid composition to understand quinary-like interactions. Pure cytochrome c is soluble up to 5.5 mM in low ionic strength buffer (20 mM KH$_2$PO$_4$, 50 mM NaCl, pH 6.0). However, cytochrome c precipitation occurs readily (i.e. after 40-45 minutes at 30 °C) in concentrated E. coli extracts, even those spiked with 35 mM MgCl$_2$. Although strongly hydrated in buffer, cytochrome c is preferentially solvated
by anionic proteins in *E. coli* extracts even after twofold serial dilutions with a low ionic strength buffer (20 mM Na$_2$HPO$_4$, pH 7.0). Native gel electrophoresis showed that cytochrome *c* stickiness (*i.e.* solvation), and charge decreased with each charge inverted mutation. The calculated pI of cytochrome *c* also decreased with each mutation (Table 2). Although it is generally accepted that protein solubility is lowest at its pI and tends to increase with increasing net charge434 the quadruple cytochrome *c* mutant was preferentially hydrated (*i.e.* highly soluble) and unsticky in extracts at a pH close to its calculated pI (Table 2). Similarly, the triple cytochrome *c* mutant was charge neutral and NMR detectable in extracts. Thus, the replacement of cationic residues with glutamate changes the interaction propensity of cytochrome *c* such that interactions with water are favoured in the triple and quadruple mutants. This finding correlates with those of Kramer and co-workers who demonstrated that the solubility of seven proteins correlates weakly with net protein charge but strongly with the degree of negative charge.434 No strong correlation was observed between protein solubility and the degree of positive protein charge, polarity or hydrophobicity.434 Therefore, the kosmotropic aspartate and glutamate residues contribute most favourably to protein solubility, possibly by facilitating water clustering and structure formation (*i.e.* electrostriction) at protein surfaces.247,435 Together, these findings suggest that anionic surface charges disfavour protein-macromolecule interactions in extracts through a combination of charge-charge repulsion with *E. coli* macroanions and preferential hydration.63,225 This idea is supported by the results of crystal structure analyses indicating that interfacial water molecules frequently interact with the carboxylate groups of glutamate and aspartate side chains and that these interactions are enriched in low-specificity interfaces (*i.e.* crystal packing interfaces), which are the most strongly hydrated of all protein-macromolecule interfaces.429 Importantly, crystallographic analyses also revealed that bridging water molecules (*i.e.* those mediating contacts between polar residues of protein partners) are a minority in most protein-protein complexes.429 The role of carboxylate-interfacial water interactions in mediating low-specificity, quinary interactions is invoked. The cytochrome *c* and mutant studies also emphasise the role of side chain carboxylate groups in hydrating proteins and opposing aggregation. The abundance of anionic proteins in many proteomes51,64 indicates that this is a global evolutionary trend that shapes cytoplasmic physicochemistry. Indeed, this trend is not unique to macromolecules. Prominent correlations have also been
Discussion

reported between the measured concentration of metabolites and their water solubility such that the most abundant metabolites are highly water-soluble and often contain carboxylate or phosphate groups.3,436

<table>
<thead>
<tr>
<th>Cytochrome c Variant</th>
<th>Calculated pI</th>
<th># Cationic Residues</th>
<th># Anionic Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>9.5</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>SM</td>
<td>9.32</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>DM</td>
<td>9.04</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>TM</td>
<td>8.49</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>QM</td>
<td>6.84</td>
<td>19</td>
<td>15</td>
</tr>
</tbody>
</table>

Implications for Cytoplasmic Structure

The physicochemical mechanisms that govern macromolecular assembly in cells are likely similar to those in extracts. It is therefore instructive to consider the test protein interaction propensities identified in cell extracts in light of Spitzer and Poolman’s model for intracellular assembly.63,65 This model emphasises the importance of screened electrostatic interactions and macromolecular crowding in driving the formation of cytoplasmic domains such as supercrowded ‘cytogels’ and the dilute ‘cytosol’.63,65 Cytogels are composed of functional macromolecular assemblies or ‘clusters’ that are expected to have a net negative charge owing to the preponderance of anionic macromolecules in E. coli (Introduction).63–65 The inability to detect ΔTat-GB1, cytochrome c and flavodoxin, as well as most other globular proteins, by in-cell NMR supports the idea that cytoplasmic macromolecules interact extensively in the cytoplasm. SEC of concentrated E. coli extracts containing ΔTat-GB1 or cytochrome c confirmed the abundance of high molecular weight assemblies which were not disrupted at physiological concentrations of the abundant cellular ions K+ and Glu’. Native gel electrophoresis of E. coli extracts indicated that both cytochrome c and flavodoxin-containing assemblies were anionic in nature. This finding provides fresh evidence in support of abundant anionic clusters in native-like environments. Moreover, these anionic clusters pervaded at low and physiological ionic strengths suggesting the significance of screened charge-charge interactions in driving cluster formation in volume-occupied solutions. Indeed, the non-specific complexes between cationic proteins (e.g. ΔTat-GB1 or cytochrome c) and macroanions (e.g. RNA or proteins) resisted cell lysis and exposure to the SEC column. This finding suggests that low-specificity interactions, governed
predominantly by multiple charge-charge and/or salt bridge interactions, were notably strong (i.e. $K_d < 10 \, \mu M^{109,437}$). Similarly, the cytochrome c-flavodoxin interaction was apparently stabilised under volume-occupied conditions. The interactions of flavodoxin in *E. coli* extracts were relatively easy to disrupt i.e. by cell lysis and dilutions. This result suggests that flavodoxin’s attractive quinary interactions involve weak, short range contacts (e.g. hydrogen bonds, dispersion forces) which diminish significantly with increasing intermolecular distances effected during dilution. Charge-charge interactions apply over comparably longer distances (Table 3) 307 and, thus, the increased NMR detectability of flavodoxin in dilute extracts suggests that charge-charge repulsion between flavodoxin and other macroanions predominate in the increasingly dilute extract samples. This finding supports Spitzer and Poolman’s notion that anionic cytoplasmic surfaces remain ‘watery’ in the cytoplasm and indicates that, at increased levels of macromolecular crowding, favourable intermolecular contacts can overcome charge-charge repulsion to extend cytoplasmic clusters.

Table 3. Potential energies and their distance dependence

<table>
<thead>
<tr>
<th>Type</th>
<th>n</th>
<th>Dependence b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge-charge</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>Charge-dipole</td>
<td>2</td>
<td>I and Φ</td>
</tr>
<tr>
<td>Dipole-dipole</td>
<td>3</td>
<td>I and Φ</td>
</tr>
<tr>
<td>Charge-induced dipole</td>
<td>4</td>
<td>Φ</td>
</tr>
<tr>
<td>Hydrogen bond</td>
<td>4</td>
<td>Φ</td>
</tr>
<tr>
<td>Dipole-induced dipole</td>
<td>5</td>
<td>Φ</td>
</tr>
<tr>
<td>Dispersion</td>
<td>6</td>
<td>Not D</td>
</tr>
<tr>
<td>van der Waals</td>
<td>12</td>
<td>Not D</td>
</tr>
</tbody>
</table>

aDistance dependence of the potential energy which is proportional to $1/r^n$ where r is the distance between two proteins; b I, ionic strength–dependent; Θ, orientation-dependent; Not D, not dependent on solvent dielectric constant. Table derived from reference 23.

Spitzer and Poolman surmise that the supercrowded ‘clusters’ are bathed in dilute pools and interconnecting channels (*i.e.* the cytosol). 63,65 Pools and channel boundaries are defined by the charged, heterogeneous surfaces of the plasma membrane and macromolecular clusters. 63 Electrolytes (e.g. simple ions and metabolites) diffuse rapidly throughout the cytosol in response to electrochemical gradients arising between compositionally unique pools and cluster surface properties (e.g. charge and inter-cluster distance). 63 Not all intracellular ions are found in the cytosol, however. Ions that preferentially interact with macromolecules
are expected to reside within clusters. SEC studies of extracts containing ΔTat-GB1 or cytochrome c revealed differences between the shielding effects of biologically relevant ions which were consistent with their expected location in the cytoplasm. For instance, Mg$^{2+}$ is likely sequestered by nucleic acid phosphates or anionic protein surface patches. This model is supported by the shielding effect of Mg$^{2+}$ identified by the cell extract studies and the low concentration of free Mg$^{2+}$ (~1 mM) in *E. coli*. Other ions (*e.g.* K$^+$, Glu$^-$, Ac$^-$, HPO$_4^{2-}$, and Cl$^-$) are expected to reside in electrolyte reservoirs and channels to assist with metabolite transfer by establishing electrochemical gradients. The inability of these ions to disrupt ΔTat-GB1 interactions invokes their role in gradient formation. The TCA cycle intermediates Succ$^2-$ and Cit$^3-$ are expected to reside in the electrolyte system for transport to the TCA machinery. These anions disrupted some ΔTat-GB1 interactions. This may reflect the predicted role for metabolites in the regulation and rearrangement of the ‘metabolon’. Future work could explore the effects of other potential ‘disruptors’ such as polyamines (*e.g.* spermidine and putrescine) which are present in *E. coli* at concentrations up to 40 mM and interact predominantly with RNA, a major component of quinary structure.

(74) Crowley, P. B.; Chow, E.; Papkovskaia, T. Protein Interactions in the
Escherichia coli Cytosol: An Impediment to In-Cell NMR Spectroscopy.

(75) Li, C.; Charlton, L. M.; Lakkavaram, A.; Seagle, C.; Wang, G.; Young, G. B.;
Macdonald, J. M.; Pielak, G. J. Differential Dynamical Effects of
Macromolecular Crowding on an Intrinsically Disordered Protein and a
Globular Protein: Implications for In-Cell NMR Spectroscopy. J. Am. Chem.

Multi-Dimensional NMR Spectroscopy of Proteins in Human Cells. Nature

(77) Arnesano, F.; Banci, L.; Bertini, I.; Felli, I. C.; Losacco, M.; Natile, G.
Probing the Interaction of Cisplatin with the Human Copper Chaperone Atox1
by Solution and In-Cell NMR Spectroscopy. J. Am. Chem. Soc. 2011, 133,
18361–18369.

(78) Barnes, C. O.; Monteith, W. B.; Pielak, G. J. Internal and Global Protein
Motion Assessed with a Fusion Construct and In-Cell NMR Spectroscopy.

(79) Majumder, S.; Xue, J.; DeMott, C. M.; Reverdatto, S.; Burz, D. S.;
Shekhtman, A. Probing Protein Quinary Interactions by In-Cell Nuclear

(80) Williamson, M. P. Progress in Nuclear Magnetic Resonance Spectroscopy
Using Chemical Shift Perturbation to Characterise Ligand Binding. Prog.

(81) McConkey, E. H. Molecular Evolution, Intracellular Organization and the

(82) Jones, S.; Daley, D. T. A.; Luscombe, N. M.; Berman, H. M.; Thornton, J. M.
Protein-RNA Interactions: A Structural Analysis. Nucleic Acids Res. 2001, 29,
943–954.

(83) Janin, J.; Bahadur, R. P.; Chakrabarti, P. Protein-Protein Interactions and

(84) Jones, S.; van Heyningen, P.; Berman, H. M.; Thornton, J. M. Protein-DNA

(85) Rudner, D. Z.; Pan, Q.; Losick, R. M. Evidence that Subcellular Localization
of a Bacterial Membrane Protein is Achieved by Diffusion and Capture. Proc.

(152) Ritter, W. E. The Unity of the Organism; Or, The Organismal Conception of Life; Badger, R. G. : Boston, 1919.

(245) Kontur, W. S.; Capp, M. W.; Gries, T. J.; Saecker, R. M.; Record, M. T. J. Probing DNA Binding, DNA Opening, and Assembly of a Downstream Clamp/Jaw in *Escherichia coli* RNA Polymerase-lambdaP(R) Promoter

Bibliography

189

(371) Pollock, W. B.; Rosell, F. I.; Twitchett, M. B.; Dumont, M. E.; Mauk, A. G. Bacterial Expression of a Mitochondrial Cytochrome c. Trimethylation of

Acknowledgements

My PhD experience has been transformative and illuminating. This journey was enriched by many people:

Firstly, I thank my supervisor Dr. Peter Crowley for the zeal, creativity and dedication that he has toward all aspects of his work. His enthusiasm and scientific expertise have been majorly influential to my development as a researcher. I appreciate all of the training and professional and moral support that he has provided. I am lucky to be his student.

I am grateful to the National University of Ireland, Galway Hardiman Scholarship for funding my PhD and establishing the Hardiman Scholar community, through which, I have met some fantastic friends.

I am also grateful to the National University of Ireland Travelling Studentship for funding my research in the Laue laboratory and my participation at six high-profile conferences. This funding has exposed me to the variety of work throughout the field of protein science and has enabled me to meet leaders across the field.

I am grateful to all of the past and current members of the Crowley Research group for their help in the lab and useful discussions.

I thank Dr. Róisín Doohan for NMR spectrometer maintenance and helpful comments on NMR experiment design. I also thank Mr Gerard Fahy for the acquisition of mass spectrometry data.

I wish to thank Profs Thomas Laue and Gary Pielak for allowing me to work in their laboratories and their continued discussions and support. I thank the Laue and Pielak group members for their training and assistance.

Finally, I am extremely grateful to my family and friends for their support and encouragement. In particular, I thank my parents, Tim and Noreena, for teaching me the value of hard work and perseverance. I thank my siblings, Tadhg, Aoife and Proinnsias, for their unwavering support, guidance and patience. Special thanks go to Ethan and Timothy for the colour that they bring to everything. Most importantly, I dedicate this thesis to my granny, Mary Kyne. I am still inspired by the many nature walks, projects and stories that you shared with me.
Curriculum Vitae

Ciara Kyne was born on September the 11th 1989 in Galway, Ireland. During her BSc studies at NUI Galway, Ciara worked as a protein chemist under the supervision of Dr Peter Crowley. The work involved using NMR spectroscopy to determine the \(pK_a \) values of ionisable groups in a protein and in-cell NMR studies. Ciara continued this project for her undergraduate thesis.

In 2011, before graduating with a 1st class honours degree in chemistry, Ciara was awarded a Korner Travelling Fellowship. This funding enabled her to perform a 6 week placement in Prof. Gary J. Pielak’s laboratory at the University of North Carolina, Chapel Hill, USA. The work explored how cell growth conditions could be optimized to achieve high quality NMR spectra of a test protein in live *E. coli*. Later that year, Ciara joined the Crowley laboratory at NUI Galway to pursue her PhD. The aim of her research was to understand protein interactions under physiological conditions and to elaborate principles for describing cytoplasmic structuring. As part of her PhD, Ciara performed a 10 week placement in the laboratory of Prof. Thomas M. Laue at the University of New Hampshire, U.S.A. The work involved characterizing the charge and association state of cytochrome *c* and its charge-inverted mutants. The results of these projects are presented in this thesis.
Publications

Kyne C, Crowley PB
Effects of crowding and confinement on quinary-like protein interactions.
To be submitted

Kyne C, Jordan K, Filoti DI, Laue TM, Crowley PB
Protein charge determination and implications for interactions in cell extracts
To be submitted

Kyne C, Crowley PB
Grasping the nature of the cell interior.
FEBS J. 2016, In press

Kyne C, Ruhle B, Gautier VW, Crowley PB.
Specific ion effects on macromolecular interactions in Escherichia coli extracts.
Protein Sci. 2015, 24, 310-318. Highlighted Article

Wettstein C, Kyne C, Doolan AM, Möhwald H, Crowley PB*, Lisdat F.
Study of cytochrome c-DNA interaction: evaluation of binding sites on the redox protein.
Nanoscale 2014, 6, 13779-13786.

Physicochemical properties of cells and their effects on intrinsically disordered proteins.

PB Crowley*, C Kyne and WB Monteith.
Simple and inexpensive incorporation of 19F-tryptophan into proteins.
Oral Presentations

1. Kyne, C. (2015, April) Assessing Protein Stickiness in the *E. coli* cytoplasm, NUI, Galway, School of Chemistry **BOC Postgraduate Award**

Conferences & Workshops

07/2015- Protein Society Symposium, Barcelona, Spain*†
10/2014- Disordered Motifs and Domains in Cell Control, Dublin, Ireland†
09/2014- Soft-Inter 2014: Soft Interactions in Biological and Biomimetic Self-Assemblies, Saint Malo, France†
12/2013- In-cell NMR Analysis of Biomolecular Structure and Function (Instruct Workshop), Florence, Italy†
06/2013- Gordon Research Conference: Proteins, New Hampshire, USA*†
09/2012- FASEB Protein Folding in the Cell, Vermont, USA*†
05/2012- EuroMAR, Dublin, Ireland*†
*Selected to Present a Poster
†Funded by NUI Travelling Studentship

Extracurricular Contributions & Outreach Work

06/2012-06/2013: Auditor of NUI Galway Chemistry Society
Coordinated a 14-part seminar series involving national/international researchers from Industry and Academia

06/2013-06/2014: Director of “Kitchen Chemistry”, a postgraduate-led outreach initiative to promote Science in primary and secondary schools.