

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T08:42:12Z

Some rights reserved. For more information, please see the item record link above.

Title Modelling, planning and adaptive implementation of semantic
event service

Author(s) Gao, Feng

Publication
Date 2016-05-13

Item record http://hdl.handle.net/10379/5787

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Modelling, Planning and Adaptive
Implementation of Semantic Event

Service

Author:

Feng Gao

Supervisor:

Dr. Edward Curry

Co-Supervisor:

Dr. Alessandra Mileo

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

INSIGHT Centre for Data Analytics

National University of Ireland, Galway

May 13, 2016

https://www.insight-centre.org/
http://www.nuigalway.ie/index-internal.html

Declaration of Authorship

I, Feng Gao, declare that this thesis titled, ’Modelling, Planning and Adaptive Imple-

mentation of Semantic Event Service’ and the work presented in it are my own. I confirm

that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

Abstract

Recent developments in sensor networks, social media, process management and data

analysis envisions interlinked devices, people, processes and data, constituting an Internet-

of-Everything. These networks can be used to help create systems that detect situations

occuring in urban life and respond to those situations in a timely manner, so that smart

decisions can be made for citizens, organisations, companies and city administrations.

Event processing is an important technique in developing Smart City applications that

target detecting patterns in events captured at real-time. However, event processing

faces many challenges in the context of creating Smart City applications and building

the Internet-of-Everything, including integrating heterogeneous data sources and data

interfaces, ensuring quality-of-service and providing an easy-to-use and easy-to-maintain

platform. This thesis addresses these challenges by integrating Semantic Web, Service

Oriented Architecture and Complex Event Processing techniques, realising a network of

semantic complex event services. The modelling, planning and adaptive implementation

of semantic event services are researched, with the objective of facilitating an efficient and

effective management of the life-cycle of a semantic event service. Service composition

algorithms based on pattern matchmaking are developed and evaluated. Experiments

show that by leveraging an event service reusability index, the composition time for large

repositories and complicated queries can be reduced significantly, making on-demand

composition possible for scenarios with large solution spaces. Genetic algorithms are

developed for optimising event service compositions with regard to quality-of-service

metrics. The evaluation shows that the genetic algorithms are effective and scalable.

Different quality-aware event service adaptation strategies are developed to recover the

quality of the system at run-time. Experiments show that applying different adaptation

strategies have trade-offs between adaptation efficiency and effectiveness.

The techniques are integrated in the Automatic Complex Event Implementation System,

which serves as a middleware for handling activities in the life-cycle of semantic event

services. A prototype of the system is developed and tested over different smart city

application scenarios, based on both real data collected from the city of Aarhus as well

as synthetic data. By addressing the requirements in real-world scenarios, the prototype

demonstrates the validity and feasibility of the system.

Acknowledgements

The completion of my Ph.D. thesis was a result from a long academic journey at the IN-

SIGHT Centre for Data Analytics, National University of Ireland, Galway. This journey

is made of almost equal parts of joy and struggle. Now I have reached a notable mile-

stone in my life, which they say, and I concur, that one cannot reach all by him/herself.

Indeed, there is a long list of names that I feel obligated to thank for.

First and foremost, I would like to thank Dr. Edward Curry, my thesis supervisor, for

his patience and excellence in helping me organise my research and this dissertation. I

have lost count on how many times we sit together and discuss the issues of the thesis,

some of them repeatedly, as well as the research publications relevant for the thesis.

His expertise and positive attitude encouraged me throughout the process of the thesis

writing. I would like to also thank my project advisor and co-supervisor, Dr. Alessandra

Mileo, not only for funding my research and keeping me warm and fed during my Ph.D.,

but also for the various discussions we had for the CityPulse project, which cultivates

many of the research ideas in my thesis. I am also thankful for the valuable suggestions

provided by Dr. Sami Bhiri in my early stages of pursuing the Ph.D.

The members of my Graduate Research Committee, Prof. Manfred Hauswirth, Prof.

Stefan Decker and Dr. Adegboyega Ojo have been keeping an eye on my research and

making sure that I am on track since 2010. The research presented in this thesis has

received many insightful feedbacks from the committee. The study at INSIGHT has

been a great experience and I appreciate all the discussions, debates and collaborations

I had with my colleagues and friends from the Unit of Reasoning and Query, includ-

ing Dr. Muhammad Initizar Ali, Soheila Dehghanzadeh, Thu-Le Pham and Zia Ush

Shamszaman. Their help in proof-reading the thesis chapters is also deeply appreciated.

Special thanks to Dr. Michael Schukat and Dr. Payam Barnaghi for their time and

efforts spent reviewing the thesis.

Last but not the least, I would like to extend my deepest and sincerest gratitude to

my family. I would not be where I am now without the support (and genes) from my

parents, or without the earnest and faithful love from my wife, YiZhuo Zhu, who has

always been there for me and our lovely daughter RuoMin Gao, even when my foreign

study separates us apart physically. I dedicate this thesis to you.

vi

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

Contents viii

List of Figures xv

List of Tables xix

Abbreviations xxi

I Foundation - Motivation and Background 1

1 Introduction 3

1.1 Motivation . 3

1.2 Research Problems . 7

1.2.1 Requirements Analysis . 7

1.2.2 Limitations of Current Approaches 8

1.2.3 Research Questions . 11

1.3 Methodology . 12

1.4 Overview of the Proposed Approach . 13

1.5 Summary of Contributions . 14

1.6 Thesis Outline . 16

1.7 List of Relevant Publications . 18

1.7.1 Journal . 18

1.7.2 Conference . 18

1.7.3 Workshop and Demo . 19

1.7.4 Additional . 20

2 Motivation 21

2.1 Context: Smart City Applications . 21

vii

Contents viii

2.2 Basic Requirements of Smart City Applications 23

2.3 Advanced Requirements and Limitations of Existing Approaches 25

2.3.1 User-Centric SES Modelling . 26

2.3.2 Automatic and Customised SES Planning 29

2.3.3 Automatic and Adaptive SES Implementation 32

2.3.4 Efficient SES Execution . 35

2.4 Summary and Discussion . 36

3 Background 37

3.1 Semantic Web . 37

3.1.1 Basic Concepts and Standards in Semantic Web 38

3.1.2 Linked Data . 39

3.1.3 Semantic Web and Sensor Networks 40

3.2 Service Oriented Computing . 41

3.2.1 Service Roles and Activities in SOA 41

3.2.2 Web Service and Service Description 42

3.2.3 Service Invocation, Orchestration and Choreography 44

3.2.4 Semantic Web Service . 45

3.3 Complex Event Processing . 46

3.3.1 Basic Concepts in CEP Systems 47

3.3.2 Event Channel and Routing . 49

3.3.3 Event Pattern . 51

3.3.4 Semantic Event Processing and Stream Reasoning 53

3.4 Summary and Discussion . 54

II Core - Semantic Event Service Management 57

4 Overview of the Automatic Complex Event Implementation System 59

4.1 ACEIS Key Functionality Design . 59

4.1.1 Event Service Annotation and Event Pattern Definition 60

4.1.2 Pattern-based Event Service Discovery and Composition 60

4.1.3 Constraint-aware Event Service Discovery and Composition 61

4.1.4 Automatic Event Service Implementation and Adaptation 61

4.2 ACEIS Architecture . 62

4.2.1 Knowledge Base . 62

4.2.2 Application Interface . 63

4.2.3 Semantic Annotation . 63

4.2.4 ACEIS Core . 64

4.3 ACEIS Deployment in Smart City Framework 65

4.4 Summary and Discussion . 67

5 Event Service Ontology and Event Pattern Definition 69

5.1 Complex Event Service Ontology . 71

5.1.1 Overview . 73

5.1.2 Event Profile . 74

5.1.3 Event Pattern . 74

5.1.4 Event Request . 76

Contents ix

5.1.5 Traceability between Event Services 77

5.2 Extended Business Event Modeling Notations 78

5.2.1 Overview of Business Event Modeling Notation 78

5.2.2 Advantages and Limitations of BEMN 79

5.2.3 BEMN+: the Revised Constructs, Syntax and Constraints 81

5.2.4 BEMN+: Formal Semantics of Event Pattern 85

5.3 Related Work . 89

5.3.1 Event Ontologies . 90

5.3.2 Graphical Event Pattern Definition Languages 90

5.4 Summary and Discussion . 92

6 Pattern-based Event Service Discovery and Composition 95

6.1 Canonical Event Pattern . 97

6.1.1 Definitions of Event Syntax Tree 98

6.1.2 Complete Event Pattern . 100

6.1.3 Irreducible Event Pattern . 100

6.1.4 Syntax Tree Reduction Algorithm 103

6.2 Event Pattern Discovery and Composition 106

6.2.1 Optimisation based on Network Traffic Estimation 108

6.2.2 Event Pattern Composition based on Substitution 109

6.2.3 Event Pattern Composition based on Re-usability Index 112

6.3 Experiment Evaluation . 116

6.3.1 General Experiment Settings . 117

6.3.2 Performance of Event Query Reduction 117

6.3.3 Performance of Event Reusability Forest Construction 118

6.3.4 Performance of Event Composition 119

6.4 Related Work . 120

6.5 Summary and Discussion . 121

7 Constraint-aware Event Service Discovery and Composition 123

7.1 QoS Model Aggregation Schema . 125

7.1.1 QoS Properties of Event Services 125

7.1.2 Quality-of-Service Aggregation . 126

7.1.3 Event QoS Utility Function . 129

7.2 Genetic Algorithm for QoS-Aware Event Service Composition Optimisation130

7.2.1 Population Initialisation . 131

7.2.2 Genetic Encodings for Event Syntax Trees 132

7.2.3 Crossover and Mutation Operations 133

7.3 Experiment Evaluations . 136

7.3.1 Experiment Scenario: Travel Planning 136

7.3.2 Part 1: Performance of the Genetic Algorithm 137

7.3.3 Part 2: Validation of QoS Aggregation Rules 143

7.4 Related Work . 145

7.5 Summary and Discussion . 148

8 Automatic Event Service Implementation and Adaptation 151

8.1 Automatic Event Service Implementation 153

Contents x

8.1.1 Semantics Alignment . 154

8.1.2 Transformation Algorithm . 157

8.1.3 Event (Re-)Construction from Stream Query Results 160

8.2 QoS-aware Event Service Adaptation . 161

8.2.1 Adaptation Strategies . 162

8.2.2 Adaptation for Service Failures . 165

8.2.3 Adaptation Process . 165

8.3 Experiment Evaluation . 167

8.3.1 Scenario and Datasets . 168

8.3.2 Performances of Adaptation Manager 169

8.4 Related Work . 173

8.4.1 QoS Adaptation in EBN and CEP 173

8.4.2 Adaptive Service Composition . 175

8.5 Summary and Discussion . 176

III Finale - Usage, Conclusion and Future Research 177

9 Prototype Implementation and Query Performance Analysis 179

9.1 Usage in Smart City Application Prototypes 180

9.1.1 Smart Travel/Parking Planner . 181

9.1.2 Smart City Dashboard . 182

9.2 Benchmarking RSP Engines with Realistic Datasets 186

9.2.1 Datasets and Queries . 186

9.2.2 CityBench Design . 190

9.2.3 Benchmarking Results . 191

9.2.4 Comparison to Existing Benchmarks 195

9.3 Optimisation for Concurrent Queries . 196

9.3.1 Multiple Different Queries over Single Engine Instance 197

9.3.2 Optimisation using Multiple Engine Instances 197

9.3.3 Stress Tests . 200

9.4 Summary and Discussion . 201

10 Conclusions and Future Work 203

10.1 Answers to the Research Questions . 205

10.2 Main Contributions . 208

10.2.1 User-centric Event Service Modelling 209

10.2.2 Pattern-based Event Service Composition 209

10.2.3 Constraint-aware Event Service Composition 210

10.2.4 Automatic Event Service Implementation and Adaptation 211

10.2.5 RSP Benchmarking and Performance Optmisation 211

10.3 Limitations of the Study . 212

10.4 Future Directions . 213

10.5 Lessons Learned . 215

10.6 Conclusion . 216

A Examples of CESO 219

Contents xi

B XML serialization of BEMN+ 223

Bibliography 227

List of Figures

1.1 Existing CEP and SOA integration architecture 4

1.2 Overview of an event service network . 5

1.3 Relations between research questions and proposed solutions 15

2.1 Overview of smart city applications (from Hitachi: https://community.
hds.com/community/innovation-center) 22

2.2 Data Processing in Smart City applications (from Citypulse project: http:
//www.ict-citypulse.eu/) . 23

2.3 Life cycle of event services . 25

2.4 A travel planning service workflow. 31

2.5 A severe traffic accident is detected if an accident happens and it causes
congestion in the nearby regions. 31

2.6 Query rewriting example for variant of Q7: reducing intermediate results
to optimise query performance. 34

3.1 Visual representation of the RDF triple format 38

3.2 An example of RDFS inference: dashed links represent inferred relations. 39

3.3 Service Oriented Architecture . 42

3.4 Example of WSDL service description for hotel booking 43

3.5 Example of service interactions of the process of attending an academic
conference at different levels . 45

3.6 Differences between CEP and DBMS: static or dynamic information . . . 46

3.7 High-level architecture of CEP systems . 47

3.8 Taxonomy of EPA (from [1]) . 49

3.9 Example of a complex event pattern: if 10 out of stock events are cap-
tured for a product in the supermarket in the past week, or a request for
increasing the amount of product is received, an replenishment event no-
tifying the need of increasing the amount of the product in the purchase
order is produced. 53

4.1 Functional design of the Automatic Complex Event Implementation System 60

4.2 ACEIS architecture . 62

4.3 Smart City Framework: high-level architecture (from [2]) 66

5.1 The information model in ACEIS . 70

5.2 Screenshot of the CESO web page . 72

5.3 Relations between ontologies used in ACEIS 73

5.4 Complex Event Service Ontology: overview 73

5.5 Complex Event Service Ontology: event profile 74

xii

https://community.hds.com/community/innovation-center
https://community.hds.com/community/innovation-center
http://www.ict-citypulse.eu/
http://www.ict-citypulse.eu/

List of Figures xiii

5.6 Complex Event Service Ontology: event pattern 75

5.7 Complex Event Service Ontology: event request 77

5.8 Business Event Modelling Notation constructs (from [3]) 78

5.9 Example of event pattern in Business Event Modelling Notations (same
semantics as the example in Figure 3.9). 79

5.10 Extended Business Event Modelling Notation constructs: changes from
BEMN . 81

5.11 Event syntax tree for the increased replenishment event (see Figure 3.9) . 84

6.1 The resource management module in ACEIS 97

6.2 Examples of syntax tree reduction operations 102

6.3 Example of a composition plan . 107

6.4 Workflow of pattern-based event service composition 108

6.5 Example of creating direct sub-tree combinations 112

6.6 Example of event pattern reusability . 113

6.7 Example of pruning irrelevant branch via ERH 115

6.8 Execution time of query reduction . 118

6.9 Execution time of hierarchy construction 118

6.10 Execution time of composition: indexed vs. unindexed approaches 119

6.11 Impact of reuse probability on indexed composition 120

7.1 The resource management module in ACEIS 124

7.2 Workflow of QoS-aware event service composition 131

7.3 Marking the reusable nodes . 131

7.4 Example of genetic encoding and crossover operation 133

7.5 Traffic sensors in Aarhus City . 136

7.6 Traffic planning request for Alice (denoted Qa): calculate the sum of the
estimated travel time from A to F on the map when a traffic update from
all segments are received, meanwhile, keep track of Alice’s latest location. 138

7.7 A variant of Bob’s request (denoted Qb): notify the user when congestion
events detected on street B, C and G, or if a road construction has blocked
the streets (labelled “blk”) . 138

7.8 Brute-Force vs. GA on R1 and R2 . 139

7.9 QoS utilities derived by brute-force, genetic algorithm and random pick . 140

7.10 Genetic algorithm scalability over event service repository size 140

7.11 Genetic algorithm scalability over query pattern size 140

7.12 Genetic algorithm scalability over event reusability forest size 140

7.13 Cost-effectiveness score over mutation rate 142

7.14 Cost-effectiveness score over population size 142

7.15 Cost-effectiveness score over cross over rate 142

7.16 Average utility over generations using reducible (marked “p=x”, “x” rep-
resents the initial size) and fixed (marked “pf=x”, “x” represent the size)
population . 142

7.17 Composition plans for Qa under different weight vectors 143

8.1 The query transformer and adaptation manager modules in ACEIS 152

8.2 Example of an ERH . 162

8.3 Structure and workflow of the Adaptation Manager in ACEIS 165

List of Figures xiv

8.4 Sequence diagram of adaptation loop . 166

8.5 Traffic monitoring query on the map . 168

8.6 Accuracy distribution over a month . 169

8.7 Accuracy trend over a month . 169

8.8 Accuracy trends under different constraints over a day using different
strategies . 171

8.9 Message loss rate under constraint C2 using different stream rates 172

8.10 Avg. time used by incremental adaptation over different Event Reusabil-
ity Hierarchies . 172

8.11 Distribution of incremental adaptation over different Event Reusability
Hierarchies . 172

9.1 Architecture of the smart city application prototypes 181

9.2 STPP route selection . 182

9.3 STPP route constraints . 182

9.4 STPP selected routes . 182

9.5 STPP event notification and continuous query results 183

9.6 STPP parking request . 183

9.7 STPP selected parking spaces . 183

9.8 SCD start and end locations . 184

9.9 SCD functional properties . 184

9.10 SCD non-functional requirements . 185

9.11 SCD result panel . 185

9.12 An overview of the configurable testbed infrastructure 190

9.13 Latency over increasing number of data streams 192

9.14 Latency over concurrent queries (Q1 over CQELS) 193

9.15 Latency over concurrent queries (Q5 and Q8 over CQELS) 193

9.16 Latency over concurrent queries (Q1 over CSPARQL) 193

9.17 Latency over concurrent queries (Q5 and Q8 over CSPARQL) 193

9.18 Memory consumption over concurrent queries (CSPARQL) 193

9.19 Memory consumption over concurrent queries (CQELS) 193

9.20 Memory consumption for increasing size of background data (Q5) 195

9.21 Completeness of results with increasing rate of input stream 195

9.22 Latency of multiple different queries over single CQELS engine 197

9.23 Latency of multiple different queries over single CSPARQL engine 197

9.24 ACEIS concurrent query scheduler . 198

9.25 Latency of CQELS engines using EQ . 199

9.26 Latency of CSPARQL engines using EQ 199

9.27 Memory consumption of multiple CQELS engines 199

9.28 Memory consumption of multiple CSPARQL engines 199

9.29 Latency of CQELS engines using EQ and BL while p=5,q=50 200

9.30 Latency of CSPARQL engines using EQ and BL while p=5,q=50 200

9.31 Query latency distribution, p=5,q=50 . 200

9.32 Latency of CQELS engines using EBL . 201

9.33 Latency of CSPARQL engines using EBL 201

List of Tables

1.1 Concepts and definitions relevant for event services 6

1.2 Limitations of current approaches . 9

1.3 Summarised contribution of the thesis. 17

3.1 Event categorisation in different dimensions 48

3.2 Event pattern types and examples . 52

5.1 Comparison of Event Semantics . 88

5.2 Related works in complex event ontology 90

5.3 Related works in graphical event pattern language 92

6.1 Related works in complex event pattern reuse 122

7.1 Overall quality-of-service calculation . 126

7.2 Quality-of-Service aggregation rules based on composition patterns 127

7.3 Simulated sensor repositories . 138

7.4 Queries Used in Experiments . 139

7.5 Validation for QoS aggregation and estimation. 144

7.6 Related works in QoS-aware service composition 147

8.1 Semantics Alignment for Event Operators 154

8.2 Comparison of adaptation strategies . 170

8.3 Related works in QoS-aware event broker networks and complex event
processing engines . 174

8.4 Related works in QoS-aware service adaptation 176

9.1 Requirements and solutions in Smart Travelling/Parking Planner with
regard to data stream integration . 183

9.2 Requirements and solutions in Smart City Dashboard with regard to data
stream integration . 185

9.3 Comparison to existing RSP benchmarking 196

xv

Abbreviations

ACP Abstract Composition Plan

ACEIS Automatic Complex Event Implementation System

BEMN+ extended Business Event Modelling Notations

CEP Complex Event Processing

CES Complex Event Service

CESO Complex Event Service Ontology

CCP Concrete Composition Plan

DSMS Data Stream Management System

DST Direct Sub Tree

ESN Event Service Network

EST Event Syntax Tree

FP Functional Property

GA Genetic Algorithm

IoE Internet of Everything

IoT Internet of Things

NFP Non-Functional Property

PES Primitive Event Service

QoS Quality of Service

RSP RDF Stream Processing

SES Semantic Event Service

xvi

致我的妻子与女儿
To Yizhuo Zhu and Ruomin Gao

xvii

Part I

Foundation - Motivation and

Background

1

Chapter 1

Introduction

1.1 Motivation

During the past decade, the developments in hardware infrastructures and software tech-

niques have resulted in a rapid growth in the amount of information collected, shared

and processed by human as well as machines on a daily basis [4]. Typical sources of

information include sensor networks, smart phones, social networks and business pro-

cesses. Recently, there has been a wide-spread discussion on research topics like “Smart

City” and “Internet-of-Everything” (IoE) [5], which envisions building new applications,

platforms or methodologies based on these data sources.

A major challenge in realising the Smart City and IoE is analysing huge volumes of

heterogenous data in (near) real-time, which is beyond the capability of traditional

Relational Database Management Systems (RDBMS) [6] as well as other conventional

information management approaches.

Complex Event Processing (CEP) [7] has been a widely discussed and used for deductive

reasoning over dynamic event streams to detect complex events according to predefined

event patterns [1]. CEP has been proved to be efficient for processing streams with high

frequency and queries with complicated semantics, making it an important technique in

solving the problem of real-time information flow analysis [8]. Typically in CEP systems,

an “event” is broadly defined as “an occurrence within a particular system or domain”

or a change of state in the universe [1]. A “complex event” (or “composite event”) can

be defined as an event consisting several different event instances [1]. A complex event

can be detected by a matching of an event pattern, which is a template containing event

templates, relational operators and variables1.

1Event Processing Technical Society (EPTS): http://www.ep-ts.com/, last accessed: Dec. 2015.

2

http://www.ep-ts.com/

Foundation - Introduction 3

In the context of a Smart City where applications are deployed in different domains have

the potentials and needs to collaborate, conventional CEP faces new challenges, e.g.,

incorporating heterogeneous data sources and reusing CEP applications built on different

platforms [4]. Moreover, there is a lack of automatic means to discovery and compose

event streams according to users’ requests or to recover the system from erroneous

states [9, 10]. Scalability is also an issue here, since Smart City applications may need

to integrate thousands to tens of thousands of data sources and perhaps even more

users. To tackle these issues, the works in this thesis integrate CEP systems with the

Service Oriented Architecture (SOA) to provide CEP capability as services, which are

self-contained black boxes that offer the CEP capability to the event consumers2. This

way CEP applications can benefit from the flexibility and reusability offered by SOA

[11].

Integrating CEP with SOA is not a new idea and has been adopted at enterprise levels

as parts of Business Process Management (BPM) solutions. For example, companies

like TIBCO3, IBM4 and Oracle5, have been providing CEP solutions connected with

Enterprise Service Bus6 (ESB) thus realising an event-driven SOA [12]. Figure 1.1

illustrates the high-level architecture of these systems. However, these solutions rely

on existing Web Service standards, which do not provide adequate models for complex

events. As a result, conventional service discovery and composition techniques (i.e.,

keyword, type or attribute matching) are used for such CEP services, if and when

these services are published in the ESB [13, 14]. These techniques are insufficient for

identifying the semantics of complex events defined as event patterns [15].

Event Rules CEP Engine

Business Process Management

Business
Activity

Monitoring

Enterprise Service Bus

Business
Process
Enginetriggers

pub/sub/invoke
listen

Figure 1.1: Existing CEP and SOA integration architecture

2Open Group’s definition for service: https://www.opengroup.org/soa/source-book/soa/
soa.htm, last accessed: May, 2015.

3TIBCO BusinessEvents: http://www.tibco.com/products/event-processing/
complex-event-processing/businessevents/, last accessed: May, 2015.

4IBM WebSphere Business Events: http://www-01.ibm.com/software/integration/wbe/,
last accessed: May, 2015.

5Oracle Event Processing: http://www.oracle.com/us/products/middleware/soa/
event-processing/overview/index.html, last accessed: May, 2015.

6Oracle’s definition on ESB: http://www.oracle.com/technetwork/articles/soa/
ind-soa-esb-1967705.html, last accessed: May, 2015.

https://www.opengroup.org/soa/source-book/soa/soa.htm
https://www.opengroup.org/soa/source-book/soa/soa.htm
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents/
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents/
http://www-01.ibm.com/software/integration/wbe/
http://www.oracle.com/us/products/middleware/soa/event-processing/overview/index.html
http://www.oracle.com/us/products/middleware/soa/event-processing/overview/index.html
http://www.oracle.com/technetwork/articles/soa/ind-soa-esb-1967705.html
http://www.oracle.com/technetwork/articles/soa/ind-soa-esb-1967705.html

Foundation - Introduction 4

In order to fully integrate CEP with SOA, the CEP capability should be provided as

services, in the following, the definition for an Event Service (Definition 1.1) as well as

a Complex Event Service (Definition 1.2) are given.

Definition 1.1 (Event Service). An asynchronous notification service that accepts sub-

scriptions from event consumers and delivers events.

Definition 1.2 (Complex Event Service). An event service that delivers complex events

detected by an underlying event engine for its consumers during the subscription, with

the event pattern(s) of the complex event(s) published as part(s) of its service descrip-

tion.

Event services not equipped with CEP capability or do not describe the event patterns

in their service descriptions are called Primitive Event Services (PES)7. Together, a

set of CESs, PESs and the communication among them constitutes an Event Service

Network (ESN), in which CES can be reused by or composed from other event services,

making CEP capability a first-class citizen in service computing. Figure 1.2 illustrates

an overview of an ESN.

Sensor Network Primitive
Event

Service 1

Primitive
Event

Service 2

Complex Event Service 1
Event Stream 1

Event Stream 2

Event
Engine

Event
Pattern

Complex
Event

Service 2

Complex
Event

Service 3

Figure 1.2: Overview of an event service network

Another challenge for CEP in the context of a Smart City is to provide a common ground

for data semantics [16, 17]. The concept of Semantic Web (SW) and relevant techniques

have been explored to enhance the semantic interoperability of data [18]. Recent research

show interests in using semantics in event processing in order to bridge the semantic

differences from various event sources and facilitate knowledge-aware event processing

[19–24]. Semantic Web techniques have been also used in web services to describe service

metadata, thus realising a Semantic Web Service (SWS) [25]. SWS facilitates knowledge-

based service discovery and composition and improves the semantic interoperability of

service metadata [26–28]. When event services in an ESN use semantic annotations in

both the delivered event messages as well as in the service descriptions, they are referred

to as Semantic Event Services (SESs). Table 1.1 summarises the concepts introduced in

this section.
7It is worth mentioning that a PES may deliver complex events detected based on event patterns.

However, since PESs do not publish the patterns in the service descriptions the event logics are not recog-
nisable during service planning, therefore, these events are treated as primitive events, i.e., identifiable
by event types or attributes but not patterns.

Foundation - Introduction 5

Concepts Definitions Examples

Event
“Anything that takes place or hap-
pens, especially something impor-
tant.” – Collins English Dictionary
[29].

Any arrival or non-arrival of
new data, or information derived
from those data, in an informa-
tion system.

“An occurrence within a particular
system or domain...” – Event Pro-
cessing in Action [1].

Primitive/Simple
Event

“An event that is not viewed as sum-
marizing, representing, or denoting
a set of other events.” – EPTS

A traffic sensor observation re-
porting the vehicle count and av-
erage speed on a street segment.

Complex Event
“An event consisting several differ-
ent event instances” – Event Pro-
cessing in Action [1].

A traffic jam event detected from
traffic sensor readings.

“An event that summarises, rep-
resents, or denotes a set of other
events.” – EPTS

Event Pattern
“A template containing event tem-
plates, relational operators and vari-
ables.” –EPTS

A set of rules specifying how the
traffic jam is detected from sen-
sor readings, e.g., 80% of the
sensors have reported high vehi-
cle count and low average vehicle
speed during the past 30 minutes
repeatedly.

Service “A service is a self-contained, log-
ical representation of a repeatable
business activity that has a speci-
fied outcome”, “is a ‘black box’ to
the consumer of the service” – The
Open Group (Footnote 2)

A data service provided via
REST APIs allowing citizens to
query real-time status of city in-
frastructures.

Event Service “An ... service that ... delivers
events.” (Definition 1.1)

A service publishing city events
to citizens based on their sub-
scriptions.

Complex Event
Service (CES)

“An event service that delivers com-
plex events ..., with the event pat-
terns ... published as ... its service
description.” Definition 1.2

An event service publishing traf-
fic jam notifications.

Primitive Event
Service (PES)

An event service not equipped with
CEP capability or does not describe
the event pattern in the service de-
scription, i.e., an event service that
is not a CES.

An event service publishing di-
rectly traffic sensor readings.

Semantic Event
Service (SES)

An event service processes semanti-
cally annotated events (with back-
ground knowledge) and equipped
with a semantically annotated ser-
vice description.

When the service descriptions
and event messages above traffic
jam/reading services are seman-
tically annotated.

Event Service
Network (ESN)

A network consisting a set of inter-
connecting event services.

The traffic jam service, the traffic
reading service, and the network
allowing the former to utilize the
latter.

Table 1.1: Concepts and definitions relevant for event services

Foundation - Introduction 6

Consider a traffic monitoring application in a Smart City. The traffic sensors deployed

on the streets are continuously generating traffic reports. These traffic sensors can be

wrapped as PESs, providing primitive events about the traffic conditions. When a

traffic monitoring query over several streets is needed, one can find the relevant sensors

to answer the query leveraging the functional and non-functional aspects described in the

service descriptions of the PESs. Meanwhile, if these PES descriptions are semantically

annotated, a semantic discovery process is possible. Moreover, the stream of continuous

query results can be modelled as a CES, since the results are derived from multiple

traffic reports. This CES can be reused by other queries covering the streets involved

in the query, or even by a query from a different application domain, such as a smart

travel planning or parking application. The details of scenarios using the event services

in a Smart City are given in Chapter 2.

1.2 Research Problems

This thesis investigates means for realising easy-to-use, on-demand and scalable event

processing using semantic event services. To achieve this goal, different activities re-

lated to event services from their creation to termination are analysed, including service

description, request definition, planning, deployment/execution and adaptation. These

activities are iterated during the life cycle of SESs (by analogy to the service life cycle

in [30, 31]). In the following, first the requirements for the realising and managing the

above activities in the life cycle are analysed, then, the limitations of current approaches

are discussed and finally the research questions are detailed.

1.2.1 Requirements Analysis

The following four basic requirements are considered for realising an efficient and effective

management of the SES life cycle.

User-centric SES Modelling: During request definition phase, event requests should

reflect each individual user’s requirements or constraints on both functional and non-

functional properties (NFP) of complex events. Users should be able to specify different

events they are interested in by specifying Functional Properties (FP) like event type

and pattern. Meanwhile, for the same complex event, users may have different focuses

on the NFPs: some may ask for accurate results while others may ask for more timely

notifications, etc [32]. The implemented event services should fulfil those requirements

and constraints, which implies that NFPs should be provided in the service metadata

during service description. Moreover, to integrate SES as part of business process models

Foundation - Introduction 7

that consumes the complex events, the request definition should be user-friendly for

process model designers [3, 33]. It should allow non-technical or business users to specify

requests with minimal effort and learning overhead.

Automatic and Customised SES Planning: The service planning activity should

be able to automatically discover and compose SESs according to users’ functional and

non-functional requirements [34]. To fully benefit from automatic implementation and

enable an on-demand ESN implementation, the automatic planning should be efficient

to be carried out at run-time [35].

Automatic and Adaptive SES Implementation: The deployment of composition

plans should also be automatic to facilitate automatic evaluation of event rules over dif-

ferent CEP systems. Adaptability is also important in SOA [36].The adaptation activity

should have the ability to automatically detect service failures or constraint violations

according to users’ requirements at run-time and make appropriate adjustments, includ-

ing re-composition and re-deployment of composition plans, to adapt to changes. The

adaptation process should be efficient to minimise information loss and maximise the

performance of the ESN over time.

Efficient SES Execution: The execution and performance optimisation of services

is the responsibility of service providers [31]. In the context of SESs, the efficiency

of semantic event detection depends on the underpinning semantic event processing

engines. In this thesis, the RDF Stream Processing (RSP) engines (e.g., CQELS [37]

and CSPARQL [38]) are utilised for the execution of SESs. The implementation of a

novel RSP engine or optimisation for the internal processing mechanisms of existing

engines are out of the scope of this thesis. However, given a specific problem setting,

a benchmarking system can help to determine which specific type of RSP engine is the

most efficient choice to execute a composition plan [39, 40]. Moreover, when multiple

engine instances are used in a distributed fashion, the efficiency of service composition

plan execution can be improved by shedding the load from overloaded engines [41–43],

without tampering with their internal implementations. A benchmark system can also

be used to evaluate the performance improvement of the load balancing technique.

1.2.2 Limitations of Current Approaches

Current event based systems do not fully satisfy the requirements listed above. A sum-

mary of the limitations of current approaches with regard to the requirements is shown

in Table 1.2. In the following sections these limitations are discussed in more details.

Foundation - Introduction 8

Requirements Limitations Evidences

User-centric Modelling

Lack of NFP customization
in CEP systems.

Rapide, StreamDrill,
Esper, StreamBase.

Lack of pattern definition in services
WS-Notification,
SAS, DPWS etc.

Automatic and
Customised Planning

Lack of pattern-based and
constraint-aware composition

SIENA[44], REBECA [45],
PADRES [46], [27]

Automatic and
Adaptive Implementation

Lack of automatic query
creation for different CEP systems.

BEMN [3], ERDT [33],
[47]

Lack of a holistic
and platform-independant

QoS-aware adaptation

[48, 49], PIRATES [50],
StreamHub [51, 52], AR [53],

[54], [55–57]

Efficient Execution
Lack of configurable RSP benchmark

with realistic datasets
LS-Bench [39],
SR-Bench [40]

Table 1.2: Limitations of current approaches

1.2.2.1 User-centric SES Modelling

In event processing, requested complex events are usually defined by event patterns.

An event pattern describes how a set of member events are correlated and contribute

to the detection of a complex event, which is the functional specification of a complex

event. Existing event processing engine (e.g., Rapide8, EPL9) and CEP engines (e.g.,

StreamDrill10, Esper11 and StreamBase12) do not allow constraints on NFPs. However,

to fully support customisation, the ability to describe constraints on NFPs for both

complex and primitive events are needed. Supporting NFP has recently gained some

research interest in the Data Stream Management Systems (DSMS) and Event Broker

Networks (EBN) community. In [58, 59] the authors discuss how Software Defined

Network (SDN) concepts can be used to improve the performance of EBNs. On the

other hand, in service computing, existing eventing service models can describe NFPs

for event services and event types for PESs, however, they do not support describing

complex events with patterns.

Most of the existing event pattern definition languages have SQL-like syntax (e.g.,

Rapide, EPL). For business users, manipulating SQL-like queries are more difficult than

using graphical notations. There exists only a few works (e.g., [33, 47, 60]) which use

graphical notations to specify event patterns, however they are platform-specific. BEMN

[3] provides graphical notations for complex events that are compatible with Business

Process Model and Notation13 (BPMN) with formal semantics. However, the users need

8RAPIDE: http://www.complexevents.com/rapide/, last accessed: Jan, 2015.
9Event Processing Language: https://docs.oracle.com/cd/E13157_01/wlevs/docs30/

epl_guide/overview.html, last accessed: Jan, 2015.
10StreamDrill: https://streamdrill.com/, last accessed: Jan, 2015.
11Esper engine: http://esper.codehaus.org/, last accessed: Jan, 2015.
12StreamBase CEP engine: http://www.streambase.com/wp-content/, last accessed: Jan,

2015.
13BPMN: http://www.bpmn.org/, last accessed: May, 2015.

http://www.complexevents.com/rapide/
https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html
https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html
https://streamdrill.com/
http://esper.codehaus.org/
http://www.streambase.com/wp-content/
http://www.bpmn.org/

Foundation - Introduction 9

to know the exact data structure of the event instances in the event streams in order to

create event queries.

1.2.2.2 Automatic and Customised SES Planning

Current event processing systems can detect complex events automatically, when the

event sources are determined and event queries are specified [1, 7]. But they do not

provide automation support for discovering or composing event streams (or data services)

for event queries, which allows reusing complex events detected by other queries. There

are only a few works on complex event reuse, and most of them support only syntactical-

content and simple pattern based subscription reuse [44–46]. On the other hand, existing

automatic service discovery and composition techniques (e.g., surveyed in [27]) do not

cater for complex event services, because their matchmaking is based on Input, Output,

Preconditions and Effects (IOPE), e.g., in [61]. However, the functionalities of event

services are determined by the semantics of the events they deliver, which is captured

by the event patterns (defined within an event algebra), not by the IOPEs [62]. In

addition, a conventional web service composition plan is an imperative workflow, while

an event service composition plan is a declarative query. As a result, a novel QoS

aggregation schema and efficient, pattern-based composition algorithms are needed for

automatic and customised SES planning.

1.2.2.3 Automatic and Adaptive SES Implementation:

Existing publish-subscribe systems do not have a holistic Quality-of-Service aware adap-

tation and recovery mechanism [48, 49]. Most of them [44, 50–55] focus on a single QoS

metric like latency, throughput or reliability etc. On the other hand, existing adaptive

CEP systems consider only the adaptation on the data level, i.e., they can dynamically

rewrite query execution plans based on the data coming into the systems [56, 57], how-

ever they cannot perform adaptations on the stream level, i.e., replacing input streams

because the QoS of the original streams have changed. Also, as existing adaptive event

systems are platform-dependent there is a lack of cross-platform solutions.

Since adaptation may result in using different streams with different operators, i.e. the

composition plan may change after adaptation, automatic query creation based on com-

position plans is needed to realise automatic adaptation. However, the compositions

of event streams is hard-coded as engine-specific event queries and must be manually

created by users, i.e., an automatic way of creating queries from composition plans for

different event engines is missing.

Foundation - Introduction 10

1.2.2.4 Efficient SES Execution:

Existing benchmarks for RSP engines like SR-Bench [40] and LS-Bench [39] use pre-

configured, synthetic datasets. However, in real-world scenarios, different configurations

need to be tested to study the performance of RSP engines. In addition, using synthetic

datasets in benchmarking systems may produce un-reliable results [63]. On the other

hand, existing RSP engines have scalability issues and cannot deal with large-amount of

queries concurrently [39], which hinders the application of RSP in large-scale applica-

tions. Service load balancing techniques have been studied extensively in the literature

[41–43, 64, 65]. Various metics, from basic execution latency and bandwidth usage [41]

to sophisticated service correlations [42, 66] and network path analysis [43, 67] have been

proposed to evaluate the load and determine the shedding strategy. In this thesis, some

basic metrics, e.g., number of queries deployed and average latency of engine instances,

are applied to SES.

1.2.3 Research Questions

To overcome the above limitations of current approaches, the following research questions

need to be answered.

RQ1: What is the suitable information model for describing event services

and event patterns?

RQ1 aims at addressing the user-centric SES modelling requirement. It can be divided

into three sub-questions:

(a) How to semantically annotate the description for event services and requests?

(b) How to define the formal semantics of complex event patterns?

(c) How to graphically present the event semantics so that the business users can

understand and define them easily?

RQ2: How to facilitate efficient and customised event service composition?

RQ2 aims at addressing the automatic and customised SES planning requirement. It

can be divided into two sub-questions:

(a) How to efficiently create event service compositions based on the functional aspects

of event services.

Foundation - Introduction 11

(b) How to efficiently create event service compositions based on the non-functional

aspects of event services.

RQ3: How to realise automatic and adaptive event service implementation?

RQ3 aims at addressing the automatic and adaptive SES implementation requirement.

It can be divided into two sub-questions:

(a) How to automatically deploy executable services according to composition plans?

(b) How to efficiently re-deploy event service compositions when constraint violations

are detected at run-time?

RQ4: How to evaluate and improve the performance of semantic event ser-

vice execution?

RQ4 aims at addressing the efficient semantic event service execution requirement. It

can be divided into three sub-questions:

(a) How to design a configurable benchmark for RDF stream processing engines?

(b) What are the differences of the RDF stream processing engines in terms of query

performance?

(c) How to improve the performance of RDF stream processing engines with regard

to handling concurrent queries?

1.3 Methodology

The research methods in this thesis consist of the following steps:

1. Survey the state-of-the-art to get a view of the landscape of the relevant research

areas, and understand the achievements and limitations of the current process

event modelling, discovery, deploy and detection approaches.

2. Analyse the requirements to identify concrete research problems that need to be

dealt with in order to promote the efficiency and effectiveness of event service life

cycle.

3. A theoretical design phase to include the overall design of the ACEIS system,

as well as the development of formalisms and algorithms used in each functional

module.

Foundation - Introduction 12

4. A prototype implementation phase to include the development of concrete ACEIS

components and sub systems, namely the event pattern modelling tool, event ser-

vice discovery/composition engine, constraint analysis module and the run-time

event adaptation system.

5. Finally the feasibility and performance evaluation phase evaluates the proposed

ACEIS with regard to applicability and domain-specific performance measures,

using simulated or real-world datasets.

1.4 Overview of the Proposed Approach

The goal of this thesis is to provide means for the efficient and effective CES life cycle

management, i.e., providing answers for the research questions in Section 1.2.3 and fulfil

the requirements analysed in Section 1.2.1. To answer the first three questions, an Au-

tomatic Complex Event Implementation System (ACEIS) is designed and implemented

in this thesis. ACEIS should offer the following four key functionalities.

Event Service Annotation and Event Pattern Definition. This functionality

answers the research question RQ1. An event service ontology should be used as the

information model to semantically annotate complex event services with event patterns

and NFPs to increase the data interoperability. The event service ontology should also

be used to formulate customised event service requests. The event pattern syntax and

semantics in BEMN [3] can be extended and revised to define event patterns annotated

in the ontology. The graphical notations in BEMN should be adopted and extended to

allow user-friendly event pattern definition for non-technical/business users.

Pattern-based Event Service Discovery and Composition. This functionality

answers the research question RQ2(a). Using event service ontology and event pattern

definitions, an event service discovery/composition engine should be able to make match-

makings between event service requests and service candidates by comparing the event

pattern semantics, and derive optimal service composition plans that reuse as many as

possible existing event services to reduce the event traffic over the network.

Constraint-aware Event Service Discovery and Composition. This functionality

answers the research question RQ2(b). Users should be able to specify customised con-

straints and preferences for NFPs of event service compositions. Using the specifications

on NFPs in both event service requests and descriptions, the discovery/composition en-

gine should be able to derive (near-) optimal composition plans to best suit the users’

needs. Meanwhile, the composition algorithm should be efficient to derive results upon

large scale (� 103) service repositories deployed in an enterprise or a city.

Foundation - Introduction 13

Automatic Event Service Implementation and Adaptation. This functionality

answers the research question RQ3. ACEIS should facilitate an automatic and adap-

tive event implementation. It should be able to transform event service composition

plans into event queries and deploy them on event processing engines automatically to

implement the CEP capability. ACEIS should also be able to detect NFP constraint

violations and service failures event service implementations at runtime and find replace-

ments for the malfunctioning/invalid parts of the event service compositions with little

or no human intervention.

Apart from implementing the core functionalities of ACEIS, in order to answer the

fourth research question, a benchmark for RSP engines is needed and load balancing

techniques are desired for the Benchmarking and Optimisation of Event Service

Execution. This functionality answers the research question RQ4. The performance

of event queries from Smart City scenarios should be evaluated based on real-world

datasets, using different benchmark configurations. In order to improve the capacity

of handling concurrent queries in RSP engines, different mechanisms should be used

to distribute the workload among a set of RSP engine instances. ACEIS should be

augmented with a scheduler to implement the load balancing mechanisms. The impact

of the optimisation should be evaluated leveraging the benchmark functionality. Figure

1.3 illustrates the relations between the research questions and proposed solutions.

1.5 Summary of Contributions

Following the research methodology, the research presented in this thesis results in the

following contributions in event service modelling, planning, implementation and adap-

tation in order to provide an easy-to-use, on-demand event processing capability in

application domains such as a Smart City:

Event Service Modelling. A semantic event service model (i.e., Complex Event Ser-

vice Ontology) is developed to annotate event service descriptions and service requests.

The event service ontology allows discovery and composition of event services based

on both functional and non-functional service properties. The event service ontology

addresses RQ1(a). A graphical language for specifying event patterns is provided as

an extension from BEMN [3], called BEMN+. The graphical notations in BEMN+ is

compatible with BPMN. The abstract syntax and semantics of the event patterns are

defined. BEMN+ addresses RQ1(b,c).

Event Service Planning. Algorithms are developed to index event patterns based

on their semantics, inserting an event pattern with 10 to 70 nodes into a 1500-node

Foundation - Introduction 14

SES Life Cycle
Management

User-centric SES
Modelling

Automatic &
Customised

SES Planning

Automatic &
Adaptive SES

Implementation

G
ra

ph
ic

al
 e

ve
nt

pa

tte
rn

 d
efi

ni
tio

n
an

d
ev

en
t s

er
vi

ce
 o

nt
ol

og
y

Pa
tte

rn
 b

as
ed

 e
ve

nt

se
rv

ic
e

di
sc

ov
er

y
an

d
co

m
po

si
tio

n

 C
on

st
ra

in
t-a

w
ar

e
ev

en
t

se
rv

ic
e

co
m

po
si

tio
n

an
d

op
tim

iz
at

io
n

Au
to

m
at

ic
 a

nd

ad
ap

tiv
e

ev
en

t
im

pl
em

en
ta

tio
n

ACEIS

requiresrequires requires

supports supports supports

Efficient SES
Execution

requires

addresses addresses addresses

RSP Benchmark
(CityBench)

Sc
he

du
le

r f
or

w

or
kl

oa
d

di
st

rib
ut

io
n

supports

addresses

C
on

fig
ur

ab
le

 R
SP

be

nc
hm

ar
k

ba
se

d
on

 re
al

is
tic

 d
at

as
et

s

supports

addresses

supports

addresses

Figure 1.3: Relations between research questions and proposed solutions

index may take several to ∼2000 milliseconds (Figure 6.9). Event service composition

algorithms (with or without index) are developed to compose event services based on

comparing semantics of event patterns. The algorithms for event service composition

based on the reusability index are inspired by the query subsumption techniques in

database systems [68]. These algorithms address RQ2(a) by providing efficient and

accurate means of composing event services using event patterns. The reusable relation

(and the index build upon the relation) facilitates Experiments show that the indexed

composition algorithm uses∼41% of the time taken by the un-indexed one when handling

large queries (25 nodes) on service repository with 1000 candidates (Figure 6.10).

Algorithms are developed to the QoS of event services in event service compositions,

in order to estimate the overall QoS of event service compositions. Based on the event

service QoS aggregation and estimation, heuristic algorithms are developed to derive

optimal event service compositions with regard to non-functional constraints and prefer-

ences. The QoS aggregation schema and QoS-aware event service composition algorithm

address RQ2(b) by extending the genetic encoding schema and operators in existing ge-

netic algorithms to cater complex event services. Experiments show that the genetic

algorithm can achieve ∼89% optimal results within 2 seconds for a service repository

with 9000 candidates (Figure 7.9 and 7.10).

Foundation - Introduction 15

Event Service Implementation and Adaptation. Methods to transform compo-

sition plans into RSP queries are provided so that the event service compositions can

be deployed and executed automatically. The query transformation relies on the se-

mantics alignment between BEMN+ event operators and the query operators in RSP

engines to ensure the correctness of queries created. The semantics alignment and query

transformation address RQ3(a). Leveraging the automatic composition plan deployment

capability, a QoS-aware event service adaptation is realised, addressing RQ3(b). Unlike

existing adaptation mechanisms in CEP systems which adjust the execution plans for

the query to improve the query latency, ACEIS allows recomposing the event service

over different event streams and can adapt to multiple QoS criteria. Different adapta-

tion strategies are implemented and evaluated. Experiments show a trade-off between

adaptation time and QoS improvement when using different adaptation strategies, i.e.,

they may take several to 3446 milliseconds to recover the system, and could improve the

overall QoS of the event service compositions by -1.41% to 44.67% (Table 8.2).

Benchmarking and Optimisation of Event Service Execution. In addition to the

above contributions, the usage of the ACEIS in Smart City applications are presented.

The practical problem of the query engine performance is analysed and a benchmarking

tool for RSP engines are developed. The benchmark addresses RQ4(a,b) and is the first

attempt (to the best of my knowledge) that evaluates RSP engines with realistic datasets

and scenarios in a configurable way. Optimisation techniques based on the benchmark-

ing results are discussed and tested in order to improve the engine performance with

regard to concurrent queries. The optimisation leverages multiple engine instances and

applies load balancing strategies to address RQ4(c). Experiments show the number of

concurrent queries handled stably by CQELS and CSPARQL engines can be increased

from less than 30 to 1000 and 90, respectively, when using the optimisation techniques

(Figure 9.32 and 9.33). Table 1.3 summarises the contributions of the thesis.

1.6 Thesis Outline

In this chapter, the research in this thesis is introduced, the context and motivation of

the research are explained, the research problems to resolve are listed, the overview of

the proposed solutions are described, the research methods are presented and the major

contributions of the thesis are summarised. The rest of the thesis is organised as follows:

Chapter 2 puts the research problems in the context of smart city applications and

explains the motivation of the research within concrete scenarios.

Foundation - Introduction 16

	

Requirement	
	

Research	
Question	
	

Contributions	 Evaluations	Results		
(under	specific	settings)	

Relevant	
Section	

Publication	
(Section	1.6)	

User-centric	
SES	Modellling	

RQ1(a)	 Complex	Event	Service	
Ontology	extended	from	
OWL-S	

-	 5.1	 #1,	#6,	#11	

RQ1(b,c)	 BEMN+	extended	from	
Business	Event	Modeling	
Notations	

-	 5.2	 #6,	#7	

Automatic	SES	
Planning	

RQ2(a)	 Canonical	event	pattern	
creation	algorithm	

92%	random	event	
patterns	(20	to	170	
nodes)	can	be	reduced	
within	100ms.	

6.1	 #6	

Reusability	index	
construction	algorithm	

Inserting	10	to	70	node	
pattern	into	a	1500-node	
index	takes	several	to	
2000	ms.	

6.2.3	

Event	service	composition	
algorithms	with	or	without	
using	the	reusability	index.		

Indexed	composition	
algorithm	uses	41%	of	the	
time	take	by	the	un-
indexed	algorithm.	

6.2	

RQ2(b)	 QoS	aggregation	schema	for	
event	service	compositions.	

The	estimated	QoS	value	
sdeviates	from	the	actual	
values	by	3%	to	18%.	

7.1	
	

#2,	#5	

GA-based	optimisation	for	
event	service	compositions	

GA	derives	89%	optimal	
results	within	2	seconds	
for	a	repository	with	
9000	services.	

7.2	

Automatic	and	
Adaptive	SES	
Implementation	

RQ3(a)	 RSP	query	transformation	
algorithms	

-	 8.1	 #1,	#10,	
#12	

RQ3(b)	 QoS-aware	event	service	
adaptation	algorithms		

Different	adaptation	
strategies	takes	several	to	
3400	ms	to	complete,	
improving	the	QoS	by	-
1.4%	to	44.7%.	

8.2	 #4	

Efficient	SES	
Execution	

RQ4(a,b)	 CityBench:	configurable	
benchmarking	tool	for	RSP	
engines	with	realistic	
datasets	

Benchmarking	results	for	
latency,	memory	usage	
and	completeness	for	
CQELS	and	CSPARQL	
under	different	
configurations.	

9.2	 #3	

RQ4(c)	 RSP	performance	
optimisation	for	handling	
concurrent	queries	

Number	of	concurrent	
queries	handled	by	CQELS	
and	CSPARQL	increased	
from	30	to	1000	and	90,	
respectively.	

9.3	 #1	

Table 1.3: Summarised contribution of the thesis.

Chapter 3 introduces the research background of this thesis, which involves Semantic

Web, Service Oriented Computing and Complex Event Processing.

Chapter 4 provides an overview of the proposed solutions as an integrated system. It

describes the functionalities of the components in the system as well as their interactions.

Chapter 5 presents a Complex Event Service Ontology (CESO) to semantically annotate

for CESs. This chapter also presents the graphical event pattern definition language

extended from BEMN, called BEMN+. The syntax and formal semantics of BEMN+

are elaborated.

Chapter 6 proposes a complex event service discovery and composition based on complex

event patterns annotated with CESO.

Foundation - Introduction 17

Chapter 7 extends the pattern-based event service discovery and composition introduced

in the previous chapter to address non-functional constraints and preferences.

Chapter 8 discusses how event composition plans created in the previous chapters are

automatically transformed into stream queries and evaluated over event streams. This

chapter also provides a means to enable QoS-aware event service adaptation.

Chapter 9 presents the prototype implementation of the system (i.e., ACEIS) in Smart

City applications. It introduces a benchmarking tool for evaluating the performance of

the RSP engines used in ACEIS. It also presents means for optimising the performance

of the RSP engines using load balancing.

Chapter 10 gives the concluding remarks of this thesis and discusses possible future

work.

1.7 List of Relevant Publications

In this section, publications in research journals, conferences and workshops relevant to

this thesis are listed.

1.7.1 Journal

1. Automatic Discovery and Integration of Urban Data Streams: The ACEIS Middle-

ware, Feng Gao, Muhammad Intizar Ali, Edward Curry, Alessandra Mileo, Future

Generation Computer System (FGCS), 2016, (submitted Arp., 2016, under review)

2. QoS-aware Stream Federation and Optimization based on Service Composition,

Feng Gao, Muhammad Intizar Ali, Edward Curry, Alessandra Mileo, Interna-

tional Journal on Semantic Web Information Systems (IJSWIS), 2015, (revision

submitted Apr., 2016)

1.7.2 Conference

3. QoS-aware Adaptation for Complex Event Service, Feng Gao, Muhammad Intizar

Ali, Edward Curry, Alessandra Mileo, Proceedings of the 31st ACM Symposium

On Applied Computing, (SAC 16’), 2016.

4. CityBench: A Configurable Benchmark to Evaluate RSP Engines using Smart City

Datasets, Muhammad Intizar Ali, Feng Gao and Alessandra Mileo, Proceedings of

the 14th International Semantic Web Conference, (ISWC 15’), 2015.

Foundation - Introduction 18

5. QoS-aware Complex Event Service Composition and Optimization using Genetic

Algorithms, Feng Gao, Edward Curry, Muhammad Intizar Ali, Sami Bhiri, Alessan-

dra Mileo, Proceedings of the 13th International Conference on Service Oriented

Computing (ICSOC 14’), France, 2014 (short paper).

6. Complex Event Service Provision and Composition based on Event Pattern Match-

making, Feng Gao, Edward Curry, Sami Bhiri, Proceedings of the 8th ACM In-

ternational Conference on Distributed Event-Based Systems (DEBS 14’), 2014.

7. User-centric Complex Event Modeling and Implementation Based on Ubiquitous

Data Service, Feng Gao, Sami Bhiri, The Sixth International Conference on Mobile

Ubiquitous Computing, Systems, Services and Technologies (Ubicomm 12’), 2012

(short paper).

8. Extending BPMN 2.0 with Sensor and Smart Device Business Functions, Feng

Gao, Maciej Zaremba, Sami Bhiri, Wassim Derguech, 20th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE 11’), 2011.

1.7.3 Workshop and Demo

9. RDF Stream Processing for Smart City Applications, Feng Gao, Muhammad Inti-

zar Ali, Alessandra Mileo, RDF Stream Processing Workshops in ESWC’15, 2015.

10. Semantic Discovery and Integration of Urban Data Streams, Feng Gao, Muham-

mad Intizar Ali, Alessandra Mileo, Semantics for Smart Cities (SSC), Proceedings

of Workshops in International Semantic Web Conference. (ISWC 14’ Workshops),

2014.

11. Ubiquitous Service Capability Modeling and Similarity Based Searching, Feng Gao,

Wassim Derguech, Web Information Systems Engineering (WISE 12’ Workshops),

2012.

12. User centric complex event processing based on service oriented architectures, Feng

Gao, Sami Bhiri, Proceedings of the 28th Annual ACM Symposium on Applied

Computing (SAC 13’ Demo), 2013.

Foundation - Introduction 19

1.7.4 Additional

13. CityPulse: Large Scale Data Analytics Framework for Smart Cities, Dan Puiu,

Payam Barnaghi, Ralf Tnjes, Daniel Kmper, Muhammad Intizar Ali, Alessan-

dra Mileo, Josiane Xavier Parreira, Marten Fischer, Sefki Kolozali, Nazli Fara-

jidavar, Feng Gao, Thorben Iggena, Thu-Le Pham, Cosmin-Septimiu Nechifor,

Daniel Puschmann, Joao Fernandes , in IEEE Access, vol. 4, no. , pp. 1086-1108,

2016.

14. Real-time Data Analytics and Event Detection for IoT-enabled Communication

Systems, Muhammad Intizar Ali, Naomi Ono, Mahedi Kaysar, Zia Ush Shamsza-

man, Thu-Le Pham, Feng Gao, Keith Griffin, Alessandra Mileo, Journal of Web

Semantics (JWS), 2016.

15. Observing the Pulse of a City: A Smart City Framework for Realtime Discovery,

Federation, and Aggregation of Data Streams, Sefki Kolozali, Maria Bermudez-

Edo, Payam Barnaghi, Feng Gao, Muhammad Intizar Ali, Alessandra Mileo,

Marten Fischer, Thorben Iggena, Daniel Kuemper, Future Generation Computer

System (FGCS), 2016, (submitted Apr., 2016, under review)

16. Optimizing the Performance for Concurrent RDF Stream Processing Queries,

Chan Le Van, Feng Gao, Muhammad Intizar Ali, Alessandra Mileo, Proceedings

of the 15th International Semantic Web Conference, (ISWC 16’), 2016, (submitted

Apr., 2016, under review).

17. AgriPulse: A Semantic Framework for Internet of Things-enabled Smart Farming

Applications, Andreas Kamilaris, Feng Gao, Ali Intizar, Francesc X. Prenafeta-

Bold, Proceedings of the 15th International Semantic Web Conference, (ISWC

16’), 2016, (submitted Apr., 2016, under review).

Chapter 2

Motivation

In this chapter, the research problems are motivated within the context of Smart City

applications. I will first explain at a high-level what is the vision of a smart city. I will

then discuss different smart city scenarios and some sample queries. Furthermore, the

requirements of smart city applications are analysed and the gaps in the state-of-the-art

are discussed.

2.1 Context: Smart City Applications

Building a smart city requires providing both hardware to collect information on the

events happening within the urban environment as well as software to utilise the col-

lected information and help decision makings in urban life. The main goal of smart

city applications is to enhance the quality of urban services, to reduce costs, and to

engage the citizens in a more effective way [69]. The potential domains for smart city

applications span from government services, public transport and crisis management,

to individual health care, smart home and travel planning. Noticeably, many of these

application domains require real-time responses to situations happening in the city, in

order to react with minimal delay. Figure 2.1 illustrates some exemplifying applications

in smart cities. In the following we discuss three smart city scenarios and provide some

concrete usecases (functionalities as queries) in those scenarios. These scenarios are ex-

tracted from CityPulse 101 scenarios1 and the full set of queries are listed in CityBench

[70]. The datasets and queries in these scenarios are revisited in details later in Section

9.2.

1CityPulse 101 scenarios: http://www.ict-citypulse.eu/scenarios/, last accessed: May,
2015.

20

http://www.ict-citypulse.eu/scenarios/

Foundation - Motivation 21

Figure 2.1: Overview of smart city applications (from Hitachi: https://
community.hds.com/community/innovation-center)

• Multi-modal Context-aware Travel Planner (S1): This application relies

on a routing module that offers routes given the start and end travel locations.

On top of this module, the application aims at optimising users’ travel path based

on their preferences on route type, air pollution and travel cost etc. In addition

to that, the application continuously monitors factors and events that can impact

this optimisation (including traffic, weather, parking availability and so on) to

promptly adapt to provide the best up-to-date option. Sample queries:

Q1: What is the traffic congestion level on each road of my planned journey?

Q3: What are the average congestion level and estimated travel time to my desti-

nation?

• Parking Space Finder Application (S2): This application is designed to fa-

cilitate car drivers in finding a parking spot combining parking data streams and

predicted parking availability based on historical patterns. Additional sources such

as timed no parking zones, congested hot spots and walking time from parking to

a point of interest, the user can reduce circulation time and optimise parking man-

agement in the city. Sample query:

Q7: Notify me whenever a parking place near to my destination is full.

• Smart City Administration Console (S3): This application facilitates city

administrators by notifying them of the occurrence of specific events of interest.

https://community.hds.com/community/innovation-center
https://community.hds.com/community/innovation-center

Foundation - Motivation 22

The dashboard relies on data analytics and visualisation to support early detection

of any unexpected situation within the city and takes immediate actions, but it

can also be used as a city observatory for analysing trends and behaviours as they

happen. Sample query:

Q10: Notify me every 10 minutes, about the most polluted area in the city.

2.2 Basic Requirements of Smart City Applications

The data processing procedure in real-time smart city applications has three phases:

data gathering, data analysis and result delivery [2, 71]. A smart city application could

be an integration across different application domains, as well as the engagement of

different city departments, city-contracted entrepreneurs and individual enterprises pro-

viding services. Thus, raw urban data gathered for smart city applications may arrive in

different formats, e.g., traffic information, parking spaces, bus timetables etc, as well as

from different interfaces, e.g., APIs, websites, web services etc [4]. Due to the data and

interface heterogeneity, the data aggregation or abstraction from urban data sources is

typically carried out manually, resulting in static or outdated information. A real-time

data analysis is needed for urban data in huge volumes [72]. Moreover, the analysis

results should be context-aware and knowledge-based to provide insights of the current

situations [73]. The vision of the data processing pipeline in smart city applications is

illustrated in Figure 2.2.

Figure 2.2: Data Processing in Smart City applications (from Citypulse project:
http://www.ict-citypulse.eu/)

In summary, the basic requirements for smart city applications are 1) federation of

heterogeneous data interfaces, 2) real-time data analysis at a large-scale and 3) federation

of heterogeneous data formats and semantics. More specifically, the first requirement

implies the application may need to interact with different data interfaces, the second

http://www.ict-citypulse.eu/

Foundation - Motivation 23

requirement implies the queries used in the applications are expected to give real-time

results over multiple streams and the third requirement implies that the queried data

may have different formats and the use of background knowledge might be needed. In

the following the techniques can be used to fulfil these requirements, namely, Service

Oriented Architecture (SOA), Complex Event Processing (CEP) and Semantic Web

(SW), are discussed.

Federation of Heterogeneous Data Interface. In order to integrate different

data streaming interfaces, i.e., the interface heterogeneity, the SOA paradigm can be

used, i.e., to provide data/event streams as services. Using SOA, the metadata of the

data/event streams are structurally formatted as a service description according to a

service model. The service description will provide information on the functional/non-

functional service properties for service discovery/composition, as well as information

on the access mechanisms of the services to allow automatic service invocation, making

the events reusable across different platform. For example, the traffic data stream will

be described as a traffic condition reporting service, with functionalities like observing

vehicle speed and count as well as non-functional properties like sampling frequency,

latency etc. The access mechanism could be a CKAN query via http request and the

result format is a proprietary XML schema.

Real-time Data Analysis at a Large-scale. In order to provide real-time data

analysis for multiple streams, techniques like CEP and Data Stream Management System

(DSMS) can be considered. The former has a focus on providing complex events with

traceable causal events and the latter emphasises on providing real-time results to data

processing queries similar to conventional database queries. For example, most queries

in Section 2.1 can be easily written in EPL.

Federation of Heterogeneous Data Formats and Semantics. Data heterogene-

ity needs to be dealt with on two levels: data and metadata. SW techniques can be

used to help improve data interoperability on both levels. Data in SW are modelled as

graphs with labelled nodes and edges, where nodes represent terms and edges represent

relationships between terms. This simple yet powerful formalism can be used to define

terms and entities as commonly accepted knowledge, or ontology. By annotating data

in different formats with terms and relationships from ontologies, a machine can “un-

derstand” the meaning of the data and it can correlate it with other data. For example,

the metadata of a traffic data stream can be semantically annotated as a Semantic Web

Service (SWS) document, with the vehicle speed observation functionality annotated as

a sub-class of the term “traffic observation” in an ontology, so that users querying the

super-class can find the traffic report service via semantic subsumption. Also, the data

Foundation - Motivation 24

transmitted by the traffic service in XML format can be annotated with sensor obser-

vation ontologies to describe what the data is about, and a CEP/DSMS engine with

semantic reasoning capability can correlate the annotated observation with background

knowledge.

In summary, integrating SOA, CEP and SW techniques and implementing the Semantic

Event Services (SESs) to handle streaming data can be a starting point for address-

ing the requirements of Smart City applications. A more detailed discussion on these

technologies are presented in Chapter 3.

2.3 Advanced Requirements and Limitations of Existing

Approaches

Like conventional services, the life-cycle of SES consists of different phases, which can

be categorised into service modelling (including service description and service request

definition), service planning and service implementation (including service deployment,

execution, and service adaptation), as depicted in Figure 2.3:

0: Service
Description

1: Request
Definition

2: Planning

3: Deployment
& Execution

4: Adaptation

Figure 2.3: Life cycle of event services

0. Service Description: the static description on the service metadata is created

and stored in the service repository. Describing services and storing the descrip-

tions is a preliminary step for any service requests to be realised by the described

services.

1. Request Definition: an event service consumer identifies the requirements on

the interested complex events (as well as the services that deliver the events) and

specify those requirements in an event service request.

2. Planning: an agent receives a consumer’s request and match it against service

descriptions in the service repository. If direct matches are found, the matching

Foundation - Motivation 25

service descriptions are retrieved and the matching process ends. Otherwise, exist-

ing event services are composed to fulfil the requirements and composition plans

are derived.

3. Deployment & Execution: an agent establishes connections between the event

service consumer and providers by subscribing to event services (for the consumer)

based on a composition plan, then it starts the event detection (if necessary) and

messaging process.

4. Adaptation: an agent monitors the status of the service execution to find irregu-

lar states. When irregular states are detected, the planning activity is invoked to

create new composition plans and/or service subscriptions. If the irregular states

occur too often, it may suggest that the service request needs to be re-designed.

In the following the requirements for an efficient and effective management of the SES

life-cycle is discussed and the relevant gaps between the existing approaches are analysed

using examples from the motivation scenarios.

2.3.1 User-Centric SES Modelling

Existing syntactical event service models allow describing the type and location of events

for PESs. Listing 2.1 and 2.2 show snippets of traffic data streams modelled in WS-

Eventing and Sensor Alert Service (SAS), respectively. Notice that the location informa-

tion is provided by the SAS schema via Feature of Interest and Operation Area directly,

while in WS-Eventing it is not provided directly but it can be specified using domain

specific XML schema. Neither provides native support for NFPs like quality-of-service,

but they can be provided via extending the schema, e.g., in [74]. The event type and

location information can be annotated using the modelReference proposed in SA-WSDL

[75].

<wsdl:definitions xmlns:wse=”http://schemas.xmlsoap.org/ws/2004/08/eventing”

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”

xmlns:xs=”http://www.w3.org/2001/XMLSchema” >

<wsdl:import namespace=”http://schemas.xmlsoap.org/ws/2004/08/eventing”

location= ”http://schemas.xmlsoap.org/ws/2004/08/eventing/eventing.wsdl” />

<wsdl:types>

<xs:schema targetNamespace=”http://www.example.org/traffic” >

<xs:element name=”TrafficReport” >

<xs:complexType>

<xs:sequence>

<xs:element name=”VehicleSpeed” type=”xs:string” />

<xs:element name=”VehicleCount” type=”xs:string” />

<xs:element name=”Street” type=”xs:string” />

<xs:element name=”City” type=”xs:string” />

Foundation - Motivation 26

<xs:element name=”Country” type=”xs:string” />

<xs:element name=”Lat” type=”xs:string” />

<xs:element name=”Long” type=”xs:string” />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</wsdl:types>

<wsdl:message name=”trafficMsg” >

<wsdl:part name=”body” element=”tns:TrafficReport” />

</wsdl:message>

<wsdl:portType name=”TrafficReportPort” wse:EventSource=”true” >

<wsdl:operation name=”TrafficOp” >

<wsdl:output message=”tns:trafficMsg” />

</wsdl:operation>

</wsdl:portType>

</wsdl:definitions>

Listing 2.1: WS-Eventing encoding for traffic reporting service

<?xml version=”1.0” encoding=”UTF−8”?>

<Capabilities xmlns=”http://www.opengis.net/sas”

xmlns:swe=”http://www.opengis.net/swe”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”>

<Contents>

<AcceptAdvertisements>true</AcceptAdvertisements>

<SubscriptionOfferingList>

<SubscriptionOffering>

<SubscriptionOfferingID>1</SubscriptionOfferingID>

<AlertMessageStructure>

<QuantityProperty>

<Content definition=”city:VehicleSpeed” uom=”km/h” min=”0” max=”300”/>

</QuantityProperty>

</AlertMessageStructure>

<FeatureOfInterest>

<Name>Street 1</Name>

<Description>The vehicle speed applies to the street segment.</Description>

</FeatureOfInterest>

<OperationArea>

<swe:GeoLocation>

<swe:longitude>

<swe:Quantity>56.104156</swe:Quantity>

</swe:longitude>

<swe:latitude>

<swe:Quantity>10.233607</swe:Quantity>

</swe:latitude>

</swe:GeoLocation>

</OperationArea>

<AlertFrequency>0.5</AlertFrequency>

</SubscriptionOffering> ...

</SubscriptionOfferingList>

</Contents>

</Capabilities>

Listing 2.2: SAS encoding for traffic reporting service

Foundation - Motivation 27

However, existing service models are not suitable for describing CESs. Consider a variant

of Q1 (i.e., Q1’) gives the estimated travel time of a routeR1, whereR1 = {seg1, seg2, ...}
consists of a set of street segments. A CES can be implemented by evaluating Q1’

continuously and send the results to subscribers. A service request for estimated travel

time on R2 cannot find the service evaluating Q1’ by only comparing message types

or sensor locations: the semantic subsumption or equivalence relation of the provided

and requested events must be examined. It is not possible to specify a complex event

pattern within these service models, nor is it possible to specify patterns in existing

SWS standards like SAWSDL, OWL-S or WSMO. In SemSOS [76], semantic rules can

be used to assert new facts based on sensor readings. However, various ways that the

rules can be specified within the semantic service description is not discussed in [76].

Also, [76] does not describe how temporal/logical rules can be specified for events. In

summary, existing service models do not provide adequate conceptualisation for event

patterns.

SELECT AVG(congest) AS avgCong, SUM(travelTime) AS sumTime
FROM TrafficReportOnSeg1 T1, TrafficReportOnSeg2 T2, TrafficReportOnSeg3 T3
RETAIN 10 seconds
GROUP BY T1.rid, T2.rid, T3.rid

Listing 2.3: Q3 in EPL

Various CEP engines use pattern definition languages (e.g., in [77–81]) to describe event

patterns in different syntaxes. For example, Event Processing Language (EPL) used in

Oracle’s Esper2 CEP engine provides a list of operators to describe correlations of events

in an SQL-like syntax. Using EPL, Q3 can be modelled as shown in Listing 2.3. How-

ever, if a user wants to specify a non-functional requirement for the query results, e.g.,

the latency of the results should be less than 500 milliseconds and the accuracy should

be more than 90%, he/she cannot define these requirements with EPL, or other pattern

definition languages. Also, preferences on NFPs, e.g., a user is more concerned with

the accuracy than the latency, cannot be described. Moreover, most pattern defini-

tion languages require some knowledge in relational database systems or logic programs,

since they use an SQL-like or rule-based syntax. When complex events are used to

trigger a business process or a workflow, it may increase the learning overhead for the

business/non-technical users who define those process models in standardised business

process modelling languages, e.g., Business Process Model Notation3 (BPMN). There-

fore, it is desirable to have graphical notations for event patterns which are compatible

with process modelling languages.

2Esper engine: http://www.espertech.com/products/esper.php, last accessed: May, 2015.
3BPMN: http://www.bpmn.org/, last accessed: May, 2015.

http://www.espertech.com/products/esper.php
http://www.bpmn.org/

Foundation - Motivation 28

2.3.2 Automatic and Customised SES Planning

Service planning determines which service(s) can be used to fulfil a service request and

in the case of using multiple services, how to integrate them in a service composition

plan. Composition plans generated as the outcome of service planning should fulfil both

functional and non-function requirements specified in service requests. In the following

the limitations of current service planning approaches for addressing functional and

non-functional requirements of event service requests are discussed.

2.3.2.1 Event Service Planning based on Functional Aspects

The services used in composition plans can be composed services themselves. For exam-

ple, to find the relevant services to implement Q3, one can look for the sensors deployed

on the user-selected route by examining the location information specified in the traffic

report service descriptions and comparing it with the route information specified in the

service request. Eventually three services will be retrieved to create streams for Traffi-

cReportOnSeg1, TrafficReportOnSeg2 and TrafficReportOnSeg3 in Listing 2.3. However,

assume there are two CESs, one calculating the average congestion level and the other

the sum of the travel time on the three street segments, respectively. It is easy to see

that joining these two results streams could also implement Q3, thus, these two CESs

can be integrated as a valid composition plan. However, simply comparing the geo-

graphical location would not be sufficient for identifying these two CESs to use them in

a composition plan.

Facilitating automatic service planning is an important contribution of introducing se-

mantics to service descriptions [25]. State-of-the-art SWS planning and composition

approaches model service tasks as a tuple ST = (I,O, P,E), where I,O, P,E are the

input, output parameters, preconditions and effects, respectively. For example, a ho-

tel booking service may be modelled as in Listing 2.4. In this IOPE SWS modelling

paradigm, predicates are used to define preconditions and effects and rule-based rea-

soning can be used to find possible composition plans that provides all inputs (using

the intermediate outputs generated from the plan) for the target task while fulfilling

all preconditions (by applying intermediate effects). Typically, the reasoning procedure

is carried out in a backward chaining style, i.e., starting from the target objective or

effect, find possible tasks that fulfil part of the required preconditions. An exemplifying

research of this kind can be found in [61].

However, such IOPE-based service planning cannot be easily applied to CESs because

it is not straightforward to define the precondition and effect of an event detection task.

Foundation - Motivation 29

HotelBooking = (
I = { customer , date , n ights , c red i tCard } ,
O = {bookingRece ipt } ,
P = {hasVacancy (date , n i gh t s) , val idCard (cred i tCard)} ,
E = {paymentMade , roomReserved}) .

Listing 2.4: A hotel booking service modelled in IOPE paradigm

The precondition of a complex event may be described by incorporating temporal logics

and specifying comprehensive rules for temporal reasoning, as in [82]. However, event

detection and data analysis process do not have any effects on the real-world except for

the complex events derived as information entities. Even if the creation of the complex

event types is described as effects, e.g., suppose the service composition for Q3 has

an effect of creating the event with type AvgCongestionAndSumTravelTime, it is not

practical to use the type information for matching effects and preconditions because the

type information alone does not identify the semantics of a complex event. Therefore, a

pattern-based event service discovery and composition is necessary for automatic event

service planning.

2.3.2.2 Event Service Planning based on Non-functional Aspects

While pattern-based event service planning addresses the functional requirements of ser-

vice consumers, their non-functional requirements should also be addressed. In this the-

sis, only non-functional requirements regarding the quality-of-service parameters (e.g.,

latency, accuracy, completeness etc., detailed list of QoS parameters discussed in Chap-

ter 7) are investigated. Consider the example of composing for Q3, a valid composition

plan using 3 PESs is functionally equivalent to another plan using 2 CESs. However, the

latency, completeness and cost etc., of the two plans may be different, and a user should

be able to find composition plans that best suit his/her individual needs. QoS-aware ser-

vice composition has two major challenges: 1) defining an appropriate QoS aggregation

schema to calculate the QoS for the composition plans and 2) finding QoS-optimised

composition plans efficiently.

QoS aggregation. Event service planning based on QoS parameters also needs to ad-

dress these two challenges. A QoS aggregation schema contains a set of QoS parameters

to be considered, a set of QoS aggregation rules on the parameters and a utility/cost

function to calculate and compare different composition plans based on the aggregated

QoS parameters. QoS aggregation schema has been discussed extensively, e.g., in [83–

85]. Existing works have covered a broad range of QoS parameters and many have used a

utility function based on Simple Additive Weighting (SAW [86]) to calculate the perfor-

mance based on users’ preferences, which are modelled as numerical weights. However,

Foundation - Motivation 30

the aggregation rules in the existing work focus on conventional web services rather than

CESs, which has a different QoS aggregation schema. For example, the event engine

also has an impact on the QoS aggregation, which is not considered in conventional

QoS aggregation. Also, the aggregation rules for some QoS properties based on event

composition patterns is different to those based on workflow patterns (as in [84]).

Hotel Booking
(ST1)

Guesthouse
Application

(ST2)

Flight
Booking

(ST3)

Figure 2.4: A travel planning service workflow.

E2

OR

SEQ

E1

congestionAt(B)
 (near A)

accidentAt(A)

E3

congestionAt(C)
 (near A)

Figure 2.5: A severe traffic
accident is detected if an ac-
cident happens and it causes
congestion in the nearby re-

gions.

Consider a simple service workflow for travel planning as shown in Figure 2.4 and a

severe traffic accident event pattern in Figure 2.5, the energy cost of the sub-workflow

of the travel planning process that correlates ST1 and ST2 (denoted C1) is given by

C1 = cost(ST1)|cost(ST2), where cost(STi) gives the cost of the service task STi, i.e.,

the value of C1 depends on which task is executed at run-time. However, the cost of the

sub-pattern of the traffic accident (denoted C2) is given by C2 = cost(E1) + cost(E2),

because the energy consumption of event detection tasks start when subscriptions are

made, and the cost exists even when no events are detected, the same applies for other

computational resources. Also, the latency of the workflow (denoted L1) is given by

L1 = (L(ST1) + L(ST3))|(L(ST2) + L(ST3)), because the service tasks are executed

in sequence. However, the event pattern does not describe the execution plan of the

event detection task, i.e., the latency will be the last event instance detected and picked

to complete the pattern detection task at run-time. The latency and cost are just two

examples of the differences of QoS aggregation rules between service workflows and event

patterns. To the best of my knowledge currently there are no suitable QoS aggregation

schema for CESs.

Composition plan creation and optimisation. The composition plans must be

created and optimised efficiently to enable on-demand service planning. To solve this

problem, numerous heuristic algorithms are proposed. There are two prominent strands:

Integer Programming (IP) (e.g., [83, 87, 88]) and Genetic Algorithm (GA) (e.g., [89–

92]) based solutions. In [87] the limitation of local optimisation and the necessity of

Foundation - Motivation 31

global planning are elaborated. The authors explained why brute force enumeration

and comparison are not realistic to achieve global optimisation of service composition.

The authors propose to address this problem by introducing an IP-based solution with

an SAW based utility function to determine the desirability of an execution plan. This

approach is extended in [88] with more heuristics to promote efficiency. In [83] a hybrid

approach of local and global optimisation is proposed, in which global constraints are

delegated to local tasks, and the constraint delegation is modelled as an IP-based opti-

misation problem. The problem with IP-based solutions in general is that they require

the QoS metrics to be linear, and they do not address the service re-planning problem.

Genetic Algorithm (GA) based solutions are therefore proposed to address these issues,

e.g., [85, 89–92]. However, these GA-based approaches can only cater for IOPE based

service compositions. CES composition is pattern-based, as explained earlier. Therefore,

novel algorithms based on genetic evolution, including suitable genetic encoding for event

patterns, crossover and mutation operations, must be developed.

2.3.3 Automatic and Adaptive SES Implementation

Service composition plans are abstract documents which give instructions on integrating

different services. In order to implement the service composition, the composition plans

must be implemented as concrete and executable programs. An automatic implemen-

tation of composition plans is desirable to reduce the human intervention in the service

life cycle and to cope with the volatile business and physical environments. Also, it

is desirable that the service implementation can be adaptive to QoS constraint viola-

tions at run-time. In the following the limitations of current approaches with regard to

automatic and adaptive event service implementation are discussed.

2.3.3.1 Automatic Event Service Implementation

Conventional web service composition can be implemented by various workflow/process

engines, e.g., YAWL [93], BPEL4, BPMN 2.05 etc. Implementing a conventional web

service composition requires enabling the control and data flow in the composition plan.

Implementing the control flow is trivial, since the composition plans are imperative com-

mands. The data flow can be sometimes problematic, because there can be semantic or

syntactical mismatches between service inputs and outputs. In such cases, service me-

diation might be needed [94]. Semantic web service composition also provides solutions

4WS-BPEL, version 2.0: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.
html, last retrieved: Mar., 2015.

5Business Process Modeling Notation Specification, version 2.0: http://www.omg.org/spec/
BPMN/2.0/, last accessed: Mar., 2015.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

Foundation - Motivation 32

for mismatches in the messages used in service compositions, e.g., in BPEL4SWS [95],

the message lifting and lowering mechanisms supported in SAWSDL [96] are used to

transform XML data representations to RDF graphs and vice versa.

Implementing CES composition is different to conventional service composition. Com-

position plans for CESs are descriptive event/stream queries rather than imperative

workflows, the actual workflow of query operators, i.e., query execution plans, are de-

termined at run-time by event/stream processing engines. The mismatches in the event

messages are resolved in semantic event services, since the messages are provided as RDF

graphs directly. However, the event/stream queries must be specified manually. Also,

the queries are tightly coupled to the implementation of the engine, i.e., current com-

position plans and queries for event services are platform-dependant. Different engines

may support different sets of operators, and the semantics of the query pattern might

be slightly different. For example, Q3 can be transformed into ETALIS [19], CQELS

[37] and CSPARQL [38] queries while the event query in Figure 2.5 can only be imple-

mented in ETALIS and CSPARQL, because the sequence operator is not supported in

CQELS. Also, there is a small difference in the syntax and semantics in Q3 while it

is implemented in CQELS and CSPARQL, i.e., the grammar of the query definition is

different, also in CQELS results are produced whenever a new triple arrives, while in

CSPARQL, the results are accumulated during a time interval and delivered to result lis-

teners periodically. Currently, there are no standardised event/stream query languages,

and because of the differences in the supported operators, language syntax and seman-

tics, an automatic CES implementation requires a query transformation technique to

deploy a federated CES query over different event/stream engines.

2.3.3.2 QoS-aware Event Service Adaptation

QoS-aware service adaptation is a desired feature in Smart City applications. In most of

the existing solutions matchmaking between the requirements expressed by event con-

sumers and available event providers is carried out at design-time and remain unchanged

during the life span of the query deployed in the application. This approach is often

far from optimal and its deficiencies become even more obvious in smart city scenarios

due to their inherently dynamic stream properties. For example, the accuracy of sensor

readings may vary depending on the network availability, weather conditions, energy

reserved in battery etc. Therefore, providing the mechanism to detect QoS constraint

violations and recover from those violations will significantly improve the reliability of

smart city applications.

Foundation - Motivation 33

QoS-aware support in existing event-based systems is typically provided on the data level

or the routing network level. On the data level, the QoS-aware optimisation is done via

query rewriting, e.g., in [37, 57, 97]. Query rewriting techniques define a cost model

of event processing for query operators and use the cost as a heuristics in determining

which operator is to be executed at run-time. A frequently used cost is the number of

intermediate results produced by the operator. For example, in Figure 2.6, two query

execution plans for a variant of Q7 produce the same results but one is preferable than

the other because less intermediate results are produced. On the network level, the cost

of an event subscription is calculated based on the link analysis of the hops used in a

route, e.g., in [52–55]. When a broker node in the network is overloaded or the quality

of a link has decreased significantly, the routing algorithm will dynamically create new

routes for the subscription to ensure the quality of the event network.

E1

OR

E3E2 E4

f=0.1 f=0.2 f=0.3 f=0.4

A variant of Q7 that uses a disjunctive
operator over 4 parking data streams:
E1 - E4, representing the parking lot is
full for 4 different places, with different
frequencies f=0.1~0.4

E1

OR

E2

E3

E4OR

OR

f=0.3

f=0.6

E3

OR

E4

E2

E1OR

OR

f=0.7

f=0.9

Execution plan 1:
sum of intermediate
result frequency = 0.9

Execution plan 2:
sum of intermediate
result frequency = 1.6

Figure 2.6: Query rewriting example for variant of Q7: reducing intermediate results
to optimise query performance.

However, QoS support is not provided on the service level for CESs, i.e., replacing

the erroneous or low quality event services or partial service compositions with better

candidates. For example, if a user defines a NFP constraint that the accuracy of Q3

must be greater than 90%, and a composition plan CP1 consisting of three primitive

event services PES1, PES2, PES3 is deployed, in which the accuracy of the PESs are

Acc(PES1) = 98%, Acc(PES2) = 95%, Acc(PES3) = 97%, respectively. Then, the

user’s constraint holds within CP1, assuming the aggregated accuracy is simply the

product of the event services in the composition plan. However, if Acc(PES3) drops to

80% at run-time, the constraint no longer holds within CP1 and a replacement for PES3

(or other parts of the composition plan) is needed to maintain the QoS performance.

Service adaptation is an active area of research, e.g., in [98–101]. However, these ap-

proaches consider only conventional web services and rely on type-based or IOPE based

service discovery and composition techniques, which are not suitable for CESs.

Foundation - Motivation 34

2.3.4 Efficient SES Execution

When an SES composition plan is implemented as a semantic event query and executed

by an RDF Stream Processing (RSP) engine, it is crucial that the RSP engine can handle

the queries efficiently, i.e., with minimal query result latency and memory consumption.

Existing RSP engines have provided different techniques for optimising the query per-

formance, e.g., in CQELS [37] and C-SPARQL [38], and since RSP is still in its early

stages, there are a lot of room for future improvements. In this thesis, optimising the

internal processing mechanisms of various RSP engines is out of scope. However, since

ACEIS aims to support different existing RSP engines, it is important for a developer

that intends to use or extend ACEIS to understand the different processing capabil-

ities of RSP engines, so that he/she can make the better choice in the type of RSP

engine to be used. Benchmarking systems have been used in conventional database sys-

tems to investigate the performance issues regarding query processing, data storage and

other data management operations [102, 103]. Similarly, LS Bench [39] and SR Bench

[40] have provided benchmarks on RSP engines. However, both LS and SR bench use

synthetic datasets and cannot show exactly how the engines perform under real-world

scenarios and datasets. Moreover, they use static configurations for the testbeds and do

not allow flexible configurations over query complexity, stream rate, query concurrency

or background knowledge size etc. To have a better understanding of what may happen

in real-world scenarios, it is important to have control over these parameters and test

the performance with the configuration that best describes the user’s actual problem

domain. For example, for Q3 the number of streams involved depends on the specific

route provided by the user, i.e., longer routes may need to integrate more streams, re-

sulting in more complicated queries. Also, the size of the background knowledge used

in Q3 could be different for different cities.

The performance of composition plan execution is not only impacted by the choice of

the RSP engine type. In cases where multiple engine instances are deployed in parallel,

the distribution of workload also affects the query performance, i.e., the specific engine

instance to evaluate the query needs to be decided carefully. Load balancing techniques

are discussed in the literature extensively to address this problem [41–43, 64, 65]. It is

necessary to implement and evaluate different load balancing strategies for ACEIS to

determine the optimal strategy.

Foundation - Motivation 35

2.4 Summary and Discussion

In this chapter, the research of this thesis is motivated with concrete Smart City sce-

narios. The concept of Smart City is introduced and three examples of Smart City

applications are elaborated. Sample queries from three different application scenarios

are introduced. The features of these queries are analysed to justify the need for using

Semantic Event Services (SESs) in the application scenarios as an integration of Ser-

vice Oriented Architecture (SOA), Complex Event Processing (CEP) and Semantic Web

(SW) technologies. The necessity of providing event processing capability as semantic

event services for Smart City applications are explained by analysing the requirements

of the queries used in smart city applications. Moreover, the advanced requirements of

managing semantic event service life-cycle are analysed and gaps in the state-of-the-art

are discussed with examples, emphasising the need for a user-centric SES modelling,

automatic and customised SES planning, automatic and adaptive SES planning, as well

as an efficient SES execution. In the next chapter, previous developments of the basic

building blocks for SES, i.e., SOA, CEP and SW, is presented as the background for

this thesis.

Chapter 3

Background

In this chapter, the basic concepts and methodology related to this thesis are introduced.

In particular, it describes the relevant terminology and paints in broad strokes the

landscape in Semantic Web (in Section 3.1), Service Oriented Computing (in Section

3.2) and Complex Event Processing (in Section 3.3).

3.1 Semantic Web

It is quite fascinating to see how the World Wide Web (WWW), which is an invention of

Sir Tim Berners-Lee only 26 years ago, has changed the lifestyle of people in such a pro-

found way. Statistics1 show that, since the first ever website2 was launched, today there

are more than 9.38×109 websites, and the number of Internet users has reached to more

than 3 billion, about 40% of the total population on Earth. In 2001, Sir Tim Berners-Lee

described his vision on the next generation of WWW, called the Semantic Web [104].

The Semantic Web (SW) is about networking knowledge, instead of documents, as in

the traditional WWW. Just like using hypertext documents to abstract from physical

and network layers of the internet, the Semantic Web use machine-accessible knowledge

to abstract from web documents and applications. Various Semantic Web techniques are

used in this thesis. In the following, the basic concepts in Semantic Web are introduced,

the basic principle of publishing linked data is presented and the recent application of

knowledge representation for sensor devices are discussed.

1http://www.internetlivestats.com, last accessed: Apr., 2015.
2http://info.cern.ch, last accessed: Apr., 2015.

36

http://www.internetlivestats.com
http://info.cern.ch

Foundation - Background 37

3.1.1 Basic Concepts and Standards in Semantic Web

In Semantic Web, knowledge is encoded as ontologies in the form of interlinking graphs,

where nodes represent ontological terms and concepts and edges represent relations.

An ontology is a knowledge base implemented as a graph database. From a technical

point of view, a variety of Semantic Web techniques and standards are designed to

model, represent and query the information provided by those graph databases. Among

these techniques, three technical standards are the cornerstones of the Semantic Web:

Resource Description Framework3 (RDF), Web Ontology Language4 (OWL) and Simple

Protocol and RDF Query Language5 (SPARQL).

• Resource Description Framework specifies the data model for the Semantic

Web. RDF describes the information on the Web using triples consisting of sub-

jects, predicates and objects. Figure 3.1 shows a graphical representation of a

triple, where the subject and object are represented as ovals and the predicate as

a directed link. An RDF triple states that the relation represented by the predicate

exists between the subject and object, hence it is also known as an RDF statement.

A set of RDF triples constitutes an RDF graph. Resources in RDF graphs are iden-

tifiable by Internationalised Resource Identifiers (IRIs), which are Unicode strings.

Literals in RDF graphs are used to describe concrete data values, which have data

types, e.g., integers, strings and float values. Apart from IRIs and Literals, blank

nodes are also used in RDF graphs to indicate that something exists, without

identifying specific resources. Given a set of IRIs I, blank nodes B and literals L,

a valid RDF triple t represents a 3-ary relation: t ∈ ((I ∪B)× I × (I ∪B ∪ L)).

Subject (I,B) Object (I,B,L)
Predicate (I)

Figure 3.1: Visual representation of the RDF triple format

RDF Schema6 (RDFS) provides an extension to basic RDF vocabulary, which al-

lows defining taxonomies (i.e., class or property hierarchies), property domains

and ranges, as well as containers etc. Semantics are provided to RDF and RDFS

so that a machine can not only interpret the ontology specified using the vocab-

ularies but also infer or entail implicit RDF statements from explicitly specified

3RDF 1.1 concepts and abstract syntax: http://www.w3.org/TR/rdf11-concepts/, last ac-
cessed: Apr., 2015.

4OWL language overview: http://www.w3.org/TR/owl-features/, last accessed: Apr., 2015.
5SPARQL 1.1 standard: http://www.w3.org/TR/sparql11-overview/, last accessed: Apr.,

2015.
6RDFS 1.1: http://www.w3.org/TR/rdf-schema/, last accessed: Apr., 2015.

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/rdf-schema/

Foundation - Background 38

ones. Figure 3.2 shows an example of RDFS inferencing based on class types and

subClassOf relations.

Sensor Device
rdfs:subClassOfWeather

Sensor
rdfs:subClassOf

Sensor_02

rdf:type rdf:type

rdf:type

rdfs:subClassOf

Sensor_01

rdf:type rdf:type

Figure 3.2: An example of RDFS inference: dashed links represent inferred relations.

• Web Ontology Language is designed to be the knowledge representation lan-

guage for the Semantic Web. It provides additional vocabulary and a formal

semantics to RDF and RDF Schema. In doing so, OWL offers higher expressive-

ness and better machine interoperability when used to describe ontologies. OWL

contains three sub-languages: OWL Lite, OWL DL and OWL Full. As the names

suggest, OWL Lite has the lowest expressiveness and OWL Full has the highest.

• Simple Protocol and RDF Query Language provides the language and proto-

col for querying RDF graphs. It uses a syntax similar to SQL. Listing 3.1 provides

a basic SPARQL query example over the graph shown in Figure 3.2. The execution

results of this query depends on what kind of inferencing and reasoning support is

provided by the SPARQL engine implementation. A SPARQL query engine with

no reasoning support will only give Sensor 01 as the result, while a query engine

with RDFS level reasoning support will provide both Sensor 01 and Sensor 02

as results.

Select ?sensorId Where {
?sensorType rdfs:subClassOf :Device.
?sensorId rdt:type ?sensorType.
}

Listing 3.1: A basic SPARQL query example

3.1.2 Linked Data

Linked Data [18] is a set of best practices for publishing and interconnecting structured

data on the Web. Linked Data provides explicit links between data from diverse do-

mains such as social networks, organisational structures, government data, statistical

Foundation - Background 39

data and many others. The ultimate benefit of following the Linked Data paradigm is

the increased machine-readability of published and interconnected data. Linked Data

is published using RDF where URIs are the means for connecting and referring be-

tween various entities on the Web. Tim Berners-Lee defines the following steps [18] for

publishing Linked Data:

• Assign URIs to the entities. Published entities should have their URIs which

map over HTTP protocol to their RDF representation. For example, each sensor

should have a unique URI, which links to its information in RDF.

• Set RDF links to other entities on the Web. Published entities should be

linked with other entities on the Web. For example, when providing the list of

sensor functionalities, they should link to the URIs which describe the details of

them in RDF.

• Provide metadata about published data. Published data should be described

by the means of metadata to increase its usefulness for data consumers. Data

should contain information on its creator, creation date and creation method.

Publishers should also provide alternative means for accessing their data.

Over the last years, an increasing adoption of Linked Data principles and an explosion

of datasets specified in RDF can be observed. Early adopters included mainly academic

researchers and developers. However, more recently there is a considerable interest from

organisations in publishing their data in RDF. Some of the most prominent examples

include BBC music data7, British government data8 or Library of Congress data9. At

the same time, an increasing number of public vocabularies (ontologies) and their inter-

connectedness are created, which forms a Linked Data Cloud10.

3.1.3 Semantic Web and Sensor Networks

A number of modelling methods for formally representing sensors and sensor networks

using Semantic Web technologies have been proposed, such as [105] and [106]. On-

toSensor [105] describes an ontology-based description model for sensors based on the

SensorML [107] which provides self-descriptive metadata for the transducer elements,

however, sensor observation and measurement data is not modelled. The work in [106]

presents the SensorData Ontology which is based on Observations & Measurements and

7British Broadcasting Company: http://www.bbc.co.uk, last accessed: Apr., 2015.
8British government: http://data.gov.uk, last accessed: Apr., 2015.
9Library of Congress: http://id.loc.gov, last accessed: Apr., 2015.

10LoD cloud: http://lod-cloud.net, last accessed: May, 2015.

http://www.bbc.co.uk
http://data.gov.uk
http://id.loc.gov
http://lod-cloud.net

Foundation - Background 40

SensorML specifications defined by the OGC Sensor Web Enablement (SWE) [107].

The ontology captures the semantic relationships and operational constraints of hetero-

geneous sensor data.

The W3C Semantic Sensor Networks Incubator Group (SSN-XG)11 has developed a

semantic description framework for Semantic Sensor Networks (SSN)12 based on the

concepts of systems, processes, and observations. The goal of SSN is to begin the for-

mal process of producing ontologies that define the capabilities of sensors and sensor

networks, and to develop semantic annotations for service-based sensor networks. Sen-

sor ontology is still in an early stage, but it has taken current standards (e.g SWE,

SensorML [107]) into the account and strives to model sensor-based systems with all

relevant information.

3.2 Service Oriented Computing

Service Orientation is a set of design principles for computer software development.

Analogously to Object Orientation (OO) which uses “Object” as the fundamental el-

ement in programming and enables the inheritance, polymorphism and encapsulation,

Service Oriented Computing (SOC) uses “Service” as the basic building block for devel-

oping distributed programs in a platform-independent and collaborative way [108]. To

facilitate SOC implementation and benefit from its features, a basic software design and

development style is proposed as the Service Oriented Architecture (SOA).

3.2.1 Service Roles and Activities in SOA

In traditional SOA, there are three major roles: service consumers who utilise the ser-

vices, service providers who provide the web services and service registries which store

service descriptions for web services and conducts matchmaking between service requests

and service descriptions. When such matchmakings are made by a service registry, a

service consumer can interact with the web services by exchanging messages encoded in

agreed formats, e.g., SOAP13 messages. Service computing is adopted by many organi-

sations and developers because it decouples service consumers from providers, enabling

a platform-independent approach for parallel and distributed computing, thus greatly

improves the reuse of software applications [11]. Figure 3.3 illustrates the concept of

SOA.

11SSN-XG: http://www.w3.org/2005/Incubator/ssn/, last accessed: Aug., 2015.
12Semantic Sensor Networks Ontology: http://www.w3.org/2005/Incubator/ssn/ssnx/ssn,

last accessed: Mar., 2015.
13Simple Object Access Protocol: http://www.w3.org/TR/soap/, last accessed: May, 2015.

http://www.w3.org/2005/Incubator/ssn/
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.w3.org/TR/soap/

Foundation - Background 41

Services
Service Consumers

Service Registry

Service
Descriptions

Service
Requests

Service
Messages

Figure 3.3: Service Oriented Architecture

3.2.2 Web Service and Service Description

Various standardisation organisations have provided definitions for services. The World

Wide Web Consortium (W3C14) defines a (web) service based on the Web Service De-

scription Language (WSDL) as

“... a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web

service in a manner prescribed by its description using SOAP-messages, typ-

ically conveyed using HTTP with an XML serialisation in conjunction with

other Web-related standards”

In the SOA Reference Model15 proposed by the Organisation for the Advancement of

Structured Information Standards (OASIS) , a more general definition is provided, in

which a service is defined as

“... a mechanism to enable access to one or more capabilities, where the

access is provided using a prescribed interface and is exercised consistent

with constraints and policies as specified by the service description. ”

In this thesis, the more general definitions on services (as in the OASIS reference model)

is adopted, since the services discussed in this thesis are not restricted to the protocols

and formats specified in the W3C web service definition.

14W3C Web Service Glossary: http://www.w3.org/TR/ws-gloss/#webservice, last accessed:
Mar., 2015.

15SOA-RM: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf, last accessed: Mar.,
2015.

http://www.w3.org/TR/ws-gloss/#webservice
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

Foundation - Background 42

It is evident that, in the above definitions for services, a key element is the Service De-

scription. A service description is a structured documentation for the capabilities offered

by a service and it serves as a basis for enabling machine-to-machine interoperability

in SOC. Each atomic capability of the service is modelled as a Service Operation in

the description. Service Description is used for two major objectives: 1) it serves as an

advertisement for a service in the service registry, so that service consumers can find the

relevant service capabilities they need and 2) it is used as guidelines for developers to

build software and communicate with the services provided. Hence, it contains an ab-

stract part describing the types and structure of service operations and the input/output

messages of the operations, as well as a concrete part describing the messaging protocols

and access locations (URLs) of the service endpoints. Figure 3.4 illustrates the structure

of a service description in WSDL.

<?xml version="1.0" encoding="UTF-8"?>

<description xmlns="http://www.w3.org/ns/wsdl"

 xmlns:tns="http://www.exampleurl.com/hotelbookingexample" ...>

 <types>

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.example.com/wsdl20sample" ...>

 <xs:element name="bookingRequest"> ... </xs:element>

 <xs:element name="bookingResponse"> ... </xs:element>

 </xs:schema>

 </types>

 <interface name="hotelBookingInterface">

 <fault name="noVacancyErr" element="tns:bookingresponse"/>

 <operation name="Get" pattern="http://www.w3.org/ns/wsdl/in-out">

 <input messageLabel="In" element="tns: bookingRequest"/>

 <output messageLabel="Out" element="tns: bookingResponse"/>

 </operation>

 </interface>

 <binding name="HttpBinding" interface="tns:hotelBookingInterface"

 type="http://www.w3.org/ns/wsdl/http">

 <operation ref="tns:Get" whttp:method="GET"/>

 </binding>

 <service name="HotelBookingService" interface="tns:hotelBookingInterface">

 <endpoint name="HttpEndpoint" binding="tns:HttpBinding"

 address="http://www.example.com/hotelBooking/rest/"/>

 </service>

</description>

Ab
st

ra
ct

 S
ch

em
a

C
on

cr
et

e
Bi

nd
in

g

Figure 3.4: Example of WSDL service description for hotel booking

Foundation - Background 43

3.2.3 Service Invocation, Orchestration and Choreography

When a requested service is discovered and bound for a specific task, Service Opera-

tions can be invoked to interact with the application or service deployed for the service

consumer. The message exchange between service operations can be synchronous (e.g.,

request-response operation in WSDL 1.116 and In-Out message exchange pattern (MEP)

in WSDL 2.017) or asynchronous (e.g., notification operation in WSDL 1.1 and Out-Only

MEP in WSDL 2.0). Asynchronous messaging is ideal for publishing and subscribing

events, recall in Chapter 1, a Complex Event Service (CES) is also defined as an asyn-

chronous notification service.

Completing a service consumer’s task often requires multiple services (and hence the

underlying service operations) to interact with each other in a collaborative way. These

services thus formulate a service composition. The coordination of the composed services

is typically modelled as a workflow. Service workflows can be formally specified using

various techniques, e.g., Pertri Net [109], Event Process Chain (EPC) [110], Yet Another

Workflow Language (YAWL) [93] and Business Process Execution Language (BPEL).

These workflow models are considered executable due to their formal semantics specified,

and the automated service workflows are sometimes referred to as Service Orchestrations.

However, service orchestration languages impose heavy restrictions on the technical de-

tails and are not flexible enough to address the requirements of modelling processes at

a strategic level for business users, e.g., providing easily understandable graphic nota-

tions for different stakeholders [111] or modelling human tasks18. For modelling business

processes, the Business Process Model and Notation19 (BPMN) has been proposed and

standardised by the Object Management Group (OMG). Service composition at the

business process level (as in BPMN) between multiple parties (without focusing on

internal service implementations) are sometimes referred to as Service Choreography

[112]. Early versions of BPMN were criticised for lacking formal semantics and causing

ambiguities [113]. Later revisions of BPMN (version 2.0, released in 2009) provided ex-

ecution semantics and allowed mapping to BPEL directly. Figure 3.5 illustrates service

collaborations on different levels.

16WSDL 1.1: http://www.w3.org/TR/wsdl, last accessed: March, 2015.
17WSDL 2.0: http://www.w3.org/TR/wsdl20/, last accessed: March, 2015.
18Human tasks in BPEL are addressed in the extended version: BPEL4PEOPLE: http://docs.

oasis-open.org/bpel4people/bpel4people-1.1.html, last accessed: May, 2015.
19BPMN: http://www.bpmn.org/, last accessed: May, 2015.

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://www.bpmn.org/

Foundation - Background 44

Service Choreography (BPMN)

Service Orchestration (BPEL)

Service Invocation (SOAP)

<seq:travel_planing>
<flow:travel_booking>

<invoke:visa_application>

<invoke:hotel_booking>

<invoke:flight_booking>

Author
Notification

Co
nf

er
en

ce

Co
m

m
itt

ee
Au

th
or

Fi
na

nc
e

O
ffi

ce
Paper
accepted

Camera-ready
Submission

Receive
CM-ready

Budget
Application

Registration

Budget
Clearence

Travel
Planing

Registration
Handling

Travel Booking

User Interface Hotel Booking
Service Interface

hotelBookingRequest

hotelBookingResponse

Figure 3.5: Example of service interactions of the process of attending an academic
conference at different levels

3.2.4 Semantic Web Service

According to [114], WSDL concepts are familiar to software engineers thus they can eas-

ily implement and access services using WSDL. However, WSDL services are notorious

for the lack of automated support for service discovery and composition [115, 116], be-

cause of lacking the semantic description on service capabilities and consumers’ goals as

well as the reasoning ability over the capabilities and goals. Semantic Web Service (SWS)

is a research area that brings together web service and Semantic Web technologies. SWS

enriches web services with knowledge representations and reasoning techniques. Seman-

tic enrichments for service descriptions, including SAWSDL20, WSMO21 and OWL-S

[117] and others, are used to facilitate automatic service discovery and composition. In

20Semantic Annotations for WSDL: http://www.w3.org/2002/ws/sawsdl/, last accessed: Mar.
2015

21Web Service Modelling Ontology: http://www.w3.org/Submission/WSMO/, last accessed:
Mar., 2015.

http://www.w3.org/2002/ws/sawsdl/
http://www.w3.org/Submission/WSMO/

Foundation - Background 45

SAWSDL, modelReference can attach to portTypes and message data types to indicate

the category of operations and messages. Lifting and lowering schema are used to trans-

form input and output data. In this way composing web services based on the semantics

of IO messages are made possible. However, it does not go beyond providing seman-

tics to the service interface. In WSMO and OWL-S, the semantics of input, output,

precondition and effects are captured by using ontologies and axioms. Non-functional

properties (service profile) are also captured.

Service discovery and indexing based on semantic similarity between a service request

and a service description can be found in [26, 118–121]. Semantic service composition

based on Artificial Intelligence (AI) planning and forward/backward chaining algorithms

can be found in [122–127]. The above mentioned semantic service discovery and com-

position takes into account only the functional aspects of services. QoS aware service

composition and optimisation is NP-hard [88]. Various techniques, e.g., [83, 88, 128–

130], have proposed different heuristics to solve the problem efficiently.

3.3 Complex Event Processing

Complex Event Processing (CEP) is a technique for analysing real-time streams of infor-

mation and generating (near) real-time insight on current situations. In particular, CEP

performs a set of operations, including read, create, aggregate, discard etc., on events

and derives conclusions as complex events. [1]. The research on CEP has several roots,

e.g., discrete event simulation [131] and active database management [132]. Compared

to traditional Databased Management Systems (DBMS) in which data is persistently

stored and answers queries synchronously for users at run-time, in CEP systems the user

queries are registered statically (for a period of time) and the data is continuously arriv-

ing in streams, and the query is answered in an asynchronous fashion [133], as depicted

in Figure 3.6.

CEP

DBMS

Database

Static Dynamic

Data Query

Event Query

(windowed) data streams

Figure 3.6: Differences between CEP and DBMS: static or dynamic information

Foundation - Background 46

Since the first CEP engine was introduced in 1995 [7], the methodology has been adopted

in many application domains. In fact, CEP has been proved useful both in empowering

traditional industry, e.g., financial services [134], supply chain management [135], health

care [136] etc., as well as in enabling newly founded areas like Smart City applications

[137]. A reference architecture for designing CEP systems is proposed in [138].

3.3.1 Basic Concepts in CEP Systems

A CEP system is organised with a set of entities related to Events. Figure 3.7 illustrates

the high-level architecture of a CEP system. Central to this architecture, an Event

Processing Agent (EPA) receives events produced and provided by Event Providers,

evaluates in real-time the event processing logic (i.e., event pattern) against the input

events and generates as output Complex Events consumed by Event Consumers. In the

following, the basic concepts in CEP Systems are introduced.

Event Engine
Event Streams

Complex Events
Event Pattern

Event Providers Event Consumer

Figure 3.7: High-level architecture of CEP systems

3.3.1.1 Events

According to the Event Processing Glossary22 published by the Event Processing Techni-

cal Society (EPTS), an event is something that happens, or contemplated as happening.

An event can be seen as a significant change in the state of the universe [139]. It signifies

a notable thing that happens in or outside your business, e.g., a problem or impending

problem, an opportunity, a threshold, or a deviation [14]. An event can also be a thing

that did not happen at all, signifying the absence of the occurrence [140]. In [7] an event

is defined as a computer processable object that formed with particular attributes (e.g.,

event id, content, timestamp etc.), signifies an activity with the attributes and relates

to other events by time, causality and aggregation.

Events can be categorised into different types using different dimensions. On the tem-

poral duration dimension, an event can be instantaneous, i.e., happens at a time point,

22Event Processing Glossary, version 2.0: http://www.complexevents.com/wp-content/
uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf, last accessed: Mar., 2015.

http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf

Foundation - Background 47

or interval, i.e., happens for a time period. On the contextual dimension, an event can

be internal, i.e., happens within the CEP system, or external, i.e., happens outside the

CEP system. On the complexity dimension, an event can be simple (primitive), i.e.,

consists of an atomic change in state, or complex (composite), i.e., consists of a set of

changes in state. Table 3.1 shows examples of different event types.

Event&Categories& Examples&
Duration&
& Instantaneous& A&mouse&click&event&(triggered&by&button&release).&

Interval& A&sport&event&lasting&for&hours.&
Context&
& Internal& An&event&query®istration&event.&

External& A&weather&change¬ification&event.&
Complexity&
& Simple& A&stoke&trade&completion&event.&

Complex& A&worldCwide&economy&crisis&event.&
!

Table 3.1: Event categorisation in different dimensions

The event types in Table 3.1 are agnostic to application domains. There are also domain-

specific event types that describe events with similar meaning and structure. Hereafter,

the notion of event type is used to represent domain-specific event types unless stated

otherwise. Each event object is considered an instance of an event type. A type of event

may re-occur in the history of time, e.g., the raining event may happen several times in a

week or even in a day. On the contrary, an event instance, e.g., it was raining yesterday

at 4:00 PM in Galway city, is considered unique in the history and can never happen

again.

3.3.1.2 Event Processing Agent and Event Processing Network

An EPA can be generally defined as an entity that process events (as in the EPTS

definitions). It is a node in an Event Processing Network (EPN) that receives one or

more events as inputs, process them, and creates one or more events as output [141].

According to this definition, a Complex Event Service (CES) is an EPA wrapped into

a service. Based on the event processing logics specified by an event consumer, an EPA

may perform different kinds of computation on events such as filtering, transforming,

and detecting Event Patterns. Figure 3.8 illustrates a taxonomy of EPAs introduced in

[1]. Multiple EPAs and can be used in a coordinated way to achieve CEP tasks. Event

Channels are used to deliver events between EPAs. Collectively, the coordinating EPAs

and event channels connecting the EPAs form an EPN. Conceptually, a whole EPN can

be seen as an EPA in a higher level EPN, if its internal communication is ignored [138].

Technically, an EPN can be implemented as a centralised runtime artefact or distributed

runtime artefacts with a messaging system [1].

Foundation - Background 48

EPA

Filter

Transformation

Pattern
detection

Aggregate

Split

Compose

Translate Enrich

Project

Figure 3.8: Taxonomy of EPA (from [1])

3.3.1.3 Event Provider and Consumer

Intuitively, event providers introduce events to EPAs (or EPNs) and event consumers

accepts events from EPAs (or EPNs). Event providers and consumers are roles that

could be taken by hardware, human-interaction and software [1]. An EPA can be an

event provider and/or consumer. According to the CES definition in Chapter 1, a CES

can be an event provider and consumer at the same time.

3.3.2 Event Channel and Routing

An event channel can be as simple as a one-to-one messaging without making routing

decisions between two EPAs, or it can route events to specific receivers and it can have

multiple sources and destinations. If all EPAs share a single channel with only one hop,

i.e., direct links are available for any sources and destinations, the event channel is called

an Event Bus [1]. For multi-hop channels, nodes in the channel can be EPAs publishing

and consuming events and/or broker nodes forwarding events on behalf of other nodes.

Various routeing mechanisms have been developed for such publish/subscribe systems,

which can be categorised into broadcast, multicast, peer-to-peer and rendezvous-based.

3.3.2.1 Broadcast

All events entering the channel is forwarded to all destinations of the channel. Broad-

casting is easy to configure and maintain and it works well in centralised EPNs or

small-scale networks (e.g., Local-area networks) where there is little bandwidth restric-

tion. However, broadcasting is not applicable for large-scale distributed EPNs, because

it will impose excessive transportation overhead, i.e., unnecessary network traffic caused

by irrelevant events received by EPAs.

Foundation - Background 49

3.3.2.2 Multicast

All events entering the channel are partitioned into non-overlapping event groups. For

each event group, a server group is constructed that groups destination nodes in the

channel (i.e., EPAs) together. Each EPA in a server group has an event subscription

scope which overlaps with the events in the corresponding event group. Service groups

may have overlaps. Internally in each server group has a routeing tree that spans all

EPAs for all events in the event group. Upon receiving an event from a source, it is

mapped to an event group and delivered to every member of the corresponding server

group. Examples of multicast event routeing can be found in [142, 143]. Compared to

broadcast, multicast creates less duplicated messages and reduces the network traffic

overhead, meanwhile the routeing table is not very complicated [144]. Clustering al-

gorithms like k-means [145] can be used to partition event groups so that the network

overhead are better managed.

3.3.2.3 Peer-to-peer

In peer-to-peer (P2P) networks, all nodes are equal and have the knowledge of their

neighbour nodes. Each node expresses its interests over events using filter-based sub-

scriptions. Filters used in subscriptions can be type-based or content-based (i.e., event

attribute based). Each node receives subscriptions from its neighbours and sends its own

subscriptions to the neighbours. Subscriptions sent to neighbour nodes can be different:

when node A sends its subscription to node B, A will send the subscriptions as the

union of the events consumed by A and the subscriptions from all the neighbours of A

excluding B. When the P2P network is initialised, the subscriptions of the nodes are

broadcasted through the network, and then when an event arrives at a node, it matches

the event to the subscriptions (i.e., filters) in its routeing table to determine which direc-

tion the event should be forwarded to. Examples of P2P filter-based event routing can

be found in SIENA [44, 146], Gryphon [147] and REBECA [148]. P2P event routeing

has higher network efficiency than multicast. However, the subscription broadcasting

overhead grows super-linearly against the total subscriptions in the channel, also, the

management and processing of the routeing tables is costly [144].

3.3.2.4 Rendezvous-based

In rendezvous-based routing, the event space is modelled as a n dimensional space,

where n is the number of attributes in the events. The event space is divided into

non-overlapping sub-spaces, and each sub-space is assigned to one rendezvous node in

Foundation - Background 50

the network. A rendezvous node Nr (sometimes called proxy node, as in [144]) is thus

responsible for matching the events in the assigned event sub-space to the subscrip-

tions hosted on Nr. A subscription is hosted on Nr if the subscription scope (i.e., n

dimensional “cube” formed by the filters in the subscription) intersects with the event

sub-space assigned to Nr. When an event is received, it is firstly forwarded to the unique

corresponding rendezvous node. Then, it is matched against the subscriptions hosted on

the rendezvous node and forwarded to subscribers of the matching subscriptions. Ex-

amples of rendezvous-based routing can be found in [144, 149–152]. Rendezvous-based

routeing has the advantages of both multicast and P2P filter-based routeing: simple

routeing tables management as well as high network efficiency [144]. However, it does

not cope well with the dynamicity in the network topology: when nodes are joining or

leaving the network, the event sub-spaces and subscriptions must be re-arranged. Also,

it does not cope well with un-ordered, discrete attributes, e.g., string values [153].

3.3.3 Event Pattern

Event pattern detection is the core functionality of event processing [1]. It is a com-

putational process in which a set of temporally ordered events, i.e., an Event Instance

Sequence (EIS), is evaluated to check whether they satisfy a pre-defined event pattern

[141]. The process of event pattern detection can have three steps: a filtering step

that filters out irrelevant events, a matching step that selects a subset of the relevant

events and a derivation step that creates output events (i.e., a complex event) using the

matched events. An event pattern provides instructions on how these steps should be

carried out by an EPA over event streams. In [1], event pattern is defined as:

“An event pattern is a template specifying one or more combinations of

events.”

In particular, an event pattern describes the relevant event types, pattern type, pattern

parameters and pattern policies [1], where the relevant event types describe the type

of events involved and monitored by the pattern, the pattern type describes the type

of correlation between the set of events satisfying the pattern, pattern parameters give

a set of values used in the pattern and pattern policy gives the instructions on which

subset of events should be selected (filtered) and consumed. A similar description of

event pattern is provided in [141], with additional explicit notations for the predicate

between pattern parameters as well as for the derived events.

In [1], various event pattern types are discussed, which can be broadly categorised into

Logical, Attribute-based, Dimensional and Aggregated patterns.

Foundation - Background 51

• Logical Pattern: Describes the existence (or non-existence) of relevant event

types using logical operators, including conjunction (all relevant events must oc-

cur), disjunction (at least one relevant event types should occur), exclusive-disjunction

(at least one relevant event type should occur but not all) and negation (the rele-

vant event types should be absent).

• Attribute-based Pattern: Describes the rules to be evaluated over event

attributes (if the event occurs) in order to detect the pattern. Such rules can be

expressed as filters over event attributes. The expression of the filters describes

the relation between event attributes with constants or other event attributes.

• Dimensional Pattern: Describes the temporal (e.g., the sequential order of

event occurrences), spatial (e.g., distance between events) and spatiotemporal cor-

relations (e.g., moving in a direction) between the relevant event types.

• Aggregated Pattern: Describes the rules over a set of event instances occurred.

It can be used together with other patterns to provide aggregation functions, e.g.,

counting the occurrences of events (with a logical conjunction), calculating the

average value of an event attributed (with attribute-based pattern) or detecting

repetitions of an event sequences (with temporal pattern).

Pattern'Types' Examples'
Logical'
' Conjunction' The'traffic'light'is'green'and'the'vehicle'is'at'the'crossroad.'

Disjunction' The'traffic'light'is'green'or'yellow.'
Exclusive?disjunction' The'traffic'light'is'green'or'red.'
Absence' No'vehicle'from'north'has'entered'the'crossroad'for'5'minutes'

Attribute?based'
' attribute?constant' Vehicle'speed'above'100'km/h.'

attribute?attribute' A'vehicle'speed'is'3'times'than'other'in'the'same'lane.'
Dimensional'
' Temporal' A'traffic'accident'event'followed'by'a'vehicle'speeding'event.'

Spatial' Distance'of'two'vehicles'in'the'same'lane'less'than'1'meter.'
Spatiotemporal' Two'vehicles'heading'towards'a'collision'point.'

Aggregated'
' With'logical' Multiple'accidents'at'the'same'crossroad'in'a'day.'

With'attribute?based' Average'vehicle'speed'on'the'road'below'10'km/h.'
With'dimensional' Multiple'accidents'happened'after'a'vehicle'turns'left.'

!
Table 3.2: Event pattern types and examples

Table 3.2 shows examples for different pattern types. An event pattern can be specified

in a declarative way using Event Pattern Languages (EPLs). In [7] several basic require-

ments for EPLs are defined: 1) an EPL should be expressive enough to cover different

application domains, 2) it should use simple notations to allow easy definition of event

patterns, 3) it should have a mathematically precise semantics to ensure correctness in

pattern detection and 4) the design of an EPL should be scalable so that it does not

Foundation - Background 52

have any negative effects on the performance of pattern detection. In [154] the authors

discuss in details the criteria for a successful EPL design which allows an easier gen-

eration of new CEP applications. Examples of EPL include Rapide [77], Borealis [78],

RuleCore [79], SASE+ [80], Cayuga [81] etc.

3.3.4 Semantic Event Processing and Stream Reasoning

Despite various CEP solutions that have been developed (such as the EPLs and engines

introduced in Section 3.3.3), there are no shared definitions for the syntax or semantics

of complex events. This will lead to inconsistencies or conflicts between used terminolo-

gies and ultimately “silo” CEP solutions [154, 155]. Moreover, processing events on a

syntactical level lacks the ability to integrate the real-time event streams with higher-

level knowledge representation and reasoning [19, 20]. For example, syntactical event

processing cannot detect events based on reasoning on their type hierarchy relations or

on their relations to concepts from other application domains [156]. To address these

issues, a recent research concept of Semantic (Complex) Event Processing (SCEP) has

been proposed and studied to provide reasoning capability over semantically annotated

events.

According to [156], there are two mainstream styles for CEP implementation: rule-based

(e.g., [22]) or Nondeterministic-Finite-Automata-based (NFA-based, e.g., [157]). In rule-

based implementations, events are injected to a logic programming system as facts, and

event patterns are specified as goals with rules. In NFA-based implementations, a state

model is used to describe the event pattern and the state transitions are controlled by

an engine based on incoming events. Figure 3.9 illustrates examples of an event pattern

modelled as NFA and rules (time windows are omitted).

S E
outStock(A)

increaseAmount(A)

cnt(outStock(A))<10

cnt(outStock(A))=10

(a) NFA

StreamEvent(replenishTo120%(A))
:-

repeat(outStock(A),10)
V

increaseAmount(A)

(b) Rule-based

Figure 3.9: Example of a complex event pattern: if 10 out of stock events are captured
for a product in the supermarket in the past week, or a request for increasing the
amount of product is received, an replenishment event notifying the need of increasing

the amount of the product in the purchase order is produced.

Most existing SCEP systems adopts the rule-based approach, e.g., [21–24]. Indeed, it is

natural to support semantic reasoning over events in rule-based systems, via encoding

Foundation - Background 53

the background knowledge and event patterns as rules in domain ontology and event

ontology, respectively.

A closely related research area to SCEP is called stream reasoning [158] or RDF Stream

Processing (RSP), which evolved from Data Stream Management Systems (DSMSs) [159]

and provides reasoning capability over data streams. A data stream can be considered as

an event stream if each data item is considered an event [160], hence a data query pattern

can be seen as an event pattern [155]. A recent study (in 2014) argues the research

area of stream reasoning “remains vastly unexplored” [161], despite the research efforts

made, such as EP-SPARQL [19], CQELS [37], CSPARQL [38] and SPARQLstream [162].

These approaches provide different extensions to the SPARQL23 syntax and semantics

to implements different stream operators, enabling querying and reasoning over RDF

streams.

Most of the stream reasoning engines employ an underlying DSMS/CEP engine (NFA-

based) for handling basic streaming operations, e.g., CQELS and CSPARQL use Esper24

and SPARQLstream uses SNEEql [163]. EP-SPARQL is the only stream reasoning engine

so far that attempts to support the full set of CEP operators using a rule-based engine

(Prolog [164]). A recent research proposes to provide a hybrid approach for SCEP

combining NFA and rule-based systems to achieve both high expressiveness and high

throughput of the system [165]. However, a concrete implementation of the system has

yet to be developed.

3.4 Summary and Discussion

In this chapter, relevant concepts and techniques in the SW, SOC and CEP are intro-

duced as the research background of the thesis. In particular, for the SW, the data model

(RDF), knowledge representation language (OWL) and data query language (SPARQL)

are introduced. The term Linked Data is explained as interlinking public vocabular-

ies. The usage of semantic annotations in IoT and sensor networks is discussed. For

SOC, the service oriented architecture is introduced. The concept of service description

documents is explained. Service interactions on different levels are elaborated with an

example. The usage of the SW in services is also explained, resulting in Semantic Web

Services that allows automatic discovery and composition. For CEP, the concepts of

events, event processing agents and event channels are introduced. These CEP concepts

constitute a distributed event processing network. The routing mechanisms in event

23SPARQL Query Language for RDF: http://www.w3.org/TR/rdf-sparql-query/, last ac-
cessed: Mar., 2015.

24Esper home: http://www.espertech.com/esper/index.php, last accessed: Mar., 2015.

http://www.w3.org/TR/rdf-sparql-query/
http://www.espertech.com/esper/index.php

Foundation - Background 54

channels are detailed. Different event patterns describing logical and temporal relations

between events are explained. The state-of-the-art in Semantic CEP is discussed. In

this thesis, we leverage these three techniques and integrate them to realise Semantic

Event Services. In the next chapter, an overview of the SES management middleware is

presented. This middleware is an integration of the solutions developed in this thesis.

Part II

Core - Semantic Event Service

Management

55

Chapter 4

Overview of the Automatic

Complex Event Implementation

System

In this chapter, a high-level overview of the Automatic Complex Event Implementation

System (ACEIS) is presented. ACEIS is a middleware for managing the activities in

the life cycle of Semantic Event Service (SES). It is an integration of the techniques

studied and developed in this thesis. In the following sections, the functional design of

ACEIS and how it fulfils the requirements in Chapter 2 is elaborated (Section 4.1). The

architecture of ACEIS and the interactions between ACEIS components are described

(Section 4.2) and the deployment of ACEIS in a Smart City framework is presented

(Section 4.3). Finally, a summary is provided (Section 4.4).

4.1 ACEIS Key Functionality Design

ACEIS is designed to address the requirements for handling the modelling, planning

and adaptive implementation of SESs. In particular, Chapter 2 analysed three main

requirements in managing SESs: user-centric SES definition, automatic SES planning

and automatic and adaptive SES implementation. In order to address these require-

ments, ACEIS is designed to realise four key functionalities, which are explained in the

following. Figure 4.1 illustrates how these functionalities are designed to address the

requirements.

56

Core - Overview of ACEIS 57

SES Life Cycle
Management

User-centric SES
Modelling

Automatic &
Customised

SES Planning

Automatic &
Adaptive SES

Implementation

Lack NFP
customisation/

pattern specification

Lack user-friendly
pattern

specification

Lack Pattern-
based Discovery/

Composition

Lack QoS-aware
Discovery &
Composition

Lack Constraint
Violation Detection

& Recovery

Require
Manual Query

Creation

Graphical event
pattern definition and

event service ontology

Pattern based event
service discovery and

composition

 Constraint-aware event
service composition and

optimization

Automatic and
Adaptive event
implementation

ACEIS

requiresrequires requires

supports supports supports supports

resolves provides provides provides
provides provides

has limitation has limitation has limitation has limitation has limitation

provides

has limitation

Figure 4.1: Functional design of the Automatic Complex Event Implementation Sys-
tem

4.1.1 Event Service Annotation and Event Pattern Definition

In ACEIS, a Complex Event Service Ontology (CESO) is developed as an extension of

OWL-S [117] to annotate Complex Event Services (CESs). CESO extends the service

profile in OWL-S and defines an event profile to specify the features of the CESs. Event

profiles in CESO contains recursively defined event patterns to specify the functional

aspects of the CES and reuses the concept of service parameters in OWL-S to define the

non-functional aspects. Moreover, CESO provides concepts to define event service re-

quests with requested event patterns, non-functional constraints/preferences. This way

it allows customising the descriptions of the event services/requests for each individual

service provider/consumer and facilitates user-centric SES modelling.

The syntax and semantics of the event patterns defined within CESO are provided as

a revision of Business Event Modelling Notations (BEMN [3]), called BEMN+. The

formal semantics of event patterns are the basis for realising automatic SES planning

and implementation. And by adopting the graphical and process-model-compatible no-

tations in BEMN, the event pattern definition can be provided in a user-friendly way

for business/non-technical users.

4.1.2 Pattern-based Event Service Discovery and Composition

Discovering and composing event services based on event patterns addresses the func-

tional aspect in automatic SES planning. In order to compare the semantics of event

patterns, means to derive canonical forms of event patterns are provided. Then, the

Core - Overview of ACEIS 58

problem of semantic equivalence or subsumption relation between event patterns can be

transformed into graph/sub-graph isomorphism problems, which is NP-hard [166]. To

improve the efficiency of the composition algorithms, an event pattern reusability index

is developed based on comparing event pattern semantics, i.e., a CES is reusable to

another if the pattern of the latter subsumes the former. Leveraging the index and the

heuristic of minimising the network traffic demand of composition plans, the automatic

SES planning is realised to allow on-demand composition of event services.

4.1.3 Constraint-aware Event Service Discovery and Composition

In order to fully support customised SES planning, the pattern-based event service com-

position algorithms are extended to support Quality-of-Service (QoS) optimisations. In

particular, a QoS model is designed to capture different QoS parameters to be consid-

ered in event service compositions. A QoS aggregation schema is designed to estimate

the QoS performance of a composition plan based on the QoS descriptions of the event

services involved. A multi-dimensional QoS utility function is created to compare and

rank candidate composition plans based on their estimated QoS performance and user-

defined QoS constraints/preferences. Finally, a Genetic Algorithm (GA) is designed to

efficiently derive near-optimal composition plans, using the QoS utility as the fitness

function.

4.1.4 Automatic Event Service Implementation and Adaptation

Existing RDF Stream Processing (RSP) engines (e.g., CQELS [37] and CSPARQL [38])

provide the capability of reasoning over semantically annotated event streams. The

query patterns supported by the RSP engines is a subset of the patterns supported in the

CESO and BEMN+. Query transformation algorithms are developed to transform event

patterns in the composition plans into executable RSP queries, so that the automatic

SES implantation over different RSP platforms is realised. To ensure the correctness of

the query transformation, the semantics of the RSP query operators and event operators

in BEMN+ are aligned.

Leveraging the capability of automatic SES implementation, an adaptive SES imple-

mentation can be realised. In particular, a monitoring component in ACEIS received

QoS updates for relevant composition plans and determines if a QoS update will cause

the violation of user-defined QoS constraints. If so, an adaptation strategy is applied

to recompose fully or partially of the composition plan, in order to recover the QoS

performance degrade of the composition plan.

Core - Overview of ACEIS 59

4.2 ACEIS Architecture

Figure 4.2 illustrates the architecture view of ACEIS. The architecture consists of four

main components: Knowledge Base, Application Interface, Semantic Annotation and

ACEIS Core component. These components implement the key functionalities described

in Section 4.1 as well as additional functionalities, e.g., subscription management, RSP

result handling, data storage and streaming etc. The components are colour-coded to

indicate the chapters that describe the details of the components.

 ACEIS Core

Resource
Management Resource Discovery

Event Service Composer

Application
Interface

Semantic Annotation

Knowledge Base

Data Mgmt,
Indexing,
Caching

Stream
Description

Historical
Events

User Input

Event Request

Data
Federation

Composition Plan

Query
Transformer

Query Engine

Query

Results

Data Streams

Sc
he

du
le

r

QoS
Updates

In
fo

rm
at

io
n

M
od

el

(O
nt

ol
og

ie
s)

Adaptation
Manager

Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Subscription Manager

Social Media Sensor Observations Stream Quality Updates

Figure 4.2: ACEIS architecture

4.2.1 Knowledge Base

The knowledge base stores the semantic annotations for the static description of event

services as well as the indexing structure for accelerating the discovery and composition

of event services. The knowledge base can also store historical events and data items for

analytical purposes. An information model that consists of an event service ontology,

a sensor ontology and domain ontologies are used as guidelines for annotating the data

in the knowledge base. In the current implementation the Semantic Sensor Network

Core - Overview of ACEIS 60

(SSN) ontology1 is used (together with domain ontologies) for describing sensors and

sensor observations. The domain ontology is application-specific and is expected to be

provided by domain experts. The event service ontology is described in Chapter 5.

4.2.2 Application Interface

The application interface interacts with end users as well as ACEIS core modules. It

allows users to provide inputs required by the application and presents the results to

the user in an intuitive way. It also augments the users’ queries, requirements and

preferences with some additional, implicit constraints and preferences determined by

the application domain or user profile. For example, in a travel navigation scenario, a

user may specify only the start and target location on the map, with a constraint on

the travel time t, because she needs to get there on time. The application may add

additional constraints on the IoT data streams used to calculate the travel time. For

example, the frequency of the data streams should be more than 1/t, otherwise the user

may not receive any updates on the traffic condition during her trip and the detour

suggestions for traffic jams will never happen.

These augmented user inputs are transformed into a semantically annotated complex

event service request (event request for short). The event request is consumed by ACEIS

core components to discover and integrate urban streams with regard to the functional

and non-functional constraints specified within the event request. The application in-

terfaces of the prototype implementations for the motivation scenarios are presented in

Chapter 9.

4.2.3 Semantic Annotation

The semantic annotation component receives IoT/data streams (e.g., ODAA real-time

traffic sensors data2) as well as static data stores (e.g., ODAA traffic sensors metadata3)

as inputs. It annotates syntactical information with semantic terms defined in ontologies.

The outputs of semantic annotation include semantically annotated dynamic information

(e.g., sensor observations, events) as well as static event service descriptions. With

semantic annotations of both static resource and dynamic data, ACEIS gains additional

data interoperability both at design time for event service discovery/composition and at

run-time for semantic event detection.
1SSN-XG: http://www.w3.org/2005/Incubator/ssn/, last accessed: Aug., 2015.
2Realtime Traffic Data in Aarhus: http://ckan.projects.cavi.dk/dataset/

bliptrack-alpha/resource/d7e6c54f-dc2a-4fae-9f2a-b036c804837d, last accessed:
Aug., 2015.

3Traffic Sensor Metadata: http://ckan.projects.cavi.dk/dataset/bliptrack-alpha/
resource/e132d528-a8a2-4e49-b828-f8f0bb687716, last accessed: Aug., 2015.

http://www.w3.org/2005/Incubator/ssn/
http://ckan.projects.cavi.dk/dataset/bliptrack-alpha/resource/d7e6c54f-dc2a-4fae-9f2a-b036c804837d
http://ckan.projects.cavi.dk/dataset/bliptrack-alpha/resource/d7e6c54f-dc2a-4fae-9f2a-b036c804837d
http://ckan.projects.cavi.dk/dataset/bliptrack-alpha/resource/e132d528-a8a2-4e49-b828-f8f0bb687716
http://ckan.projects.cavi.dk/dataset/bliptrack-alpha/resource/e132d528-a8a2-4e49-b828-f8f0bb687716

Core - Overview of ACEIS 61

4.2.4 ACEIS Core

The ACEIS core module serves as a middleware between low-level IoT data streams and

upper-level Smart City applications. ACEIS core is capable of discovering, composing,

deploying and adapting event services. The ACEIS core consists of three major compo-

nents: resource management, data federation and adaptation manager. In the following,

their functionalities and interactions are introduced.

4.2.4.1 Resource Management

The resource management component is responsible for discovering and composing event

services based on static service descriptions. It receives event requests generated by the

application interface containing users’ functional and non-functional requirements and

preferences. Then, it creates composition plans for event requests, specifying which

event services are needed to address the requirements in event requests and how they

should be composed.

The resource management component contains two sub-components: a resource dis-

covery component and an event service composer. The resource discovery component

uses conventional semantic service discovery techniques to retrieve IoT services deliver-

ing primitive events. It deals with the primitive event requests specified within event

requests. The event service composer creates service composition plans to detect the

complex events specified by event requests based on event patterns. Chapter 6 provides

methods for discovering and composing event services based on the functional require-

ments, while chapter 7 focuses on discovering and composing event services based on

non-functional requirements.

4.2.4.2 Data Federation

The data federation component is responsible for implementing the composition plan

over event service network and processing complex event logics over federated data

streams. The composition plan is first used by the subscription manager which will

make subscriptions to the event services involved in the composition plan. Later, the

query transformer transforms the semantically annotated composition plan into a set of

stream reasoning queries to be executed on an RDF stream processing engine. Different

query transformation algorithms can be implemented in the query transformer to cope

with different query engines. The soundness of query transformation and two different

query transformation algorithms are discussed in Chapter 8.

Core - Overview of ACEIS 62

Leveraging the service-oriented nature of ACEIS, the query results streams can also be

wrapped as event services. Thus the event service compositions can be deployed over

distributed query engine instances to improve the performance of the query processing.

To balance the load between different engine instances, a scheduler is implemented to

determine workload distribution at run-time. Chapter 9 presents the different load

balancing strategies and the performance evaluations in prototype implementations.

4.2.4.3 Adaptation Manager

The adaptation manager monitors the QoS updates for the event services and determines

if the QoS properties of a deployed event service composition have violated the non-

functional constraints specified in the event request. When a QoS constraint violation is

detected, the adaptation manager makes an attempt to automatically find replacements

for parts or whole of the deployed composition plan in order to keep the QoS performance

at an acceptable level. If no possible adaptation is available, a notification is sent to the

user interface, which informs the user that the QoS constraint has been violated and

the attempt of automatic recovery has failed. Different adaptation strategies and their

performance evaluation are discussed in Chapter 8.

4.3 ACEIS Deployment in Smart City Framework

In order to provide general guidelines and structures for developing Information and

Communication Technology (ICT) systems that realise Smart Cities, a Smart City

Framework (SCF) is proposed in [2]. The high-level design of the architecture of SCF is

shown in Figure 4.3, in which the components in red are relevant to ACEIS. The architec-

ture in Figure 4.3 combines groups of functionalities with programmable/informational

interfaces. The SCF consists of five main function groups. The Large-Scale Data Anal-

ysis functionality integrates a large amount of heterogeneous data and event sources

producing real-time streams. Through data virtualisation, federation and aggregation,

coarse-grained and semantically-enriched IoT streams are derived from fine-grained in-

formation collected from IoT devices, social media streams etc., and are utilised by the

Real-Time Intelligence functionality, where the ability to adapt to changing situations

based on the real-time information is provided and a user-centric and context-aware

decision making is realised. The Real-Time Intelligence functionality also provides APIs

for the Smart City Applications. The Large Scale Analysis and Real-time Intelligence

functionalities are supported by A-priori Knowledge in the form of a knowledge base

Core - Overview of ACEIS 63

in order to carry out the reasoning capability. They are also empowered by the Reli-

able Information Processing functionality, so that the reliability of the whole system is

ensured.

Semantic IoT Stream

A
Pr

io
ri

Kn
ow

le
dg

e
(A

CE
IS

 -
In

fo
rm

at
io

n
M

od
el

: C
ES

O
 &

 B
EM

N+
)

Re
lia

bl
e

In
fo

rm
at

io
n

Pr
oc

es
sin

g

Sm
ar

t C
on

tro
l

of
 S

em
an

tic
s

Re
lia

bi
lit

y
Co

nt
ro

l

Large-scale Data Analysis

Data Aggregation

Data Federation
(ACEIS - Resource Management

& Data Federation)

Data Virturalization

IoT Social
Media

Smart City Application

Real-time Intelligence

User-Centric Decision Support

Smart Adaptation
(ACEIS - Adaptation Manager)

API

Data Streams

Configuration

Figure 4.3: Smart City Framework: high-level architecture (from [2])

ACEIS is mainly used as an implementation for the Data Federation module in the

Large-scale Data Analysis functionality in SCF. The event service discovery and com-

position mechanisms in Chapter 6 and 7 are utilised to create and optimise data/event

stream federations. The query transformation mechanisms in Chapter 8 implements

the data/event stream federations as executable RDF stream queries. The information

model used in ACEIS (Chapter 5) also allows semantically annotate stream meta-data

in the Data Virtualisation. Moreover, the technical adaptation mechanism in Chap-

ter 8 realises partially the Smart Adaptation functionality designed in the Real-time

Intelligence.

Core - Overview of ACEIS 64

4.4 Summary and Discussion

In this chapter, an overview of the Automatic Complex Event Implementation System

(ACEIS) is presented. The functional design of ACEIS is elaborated and its relevance to

the requirements of SES modelling, planning and adaptive implementation is discussed.

Then, the architecture of ACEIS is illustrated and described in details. The functional-

ities of ACEIS modules and their interactions are presented. Finally, the bigger picture

of a Smart City Framework (SCF) is introduced as general guidelines and structures

for providing Smart City applications. The roles and responsibilities of ACEIS in the

SCF are explained. In the following chapters (Chapter 5 to Chapter 8), the design,

implementation and evaluations of the key components of ACEIS are elaborated.

Chapter 5

Event Service Ontology and

Event Pattern Definition*

An event service needs to be described and registered to a service repository in order to

be discovered and reused. The functionality of a Complex Event Service (CES) is deter-

mined by the semantics of the complex events delivered by the service. The event seman-

tics are specified as event patterns, and defined by users. It is important to ensure that

the event service and event pattern description is both human-understandable, so that

users can design them effortlessly and collaboratively, as well as machine-processable, so

that activities in the event service life cycle can be handled in an automatic manner.

In this chapter, the information model used in ACEIS is described, as shown in Figure

5.1. The information model consists of an event service ontology for semantically an-

notating (complex) event service descriptions, and a graphical language with execution

semantics for defining event patterns. The event service ontology provides guidelines

to the Semantic Annotation component in ACEIS for creating annotated documents,

which are processable by the ACEIS Core. The execution semantics of the event pat-

terns specified in the pattern definition language provide guidelines for the pattern-based

event service composition and query transformation algorithms in the ACEIS Core.

The event service ontology is a service model for event services. According to [169, 170],

a service model should describe the mechanisms for accessing and interacting with the

service interfaces, so that automatic service invocations are possible. Meanwhile, the

service model should capture the functional and non-functional aspects of the service

capability, so that a service consumer can choose the services based on specific require-

ments [171–173], i.e., different users may be interested in different events, or same events

with different performance or quality expectations. In [174, 175] the authors explain the

*Part of the content in this chapter is published in [167, 168].

65

Core - Event Service Ontology and Event Pattern Definition 66

 ACEIS Core

Resource
Management

Application
Interface

Semantic Annotation

Knowledge Base

Data Mgmt,
Indexing,
Caching

Stream
Description

Historical
Events

User Input

Event Request

Data
Federation

Resource Discovery

Event Service Composer

Composition Plan

Subscription
Manager

Query Transformer

Query Engine

Query

Results

Sc
he

du
le

r

QoS
Updates

In
fo

rm
at

io
n

M
od

el

(O
nt

ol
og

ie
s)

Adaptation
Manager

Data Streams

Social Media Sensor Observations Stream Quality Updates

Figure 5.1: The information model in ACEIS

need for describing event patterns within business processes, to incorporate complex

events in business processes and facilitate event-driven Business Process Management

(ed-BPM). In [3] the authors propose to realise a seamless integration of event patterns

into graphical process modelling languages with graphical event pattern representations.

In [62], the authors discuss the necessity of defining the formal semantics of complex

event with a small but expressive set of event operators. In summary, the event service

ontology and event patterns definition language has the following requirements.

1. The event service ontology should provide the access mechanisms for automatic

service invocations.

2. The event service ontology should provide the service capability descriptions for

automatic and customised service discovery and composition.

3. The event pattern language should be process-model-compatible so that business

users can define patterns with minimal learning overhead.

4. The event pattern language should be equipped with execution semantics that

covers a wide range of scenarios where CEP is used.

Core - Event Service Ontology and Event Pattern Definition 67

This chapter presents the Complex Event Service Ontology1 (CESO) that fulfils the

first two requirements, as well as the extended Business Event Modelling Notations [3]

(BEMN+) that addresses the third and fourth requirements. The Grounding concept in

CESO provides the access mechanism for event services, and the Event Profile in CESO

is used to describe the functional and non-functional aspects of event service capabilities.

BEMN+ adopts the graphical notations of BEMN [3] and are made compatible with the

Business Process Model and Notation2 (BPMN). The execution semantics of BEMN+

is elaborated and compared with existing RDF Stream Processing (RSP) languages and

the original BEMN.

The remainder of this chapter is organised as follows. Section 5.1 introduces the CESO

and elaborates the concepts defined in CESO. Section 5.2 introduces the BEMN+ used

as the language for defining the event patterns specified in CESO. The visual design,

syntax, constraints and formal semantics of BEMN+ are detailed. Section 5.3 discuss

the related work on event ontology and graphical event pattern definitions before Section

5.4 summarises.

5.1 Complex Event Service Ontology

In order to facilitate on-demand, cross-platform and semantic discovery and federation of

event streams, the Service Oriented paradigm is followed and event streams are consid-

ered as services transmitting events. Atomic events like sensor observations delivered in

event streams are considered as primitive events without pattern descriptions, and query

results over federated streams as complex events with patterns describing the temporal

and logical correlations between the set of events constituting the complex events. Based

on whether event patterns are described in event service descriptions, event services can

be categorised as Primitive Event Service (PES) and Complex Event Service (CES).

Current approaches have discussed extensively on PES modelling using traditional ser-

vice description frameworks, e.g., sensor services discussed in [176–181]. However, CES

description, discovery and composition remain largely unexplored. CESO is designed to

address the requirements in event service discovery and composition. CESO caters for

both PES (e.g., sensor data streams) and CES (e.g., federated sensor data streams). A

screenshot of the web page hosting CESO is shown in Figure 5.2.

CESO is an extension of OWL-S [117], because of its extensibility for service profiles

and its native support for QoS parameters. However, we do not exclude the possibility

1CES Ontology: http://citypulse.insight-centre.org/ontology/ces/, last accessed:
May, 2015.

2BPMN: http://www.bpmn.org/, last accessed: May, 2015.

http://citypulse.insight-centre.org/ontology/ces/
http://www.bpmn.org/

Core - Event Service Ontology and Event Pattern Definition 68

Figure 5.2: Screenshot of the CESO web page

of extending other, more “light-weighted” (and perhaps currently more popular) service

ontologies, e.g., SA-WSDL3 and SA-REST4. However, because they are more light-

weighted and only provides annotations on taxonomical information (e.g., types for

interfaces, operations, messages etc.), the concept of Service Capability [182] is missing.

Therefore, using them to capture the capability of CESs will require defining more terms.

CESO imports concepts from Semantic Sensor Network (SSN) ontology5 to describe

sensor capabilities for PESs when those PESs are provided by sensors. CESO is designed

to be used in combination with the Stream Annotation Ontology (SAO)6 and the Stream

Quality Ontology (SQO)7. The data in those streams are annotated with the SAO and

SSN. The QoS/QoI information about the streams are annotated with the SQO. The

relations between CESO, SAO and SQO is depicted in Figure 5.3.

We validated our ontology together with all reused ontologies using Jena 3.08 (RDFS

reasoner) and Pellet 3.09 (OWL2 DL reasoner). The validity reports showed no incon-

sistencies. We refer readers to [183] for a study on evaluating ontologies. However, a

detailed evaluation of CESO is considered out of the scope. In the following the basic

concepts in CES are introduced.

3SA-WSDL: https://www.w3.org/2002/ws/sawsdl/, last accessed: June, 2016.
4SA-REST: https://www.w3.org/Submission/SA-REST/, last accessed: June, 2016.
5Semantic Sensor Network ontology: http://www.w3.org/2005/Incubator/ssn/ssnx/ssn,

last accessed: May, 2015.
6Stream Annotation Ontology: http://iot.ee.surrey.ac.uk/citypulse/ontologies/

sao/sao, last accessed: Mar., 2015.
7Stream Quality Ontology: https://mobcom.ecs.hs-osnabrueck.de/cp_quality/, last ac-

cessed: Mar., 2015.
8Jena: https://jena.apache.org/index.html, last accessed June, 2016.
9Pellet reasoner: https://github.com/Complexible/pellet, last accessed: June, 2016.

https://www.w3.org/2002/ws/sawsdl/
https://www.w3.org/Submission/SA-REST/
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao
http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao
https://mobcom.ecs.hs-osnabrueck.de/cp_quality/
https://jena.apache.org/index.html
https://github.com/Complexible/pellet

Core - Event Service Ontology and Event Pattern Definition 69

Figure 5.3: Relations between ontologies used in ACEIS

5.1.1 Overview

An EventService is described with a Grounding and an EventProfile. The con-

cept of Grounding in OWL-S informs an event consumer on how to access the event

service. It provides the technical details on the service protocols and message formats

etc, so that a machine or program can use this information and make automatic service

subscription/invocation. An EventProfile is comparable to the ServiceProfile

in OWL-S, which describes the semantics of the events delivered by the service as well

as the properties of the service itself, so that the capabilities of event services are identi-

fiable and reusable by service consumers. Figure 5.4 illustrates the overview of the CES

ontology.

EventService

EventProfile

owls:Grounding

Pattern

PrimitiveEvent
Service

owls:Service owls:supports

ComplexEven
tService

EventRequest

owls:presents

hasPattern

hasSubPattern

rdf:_x (contains) Legend:

Class
Object property

subClassOf

owls:ServiceProfile

owls:presents

Namespaces:
default: <http://www.insight-centre.org/ces#>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
owls: <http://www.daml.org/services/owl-s/1.2/Service.owl#>

Figure 5.4: Complex Event Service Ontology: overview

Core - Event Service Ontology and Event Pattern Definition 70

5.1.2 Event Profile

An EventProfile describes a type of event with a Pattern and Non-Functional

Properties (NFP). A Pattern describes the functional aspects of event services, i.e.,

the semantics of the complex events using a set of event operators. An event pattern

may have sub-patterns or other event services as member event services. An event profile

without a Pattern describes an simple event service, otherwise it describes a complex

event service. NFP refers to the QoI and/or QoS metrics, e.g., accuracy, latency, energy

consumption etc., which are modelled as sub-classes of ServiceParameter in OWL-S.

Figure 5.5 shows the ontology for describing event profiles.

EventProfile

Pattern

EventService

owls:presents

hasPattern

hasSubPattern
Legend:

Class
Object property

subClassOf

owls:ServiceParameter

hasNFP

q:Quality EventPayload

hasEventPayload

Namespaces:
default: <http://www.insight-centre.org/ces#>
owls: <http://www.daml.org/services/owl-s/1.2/Service.owl#>
q: <http://purl.oclc.org/NET/UASO/qoi>

owls:Output

Figure 5.5: Complex Event Service Ontology: event profile

5.1.3 Event Pattern

The temporal relationships captured by an EventPattern has three basic types: se-

quence, parallel conjunction and parallel alternation/disjunction. If two events (or event

patterns) are correlated by a sequence pattern, one should occur before the other, in

parallel conjunction, both should occur and in parallel alternation, at least one should

occur. Hence three types of patterns are defined respectively: Sequence, And and

Or. A special case of Sequence is that the sequence repeats itself for more than

once, in this case the sequence can be modelled by a Repetition pattern, with a

cardinality indicating the number of repetition. A repetition can be an overlapping

or non-overlapping repetition, specified by the isOverlapping property. Besides the

Core - Event Service Ontology and Event Pattern Definition 71

temporal relationships, Filters and Selections can be used to specify attribute-

based patterns and a sliding Window can be used to specify the window applied over

event streams. Aggregation is a subclass of Filter which can be used to specify ag-

gregated event patterns. A transitive hasSubPattern property is defined to describe

the provenance relation between patterns and their sub-patterns and member event ser-

vices. Also, we insert the rule in Listing 5.1 into the ontology, to allow reasoners to entail

sub-pattern relationships for analysing the causal relations between events delivered in

ESN. Notice that rdfs:member is the super-property for the container membership

property (i.e., rdf: 1, rdf: 2 ...) in RDF Schema version 1.1. Figure 5.6 reveals

more details on the event pattern model. Listing 5.2 gives the example of a semantically

annotated event pattern in Figure 3.9 using CESO (in Turtle10 format, prefix omitted).

[Rule1: (?x rdfs:member ?y) -> (?x ces:hasSubPattern ?y)]

Listing 5.1: Entail sub-patterns via RDF containers.

EventProfile

Pattern

ComplexEvent
Service

owls:presents

hasPattern

Namespaces:
default: <http://www.insight-centre.org/ces#>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
owls: <http://www.daml.org/services/owl-s/1.2/Service.owl#>

Legend:

Object property
subClassOf

Repetition

Sequence And

Or

rdf:Bagrdf:Seq

EventService

rdf:_x (contains)

FilterAggregation

SlidingWindow
hasFilter

Class

Selection

hasWindow

EventService EventPayload Expression

onEvent onPayload hasExpression

hasSubPattern

xsd:boolean

isOverlapping

Data property

AggregationF
unction

hasFunc Instance
sum

count

avg

min max

Instantiation

Figure 5.6: Complex Event Service Ontology: event pattern

By comparing the above sub-classes under EventPattern to the pattern types iden-

tified in Table 3.2, it is evident that the pattern types modelled in CESO covers all the

basic types listed in the Table but not all pattern types in each sub-category, e.g., logi-

cal operators including exclusive-disjunction and absence are not supported, neither are

the spatial and spatiotemporal patterns, or aggregations with attribute-based patterns.

Indeed, the focus of this thesis is not providing and developing yet another a compre-

hensive and highly expressive event pattern language, instead this work aims to prove

10Turtle - Terse RDF Triple Language: http://www.w3.org/TeamSubmission/turtle/, last
accessed: May, 2015.

http://www.w3.org/TeamSubmission/turtle/

Core - Event Service Ontology and Event Pattern Definition 72

:IncreasedReplenishmentProfile a ces:EventProfile;
ces:hasPattern :Pattern_1.

:Pattern_1 a ces:Or, rdf:Bag;
rdf:_1 :IncreasePurchaseOrderService;
rdf:_2 [a ces:Repetition,rdf:Seq;

rdf:_1 :OutOfStock_1;
ces:hasCardinality "10"ˆˆxsd:integer];

hasWindow [a owl-time:Interval;
owl-time:hasDurationDescription

[owl-time:day "7"ˆˆxsd:gDay]].

Listing 5.2: CESO annotations for the event pattern in Figure 3.9

that different types of patterns used in existing event pattern languages can be captured

in event service descriptions and used in event service discovery and compositions. A

more expressive set of event pattern types can be studied in future research.

5.1.4 Event Request

Using CESO, a user can also perform some basic discovery function using SPARQL.

Listing 5.3 shows a sample SPARQL query that identifies sensor services by query-

ing the properties they measure. The query results shall contain the service observ-

ing ces:AverageSpeed, if the ces:AverageSpeed is annotated as a sub-class of

ces:Speed. Besides this simple SPARQL-based discovery, CESO provides the concept

of EventRequest to model more complicated discovery and composition requests.

prefix ces: <http://www.insight−centre.org/ces#>
prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn>

SELECT ?sensorService
WHERE { ?sensorService ssn:observes ces:Speed. }

Listing 5.3: Simple discovery via SPARQL

An EventRequest captures the users’ requirements on the event services. It can be

seen as an incomplete EventService description without concrete service bindings

for the member event services. Constraints are used to declare users’ requirements

on the NFPs in EventRequests with an Expression. Preferences are used

to specify a weight between 0 to 1 over different quality metrics representing the users’

preferences on QoS metrics: higher weight indicates the user cares more on the particular

QoS metric. Together the Constraints, Preferences in EventRequest and the

NFPs in EventProfile description are used to address the Customised Implementation

requirement in Section 1.2.1 in the Service Description and Request Definition phases.

Figure 5.7 shows the ontology for describing event requests.

Core - Event Service Ontology and Event Pattern Definition 73

Event Profile

Pattern

EventRequest owls:presents

hasPattern

hasSubPattern

Legend:

Class
Object property

subClassOf

Constraint Preference

hasPreference

owls-sp:ServiceParameter

hasConstraint

onParameter

QosWeight
Preference

Expression

hasExpression

hasWeight

xsd:double
Data property

Namespaces:
default: <http://www.insight-centre.org/ces#>
owls: <http://www.daml.org/services/owl-s/1.2/Service.owl#>

Figure 5.7: Complex Event Service Ontology: event request

5.1.5 Traceability between Event Services

Leveraging the sub-pattern property in CES ontology, one can query the provenance

relations (within the same EventProfile) specified in composition plans (as well as

other event patterns) using the query specified in Listing 5.4, with OWL reasoners

(augmented with the rule in Listing 5.1). In order to track provenance relations among

different event profiles, additional rules in Listing 5.5 must be used.

prefix ces: <http://www.insight−centre.org/ces#>
prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn>

SELECT ?subpattern
WHERE { :SampleService owls:presents ?sampleProfile.

?sampleProfile ces:hasPattern ?pattern.
?pattern ces:hasSubPattern ?subPattern. }

Listing 5.4: Tracking pattern provenance via SPARQL

[Rule2: (?ep1 ces:hasSubPattern ?s)
(?s owls:presents ?p)
(?p ces:hasPattern ?ep2)
-> (?ep1 ces:hasSubPattern ?ep2)]

Listing 5.5: Entail sub-patterns among different event services.

Core - Event Service Ontology and Event Pattern Definition 74

5.2 Extended Business Event Modeling Notations

In order to facilitate effortless and precise modelling of event patterns described in

the CES description, an extension of the graphical event modelling language called

Business Event Modelling Notations (BEMN) [3] is made. In this section, BEMN is

briefly introduced first. Then, the advantages and disadvantages of the BEMN are

discussed before the extended version provided in this thesis is presented, which is called

BEMN+. The formal semantics of the event patterns in BEMN+ are also elaborated.

5.2.1 Overview of Business Event Modeling Notation

BEMN can be used to define complex/business events from their member events using

event composition models. An event composition model represents the rules and con-

ditions to be evaluated for deriving the complex event. Each event composition model

consists of an event pattern description, specifying combinations of events that are cap-

tured in the complex event, as well as a set of output event declarations indicating the

complex/business events to be produced as results. Figure 5.8 shows the constructs of

BEMN.

input event
declaration

output event
declaration

precedence
relationship

inhibition
relationship

OR operator AND operator

grouping filters

OR AND

repetition

3..5

Figure 1. BEMN constructs

Check
purchased

items in stock

Create
order

Confirm
order

request

Send shipment
request to

logistic partner

Reject
order

request

Start reple-
nishment

Send pickup
information to

carrier

Cancel
logistic
request

Order
can be

fulfilled?

Order
request

Logistic
request

confirmation

Carrier
shipment
confirmation

Order cancel-
lation request

Oder change
request

Confirmation from logistic
partner and carrier

yes

no

AND

Figure 4. BPMN diagram enhanced with event conjunction expressed in BEMN

partner and a carrier. Based on the current purchased

items in stock the order can be fulfilled or not. If not
the order request is simply rejected and replenishment

is triggered. If the order can be fulfilled the request is

confirmed and a shipment request is sent to a logistic
partner. Now three events can happen: 1) An order
change request comes in, leading to the cancellation
of the logistic request and a re-evaluation whether the
order can be fulfilled. 2) An order cancellation request

arrives, also leading to the cancellation of the logistic
request. 3) Both confirmations from the logistic partner
and the actual carrier which was selected by the logistic
partner are available. Only in this third case the pickup
information is sent to the carrier.

In this example we see the occurrence of event con-
junction (cf. [5]). Two elementary events form a com-
posite event which in turn is consumed in the business

process. Having the possibility to specify such event
patterns as integral parts of process models dramatically

reduces the complexity of such models.
When modeling the same scenario using classical

BPMN, events could only be consumed one at a time.
In this particular example we see that the composite
event declaration direct follows an event-based XOR-
gateway. This gateway indicates a racing condition
between the three event declarations.This makes the
motivation for atomicity of composite events obvious.
When expanding the same semantics into a pure BPMN
diagram, the number of elements in the diagram would
be significantly higher.

5 Formal Semantics

This section is going to define an abstract syntax for
BEMN models and give these models a formal execution
semantics. As part of that, core event composition

models will be introduced as a special class of BEMN
models. The idea behind is that the semantics of such

4

Figure 5.8: Business Event Modelling Notation constructs (from [3])

An event pattern description describes the combination of events using input event dec-

larations, logical operators, temporal relations, groupings and filters. Input event dec-

larations indicate the member events of the event composition model. AND operators

and OR operators logically relate parts of the event pattern: the member events oc-

curred must match the event patterns specified in all or at least 1 branch connected to

an AND or OR operator, respectively. Input event declarations and logical operators

are called objects in event pattern descriptions. Precedence and inhibition relationships

specify temporal relations between two objects. Precedence relationships indicate that

the source objects must have occurred before the target objects. Inhibition relationships

indicate that the source objects must not have occurred before the target objects.

Core - Event Service Ontology and Event Pattern Definition 75

Groupings are sets of objects with additional constraints. Filters attached to groupings

specify constraints for the input events declarations contained in the grouping. There

are different types of filters: time-related, event-data-related, environment-data-related

and other filters. Each filter comes with an expression (in natural language) describing

the constraint. Filters can also be directly attached to individual event declarations,

which is an abbreviation for a grouping only containing one event declaration. Further-

more, groupings can be typed as repetitions. A repetition grouping indicates that the

event pattern contained in the grouping must occur multiple times. Finally, input event

declarations can be attached to groups (“exception event declarations”). In this case, a

corresponding event serves as an inhibitor for the groupings.

A complete description on the syntax, constraints and formal execution semantics can

be found in [3]. As part of the execution semantics, core event composition models

are introduced as a special class of BEMN models. The idea is that the semantics of

such a model can be directly given and that core models represent the unit of execution:

Matching of an event rule represented in a core model will result in a single transactional

step, while matching of non-core models might involve several steps. Non-core models

therefore represent a set of core models. An example of an event composition model in

BEMN is shown in Figure 5.9.

Start event Input event Output event

AND

AND operator

OR

OR operator

Precedence

Inhibition

Grouping

Aggregated grouping

OR

Input event
with payload

Output event
with payload

Time window
 filter

Data filter

Out of stock

10

Same product Within 7 days

Increase amount

Increase purchase
 order for product

OR
Out of stock

10

Same product Within 7 days

Increase order

Same product

Increase purchase
 order for product

Start End

Error Occur

10

Within 1 day

Maintaince
Required

ORS

Instace-based
window

Added Removed

Figure 5.9: Example of event pattern in Business Event Modelling Notations (same
semantics as the example in Figure 3.9).

5.2.2 Advantages and Limitations of BEMN

BEMN intend to provide a graphical representation for event compositions beyond con-

ventional textual language, e.g.: Rapide [77]. BEMN diagram can be integrated into

BPMN process models seamlessly to facilitate complex event description in business

processes. BEMN is able to describe the business event patterns identified in [175] and

it is executable because the formal semantics are defined. However, there are some

limitations in BEMN, which are elaborated on in the following sections.

Core - Event Service Ontology and Event Pattern Definition 76

5.2.2.1 Flexibility and Query Efficiency

BEMN language did not take into account how to align the execution semantics of the

event composition models with stream queries, so that the composition models (and the

underlying event patterns) can be executed by existing stream query engines. Instead,

event composition models in BEMN are executed by checking 3 conditions defined by

the authors: match condition ensuring the temporally ordered occurrences of required

event instances, inhibition condition ensuring the absence of inhibitor event instances

and filter condition ensuring all filters evaluates to true.

By checking these conditions, BEMN can only support the direct execution of the re-

strained core composition models. General (non-core) models are translated into core

models before execution, which introduces overhead. Moreover, no instructions on how

these conditions can be implemented by or adapted to existing CEP/Stream processing

engines (potentially equipped with more advanced query optimisation techniques) are

provided, which limits the flexibility and efficiency of the approach. In BEMN+, event

semantics are designed to be aligned with query semantics in stream reasoning engines,

so that query transformation algorithms can be developed and the event patterns spec-

ified in BEMN+ can be evaluated by different stream processing engines. The details of

the query transformation are elaborated in Section 8.1.

5.2.2.2 Granularity and Semantic Interoperability of Information

BEMN does not specify how an event declaration is structured, e.g., what data does an

event contain and how such data are used in filters. This part is left to the programmers

who implement the event rules represented by the composition models. In this way, the

technical details are hidden from the users targeted by the graphical language (business

users), but it will require more effort to implement composition models. To this end,

BEMN+ is extended to allow more specific definition on event declarations and filters.

Also, it is unrealistic for the users to create executable event composition models without

knowing what the member events really mean. BEMN+ uses semantic technology to help

business users discover the primitive events they need (based on sensor capabilities), as

well as creating filters upon the event data.

5.2.2.3 Event Instance Selection Policy

BEMN specified the event pattern types and the consumption policies it supports. How-

ever, it is not clear what is the selection policy for the event instances triggering/firing

Core - Event Service Ontology and Event Pattern Definition 77

an output event instance. More details on the selection policy is discussed in Section

5.2.4.1 and Section 5.2.4.2.

5.2.2.4 Aggregation

Aggregation patterns are important in CEP but not fully supported in BEMN, i.e., only

aggregation with temporal pattern (repetition) is supported. BEMN+ also supports

aggregation with attribute-based patterns.

5.2.3 BEMN+: the Revised Constructs, Syntax and Constraints

In order to overcome the limitations of the original BEMN language described in the

previous section, the language is revised. In the following sections, the revised language

constructs, abstract syntax and language constraints are introduced.

5.2.3.1 Language Constructs

BEMN+ reuses most of the graphical notations introduced in BEMN, with additional

notations for event declaration with payload, aggregated grouping and instance-based

window. Changes on the language constructs in BEMN+ is are depicted in Figure 5.10.

Start event Input event Output event

AND

AND operator

OR

OR operator

Precedence

Inhibition

Grouping

Aggregated grouping

OR

Input event
with payload

Output event
with payload

Time window
 filter

Data filter

Out of stock

10

Same product Within 7 days

Increase amount

Increase purchase
 order for product

OR
Out of stock

10

Same product Within 7 days

Increase order

Same product

Increase purchase
 order for product

Start End

Error Occur

10

Within 1 day

Maintaince
Required

ORS

Instace-based
window

Added Removed

Figure 5.10: Extended Business Event Modelling Notation constructs: changes from
BEMN

• Event declarations with payloads indicate that one or more event payloads

(messages) are needed in the pattern evaluation. When event declarations with

payloads are used, users are asked to provide a reference (e.g., URI in a domain

Core - Event Service Ontology and Event Pattern Definition 78

ontology) to the payload type (e.g., a sensor observation property type in SSN)

and domain of the payload (e.g., a feature-of-interest in SSN).

• Aggregated Grouping provides functions to aggregate the information of the

event declarations in the group, these functions are similar to the SQL functions

including count() and sum() etc. Aggregations will specify an aggregation vari-

able at design time and calculate an aggregation value for it at run time. These

aggregation values can serve as payload data for the output event declarations or

as inputs for filters.

• Instance-based window provides a windowing function based on the number of

event instances kept in memory. When used, the user is asked to specify an integer

for the number of event instances stored.

• Inhibition is removed from BEMN constructs, because it is not supported cur-

rently in CESO (see Section 5.1.3 and Section 5.2.4.2 for explanations).

5.2.3.2 Abstract Syntax

Using the CES ontology and the event semantics defined above, an event service provider

can describe event services and store these service descriptions in a service repository; an

event service consumer can formulate an event service query to specify his requirement

on event services. In this section the abstract syntax of event patterns described in the

CES ontology is given.

An Event Declaration describes a CES without considering the NFPs. It is a tuple

E = (src, type, ep,D)

where src is the service location where the events described by ed are hosted, type is

the term for the domain specific service type, ep is the event pattern for E and D is its

data payload as a set of event properties sets, e.g., timestamps, event identifier, message

contents, etc. E is an output event declaration in BEMN.

An Event Pattern describes the detailed semantics of a complex event. It is a tuple

ep = (E , OP,Gr,R, Pr, Sel, F, Pol,W),where:

• E is a set of member event declarations involved in ep, for a member event decla-

ration E′ ∈ E , D′ represents the payload of E′;

Core - Event Service Ontology and Event Pattern Definition 79

• OP is a set of operators, op ∈ OP = (top, r) where top ∈ {Seq,Or,And,Repo, Repn}
is the type of operator (Repo and Repn are overlapping and non-overlapping rep-

etitions, respectively), r ∈ N+ is the cardinality of repetition, r > 1 for repetition

operators, and r = 1 otherwise;

• Gr ⊆ ℘(OP ∪ E) is a set of sets of objects (i.e., operators and event declarations),

so called groupings, gt : Gr → {n, ro, rn, agg} is a function stating a grouping

is a normal one, overlapping repetition, non-overlapping repetition or aggregated

grouping;

• R ⊂ (OP × (OP ∪ E)) is a set of asymmetric and transitive relations on operators

and member events, it captures the provenance (i.e., causal) relation within ep,

∀(op, n) ∈ R, the execution of the operator node op relies on the execution result of

another operator node n when n ∈ OP , or the occurrence of an event declaration

node n when n ∈ E ;

• Pr ⊂ (OP∪E)×(OP∪E) is a set of asymmetric relations on operators and member

events, it gives the temporal order (precedence relations) within ep, ∀(n1, n2) ∈
S,∃n ∈ OP ∧ (n, n1), (n, n2) ∈ R ∧ n.top = (Seq|Repo|Repn) where n1, n2 are

two nodes in ep, also, the occurrence of n1 (if n1 ∈ E) or the last member event

instance that completes the execution of n1 (if n1 ∈ OP) should happen before

the occurrence of n2 (if n2 ∈ E) or the first member event instance that completes

the execution of n2 (if n2 ∈ OP);

• Sel :
⋃

E′∈E
E′.D′ → D is a mapping function that selects the payloads of member

events as the payloads of the output event, where D′ is the payloads of E′;

• F is a set of filters evaluating constraints over event properties in member events

(i.e.,
⋃

E′∈E
E′.D′) . A filter f ∈ F is to be evaluated as true or false at query exe-

cution time according to the event property values and the arithmetic expression

described in f . Fgr : F → Gr is a function that attaches filters to groupings.

Agg ⊆ F is a special set of filters evaluating constraints over multiple occurrences

of the properties of the same event type. These occurrences are aggregated by an

aggregation function Funcagg ∈ {count, sum, avg,min,max}.

• Pol is the set of event instance selection policies over the input event streams,

Pol(E) gives the selection policy on E. ∀E ∈ E , Pol(E) ∈ {last , cumulative}
where last picks only the latest event instances and cumulative picks all matching

instances.

Core - Event Service Ontology and Event Pattern Definition 80

• W is a set of sliding windows specified for ep over the input event streams, each

w ∈ W is considered as a time duration or a number of events to be kept, W (E)

gives the time window on E.

Given the abstract syntax of BEMN+ it is trivial to map relevant elements in BEMN+

to CESO concepts. Appendix B gives an XML serialisation of BEMN+. It is worth

noticing that not all elements in the abstract syntax are visible in BEMN+ notations.

For example, the selection policy is specified simply as an attribute of the pattern, the

selections can be specified as a set of selected event-property pairs. The sequence and

repetition operators in OP are not visible as nodes like conjunctive and disjunctive op-

erators, instead they are captured implicitly via the precedence relations and repetition

groupings. Also, the provenance relations are not visible in BEMN+.

The provenance relation and the operators can be used in another visual representa-

tion of event patterns, which is the Event Syntax Tree (EST). ESTs can be constructed

by recursively appending operator and event declaration nodes as child/leaf nodes to

a root operator node when there is a provenance relation between them. The visual

representation of ESTs omits many elements in BEMN+, such as output event decla-

rations, groupings, time window, event payloads and selections. Because of the brevity

of ESTs, throughout the thesis ESTs are used to illustrate event patterns. Figure 5.11

illustrates the EST for the product replenishment event pattern described in Figure 3.9.

The detailed definition and use for ESTs are postponed to Section 6.1.

E1

REP,
10

OR

E2

OutOfStock(A)

IncreaseAmount(A)

Figure 5.11: Event syntax tree for the increased replenishment event (see Figure 3.9)

5.2.3.3 Language Constraints

To ensure the models created by users are valid, a set of constraints are applied to

BEMN+. Before presenting the constraints, some basic notions used in the constraints

need to be clarified: a temporal relationship is referred to as an incoming relationship for

its target and as an outgoing relationship for its source; the auxiliary functions in, out

Core - Event Service Ontology and Event Pattern Definition 81

as defined in the original BEMN are reused: in, out := E ∪ Op −→ ℘(E ∪ Op), where

in(o) = {x ∈ E ∪ Op|x Pr o} and out(o) = {x ∈ E ∪ Op|o Pr x}. The following

constraints are to be satisfied by an event composition model:

1. every input event declaration has at most 1 incoming and exactly 1 outgoing rela-

tionship and has a path of temporal relationships to the output event declaration,

i.e.∀e ∈ E [|in(e) ≤ 1| ∧ |out(e)| = 1 ∧ (e(Pr)+E)],

2. every output event declaration has at exactly 1 incoming and exactly 0 outgoing

relationships, i.e.in(E) = 1 ∧ out(E) = 0,

3. there is only 1 start and output event declaration, i.e. |Es| = 1, |E| = 1,

4. every operator has at least 1 incoming and 1 outgoing relationship, i.e.∀e ∈
Op[|in(o)| ≥ 1 ∧ |out(o)| ≥ 1],

5. in each grouping there is at most one object that has an incoming relationship

with a source outside the grouping and at most one object that has an outgoing

relationship with a target outside the grouping, i.e.∀g ∈ Gr[|{o ∈ g|in(o)\g =

∅}| ≤ 1 ∧ |{o ∈ g|out(o)\g = ∅}| ≤ 1],

6. if two groupings contain the same events then one grouping must be fully contained

in the other, i.e. ∀g1, g2 ∈ Gr[g1 ∩ g2 = ∅ ⇒ g1 ⊂ g2 ∨ g2 ⊂ g1],

7. Pr is acyclic, i.e.@(e1, e2) ∈ Pr[(e2, e1) ∈ Pr+].

5.2.4 BEMN+: Formal Semantics of Event Pattern

In order to enable automatic complex event pattern evaluation and ensure correct event

service composition, it is necessary to define the formal semantics of the event patterns

specified in the CESO. In this section the formal semantics are presented. First a meta-

model for complex event semantics is introduced. Then, this meta-model is used to

compare and analyse the semantics of event patterns (or query semantics) in existing

CEP and semantic stream processing approaches, including the designed semantics of

event patterns in the BEMN+.

5.2.4.1 Meta-model of Event Semantics

In [62] a meta-model is proposed for defining the formal semantics of complex events,

i.e., what does a complex event pattern mean and how to detect this event pattern

over an Event Instance Sequence (EIS). According to [62] the semantics of complex

Core - Event Service Ontology and Event Pattern Definition 82

events can be defined by answering three basic questions: 1) how to use a limited set

of operators, constructs and descriptors to specify various complex event types (i.e.,

complex event patterns) unambiguously, 2) how to determine which subset of the EIS

belongs to a complex event type when there are more than one subsets satisfying the

constraints specified by the complex event types and 3) whether an event instance can

be used in multiple EISs mapping different complex event types. Therefore three basic

dimensions for describing event semantics are identified: Event Type Pattern, Event

Instance Selection and Event Instance Consumption, for answering these three questions,

respectively. On top of these three basic dimensions, an additional dimension is whether

events are considered instantaneous or lasting for an interval. This dimension is called

Event Duration. The details of each dimension are elaborated below:

• An Event Duration can be categorised into instantaneous or interval-based. The

fundamental difference between instantaneous and interval-based events is whether

1 or 2 (i.e., start and end) timestamps are necessary for describing an event in-

stance. Also, instantaneous events can be seen as special cases of interval-based

events which have identical start and end timestamps.

• The Event Type Pattern can be divided into 3 sub-dimensions: Operators,

Coupling and Context Condition. The operators specify temporal constraints over

EISs, including binary operators: Sequence (;), Simultaneous (==), Conjunction

(∧), Disjunction (∨), unary operator Negation (¬) and n-ary operator Repetition.

For two event types E1, E2, ; (E1, E2) indicates the timestamps of event instances

of type E1 are older than the timestamps of event instances of type E2
11; ==

(E1, E2) indicates the timestamp(s) of the event instances are equal; ∧(E1, E2)

and ∨(E1, E2) indicate both and at least one of the instances of E1 and E2 should

occur regardlessly of the temporal order, respectively. It is evident that sequence,

simultaneous, conjunctive and disjunctive operators are associative.

For an event type E3, ¬(E3) indicates the absence of instances of E3. Note that

although negation is, in theory, a unary operator, in practise it is normally used

within the interval determined by its previous and next operands.

For n event types E1, ..., En, (; (E1, ..., En))r indicates that the sequence of in-

stances of E1, ..., En must repeat for r times. Repetitions have two modes: overlap-

ping and non-overlapping, denoted ∧(; (E1, ..., En))r and ; (; (E1, ..., En))r, respec-

tively. For example, for two event types E3 := ∧(; (E1, E2))2, E4 :=; (; (E1, E2))2,

EIS1 : (e1
1, e

2
1, e

1
2, e

2
2) triggers E3 but not E4, while EIS2 : (e1

1, e
1
2, e

2
1, e

2
2) triggers

both E3 and E4 (eji is the jth instance of event type type Ei). It is evident that

11When considering overlaps for interval-based events the sequence operator can have more variants
e.g.: meets, finishes and participates etc. see [184]

Core - Event Service Ontology and Event Pattern Definition 83

overlapping repetition can be transformed into a conjunction of sequences, while

the non-overlapping repetition can be transformed into a sequence of sequences.

The Window operator specifies how many events are to be kept in memory. The

length of the window can be specified as a temporal duration or the number of

events pertained.

The Coupling sub-dimension has two types: Continuous and Non-continuous, in-

dicating whether an EIS for an event type allows irrelevant event instances. For

example, EIS3 : (e1
1, e

1
3, e

1
2) can trigger an event pattern E5 :=; (E1, E2) if E5 is

non-continuous. However, if E5 is continuous, it cannot be triggered by EIS3.

The Context sub-dimension specifies if the event pattern is triggered under con-

ditions on Environment (e.g., applications, users, transactions, etc.), Data (e.g.,

event properties, message contents, etc.) or executions of certain Operations (e.g.,

database record insert, delete, etc.)

• Event Instance Selection has three modes: first and last modes pick the oldest

and youngest mapping event instances in an EIS respectively. Cumulative mode

picks all instances in an EIS satisfying the constraints.

• Event Instance Consumption has three modes: Shared, Exclusive and Ext-

exclusive. In shared mode all subscriptions can share event instances, i.e., event

instances are kept until they expire in the time window. In the exclusive mode

the event instances are removed once they are used to trigger an event type. In

the ext-exclusive mode when eji is used to trigger Ea, all eki in the EIS before the

terminator (i.e., last event instance in EIS triggering Ea) are removed.

5.2.4.2 BEMN+ Semantics In Comparison with Existing Approaches

In this section the semantics of BEMN+ event patterns is given in comparison with

the event/query semantics in existing CEP/stream processing systems. The dimensions

used in the comparison is derived from the complex event meta-model presented in

Section 5.2.4.1. In [133] a thorough survey has been conducted on existing Information

Flow Processing systems, however it does not describe the features of recent semantic

stream processing systems. A survey on stream reasoning engines can be found in [161].

In Table 5.1 the event semantics used in ETALIS [19], CSPARQL [38], CQELS [37],

BEMN [3] and BEMN+ are compared.

• Event Duration All investigated approaches support using instantaneous events,

i.e., annotating events and triples with a single timestamp. Only ETALIS fully

supports interval-based events, since it allows triples to be annotated with a start

Core - Event Service Ontology and Event Pattern Definition 84

Table 5.1: Comparison of Event Semantics

Dimensions(of(Event(Semantics(ETALIS(C5SPARQL(CQELS(BEMN(BEMN+(
Event(Duration(
(Instantaneous(!(!(!(!(!(

Interval(!("("("("(
Event(Type(Pattern(
(Operators(

(Sequence(!(!("(!(!(
Simultaneous(!(#("("(#(
Conjunction(!(!(!(!(!(
Disjunction(!(!(!(!(!(
Exclusive5disjunction("("("("("(
Spatial("("("("("(
Spatiotemporal("("("("("(
Negations(#(#(#(!("(
Repetition("("("(#(!(
Window(
(Time5based(!(!(!(!(!(

Instance5based("(#(#("(!(
Coupling(&(Concurrency(
(Continuous("("("("("(

Non5continuous(!(!(!(!(!(
Context(condition(
(Environment("("("("("(

Data(!(!(!(!(!(
Operation("("("("("(

Event(Instance(Selection(
(First("("("(!("(

Last("("("(!(!(
Cumulative(!(!(!(!(!(

Event(Instance(Consumption(
(Shared(!(!(!(!(!(

Exclusive("("("(!("(
Ext5exclusive("("("("("(
!:(supported(":(not(supported((#:(partially(supported((!:"unknown"

and end timestamp. CSPARQL partially supports intervals for complex events,

i.e., events consists of multiple triples with different timestamps. To capture the

interval for such complex events in CSPARQL one must use the f:timestamp func-

tion provided by CSPARQL language to retrieve all timestamps and get the oldest

and youngest timestamps.

• Event Type Pattern. The Sequence operator is supported by all investigated

approaches except for CQELS. The Simultaneous operator is directly supported

by ETALIS using the EqJoin operator extended from SPARQL join and indi-

rectly supported by CSPARQL and BEMN+ by comparing timestamps of events

and triples. The Conjunction and Disjunction operators are supported by all in-

vestigated approaches. Exclusive-disjunction, Spatial and Spatiotemporal patterns

Core - Event Service Ontology and Event Pattern Definition 85

identified in Section 3.3.3 are not supported by any investigated approaches. Nega-

tion is directly supported by BEMN using Inhibition and indirectly supported by

ETALIS, CSPARQL and CQELS using the combination of LeftJoin operator and

bound filters. Currently, BEMN+ does not support negations as it will introduce

complexity in event stream federation, but it is on the agenda of future work.

Repetition is partially supported in BEMN with only overlapping mode, it is fully

supported in BEMN+ in both overlapping and non-overlapping modes. A time-

based Window operator is supported by all approaches, while an instance-based

window is partially supported by CSPARQL and CQELS, since they allow triple-

size-based windows. BEMN+ supports both kinds of windows. All approaches

support non-continuous coupling, i.e., irrelevant events and triples will not affect

the results derived from relevant ones. All approaches support context conditions

on data using filters.

• Event Instance Selection. ETALIS, CSPARQL and CQELS support only a

cumulative event instance selection policy because their language semantics are

extended from SPARQL, in which all mapping variable bindings are returned as

results. In BEMN, the selection policy is not explicitly explained. BEMN+ is

designed to support both cumulative and last selection, in order to be compatible

with existing stream reasoning engines which extends SPARQL semantics (i.e.,

using cumulative selection), while in some traditional CEP systems, a minimum

event instance selection policy (e.g., last pick) is desired due to performance con-

cerns (see section 4.3 in [133]).

• Event Instance Consumption. Existing semantic event/data stream engines

like ETALIS, CSPARQL and CQELS allow registering multiple queries at the same

time. Also, they do not remove triples from the stream unless these triples expire

in the window. Therefore, they support only a shared event instance consumption

mode. BEMN supports shared and exclusive consumption modes by configuring

the event type definitions and subscription scopes. In this thesis, a decentralised

system is designed in which queries are evaluated by different event engines on

distributed servers and the messages are delivered via publish-subscribe systems,

therefore only shared event instance consumption is supported in BEMN+.

5.3 Related Work

In this section, the related works in event ontologies and graphical event pattern defini-

tion languages are discussed.

Core - Event Service Ontology and Event Pattern Definition 86

Approaches Differences to CESO
Moser et al. [185] Only semantic equivalence, subsumption and relations on simple

events are described
Li et al. [24] Temporal operators not supported for complex events
Rinne et al. [160] Extends Event-F ontology to describe complex events, support

event payloads and multiple timestamps, but execution semantics
not given.

Liu et al. [82] Integrate temporal logics with OWL DL to semantically describe
complex events, however it needs dedicated reasoning engine to
evaluate rules, no integration with existing CEP solutions are pro-
vided.

Table 5.2: Related works in complex event ontology

5.3.1 Event Ontologies

Moser et al. [185] elaborate ways to extend syntactical event correlation to semantic

event correlations. They consider three kinds of semantic event correlations, i.e., basic

semantic correlation to identify semantic equivalence despite syntactical differences, in-

herited correlation to resemble terminology hierarchies and relation base correlation to

define relations between terms.

Li et al. [24] define an event ontology to define event rules, called the Smart Space Event

Ontology (SSEO). SSEO captures the causal relations between events and can be used

to infer complex situations at runtime. However, temporal-based CEP operators are not

modelled in SSEO.

Rinne et al. [160] extend the Event-F ontology to provide specific semantics for complex

events. In particular, it supports describing simple and complex event objects as well

as their relations. Also, it supports describing event payloads and multiple timestamps.

However, it does not provide the formal semantics of the complex events.

Liu et al. [82] extend OWL DL with an Event Description Logic to provide syntax and

semantics to define complex events. However, the authors do not elaborate how this

ontology can be integrated with existing CEP systems or provide concrete tools to parse

and query event ontologies defined in OWL DL. Table 5.2 summarises comparison of

the related works to CESO.

5.3.2 Graphical Event Pattern Definition Languages

Besides BEMN, there exist a few works that aim to provide graphical notations for

event rules. Sen et al. [47] use graphical notations to model Event-Condition-Action

rules (ECA). In their usecase tweets are collected from Twitter as complex events and

Core - Event Service Ontology and Event Pattern Definition 87

are decomposed to simple events according to their predefined event schema. Then these

simple events are forwarded to the Esper engine where ECA rules are executed.

Karampiperis et al. [33] surveyed some commercial CEP products, which are not open

source and can only support either rule-based or query-based language. The authors aim

to provide a graphical language that can support both rule and query language and a

tool to design event rules using the graphical language. In their current implementation,

they can translate the event rules into SQL and query on a static event repository, i.e.,

no window operators or temporal orders are supported.

Sasa et al. [186] propose an architecture for Complex Event Service implementation

using OWL ontologies. A translator is deployed in a CES, which translates event data

to instance-level OWL statements, and an OWL reasoner is responsible for combining

the semantic event data with the event ontology and inferring if new complex events

are detected. However, they used a general purpose reasoner which is not optimised for

CEP applications with high throughput, also the temporal-based event reasoning is not

elaborated.

Taylor et al. [23] aim to detect events in real time that arise from complex correlations

of measurements made by independent sensing devices. This approach transforms the

semantic complex event descriptions into EPL statements and executes them on CEP

engines. The authors claim this approach is capable of reusing previously configured

event streams within the middleware. However, they did not discuss how to reuse the

streams outside the scope of the middleware. Also, since the actual event detection is

done by a conventional CEP engine, it is not possible to carry out semantic inferencing

tasks at runtime.

In SARI [60], event models are composed by event conditions, event patterns and re-

sponse events. Event conditions specify rules on triggering the detection of a type of

event, an event pattern describes the event rules for the event detection, a response event

specifies an event generated as output. Event conditions, event patterns and response

events are connected by logical operators to describe their logical correlations. The

event modelling language in SARI is intended for business users. This approach uses

both rule-based systems to evaluate event preconditions and a state-machine based CEP

engine (i.e., Esper12) to evaluate event patterns. However, there is a functional overlap

between event preconditions and event patterns, i.e., both describe situations are define

the complex event. Also, although the rule-based part is made service-oriented, the

pattern evaluation part is not. As a result, the composition of rule-based event services

are possible but only limited to precondition dependencies, i.e., the composition based

on temporal orders is not realised.

12Esper engine: http://www.espertech.com/products/esper.php, last accessed: Aug, 2015

http://www.espertech.com/products/esper.php

Core - Event Service Ontology and Event Pattern Definition 88

Approaches Differences to BEMN+

Sen et al. [47] ECA-based approach, only simple twitter events allowed, Esper
engine used for evaluation.

Karampiperis et al. [33] Translates to SQL statements over static repositories, no window
operators supported.

Sasa et al. [186] Relies on OWL-reasoning, temporal reasoning not elaborated, not
optimised for continuous reasoning over data streams with high
velocity.

Taylor et al. [23] Transforms semantic complex events into EPL statements, allows
streams to be reused within the middleware, but the approach
is not service-oriented, i.e., streams cannot be reused outside the
middleware.

SARI [60] Business-user-oriented, rule based event services, but event ser-
vice discovery and composition based on temporal orders are not
possible.

All above Only suitable for one particular CEP engine, not compatible with
existing BPM tools (except for SARI)

Table 5.3: Related works in graphical event pattern language

The above-mentioned approaches are platform dependent and are difficult to migrate

to other CEP systems. Moreover, they can only work on predefined event streams,

adding new event streams or alternating existing ones will take considerable development

efforts. Furthermore, they do not consider how can to make event models compatible

with existing business process modelling technique (except for SARI). The event model

used in this chapter extends the work in [3], which can integrate complex event modelling

with BPMN. Table 5.3 summarises the comparison of the existing graphical event pattern

languages with BEMN+.

5.4 Summary and Discussion

In this chapter, the information model used to define and describe complex events and

complex event services are elaborated. A Complex Event Service Ontology (CESO) is

introduced to describe Complex Event Services (CES). CESO is an extension of the

standardised semantic web service ontology OWL-S and uses similar structures to de-

scribe CES profiles (service properties) and groundings (access mechanisms). CESO uses

a stream quality ontology to describe the quality aspects of CES and it uses a stream

annotation ontology to describe the stream data. The event semantics are annotated

as EventPattern in CESO. The semantics are aligned to an extended version of the

Business Event Modelling Notation, called BEMN+. BEMN+ provides graphical no-

tations for complex event definitions. These notations are similar to Business Process

Modelling Notations (BPMN) so that business users can use them with minimal learning

overhead. The syntax and semantics of BEMN+ are also introduced. The comparison

Core - Event Service Ontology and Event Pattern Definition 89

between the BEMN+ semantics and other RDF stream processing engines are elabo-

rated. Leveraging CESO and BEMN+, the next chapter describes how the event service

composition can be realised based on the functional aspects of event services.

Chapter 6

Pattern-based Event Service

Discovery and Composition*

In the context of Internet-of-Everything (IoE) and Smart City, end users, such as busi-

ness analysts, city administrators and citizens are typically interested in complex events

with business value and/or high-level meanings rather than primitive events represent-

ing simple changes of states. Complex Event Processing (CEP) is a suitable technique

to detect the high-level events expressed with event patterns. Despite the extensive

research on CEP, providing CEP applications as reusable services that allow the compo-

sition of complex event services based on event patterns efficiently is still a challenging

task. Many existing event service description and discovery mechanisms are topic or

content based, which is sufficient for reusing primitive/simple event services. However,

it is impossible to reuse a complex event without knowing its exact semantics expressed

in the pattern [15].

Providing complex events as services accelerates the implementation of CEP systems,

because it allows the event consumers and providers to be loosely coupled in the system

[108]. Moreover, by reusing business event services instead of subscribing directly to

primitive event streams, the amount of events delivered through the network can be

greatly reduced. This is important for CEP applications in general because it reduces

the use of bandwidth and CPU, resulting in more efficient and in-time event detection.

Take the severe traffic accident event pattern in Figure 2.5 as an example, the event

detection task has two sub-tasks: 1) detecting traffic accidents and 2) detecting traffic

congestions in the surrounding areas of the accidents. While the first task can be as

simple as getting notified when someone calls the police or ambulance service and reports

an accident on-site, the second task may require monitoring a set of traffic sensors in

*Part of the content in this chapter is published in [167].

90

Core - Pattern-based Event Service Discovery and Composition 91

the relevant areas and determining whether a congestion has occurred based on the

readings. On the other hand, the sub-task of traffic congestion detection could already

be implemented as a service available for various scenarios and applications because of

its frequent use across domains. In this case, subscribing to the congestion detection

service instead of monitoring and calculating sensor readings directly can reduce the

event operators used and potentially require fewer messages to be transmitted over the

network.

To provide business/complex events as reusable services and facilitate more efficient

event processing systems, the following sequence of questions needs to be answered:

1. How to describe event services properly so that event service matchmaking based

on event patterns can be realised?

2. How to determine if two event patterns are functionally equivalent (i.e., produce

the same complex event notifications), provided that different event patterns may

have identical meanings?

3. How to choose optimal event service composition plans that consume the least

amount of input event data?

4. How to derive event service compositions efficiently for very complicated event

patterns (i.e., with a lot of event rules) and in a large scale event marketplace?

Chapter 5 has answered the first question. This chapter provides answers to the other

questions. By doing so, this chapter provides the means for implementing the Resource

Management component in ACEIS and facilitates discovering and composing event ser-

vices based on event patterns, as shown in Figure 6.1. When an event request (without

quality-of-service constraints and preferences) is received at the Resource Management

component, it will first query the service metadata store and tries to find direct match-

ing Complex Event Services (CESs) for the event request by comparing event pattern

semantics (if the event request contains event pattern, otherwise a conventional type-

/attributed based discovery is performed). If no direct matchings are found, it will try

to compose a set of Primitive Event Services (PESs) and/or CESs to address the event

request, with the help of the event service index.

The remainder of the chapter is organised as follows. Section 6.1 answers the second

question by presenting the operations Event Syntax Trees (ESTs) to create canonical

forms of event patterns. And then, the semantic equivalence between event patterns

can be examined by checking the isomorphism of canonical event patterns. Section

6.2 answers the third question, it provides the definition of Network Optimised event

Core - Pattern-based Event Service Discovery and Composition 92

 ACEIS Core

Resource
Management

Application
Interface

Semantic Annotation

Knowledge Base

Data Mgmt,
Indexing,
Caching

Stream
Description

Historical
Events

User Input

Event Request (no
QoS constraints)

Data
Federation

Resource Discovery

Event Service Composer

Composition Plan

Subscription
Manager

Query Transformer

Query Engine

Query

Results

Sc
he

du
le

r

QoS
Updates

In
fo

rm
at

io
n

M
od

el

(O
nt

ol
og

ie
s)

Adaptation
Manager

Data Streams

Social Media Sensor Observations Stream Quality Updates

Figure 6.1: The resource management module in ACEIS

service compositions, which have the least Estimated (network) Traffic Demand (ETD).

The calculation of ETD is provided as a measure for choosing optimal composition

plans. Section 6.2 also addresses the fourth question. It presents two composition

algorithms creating network optimised event service compositions: a slow algorithm

based on event substitution and a fast algorithm based on the reusability index of event

patterns. The reusable relations between event patterns are defined in order to create the

reusability index. Section 6.3 demonstrates the performance of the proposed algorithms

with experiments. Section 6.4 discusses related work before Section 6.5 summarises.

6.1 Canonical Event Pattern

In Chapter 5, the syntactical and semantic definition of an event pattern used in this

thesis are presented. Recall that an event pattern is defined as a tuple consisting of a set

of elements including event operators, event declarations etc. Discovery and composition

of CESs relies on identifying the semantic equivalence/subsumption relations between

event patterns (see Definition 6.1, 6.2). However, it is evident that the semantics of

an event pattern cannot be uniquely defined with a tuple, i.e., different combinations

of operators and sub-events may yield the same meaning. For example, a conjunctive

event type pattern E1 := ∧(E2, E3, E4) is semantically equivalent to another event type

pattern E5 := ∧(E6, E4) where E6 := ∧(E2, E3). In order to compare the semantics of

Core - Pattern-based Event Service Discovery and Composition 93

event patterns, a canonical form of the event patterns is needed. In the following the

methods for deriving canonical event patterns using operations over Event Syntax Trees

(ESTs) are described.

Definition 6.1 (Semantic Equivalence between Event Patterns). Given two event pat-

tern ep, ep′, an Event Instance Sequence (EIS) eis, a pattern evaluation function eva :

(P,EIS) → EIS, where P is a set of event patterns and EIS is a set of EISs. ep is

semantically equivalent to ep′ ⇐⇒ ∀eis ∈ EIS, eva(ep, eis) = eva(ep′, eis), denoted

ep
.
= ep′.

Definition 6.2 (Semantic Subsumption between Event Patterns). Given two event

pattern ep, ep′, an EIS eis, a pattern evaluation function eva : (P,EIS)→ EIS, where

P is a set of event patterns and EIS is a set of EISs. ep semantically subsumes ep′ ⇐⇒
∀eis ∈ EIS, eva(ep, eis) ⊆ eva(ep′, eis), denoted ep � ep′.

6.1.1 Definitions of Event Syntax Tree

An event syntax tree describes an event pattern with a tree. More formally, givent an

event pattern ep = (E , OP,Gr,R, Pr, Sel, F, Pol,W), a syntax tree T (v) = (V,R, F) is

generated from ep, where V = (OP ∪E) is the set of vertices representing operators and

member events, v ∈ V is the root node, i.e., @(v′, v) ∈ R, typically the root of an EST is

an operator, and R is the set of directed edges representing the provenance relation. If

(v1, v2) ∈ R, v2 is called a child node of v1, if (v1, v2) ∈ R∗, v2 is called a descendant of

v1, where R∗ is the transitive closure of R. The precedence relation is implicitly given

by the left-to-right order of child nodes of sequence and repetition operators: the node

to the left precedes the one to the right, i.e., if (v1, v2) ∈ Pr, then v1 is placed to the left

of v2. Each node in V is labeled with its type, repetition cardinality (omitted if r = 1)

and data payload (if any). F represents a set of filters, the filters in F on a single node

v is denoted F (v), which are attached to the node labeled by the payload (F (v) = ∅ if

no filters are attached to v). A filter on two or more nodes (e.g., an aggregated filter)

is attached to the lowest common ancestor (LCA) of the nodes. A mapping function

est : P → T maps the set of event pattern P to their generated ESTs T .

Two ESTs are isomorphic if they have the same structure and each node/filter in a tree

has a functional equivalent counterpart in the other tree at the same location. More

formally:

Definition 6.3 (Isomorphic EST). Given t = (V,R, F), t′ = (V ′, R′, F ′), t and t′ are

isomorphic (denoted isomorphic(t, t′)) ⇐⇒ there exists a bijective mapping map :

V → V ′ such that ∀v ∈ V, v .
= map(v) ∧ ∀F (v) ∈ F, F (v) = F ′(map(v)) ∧ ∀(v1, v2) ∈

R, (map(v1),map(v2)) ∈ R′, where v1
.
= v2 ⇐⇒ v1, v2 are operators of the same type

Core - Pattern-based Event Service Discovery and Composition 94

and cardinality or v1, v2 are event declarations providing the same kind of events, i.e.,

both primitive events with the same event type or both complex events with semantically

equivalent event pattern semantics.

Definition 6.4 (Isomorphic event pattern). Two event patterns are isomorphic (denoted

isomorphic(p, p′)) if and only if they produce isomorphic ESTs and there is a set of

bijective mapping functions similar to map correlates selections, selection policies and

windows in p to a functional equivalent counterpart in p′.

Lemma 6.5. isomorphic(p, p′) =⇒ p
.
= p′, where p, p′ are event patterns.

Given an EST t = (V,R, F) ∈ T , vl ∈ V is a leaf node iff @(vl, v
′) ∈ R. The set of leaf

nodes Vl of t is given by a function leaves : T → V where V is the set of all vertices.

The root of t can be given by root : T → V; the depth of a node is the number of edges

connecting the node to the root, denoted depth(t); the height of a tree is the maximum

depth of its leaves, denoted height(t); the degree of a node v in t is the number of its

child nodes, denoted degree(v, t). Given a sequence or repetition operator v in an EST t

and the set of node v’s child nodes child(v, t), a child node v′ ∈ child(v, t) is the head iff

@v′′ is to the left of v′, denoted head(child(v, t)). Similarly, a child node v′ ∈ child(v, t)

is the tail iff @v′′ is to the right of v′, denoted tail(child(v, t))

Given two ESTs t = (V,R, F), t′ = (V ′, R′, F ′), t′ is a sub-tree of t ⇐⇒ V ′ ⊆ V ∧R′ ⊆
R ∧ F ′ ⊆ F , denoted t′ ⊆ t. t′ is a Direct Sub-Tree (DST) of t ⇐⇒

• t′ ⊆ t (t′ is a sub-tree of t), and

• (v, v′) ∈ R where v, v′ are the roots for t, t′, respectively, and

• ∀v′′ ∈ V ′′ | (v, v′′) ∈ R∗ =⇒ v′′ ∈ V ′ (t′ contains all descendants of v in t, i.e.,

V ′′), and

• r′ ∈ R′ ⇐⇒ r′ ∈ (R ∩ (V ′′ × V ′′)) (t′ contains all and only provenance relations

on nodes in V ′′), and

• f ′ ∈ F ′ ⇐⇒ f ′ ∈ F (V ′′) where F (V ′′) is the set of filters over nodes in V ′′ (t′

contains all and only filters on V ′′).

The set of DSTs of an EST t is denoted DST (t). Based on the above definitions for

sub-trees and DSTs, it is evident that ep � ep′ =⇒ est(ep) is a sub-tree of est(ep′) the

definitions for a Direct Sub-Event-Pattern (DSEP) are provided in Definition 6.6.

Definition 6.6 (Direct Sub-Event-Pattern). Given event patterns ep and ep′, ep is a

direct sub-event-pattern of ep′ ⇐⇒ ep � ep′ ∧ est(ep) ∈ DST (est(ep′))

Core - Pattern-based Event Service Discovery and Composition 95

6.1.2 Complete Event Pattern

When a leaf node (an event declaration) in an EST contains an event pattern, it means

the event service represented by the leaf node delivers non-primitive events. Such a leaf

node is called a complex leaf, otherwise it is called a primitive leaf. A complex leaf can

expand into an EST to reveal the event pattern of its own. An event pattern is complete

iff all the leaf nodes in the generated EST are primitive, and such an EST is called a

complete EST. A formal definition for complete event patterns are given in Definition

6.7.

Definition 6.7 (Complete Event Pattern). An event pattern ep is a complete event

pattern ⇐⇒ ∀v ∈ leaves(est(ep)), v is primitive

By checking recursively the event pattern definitions of the leaves, it is trivial to build

complete event patterns. A complete event pattern has complete information on the

logical rules specified for a complex event. A pattern completion function fcomplete that

creates the complete event patterns is defined as follows.

Definition 6.8 (Pattern Completion Function). fcomplete : P −→ Pc, P, Pc are sets of

event patterns . p ∈ P, pc ∈ Pc ∧ pc = fcomplete(p) ⇐⇒ pc is a complete event pattern.

The fcomplete function is implemented as Algorithm 1.

Lemma 6.9 (Correctness of pattern completion). The pattern completion function does

not alter the semantics of event patterns, i.e., p
.
= p′ ⇐⇒ fcomplete(p)

.
= fcomplete(p

′),

where p, p′ ∈ P are two event patterns.

6.1.3 Irreducible Event Pattern

Complete event patterns are still not sufficient for event pattern discovery and com-

position, because an event pattern can add redundant operators without altering its

semantics. As such, a minimal representation is needed for describing an event pattern

without redundant operators. Informally, an event pattern is irreducible if it contains the

least number of nodes and edges while expressing the same semantics. More formally,

it is defined as:

Definition 6.10 (Irreducible Event Pattern). An event pattern p is an irreducible event

pattern ⇐⇒ @p′ | p′ is semantically equivalent to p ∧ |OP ′ ∪ E ′| < |OP ∪ E|, where

OP ′ ∪ E ′ and OP ∪ E are the nodes in est(p′) and est(p), respectively.

Core - Pattern-based Event Service Discovery and Composition 96

Algorithm 1 Creates a complete event pattern.

Require: Original event pattern p = (E , OP,Gr,R, Pr, Sel, F, Pol,W).
Ensure: Complete event pattern pc.

1: procedure complete(p)
2: pc ← ∅
3: Vl ← leaves(est(p))
4: for v ∈ Vl do
5: p← expand(v, p)
6: end for
7: return pc ← p
8: end procedure

Require: Original event pattern p, leaf node to expand v = (src′, type′, p′, D′), where
p′ = (E ′, OP ′, Gr′, R′, P r′, Sel′, F ′, Pol′,W ′).

Ensure: Expanded event pattern pc.
9: procedure expand(p, v)

10: pc ← ∅
11: if p′ = nil then return pc ← p
12: else
13: expand node v with its sub-pattern p′ and add it to pc
14: return pc
15: end if
16: end procedure

The reduction process of event patterns can be intuitively shown in changes in the

ESTs derived from the patterns. Two types of reduction operations are considered

over the ESTs to create irreducible event patterns: lift and merge. Lifting “vertically”

removes the redundant event operators, resulting in a lower height of the tree. Merging

“horizontally” removes overlapping event operators or declarations, resulting in a less

degree of the nodes in the tree1. Different rules apply when performing lift and merge

operations on different types of nodes. Examples of lifting and merging operations are

shown in Figure 6.2. In the following the descriptions of the reduction operations are

presented informally. The formal definition for sequential lift is provided as an example,

definitions for other reduction operations are given in a similar fashion.

• Sequential Lift: when a node and its child are both sequence operators, the

child node can be removed. Incoming edges on the child node are removed while

all outgoing edges will attach their sources to the parent node. Filters on the lifted

child nodes are relocated to the parent node. More formally, sequential lift is a

function lifts : (Vseq, Vseq, P) → P where P is the set of event patterns and Vseq

is the set of sequence operators. Given p = (E , OP,Gr,R, Pr, Sel, F, Pol,W), p′ =

1The sequential and repetition merge exemplified in Figure 6.2 do not decrease the total number of
nodes in the tree because they only merge two nodes, for conformance reasons such merging are still
considered necessary to create irreducible trees.

Core - Pattern-based Event Service Discovery and Composition 97

e1

SEQ

SEQ SEQ

e2 e3e2

e1

SEQ

e2 e3e2 e1

SEQ

REP
x2 e3

e2

AND

e1 AND

e1 e2

e1

AND

e2e1 e1

AND

e2

REP
x2

REP
x3

e1

REP
x6

e1

REP
x2

SEQ

e1 e2

e1

REP
x2

e1 e2e1

REP
x2

e2REP
x2

e1

Sequential Lift Sequential Merge

Parallel Lift Parallel Merge

Repetition Lift
(1)

Repetition Lift
(2)

Repetition Merge

Figure 6.2: Examples of syntax tree reduction operations

(E , OP ′, Gr,R′, P r′, Sel, F ′, Pol,W),

p′ = lifts(v1, v2, p) ⇐⇒ (v1, v2) ∈ R
∧ OP ′ = OP\v2

∧ R′ = (R ∪
⋃

(v2,v3)∈R
(v1, v3))\((v1, v2) ∪

⋃
(v2,v3)∈R

(v2, v3))

∧ Pr′ = Pr ∪ (v4, head(child(v2, est(p)))∪
(tail(child(v2, est(p))), v5)\((v4, v2) ∪ (v2, v5))

∧ F ′ = replaceElement(v2, v1, F)

where R is the provenance relations in p and (v4, v2), (v2, v5) ∈ Pr.

• Sequential Merge: when a node is a sequence operator and there is a repeating

sequence in its child nodes (recurring primitive event or DST sequences), a non-

overlapping repetition node is inserted as a child node of the sequence operator.

Repeated sequences are merged into one and relocated under the inserted repeti-

tion node. The cardinality of the repetition node is determined by the number of

occurrences of the sequence.

• Parallel Lift: when a node and its child are the same type of parallel operator

(conjunction or alternation), the child node can be removed (as the sequential lift).

Core - Pattern-based Event Service Discovery and Composition 98

• Parallel Merge: when child nodes of a parallel operator have duplicates (recur-

ring primitive events or DSTs), duplications are removed. When the only differ-

ences of two child nodes n1, n2 are the filters attached, and each filter in v1 is

covered2 by the corresponding filter in v2, then these two nodes (or DSTs) can be

merged. For conjunction operators in this case, v1 (T (v1)) is kept, for disjunctive

operators, v2 (T (v2)) is kept. Additionally, there is a special case for conjunctional

merge: when a conjunction operator has two repetition DSTs with only different

cardinalities, the DST with less cardinality is removed.

• Repetitional Lift: when a node is a repetition operator with cardinality n, and it

has only one child node which is also a repetition of the same type (overlapping or

non-overlapping) with cardinality m, the child node is removed and the cardinality

of the parent node is changed into n×m. Otherwise, if the child node is a sequence

operator, the child node is removed.

• Repetitional Merge: merging operation for repetition nodes is the same as a

sequential merge.

• Special Lift: when a sequence or parallel operator has only one child, this oper-

ator is removed. Such situations only happen during the reduction process.

Lemma 6.11 (Correctness of Atomic Pattern Reduction Operations). Pattern reduction

operations fatomicreduce : (P, V) → P do not alter the semantics of the patterns, where

P is the set of event patterns and V is the set of removed nodes, i.e., ∀v ∈ OP ∪
E , p .

= fatomicreduce(p, v), where OP and E are the operators and event declarations in p,

respectively.

Proof. The lifting operations do not alter the semantics because the sequence, con-

junctive and disjunctive operations are associative. The correctness of merging

operations are implied by the definitions of operator semantics (see Section 5.2.4.1

event type patterns)).

6.1.4 Syntax Tree Reduction Algorithm

The algorithm to create irreducible syntax trees is shown in Algorithm 2. The algorithm

traverses a syntax tree from the bottom to the top. The algorithm starts with lifting

the whole tree to remove redundant operators. Then, it tries to merge sub-trees on the

maximum depth, i.e., sub-trees whose root depths are equal to the height of the whole

tree minus one. If these sub-trees are merged, the algorithm checks if they can be lifted

2f1 covers f2 ⇐⇒ P (f1) ⊇ P (f2), where P (f1), P (f2) are the notifications produced by filters f1, f2,
respectively.

Core - Pattern-based Event Service Discovery and Composition 99

again because merging could create further redundant operators. After merging and

lifting all sub-trees on same depth, the algorithm decreases the depth and repeats the

merging and lifting process until the whole tree is merged (and possibly lifted again).

Algorithm 2 Creates an irreducible syntax tree from a complete syntax tree ST .

Require: Event Syntax Tree est.
1: procedure reduce(est)
2: height = getHeight(est)
3: if height < 1 then
4: exit
5: end if
6: root← getRoot(est)
7: liftTree(root, est)
8: for height− 1→ rootDepth→ 0 do
9: nodesToMerge← getNodesByDepth(est, rootDepth)

10: for node ∈ nodesToMerge do
11: merge(node, est)
12: if merged then
13: liftTree(node, est)
14: end if
15: end for
16: end for
17: end procedure

In the algorithm, line 2 uses the method getHeight to compute the height (maximum

maximal depth) of a syntax tree. Line 9 uses the method getSubTreesByDepth to retrieve

all sub-trees within a syntax tree whose root is of a certain depth. The merge method

used in Line 11 merges the DSTs of a certain node. The liftTree method in Line 7 and

13 carries out the lifting operations on a sub-tree.

Using the above algorithm the freduce function that produces irreducible patterns is

defined as follows:

Definition 6.12. freduce : P −→ Pi, P, Pi are sets of event patterns. p ∈ P, pi ∈
Pi ∧ pc = freduce(p) ⇐⇒ pc is an irreducible event pattern.

Lemma 6.13 (Correctness of Irreducible Pattern Creation). The irreducible event pat-

terns do not alter the semantics of the original pattern, i.e., p
.
= p′ ⇐⇒ freduce(p)

.
=

freduce(p
′).

Proof. According to Algorithm 2, freduce is a composition of fatomicreduce, i.e.,

freduce(p) = f∗atomicreduce(p), and by the correctness of the atomic pattern reduc-

tion (Lemma 6.11), the composite reduction is also correct.

The canonical patterns are thus defined as a composition of pattern completion and

pattern reduction as follows:

Core - Pattern-based Event Service Discovery and Composition 100

Definition 6.14. fcanonical = freduce ◦ fcomplete

Lemma 6.15 (Uniqueness of Canonical Pattern). two canonical event patterns are se-

mantically equivalent if and only if they are isomorphic, i.e., fcanonical(p1)
.
= fcanonical(p2)

⇐⇒ isomorphic(fcanonical(p1), fcanonical(p2)).

Proof.

Necessity: provided by Lemma 6.5.

Sufficiency:

suppose fcanonical(p1)
.
= fcanonical(p2) 6=⇒ isomorphic(fcanonical(p1), fcanonical(p2)),

then ∃p1, p2 | fcanonical(p1)
.
= fcanonical(p2)∧¬isomorphic(fcanonical(p1), fcanonical(p2)).

By Definition 6.4:

¬isomorphic(fcanonical(p1), fcanonical(p2)) =⇒
¬isomorphic(est(fcanonical(p1)), est(fcanonical(p2))) (case 1)

∨(isomorphic(est(fcanonical(p1)), est(fcanonical(p2)))

∧fcanonical(p1), fcanonical(p2) has different windows, selections or selection policies)

(case 2)

It is evident that case 2 contradicts fcanonical(p1)
.
= fcanonical(p2), in the following

case 1 is discussed. By Definition 6.3:

¬isomorphic(est(fcanonical(p1)), est(fcanonical(p2))) =⇒
@ bijective mapping mapv : V1 → V2 such that ∀v1 ∈ V1, v1

.
= mapv(v1) (case

1.1)

∨∃mapv ∧ ∃v1, v2 ∈ V1 such that (v1, v2) ∈ R1 ∧ (mapv(v1),mapv(v2)) /∈ R2 (case

1.2)

∨∃mapv ∧ ∃v ∈ V1, F1(v) ∈ F1, F1(v) 6= F2(mapv(v)) (case 1.3)

If case 1.2 or case 1.3 holds, it contradicts fcanonical(p1)
.
= fcanonical(p2) (same

set of event operators and primitive events correlated by different temporal/logical

relations or using different filters).

Suppose case 1.1 holds. If |V1| 6= |V2|, without loss of generality assume |V1| <
|V2| =⇒ fcanonical(p2) is not irreduciable (Definition 6.10), which contradicts the

definition of canonical patterns (Definition 6.12, 6.14). Otherwise, if |V1| = |V2| ∧
@mapv =⇒ |E1| 6= |E2|, since p1, p2 are complete and irreducible, fcanonical(p1),

fcanonical(p2) uses different primitive events or different temporal/logical relations

are defined over primitive events, which contradicts fcanonical(p1)
.
= fcanonical(p2).

Theorem 6.16 (Semantic Equivalence of Isomorphic Canonical Event Patterns). Two

event patterns are semantically equivalent if and only if their canonical patterns are

isomorphic, i.e., p
.
= p′ ⇐⇒ isomorphic(fcanonical(p), fcanonical(p

′)).

Core - Pattern-based Event Service Discovery and Composition 101

Proof.

p
.
= p′ ⇐⇒ fcomplete(p)

.
= fcomplete(p

′) (Lemma 6.9)

⇐⇒ freduce(fcomplete(p))
.
= freduce(fcomplete(p

′)) (Lemma 6.13)

⇐⇒ fcanonical(p)
.
= fcanonical(p

′) (Definition 6.14)

⇐⇒ isomorphic(fcanonical(p), fcanonical(p
′)) (Lemma 6.15)

6.2 Event Pattern Discovery and Composition

With the capability of deriving canonical event patterns, it is possible to carry out

CES discovery and composition. CES discovery finds a semantically equivalent CES for

the queried event pattern based on finding isomorphic canonical patterns, while CES

composition produces a set of event patterns as composition plans for the query.

A query pattern contains a complete EST created by complex event designer/modeller.

It is assumed all the primitive events in a query have user-defined event types in their

event declarations, without specifications of the event service groundings. The mission

of event composition is to find out where should these primitive events come from. Of

course, the mission can be accomplished by simply discovering PESs using the event

types and then filling the source locations for the primitive event declarations in the

query, but that will demand a lot of data traffic from the primitive event services.

Therefore, it is necessary to reuse complex event services as well.

When a complex event service is reused, an appropriate portion (sub-tree or part of

sub-tree) of the query EST is replaced with the event declaration of the complex event

service, which transforms the portion into an event declaration node (a leaf node) with

a complex event type and a service location. When all the leave nodes of a query have

such type and location information, the query is said to be bound. When the query is

bound, it is used as a composition plan. Apparently, if all leaves of a query can have at

least one mapping primitive event service, a composition plan can be found. Otherwise,

the composition will fail due to unable to fulfil the functional requirements. An example

of a composition plan created with a query and a set of event services is shown in Figure

6.3. When the composition plan is generated, it can be implemented by transforming the

plan into an event/stream query and get executed by event/stream processing engines.

The algorithms for event pattern composition have the following assumptions:

1. all events are instantaneous, which means each event has only one timestamp. In

a complex event, the timestamp of the last detected member event is used as its

timestamp;

Core - Pattern-based Event Service Discovery and Composition 102

e1

SEQ

e2

OR

e3

Query

e1

SEQ

e2

type= e4
loc=loc4

e3

e2e1

type= e3
loc=loc3

type= e2
loc=loc2

type= e1
loc=loc1

OR

e3

Composition Plan

e4

loc=loc4 loc=loc3

Event Service 1 Event Service 2

Event Service 3 Event Service 4

Figure 6.3: Example of a composition plan

2. all events delivered by event services are error-free, synchronised and complete;

3. all events have similar payload size;

4. in general, complex events are less frequently detected than their member events.3

The first two assumptions draw the scope for the discussion: only instantaneous events

(while an event with a duration can be seen as a sequence of two instantaneous start and

end events) are dealt with. The third and fourth assumptions allow using a heuristic for

achieving the goal of reusing event patterns: to minimise traffic, a complex event service

composition should contain as few as possible of the member event services, meanwhile,

it should choose more coarse-grained member events. An event composition plan is said

to be network optimised when it demands the least amount of data traffic over the net-

work. Also, consuming the least amount of events will reduce the computation resource

required for a query. Here, we only consider the optimisation from an event consumer’s

perspective, i.e., the composition plan created for the user should be optimised to pro-

duce results for a user efficiently. While this may lead to overloaded subscriptions for a

set of service providers, this effect not discussed in this chapter.

In the following, first the method for determining whether a composition plan is network

optimised is given. Then, a slow algorithm which derives optimised event compositions

is presented. It traverses top-down in the query tree to find substitutes for its sub-trees.

Finally, a fast event composition algorithm based on the event pattern reusability index

3This assumption does not hold for alternation event patterns and their member events.

Core - Pattern-based Event Service Discovery and Composition 103

is developed. The abstract workflows of the two composition algorithms are shown in

Figure 6.4

Create canonical event pattern

Top-down traversal to find isomorphic
sub-patterns Define reusable relations of patterns

Create Event Reusability Hierarchy
(ERH)

Insert query pattern into ERH

Compose with direct children of the
query in ERH

Figure 6.4: Workflow of pattern-based event service composition

6.2.1 Optimisation based on Network Traffic Estimation

Intuitively, to determine whether a composition plan is network optimised, the number

of member event notifications consumed per unit time needs to be calculated. The

simplest case is that the composition plan uses only PESs with pre-described frequencies,

e.g., sensor sampling rates, then by summing up their static frequencies, the messages

consumption rate can be derived. Otherwise, if all the member event services are up and

running and they provide statistics on the frequencies of event notifications, the traffic

demand of each composition can be derived by summing up the latest member event

service frequencies. However, in realistic scenarios, one cannot assume all event services

provide such frequency monitoring operations. Even if they do, there are cases when a

user needs to deploy a batch of complex event services, in which some services may be

used in others’ compositions and they do not have any statistics on their frequencies.

Therefore, the ability to estimate the traffic demands and notification frequencies of

complex events is necessary.

Given an event declaration E = (src, t, ep,D) and the EST Tc(v) = est(fcomplete(ep))

where v ∈ V is the root node, ν(n) denotes the frequency estimation of the member event

Core - Pattern-based Event Service Discovery and Composition 104

represented by the sub tree Tc(n) ⊆ Tc(v). Obviously, ν(v) is the frequency estimation of

event described by ed. The traffic demand of ep is denoted Traffic(ep) =
∑
ν(n) where

Tc(n) is the complete EST of a member event service directly used in the composition

of ep. Given node n ∈ V , m ∈ V ′ where V ′ is the set of child nodes of n, the relation of

ν(n) and ν(m) is given by Equation 6.1.

ν(n)



= freq(n) if n is a primitive event

then its frequency is given

directly by freq(n)

=
∑

ν(m) type(n) = Or

= min{ν(m)} type(n) = And

≤ min{ν(m)} type(n) = Seq

≤ min{ν(m)}
r

type(n) = Rep, r = card(n)

(6.1)

In the above equation, the freq function gives the frequency of a PES directly. The

type function identifies the operator type for a node and the card function gives the

cardinality of a repetition.

The equation calculates the maximum estimated frequencies for a set of member event

services (max{ν(n)}), with which the maximum traffic demand estimation for an event

composition plan that directly uses these services can be derived. Then by choosing

the plans with the minimal estimation, the network optimised composition plans can

be selected. However, there is a limitation of Equation 6.1: filters are not considered.

Indeed, filters may have a strong impact on the frequency. Unfortunately, it is impossible

to estimate the impact without knowing beforehand the value range of data payloads

and their distributions over the range.

6.2.2 Event Pattern Composition based on Substitution

Based on the definitions of event pattern semantics and ESTs, the definition for the

substitute relation between event patterns is provided as Definition 6.17.

Definition 6.17. substitute ⊂ P×P where P is a set of event patterns. substitute(p1, p2)

holds for p1, p2 ∈ P ⇐⇒ isomorphic(fcanonical(p1) = fcanonical(p2)).

Core - Pattern-based Event Service Discovery and Composition 105

From Definition 6.16, if an event pattern is a substitute of another, they are semantically

equivalent and can be seen as exact matches for each other during event service discovery.

Intuitively, to create an event composition, a top-down approach that finds substitutes

for the event pattern (or its sub-patterns) is necessary.

6.2.2.1 Substitution based Event Composition

The top-down event composition algorithm based on substitution (Algorithm 3) tra-

verses a query tree from the root node to the leaves to find substitutes for sub-trees or

different partitions of sub-trees.

The getSubstitutes method in line 2 is a key operation in Algorithm 3, it retrieves the

complex event declarations whose patterns are substitutes to the query. The algorithm

first tries to find an identical tree from a list of candidate canonical trees for the whole

query tree. If there is a match, it will replace the query tree with the matching event

declaration node.

When there’s no direct match for a query, the algorithm tries to find substitutes for sub-

trees (or sub-tree partitions) of the query. If the root node of the query is a repetition

operator, it will first change the cardinality of the operator to its factors (starting from

the biggest factor) and try to find substitutes for all factors (including 1, which makes

the repetition a sequence), if it failed, the algorithm is recursively invoked for each DST

of the root.

If the root is a sequence, conjunction or disjunction operator, the algorithm will create

a set of non-overlapping partitions (using the getDSTPs method in line 34, an example

of the operation is illustrated in Figure 6.5) with its DSTs. Then, the algorithm will

try to find substitutes for each part in each DST partitions. Once all substitutes for a

partition are found, the algorithm adds the composition plan for the partition to a list.

After all possible partitions are investigated, the composition plan with the lowest traffic

demand in the list will be picked (line 42) and corresponding replacements are made. If

no partitions have complete substitutions, the composition algorithm is invoked on each

DSTs of the root node.

6.2.2.2 Complexity Analysis

Algorithm 3 guarantees the creation of network optimised composition plans because

all sub-trees and possible partitions of sub-trees are examined. However, it comes with

the price of very high time complexity. The basic operation of the algorithm is the

getSubstitutes method, which checks the graph isomorphism between a query and a

Core - Pattern-based Event Service Discovery and Composition 106

Algorithm 3 Creates optimal composition plans.

Require: Query Tree: ST , Candidate Trees: cand Query Root: root.
1: procedure compose(ST , cand, root)
2: matchingED ← getSubstitutes(ST, cand)
3: if matchingED 6= ∅ then
4: replacePattern(ST,matchingED, root)
5: else if root.type = REPETITION then
6: hasReplacement← false
7: for f ∈ getFactors(root.r) ∪ 1, r > f >= 1 do
8: newRoot← createRepetition(root.r/f)
9: root.setCardinality(f)

10: matching ← getSubstitute(ST, cand)
11: if matching 6= ∅ then
12: ST ← ST.addRoot(newRoot)
13: replacePattern(ST,matching, root)
14: hasReplacement← true
15: break
16: end if
17: end for
18: if hasReplacement = false then
19: for dst ∈ getDSTs(root, ST) do
20: compose(ST, cand, dst.getRoot())
21: end for
22: end if
23: else
24: hasMatchedPartition← analyzePartition(ST, cand, root)
25: if hasMatchedPartition = false then
26: for dst ∈ getDSTs(root, ST) do
27: compose(ST, cand, dst.getRoot())
28: end for
29: end if
30: end if
31: return results← getOptimal(results)
32: end procedure
33:

Require: Query Tree: ST , Candidate Trees: cand Query Root: root.
Ensure: Boolean result.
34: procedure analyzePartition(ST, cand, root)
35: partitions← getDSTPs(ST, root)
36: replacements← ∅
37: for dstp ∈ partitions do
38: replacement← getSubstitutes(dstp, cand)
39: replacements← replacements ∪ replacement
40: end for
41: if replacements 6= ∅ then
42: replacements← getBestReplacements(replacements)
43: replaceAll(ST, replacements, root)
44: return true
45: else
46: return false
47: end if
48: end procedure

Core - Pattern-based Event Service Discovery and Composition 107

e1

SEQ

e2 e3

e1

SEQ

e2

SEQ

e3

e1

SEQ

e2

SEQ

e3

DST1

DST2 DST1

DST2

getDSTPs(st) DSTP1 DSTP2Syntax Tree: st

Figure 6.5: Example of creating direct sub-tree combinations

candidate. The getSubstitutes operation needs to be executed for every sub-tree and

sub-tree partition for the query, comparing with every existing candidate. Given n

candidates, for a query with average height4 h and node degree d, the worst-case time

complexity of the composition algorithm with regard to getSubstitutes is O((2d)hn).

Clearly, the algorithm cannot scale and a much faster way to compose complex event

services is needed.

6.2.3 Event Pattern Composition based on Re-usability Index

In order to accelerate the composition, a natural thought is to index the ESTs, so that

for a certain sub-query (sub-tree or sub-tree combination), the number of examined

candidates can be reduced. Additionally, if the index can tell which parts of a query can

reuse existing syntax trees, the number of examined sub-queries can also be reduced.

Therefore, a reusability index for event patterns is developed in this section. In the

following the reusable relation between ESTs is provided. Then the reusable relation is

used to organise event patterns into a hierarchy. Finally, how this hierarchy is used to

accelerate the event composition is presented.

6.2.3.1 Reusability of Event Patterns

Informally, an event pattern is reusable to another, if the detection of the former can

be used in the detection of the latter. An event pattern can be directly reusable or

in-directly reusable to another. An event pattern ep1 is directly reusable to ep2, denoted

Rd(ep1, ep2), iff ep1 is a direct sub-event-pattern (6.6) of ep2, more formally:

Definition 6.18. Rd ⊂ P × P where P is a set of event patterns. Rd(p1, p2) holds

for p1, p2 ∈ P ⇐⇒ ∃T (v) ∈ DST (est(fcanonical(p2))) ∧ p2 subsumes , where T (v) =

est(fcanonical(p1)). In this case p1 is said to be directly reusable to p2 on node v.

4For definitions of the height and depth of an EST please see paragraph 5, Section 6.1.1 (after Lemma
6.5).

Core - Pattern-based Event Service Discovery and Composition 108

An event pattern ep1 is in-directly reusable to ep2, denoted Ri(ep1, ep2), iff ep1 is

not directly reusable to ep2, but ep1 can be transformed into ep′1 using a sequence of

operations on the canonical pattern of ep1, as a result, it makes Rd(ep′1, ep2) hold. These

operations have four types: Ffilter : T × F −→ T attaches filters to the roots of syntax

trees; Fmultiply : T × N+ −→ T multiplies the cardinality of repetition of the roots;

Fappend : T × T −→ T adds a sequence of DSTs to the sequential roots as prefixes or

suffices; Fadd : T × T −→ T adds a set of DSTs to the parallel roots. In the above

function definitions, T is a set of ESTs, F is a set of filters. Definition 6.19 formally

define in-directly reusable relation Ri.

Definition 6.19. Ri ⊂ P × P where P is a set of event patterns. Given T =

{the set of all ESTs}, N+ = {positive integers}, F = {the set of all filters}, Ffilter,

Fmultiply, Fappend, Fadd = {sets of transformation functions};
Ri(p1, p2) holds for p1, p2 ∈ P ⇐⇒ ¬Rd(p1, p2)∧∃p′1 ∈ P, T ′ ⊂ T, F ′ ⊂ F, n ∈ N+, T1 =

est(fcanonical(p1)), T ′1 = est(fcanonical(p
′
1)), r = {the root node of T1}, ff ∈ Ffilter, fm ∈

Fmultiply, fadd ∈ Fadd, fapp ∈ Fappend such that Rd(p′1, p2)∧

T ′1 =


ff (fm(T1, n), F ′) type(r) = Rep

ff (fm(fapp(T1, T
′), n), F ′) type(r) = Seq

ff (fm(fadd(T1, T
′), n).F ′) type(r) = And|Or

Similarly, in this case p1 is said to be in-directly reusable to p2 on node r.

Formally, the reusable relation on event patterns R is defined in Definition 6.20. An

example of reusable relations is depicted in Figure 6.6.

Definition 6.20. R = (Rd ∪Ri)

Corollary 6.21 (Reusable is the Inverse of Subsumption). R(p1, p2) ⇐⇒ p2 � p1

e1

SEQ

e2

OR

e4

e3

e1

SEQ

e2 e3

SEQ

e2 e3

directly reusable in-directly reusable

in-directly reusable

Figure 6.6: Example of event pattern reusability

Core - Pattern-based Event Service Discovery and Composition 109

6.2.3.2 Event Pattern Reusability Hierarchy

Using the reusable relation, a hierarchy of event patterns can be built, called an Event

Reusability Hierarchy (ERH). An ERH is a Directed-Acyclic-Graph (DAG), denoted

ERH = (P,R) where P is a set of nodes (canonical event patterns) and R ⊂ P × P
is a set of edges (reusable relations) connecting nodes. Formal definition of an ERH is

provided in Definition 6.22.

Definition 6.22 (Event Reusability Hierarchy). Given an ERH erh = (P,R), ∀(p1, p2) ∈
P , R(p1, p2) holds and @p3 ∈ P such that R(p1, p3) ∧R(p3, p2).

According to Definition 6.22, if an ERH is built for the three event patterns in Figure

6.6, the edge at the top-right is ignored. The nodes that do not reuse any other nodes

are called roots in the ERH, the nodes cannot be reused by other nodes are leaves.

Constructing an ERH requires iteratively inserting canonical event patterns into the

hierarchy. If not all nodes can be inserted into a single ERH, a set of separated ERHs

is derived, called an Event Reusability Forest (ERF). The algorithm that inserts a node

into a given ERF is shown in Algorithm 4.

Algorithm 4 Insert an canonical pattern into an event reusability forest.

Require: Canonical Pattern ep, ERF erf .
1: procedure insert(ep, erf)
2: roots← getRoots(erf), leaves← getLeaves(erf)
3: erf .addNode(ep)
4: parents← getReusable(roots, ep)
5: drawEdges(parentse, p)
6: childNodes← getChildNodes(parents, erf)
7: parents ∪ getReused(childNodes, ep)
8: drawEdges(parents, ep)
9: remove redundant edges

10: if parent is modified then
11: go to 6
12: end if
13: perform reversed operations on leaves
14: end procedure

The above algorithm takes the canonical event pattern ep and an event reusability forest

as inputs. As the first step, it finds all p ∈ P where P is the set of nodes in the forest

such that R(p, ep) holds, starting from the roots (line 4). Then the algorithm draws

all edges for (p, ep) and removes the redundant edges. As the second step, it draws all

necessary edges for (ep, p′), where p′ ∈ P ∧ R(ep, p′) holds. During the navigation of

nodes, if a pattern p′
.
= ep is found, ep is merged into the same node representing p and

the algorithm terminates. This step is omitted in Algorithm 4 for brevity.

Core - Pattern-based Event Service Discovery and Composition 110

As mentioned above, finding reusable components or substitutes for a certain pattern can

be achieved by the first step of the node insertion algorithm. Compared to Algorithm 3 in

which all nodes may need to be compared, it is now possible to use Algorithm 4 to prune

the irrelevant parts of the hierarchy and reduce the number of comparisons required.

Figure 6.7 shows an example of identifying the potential composition components of a

query (the blue node) once inserted into an ERH, and prunes the branches that are not

reusable to the query.

SES2SES2CES4

SES4

SES3

CES1

CES2

Q

CES4

CES5

CES6

PES2

PES3

PES4

PES1

CES0

reuses

Potential Composition Components

Figure 6.7: Example of pruning irrelevant branch via ERH

6.2.3.3 Event Composition Algorithm with Event Reusability Forest

Although the efficiency of the event composition can be improved by reducing the num-

ber of comparisons required, it comes with the price of more complicated comparisons.

Reusability checking is a sub-graph isomorphism problem, which is a generalisation of

substitute checking and is NP-complete. Moreover, the full potentials of the reusability

index are not exploited.

In fact, once a query tree representing an event pattern is inserted into the ERF, the

components needed in the composition plans of the event pattern are prepared, even

if no isomorphic syntax trees are found for the whole query. All one needs to do is to

gather the parent nodes of the inserted query and replace appropriate parts of the query

with the event declarations of these parent nodes. In cases when in-directly reusable

nodes/sub-trees are replaced, additional transformation functions are invoked. If the

replacement results in a bound query, the composition plan is derived, otherwise, the

composition fails due to the lack of required PESs. The algorithm that accomplish this

task is given in Algorithm 5.

Core - Pattern-based Event Service Discovery and Composition 111

Algorithm 5 Event composition for query Q with ERF erf.

Require: Query Tree: Q, ERF erf .
Ensure: Composition Plan Q.

1: procedure composeWithIndex(Q, erf)
2: insert(Q, erf)
3: if an isomorphic node is found then
4: EDs← event declarations of the isomorphic node return getOptimal(EDs)
5: end if
6: parents← getParents(Q, erf)
7: for p ∈ parents do
8: if Rd(p,Q) then
9: directlyReplace(Q, p)

10: else
11: inDirectlyReplace(Q, p,getDSTs(p))
12: end if
13: end for
14: if Q is bound then return Q
15: end if
16: Fail
17: end procedure

The directlyReplace operation in line 9 replace the sub-tree in Q that is isomorphic to

p with the optimal event declarations of p. When Ri(p,Q) holds and p′ = F (p) is the

transformed pattern, according to Definition 6.19, the set of DSTs of fcanonical(p) is a

subset of the DSTs of fcanonical(p
′). The inDirectlyReplace operation will replace all

DSTs (as well as all possible partitions of the DSTs) of p′ in Q which are isomorphic to

the DSTs of p with the event declarations of p, with necessary filter attachments and

cardinality changes.

Compared to Algorithm 3 which requires O(n(2d)h) graph isomorphism checks to find

proper substitutes, Algorithm 5 only needs O(2n) subgraph isomorphism comparisons

(which is NP-complete in it self [187]) to find reusable components. The efficiency of

event composition is greatly improved by Algorithm 5.

6.3 Experiment Evaluation

In this section, the performance of the proposed algorithms is evaluated with simulation

datasets. Three sets of experiments are conducted to evaluate the performance of the

event query reduction (Algorithm 1), event reusability forest construction (Algorithm 3)

and event compositions (Algorithm 2 and 4). In the following, the general experiment

settings are described, then, the detailed settings for each experiment and its results are

elaborated.

Core - Pattern-based Event Service Discovery and Composition 112

6.3.1 General Experiment Settings

All experiments are carried out on a Macbook Pro with a 2.53 GHz duo core CPU and

4 GB 1067 MHz memory. The algorithms and experiments are developed in Java (JDK

1.7) and deployed on a JVM with 256 to 2048 MB heap size. Unless otherwise specified,

the experiments in this thesis are carried out in this setup.

In order to have more accurate results, all results are averaged from 5 test iterations for

each test setting. To ensure the test results are unbiased, an Event Pattern Generator

(EPG) is developed to create random event patterns/queries. The EPG will choose the

leaf nodes used in event patterns randomly from 10 different primitive events. The event

operators are also randomly created as roots or intermediate nodes in query trees. It

is worth mentioning that the EPG is designed to be generic enough to cover different

types of queries that could be used in the smart city scenarios introduced in Section 2.1.

To ensure the random event pattern creation stops at some point, and also to have some

control on the size of patterns (number of nodes in the query tree) created, the EPG

receives two parameters: height and degree, specifying the maximal tree height and

degree of the output. The EPG is used to create simulated datasets in the experiments.

6.3.2 Performance of Event Query Reduction

Query reduction is a basic and important operation in CES discovery and composition.

To test its performance, the EPG is used to generate 5000 event patterns. The query

trees of these patterns have a maximum degree and height of 5. The query reduction

algorithm is invoked on each pattern and the execution time is grouped by the size of

patterns. In this way, the minimal, maximum and average reduction time are derived for

event patterns of different sizes. An average group size of about 33 patterns is expected

(5000/150), when group sizes are relatively small (e.g., only less than 10 patterns are

created with 25 nodes), we do not include the result for this group (sample size too

small). Figure 6.8 shows the results of the experiment.

The results show that most event patterns can be reduced to their canonical forms

efficiently, in fact, 92% of the event patterns are reduced in less than 100 ms. However

several ”spikes” occur in the maximal reduction times, 2.4% of event patterns took more

than one second to be reduced, and in extreme cases, it goes up to 8 seconds. After

investigating the dataset, it is observable that these extremely long reduction time are

due to the nested repetition nodes in the query tree. Since the repetition nodes are

first transformed into sequence operators in order to identify possible merges with other

sequences, they may significantly increase the total size of the pattern. As a result, the

Core - Pattern-based Event Service Discovery and Composition 113

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

20
	

29
	

37
	

45
	

53
	

61
	

69
	

78
	

87
	

96
	

10
5	

11
4	

12
3	

13
2	

14
2	

15
8	

Re
dc
u&

on
	
 &
m
e	

in
	
 m

s	

Size	
 of	
 pa2ern	

min	

max	

avg	

Figure 6.8: Execution time of query reduction

merge operation may take much more time. A partial solution to the problem is to use

faster graph isomorphism algorithms and accelerate the merge operations. In conclusion,

the query reduction algorithm is efficient for most event queries.

6.3.3 Performance of Event Reusability Forest Construction

The feasibility and efficiency of ERF construction are evaluated by measuring the time

required. The EPG is used to create 100 to 1500 random event patterns with different

maximal degree and height parameters. Then, the ERF construction algorithm is in-

voked on these sets of patterns to observe the time needed. Figure 6.9 shows the results

of the experiment.

Figure 6.9: Execution time of hierarchy construction

In the above results, the lowest blue line indicates the time needed for constructing

an ERF with sets of random event patterns with an average pattern size of 10 nodes.

Core - Pattern-based Event Service Discovery and Composition 114

For example, with 1500 event patterns, it took 58 seconds to complete the construc-

tion. Similarly, the red line in the middle represents the set of event patterns with 25

nodes on average and completes the construction in 323 seconds. Finally, the green line

represents the set of event patterns with 70 nodes on average and take nearly an hour

to construct the hierarchy. The results indicate that for event patterns with around 25

nodes, inserting it into a 1500-node forest could take hundreds of milliseconds. However,

inserting a large and complex event pattern with about 70 nodes into a large forest with

1500 very complicated event patterns could take more than 2 seconds.

6.3.4 Performance of Event Composition

In order to evaluate the composition algorithms, fixed sets of queries are composed based

on the fixed sets of candidate replacements/reusable components for both indexed and

unindexed algorithms to compare their results. More specifically, the EPG is used to

create 500 and 1000 event patterns with an average pattern size of 25 nodes as candidates.

The EPG is then used again to create 3 sets of event patterns as queries. There are 100

event patterns in each query set and their average pattern size are 10, 14 and 25 nodes.

Figure 6.10 shows the time needed for each query set against each candidate set using

indexed or unindexed composition algorithms.

220	
 450	
 304	
 1162	
 638	

2413	
 1528	

4521	

11941	

6606	

42215	

17370	

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

unindexed	
 500	
 indexed	
 500	
 unindex	
 1000	
 indexed	
 1000	

Ti
m
e	

in
	
 m

s	
 Avg	
 EP	
 size	
 10	

Avg	
 EP	
 size	
 14	

Avg	
 EP	
 size	
 25	

Figure 6.10: Execution time of composition: indexed vs. unindexed approaches

The results indicate that for small event patterns, the unindexed approach out-performs

the indexed one, but for large event patterns the indexed algorithm is much faster. This

is aligned with the discussions in Section 5: reusability checking is more complicated than

graph isomorphism, but the number of subgraphs compared is much less for reusability

checking in large graphs. In fact, the algorithms are also tested with 70-node queries,

the indexed approach took 75 and 157 seconds to complete but the unindexed algorithm

terminates before finish due to insufficient memory (with heap size set to 2 GB).

Core - Pattern-based Event Service Discovery and Composition 115

Another factor causing the slowly indexed composition on small patterns is that the

shape of the forest is too “flat” for random patterns, i.e., very few candidate event

patterns reuse others. In fact, it is observable that about 80% of the nodes in the random

forests are roots which do not reuse other patterns. In such forests, the advantage of

navigating the forest/hierarchy to avoid unnecessary comparisons is not significant. In

real world scenarios, there are reasons to believe users may use existing event patterns

as templates to create new ones, so that the probability of reusability can be higher

than randomly created datasets. To evaluate the impact, a reuse probability is assigned

from 10% to 90% to the EPG to make it reuse existing patterns with the assigned rate.

Figure 6.11 demonstrates the impact of reuse probability. It shows the time required

for composing 100 14-node queries on 1000 14-node candidates created with different

reuse probabilities. The results indicate that even for simple event patterns, the indexed

approach is faster than the unindexed one when the probability of reuse is above 70%.

0	

1000	

2000	

3000	

4000	

5000	

6000	

0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	

Co
m
po

si
'o

n	

'm

e	

in
	
 m

s	

Reuse	
 probability	

unindexed	

indexed	
 	

Figure 6.11: Impact of reuse probability on indexed composition

6.4 Related Work

Complex event service composition can be seen as a variant of service composition.

However, current planning based service composition (e.g., the work done by Rao et

al. [27]) only consider the matching of input/output message types and the evaluation

of logical formulas in preconditions/effects. In complex event service composition, it

is not straightforward to define preconditions and effects for event detection tasks, nor

is it enough to create composition plans based on matchmakings between event types.

Rather, comparing event patterns/queries in event service descriptions/requests is es-

sential to determine their reusability. In database systems, various techniques including

query subsumption (Deen et al. [68]), multiple query optimisation (Sellis et al. [188])

and y-filter [189] etc. are developed to share and reuse partial results among similar

Core - Pattern-based Event Service Discovery and Composition 116

queries in static databases. The pattern-based CES composition in ACEIS is inspired

by query subsumption: the subsumption (inverse of reusable) relationships are identified

between canonical event patterns.

Reusing event queries/subscriptions is also discussed in many other event based systems,

including content-based event overlay networks [44, 190–195] and CEP query optimisa-

tion [97, 196].

Hasan et al. [194] and Curry et al. [190] evaluate the reusability of event queries

based on the similarity between event attribute types and values, no event patterns

are considered. SIENA [44] and its extended version [192] reuse only simple attribute

filters and sequential event patterns by defining a subscription covering relation. In

the works done by Li et al. [191] and Long et al. [193], brokers are equipped with

event engines which makes them capable of processing more event operators, however,

the decomposition of event subscriptions follows a top-down traversal on the query tree

without considering different partitions of sub-trees. Akdere etl al. [196] consider using

shared events to reduce event detection cost, however, the complexity of finding shared

events are not discussed. Schultz-Moller et al. [97] uses different measures for different

operators to find reusable sub-events, i.e., for conjunctive and disjunctive operators they

use a greedy algorithm with time complexity O(n log n), while for sequential pattern

they develop a dynamic programming algorithm with the time complexity O(n3). When

a query is deployed, a top-down traversal tries to find the largest already deployed

component in the query, and builds the remaining part bottom-up. In this chapter,

the reusability index is used to accelerate reusable sub-event discovery while ensuring

network optimised plans.

E-Cube [197] also analyses the reusability between event patterns and organises them

into a hierarchy. The main differences to the approach in ACEIS are 1) E-Cube only

supports sequence and negation operators, whereas sequence, conjunction, disjunction

and repetition operators is supported in this thesis, and 2) E-Cube has different rules

in determining reusable relation between sequence patterns, e.g.: the event sequence

E4 := (E1, E2, E3) is reusable to E5 := (E1, E3) in E-Cube but not so in ACEIS. As a

result, when E5 tries to reuse E4, an overhead of checking ¬E2 is required. Table 6.1

summarises the comparison of the related work in this chapter.

6.5 Summary and Discussion

In this chapter, the discovery and composition methods are discussed for CESs described

with the event pattern semantics and formats from Chapter 5. A canonical form of event

Core - Pattern-based Event Service Discovery and Composition 117

Approaches Differences to pattern-based discovery and compo-
sition in ACEIS

Conventional service com-
position like Rao et al.
[27]

Service matchmaking on IOPE, not suitable for complex
event services.

Query reuse in database
systems e.g., Deen et al.
[68], Sellis et al. [188], Y-
Filter [189]

Suitable for query over static databases, temporal logics not
considered.

Hasan et al. [194] and
Curry et al. [190]

Consider reusability based on similarity of event attributes
not event patterns.

SIENA [44, 192] Reuse only simple attribute filters and sequential event pat-
terns.

Li et al. [191] and Long et
al. [193]

Partitions of sub-trees in patterns not considered when find-
ing reusable events.

Akdere etl al. [196] The complexity of finding shared events are not discussed.
Schultz-Moller et al. [97] Use dynamic programming and greedy algorithms to find

optimal execution plans, but the optimal plan is not guar-
enteed.

E-Cube [197] Supports only sequence and negation, overhead exists when
reusing sequences that differ by negative event types.

Table 6.1: Related works in complex event pattern reuse

patterns can be derived by first creating a complete pattern and then removing all re-

dundant nodes in the complete pattern. It is proved that by comparing the isomorphism

of canonical event patterns, one can determine if two patterns are semantically equiva-

lent, i.e., can be used as substitutes during CES discovery and composition. A top-down

traversal algorithm is developed to compose CESs based on substitution. However, it is

evident that this approach would not scale for complicated queries and large datasets.

In order to accelerate CES composition, a CES index based on the reusability of event

patterns is proposed, called an Event Reusability Forest (ERF). A CES composition al-

gorithm using ERF is introduced to reduce the number of graph isomorphism checking

operations needed during the composition. The query reduction and ERF construc-

tion algorithm are evaluated for their feasibility and efficiency. Both the indexed and

un-indexed composition algorithms are evaluated for their efficiency. The results indi-

cate that for randomly created queries and datasets, the indexed composition algorithm

has a better performance that the un-indexed when the query is complicated and ser-

vice repository is large. It is also observed that when more reusable relations can be

found in the service repository, the performance of the indexed composition improves

significantly. In the next chapter, the composition algorithm is extended to handle QoS

constraints and preferences defined by users.

Chapter 7

Constraint-aware Event Service

Discovery and Composition*

In Chapter 6 Complex Event Processing (CEP) applications are provided as reusable

services and the reusability of those event services is determined by examining complex

event patterns and primitive event types and attributes. Event service composition

based on functional properties is therefore addressed. However, it is still difficult to

determine which event service candidates (or service compositions) best suit users’ and

applications’ multi-modal Quality-of-Service (QoS) requirements. A sub-optimal service

candidate/composition may lead to inaccurate event detection, lack of system robustness

or delay in event detection etc.

QoS-aware event service discovery, i.e., finding direct matchings (without service com-

position) for event service requests while fulfilling the QoS constraints is trivial. For

example, given an event service described by a tuple E = (src, t, ep,D,Q), where src

describes the service endpoints, t is the domain-specific event type, ep is the event pat-

tern describing the temporal and logical rules for detecting complex events, D is the data

payloads of the event and Q is the QoS parameters of the event service. An event service

request is a tuple Er = (tr, epr, Dr, Const, Pref), where tr is the requested event type,

epr is the requested event pattern, Dr is the requested data payloads, Const is a set of

QoS constraints and Pref is a set of QoS preferences. If epr = ∅, i.e., requested event

service is a PES, E matches Er if and only if: 1) tr subsumes t, 2) ∀dr ∈ Dr, ∃d ∈ D such

that dr = d or dr subsumes d and 3) Q satisfies Const. If epr 6= ∅, the first condition

is replaced by epr is semantically equivalent to ep, denoted epr
.
= ep. However, when

event service compositions are considered, the problem gets more complicated.

*Part of the content in this chapter is published in [198].

118

Core - Constraint-aware Event Service Discovery and Composition 119

The goal of the study in this chapter is to enable a QoS-aware event service composition

and optimisation. By doing so, this chapter implements the constraint-aware event ser-

vice discovery and composition functionalities in the Resource Management component

in the Automatic Complex Event Implementation System (ACEIS), as shown in Figure

7.1.

 ACEIS Core

Resource
Management

Application
Interface

Semantic Annotation

Knowledge Base

Data Mgmt,
Indexing,
Caching

Stream
Description

Historical
Events

User Input

Event Request (with
QoS constraints)

Data
Federation

Resource Discovery

Event Service Composer

Composition Plan

Subscription
Manager

Query Transformer

Query Engine

Query

Results

Sc
he

du
le

r

QoS
Updates

In
fo

rm
at

io
n

M
od

el

(O
nt

ol
og

ie
s)

Adaptation
Manager

Data Streams

Social Media Sensor Observations Stream Quality Updates

Figure 7.1: The resource management module in ACEIS

In order to facilitate constraint-aware event service discovery and composition, two issues

should be considered: QoS aggregation and composition efficiency. The QoS aggrega-

tion for a complex event service relies on how its member events are correlated. The

aggregation rules are inherently different to conventional web services. Efficiency be-

comes an issue when the complex event consists of many primitive events, and each

primitive event detection task can be achieved by multiple event services. In summary,

this chapter needs to address the following two issues:

1. How to create QoS aggregation rules and utility functions to estimate and assess

QoS for event service compositions?

2. How to enable efficient event service compositions and optimisation with regard

to QoS constraints and preferences based on Genetic Algorithms?

Core - Constraint-aware Event Service Discovery and Composition 120

The remainder of this chapter is organised as follows. Section 7.1 addresses the first issue

by developing a QoS aggregation schema over multiple QoS dimensions. Different aggre-

gation rules are provided for QoS dimensions to estimate the overall QoS performance

of an event service composition based on the composition plan and the QoS of the event

services involved in the composition plan. A QoS utility function is provided to quantify

the QoS performance and compare them. Section 7.2 tackles the second issue by de-

signing a Genetic Algorithm (GA) for optimising event service compositions, using the

QoS utility as the heuristic. Section 7.3 evaluates the performance of the GA and pro-

vide validations for the QoS aggregation schema using both real and synthetic datasets.

Section 7.4 discuss the state-of-the-art in QoS-aware service composition before Section

7.5 summarises.

7.1 QoS Model Aggregation Schema

The QoS properties of event service compositions may vary depending on the set of

member event services used in the compositions. Some QoS properties may propagate

along the event service network. In this section, a QoS model is used to represent

some sample QoS properties discussed in literature (e.g., [84, 85, 199–201]). Then the

QoS aggregation schema is presented to estimate the QoS properties for complex event

service composition plans. Finally, a utility function is introduced to evaluate the QoS

performance under constraints and preferences.

7.1.1 QoS Properties of Event Services

The event QoS attributes describe the non-functional performance of event services (and

service compositions). In [199, 200] a stream quality ontology is developed for modelling

the quality of Internet-of-Things (IoT) data streams. In this chapter, the following

QoS attributes are considered propagatable in event service compositions (when a data

stream is modelled as an event service):

• Latency (L) describes the delay of an event service, i.e., the temporal difference

between the time when the event consumer receives the notification and the time

when the event actually happens (usually denoted by the timestamp of the event),

latency is studied in [84, 85, 201–203],

• Price (P) describes the monetary cost for an event services, price is studied in

[84, 85, 201],

Core - Constraint-aware Event Service Discovery and Composition 121

Table 7.1: Overall quality-of-service calculation

Dimensions
QoS Symbols

Overall Calculation
SI CP EE

Latency Li Lc Le L = Li + Lc + Le

Monetary Pi Pc n/a P = Pi + Pc

Energy Engi Engc Enge Eng = Engi + Engc + Enge
Network n/a Bc n/a B = Bc

Availability Avai Avac n/a Ava = Avai ×Avac
Completeness Ci Cc Ce C = Ci × Cc × Ce

Correctness Acci Accc Acce Acc = Acci ×Accc ×Acce
Encryption Si Sc n/a S = min(Si, Sc)

• Energy Consumption (Eng) describes the energy cost for an event service, energy

cost is studied in [84, 204, 205],

• Bandwidth Consumption (B) describes the usage of network bandwidth for an

event service, network usage is studied in [84, 201, 203]

• Availability (Ava) describes the possibility of an event service being accessible, it

can be numerically represented in percentages, availability is studied in [84, 85],

• Completeness (C) describes the completeness of events delivered by an event ser-

vice, it can be numerically represented as recall rates in percentages, completeness

is studied in [85, 201],

• Accuracy (Acc) describes the correctness of events delivered by an event service, it

can be numerically represented as percentages indicating the possibility of having

correct results, accuracy is studied in [203, 206, 207], and

• Security (S) describes the security protocol used by event services numerically

represented as integer encryption levels, higher numerical value indicate higher

security levels, security is studied in [84, 203].

By the above definition, a quality vector Q =< L,P,Eng,B,Ava,C,Acc, S > can be

specified to indicate the performance of an event service in 8 dimensions.

7.1.2 Quality-of-Service Aggregation

The QoS performance of an event service composition is considered to be influenced

by three factors: Service Infrastructure, Composition Pattern and Event Engine. The

Service Infrastructure consists of computational hardware, service Input/Output (I/O)

implementation and the physical network connection, it determines the inherent I/O

performance of a service. The Composition Pattern refers to the event patterns evaluated

locally by the event engine and the set of member event services directly involved.

Core - Constraint-aware Event Service Discovery and Composition 122

Table 7.2: Quality-of-Service aggregation rules based on composition patterns

QoS Dimensions Aggregation Rules Applicable Event Operators
Pc(E)

∑
Pc(e),where e ∈ Eice And, Or, Sequence, Repetition

Engc(E)
∑
Engc(e),where e ∈ Eice And, Or, Sequence, Repetition

Bc(E)
∑
Bc(e),where e ∈ Eice And, Or, Sequence, Repetition

Avac(E)
∏
Avac(e),where e ∈ Eice And, Or, Sequence, Repetition

Accc(E)
∏
Accc(e),where e ∈ Eice And, Or, Sequence, Repetition

Sc(E) min{Sc(e)|e ∈ Eice} And, Or, Sequence, Repetition

Lc(E)
Lc(e)|e = last event in Edst} Sequence, Repetition

avg{Lc(e)|e ∈ Edst} And, Or

Cc(E)

min{Cc(e) · f(e), e ∈ Edst}
card(E) · f(E)

And, Sequence, Repetition

max{Cc(e) · f(e), e ∈ Edst}
f(E)

Or

Indeed, the performance varies on which services are used to produce the member events

and how they are logically correlated by event operators. For the event correlations,

four event operators are considered: And, Or, Sequence and Repetition. The internal

implementation of the Event Engine also has an impact on the event service composition

performance. However, it can be difficult to assess or specify, because it depends on

different implementations of event engines. Different QoS parameters have different

characteristics and thus different aggregation rules can be applied to them.

Table 7.1 summarises how different QoS parameters of an event service composition are

calculated based on the three factors. In this table, we assume event engines are free to

use, always ready to accept new queries when deployed, and do not introduce security

issues. When network consumption is measured in the number of event messages, we

consider it irrelevant to the service infrastructure (connection types, messaging formats

etc.). We do consider the effect of service infrastructure over accuracy because out-of-

synchronization messages during data transmission may lead to incorrect results. For a

primitive event service that is not equipped with CEP engines (e.g., a sensor service),

its overall quality vector is identical to the quality vector of the Service Infrastructure.

The Composition Pattern is a key factor in aggregating QoS properties for event service

compositions. A step-wise aggregation over Event Syntax Trees (ESTs) is adopted to

aggregate QoS properties. More specifically, the aggregation rules are applied iteratively

from the leaves to the roots on ESTs. Aggregation rules for different QoS dimensions

can be event operator dependent or independent. Event operator dependent rules are

defined based on the QoS properties of the set of Direct Sub-Trees (DSTs) of the entire

event syntax trees. Event operator independent rules are defined based on the QoS

properties of the set of Immediately Composed Event services (ICEs). Table 7.2 shows

the detailed rules for each quality dimension. In the following the rationale for each rule

is explained.

Core - Constraint-aware Event Service Discovery and Composition 123

1. Price, Energy Consumption are operator independent properties. They can

be specified in different manners, e.g., the price can be charged over subscription

time or volume, similar for energy consumption. For simplicity, it is assumed that

they are specified over time. The overall price or energy cost of an event service E

is the sum of the price or energy cost of the immediately composed event services

(denoted Eice).

2. Bandwidth Consumption can be measured by the number of events consumed

by an event composition, i.e., its traffic demand. It is an operator independent

property, the aggregated bandwidth consumption is the sum of the product of the

completeness and the frequencies of the services in Eice (denoted f(e), e ∈ Eice).

Recall that the method for estimating frequencies of event services is given in

Equation 6.1.

3. Availability, Accuracy and Security are operator independent properties. The

availability and accuracy of E are the multiplication of event service availability

and accuracy in Eice. The rationale of using the multiplication is that a result is

considered incorrect if one of the inputs used to calculate the result is incorrect.

By the same logic, the availability is aggregated using multiplication. The security

level is determined by the most vulnerable event service in Eice.

4. Latency of event E is an operator dependent property. It is determined by the

last event completing the event pattern of E [196] . Therefore, if the root operator

of E is a sequence or repetition, the latency of E is the same as the last event

in the direct sub-events of E (denoted Edse). Since it is hard to predict when

the last direct sub-event occurs in parallel operators, i.e., “And” and “Or”, an

approximation is made with the average of the latencies of the event services in

Edse.

5. Completeness is an operator dependent property. The completeness of E can

be estimated based on its direct sub-event frequencies (f(e), e ∈ Edse), and com-

pleteness (Cc(e), e ∈ Edse).
min{Cc(e)·f(e)|e∈Edse}

(card(E)) or max{Cc(e)·f(e)|e∈Edse}
(card(E)·f(E)) represents

how often all or any direct sub-event instances would occur under the influences of

the completeness, where card(E) gives the cardinality1 of the root operator of E.

The completeness of E is derived by dividing this frequency with the estimated

frequency of E.

1For repetition operators their cardinalities are greater than 1, for other operators the cardinality is
1.

Core - Constraint-aware Event Service Discovery and Composition 124

7.1.3 Event QoS Utility Function

In order to choose the best service composition under users’ QoS constraints and pref-

erences, a QoS utility function is needed. Defining such a utility function falls into the

category of Multi-Criteria Decision Making (MCDM). In MCDM research, numerous

methods have been proposed (e.g., see [208]). While defining a sophisticated utility

function is not the focus of this chapter, the Simple Additive Weighting (SAW [86])

technique is used to define the service QoS utility. It is worth noting that by applying

SAW the following three assumptions are made [209]:

1. risk independence, implying the uncertainty of QoS values are not considered,

i.e., the probability p of a QoS attribute q has the value v is not modelled,

2. preferential independence, implying preferences over values of a set of QoS

attributes do not depend on the values of other attributes and

3. utility independence, implying QoS attributes are independent of each other.

The first assumption is trivial because the probability of errors in the QoS aggregation

is not considered. The second assumption also holds because a total order can be ap-

plied to all eight QoS dimensions discussed in Section 7.1.1, regardless of the values in

other dimensions. For example, under any circumstances, it is safe to assume that lower

latency is more desirable, as well as higher accuracy. The third assumption is a simpli-

fication of the real-world settings: sensors may use more energy to take more samples

in order to achieve higher accuracy, and the bandwidth consumption of a composition

plan may have a correlation with the completeness of the composition. In this chapter,

the correlations between quality attributes are not modelled. The same assumptions are

made in existing works on QoS-aware service composition (e.g., in [85, 87, 90, 201, 210]),

since SAW is adopted in these works.

Given a quality vector of an event service compositionQ =< L,P,Eng,B,Ava,C,Acc, S >

representing the service QoS capability, q denotes one of the eight quality dimensions in

the vector (e.g., qL for the latency of a composition plan, say 100 milliseconds), O(q) as

the theoretical optimum value in the quality dimension of q (e.g., for latency the opti-

mum value is 0 seconds), C(q) as the user-defined value specifying the hard constraints

(i.e., worst acceptable value, say 10 seconds) on the dimension, and 0 ≤ W (q) ≤ 1

as the weighting function of the quality metric, representing users’ preferences (higher

W (q) means more important for the user). Further, QoS properties can have positive or

negative tendency: Q = Q+ ∪Q−, where Q+ = {Ava,R,Acc, S} is the set of properties

with the positive tendency (larger values the better), and Q− = {L,P,Eng,B} is the

Core - Constraint-aware Event Service Discovery and Composition 125

properties with the negative tendency (smaller values the better). The QoS utility U is

derived by:

U =
∑W (qi) · (qi − C(qi))

O(qi)− C(qi)
−
∑W (qj) · (qj − C(qj))

C(qj)−O(qj)
(1)

where qi ∈ Q+, qj ∈ Q−. Intuitively Equation (1) calculates a utility for a QoS parameter

by measuring how good the QoS parameter in a composition plan is (difference to the

worst case constraints) by comparing it (the aggregated QoS parameter) with how good

it can be in theory (difference between constraints and theoretical optimum values).

According to Equation (1) the best event service composition should have the maximum

utility U . A normalised utility with values between [0, 1] can be derived using the

function Ū = (U + |Q−|)/(|Q+|+ |Q−|).

7.2 Genetic Algorithm for QoS-Aware Event Service Com-

position Optimisation

The detection of the complex event pattern of an event service composition can be

achieved by monitoring different sets of member events on different granularity levels.

Each member event detection task can be achieved by subscribing to a set of event

services. If a complex event pattern can be detected by n different sets of sub-events,

each set has an average size of m sub-events, and each sub-event detection task can be

implemented by subscribing to l (on average) event service candidates, the total number

of concrete composition plans is estimated to be n·lm. In large scale scenarios, it is highly

inefficient to enumerate all possible compositions of event services and evaluate their

overall performance. In this chapter, a heuristic method based on Genetic Algorithms

(GA) is developed to derive global optimisations for event service compositions, without

the need for enumerating all possible composition plans. The algorithm is intended to

be deployed as an event service discovery/composition engine on a server.

Typically, a GA requires a genetic encoding for the solution space, as well as a fitness

function to evaluate the solutions. A standard GA-based search iterates the procedure

of select, crossover and mutate until termination conditions are met.

The GA approach in this chapter follows these steps. A workflow of the QoS-aware

event service composition is shown in Figure 7.2. The “fitness” of each solution can be

evaluated by the QoS utility function in Equation (1). Compared to traditional GA-

based optimisations for service compositions, where a composite service is accomplished

by a fixed set of service tasks, event service compositions can have variable sets of

sub-event detection tasks. Determining which event services are reusable to the event

service request is resolved in Chapter 6, where hierarchies (i.e., ERHs, introduced in

Core - Constraint-aware Event Service Discovery and Composition 126

Section 6.2.3.2) of reusable event services are maintained, called an Event Reusability

Forest (ERF). The termination of the GA can be configured with different conditions,

e.g., terminates after a duration of time, after a number of generations, or when the

differences among the individuals in the population are marginal, i.e., the results have

converged.

Define fitness function Population
initialisation

Selection of individuals based on
fitness

Crossover genetic encodings of
selected individuals

Mutation

Set derived results as the next
generationTermination

Figure 7.2: Workflow of QoS-aware event service composition

7.2.1 Population Initialisation

Given an event service composition request represented by a canonical event pattern ep,

the initialisation of the population consists of three steps. First, enumerate all Abstract

Composition Plans (ACPs) of ep. An ACP is a composition plan without concrete event

service bindings. Second, pick randomly a set of ACPs. Third, for each chosen ACP,

pick randomly one concrete event service binding for each sub-event involved. Then, a

set of Concrete Composition Plans (CCPs) with random structure and service bindings

are obtained. The second and third steps are trivial. In the following, the method for

creating ACPs based on ERF is explained.

type= congestion
loc=A,B,C

e4

e1

AND

e3

SEQ

e1

AND

e4

e2

e1 type= e4
loc=D

type= e1
loc=A

Event Service 1

Event Service 2

Event Service 4
Event Service 3

reusable on evtreusable on SEQ

reusable on B

reusable on C
e2

type= e2
loc=B e3e2

Figure 7.3: Marking the reusable nodes

Core - Constraint-aware Event Service Discovery and Composition 127

When an event pattern ep is inserted into the ERF, the reusable nodes in the EST of

ep are marked, denoted Nr: Nr ⊆ fcanonical(ep) ∧ ∀n ∈ Nr, ∃ep
′ ∈ ERF , ep

′
is reusable

to ep on n, as depicted in Figure 7.3. Obviously, a primitive event involved in ep has

at most 1 ACP, which is subscribing to the primitive event services with the requested

primitive event type. And the ACPs for any sub-event patterns of ep (including ep itself)

can be enumerated by listing all possible combinations of the ACPs of their immediate

reusable nodes. By recursively aggregating those combinations, the ACPs for ep are

derived. The purpose of creating ACPs is to create “templates” for generating random

concrete composition plans, i.e., different ACPs will have different structures in their

ESTs.

It is worth noting that although it requires enumerating all ACPs to ensure the diversity

in the structure of event compositions, the size of the different combinations of reusable

sub-events is moderate, compared to the size of all concrete composition plans. The

reusable relations can be efficiently retrieved from the ERF. Therefore, the enumeration

of ACPs can be done efficiently.

7.2.2 Genetic Encodings for Event Syntax Trees

Individuals in the population need to be genetically encoded to represent their various

characteristics. In a typical encoding for service compositions, each service task is en-

coded with a value indicating the concrete service implementing the task. These values

are ordered in a sequence so that the positions of the values indicate to which service

tasks they relate. Similarly, the event detection tasks (leaf nodes) in a CCP are encoded

with values to indicate the service bindings used. However, the positions of the values

(arranged in any tree traversal order) cannot represent which parts of the event detec-

tion task the reused event services contribute, since the CCPs are partially-ordered trees

with variable structures. The only thing identifying an event detection task is the event

pattern it detects.

Nevertheless, the sequence of ancestors of the nodes can give a hint about which roles

they play in the entire event pattern and reducing the search space while finding their

functional equivalent counterparts. Therefore, global identifiers are assigned to all the

nodes in the CCPs and a leaf node in a CCP is encoded with a string of node identifiers

as a prefix representing the path of its ancestors and a service identifier indicating the

service binding for the leaf, as shown in Figure 7.4. For example, a gene for the leaf node

“n13” in P2 is encoded as a string with prefix “n10-n11” and a service id for the traffic

service candidate for road segment B, i.e., “es3”, hence the full encoding of the gene is

Core - Constraint-aware Event Service Discovery and Composition 128

n13 :< n10 − n11, es3 >. The complete set of encodings for every gene constitutes the

chromosome for P2.

7.2.3 Crossover and Mutation Operations

After the population initialisation and encoding, the preparation tasks for GA based

optimisation are completed. The algorithm iterates the cycle of select, crossover and

mutation to find optimal solutions. The selection is trivial, individuals with better

finesses (QoS utility derived by Equation (1)) are more likely to be chosen to reproduce.

In the following the details of crossover and mutation operations are explained.

7.2.3.1 Crossover

e4

e1

AND

e2

OR

n1

n2 n3

n4 n5

e4

OR

n7

n8 n9

P1

e5

P2

e4

e1

AND

e2

OR

n10

n11 n12

n13 n14

Cross Point

Reusable Node

n8:<n7,es1>,
n9:<n7,es2>.

n13:<n10n11,es3>,
n14:<n10n11,es4>,
n15:<n10n11,es5>,
n12:<n10,es6>.

Cross Over

Picked Leaf

chromosome for P2

chromosome for P1

C1

e4AND

OR

n7

n11 n9

e4

OR

n10

n8 n12

C2

e5

n13:<n10n11,es3>,
n14:<n10n11,es4>,
n15:<n10n11,es5>,
n9:<n7,es2>.

n8:<n10,es1>,
n12:<n10,es6>.

chromosome for C2

chromosome for C1

Query Space CCP Space

es3

es2

es1

e3

n6

es1 es2

es4

e3

es5

n15
es6

es6

e1 e2

n13 n14

es3 es4

e3

es5

n15

Figure 7.4: Example of genetic encoding and crossover operation

In order to ensure valid child generations are produced by the crossover operation,

parents must only exchange genes representing the same part of their functionalities,

i.e., the same (sub-) event detection task, specified by semantically equivalent (sub-)

event patterns. An example of crossover is illustrated in Figure 7.4. The pseudo code

of the crossover algorithm is shown in Algorithm 6.

Given two genetically encoded parent CCPs P1 and P2, the event pattern specified in

the query Q and the event reusability forest ERF , the crossover algorithm takes the

following steps to produce the children:

1. Pick randomly a leaf node l1 from est(P1), create the node type prefix ntp1 from

the genetic encoding of P1: code1, as follows: replace each node id in the prefix of

code1 with the operator type,

Core - Constraint-aware Event Service Discovery and Composition 129

Algorithm 6 Crossover Algorithm

Require: Event Pattern: P1, P2, ERF erf , CrossoverRate : r.
Ensure: Event Pattern after Crossover: P ′1, P

′
2.

1: procedure crossover(P1, P2, erf)
2: rand← rand(0, 1)
3: if rand ≥ r then
4: return P ′1 ← P1, P

′
2 ← P2

5: end if
6: encodings1 ← encode(P1), encodings2 ← encode(P2)
7: foundCrossPoints← false, visited← ∅
8: while foundCrossPoints 6= true ∧ visited 6= encodings1 do
9: if code1 ← getRandElement(encodings1) /∈ visited then

10: visited← visited ∪ code1

11: n1 ← getLeaf(code1), subTree1 ← getSubTree(n1, P1)
12: ntp1 ← getTypePrefix(code1, P1)
13: for code2 ∈ encodings2 do
14: n2 ← getLeaf(code2), subTree1 ← getSubTree(n2, P2)
15: ntp2 ← getTypePrefix(code2, P2)
16: if ntp1 = ntp2 then
17: if subTree1

.
= subTree2 then

18: foundCrossPoints← true
19: else if R(subTree1, subTree2, erf) ∨ R(subTree2, subTree1, erf))

then
20: find n1 ∈ code1, n2 ∈ code2 such that
21: getSubTree(n1, P1)

.
= getSubTree(n2, P2)

22: foundCrossPoints← true
23: end if
24: else if ntp1 extends ntp2 then
25: if reusable(subTree1, subTree2, erf) = true then
26: n1 ← findReplaceable(code1, subTree2)
27: subTree1 ← getSubTree(n1, P1)
28: foundCrossPoints← true
29: end if
30: else if ntp2 extends ntp1 then
31: if reusable(subTree2, subTree1, erf) = true then
32: n2 ← findReplaceable(code2, subTree1)
33: subTree2 ← getSubTree(n2, P2)
34: foundCrossPoints← true
35: end if
36: end if
37: end for
38: end if
39: end while
40: P ′1 ← replaceSubTree(P1, n1, subTree2)
41: P ′2 ← replaceSubTree(P2, n2, subTree1)
42: return P ′1, P

′
2

43: end procedure

Core - Constraint-aware Event Service Discovery and Composition 130

2. For each leaf l2 in est(P2), create the node type prefix ntp2 from code2 (i.e.,

encodings for l2) and compare it with ntp1. If ntp1 = ntp2 and the event semantics

of l1 and l2 are equivalent, i.e., they are merged into the same node in the ERF

(recall Algorithm 4 in Section 6.2.3.2) , then mark l1, l2 as the crossover points

n1, n2. If ntp1 = ntp2 but the pattern of l1 is reusable to l2 or l2 is reusable

to l1, then search back on code1, code2 until the cross points n1, n2 are found on

code1, code2 such that T (n1)
.
= T (n2), i.e., the sub-patterns of P1, P2 with n1, n2

as the root node of the ESTs of the sub-patterns are semantically equivalent.

3. If ntp1 is an extension of ntp2, e.g., ntp1 = (And;Or;Seq), ntp2 = (And;Or) and

the pattern of l1 is reusable to l2 in the ERF, then search back on code1 and try

to find n1 such that the sub-pattern with EST T (n1) is equivalent to l2. If such

n1 is found, mark l2 as n2.

4. if ntp2 is an extension of ntp1, do the same as step 3 and try to find the cross point

n2 in code2.

5. Whenever the cross points n1, n2 are marked in the previous steps, stop the iter-

ation. If n1 or n2 is the root node, return P1, P2 as they were. Otherwise, swap

the sub-trees in P1, P2 whose roots are n1, n2 (and therefore the relevant genes),

resulting in two new CCPs.

7.2.3.2 Mutation

The mutation operation changes the composition plan for a leaf node in a CCP. To

do that one can simply select a random leaf node n in a CCP P , and treat the event

pattern of n (possibly a primitive event) as a new event query that needs to be composed,

then the random CCP creation process specified in the population initialisation (Section

7.2.1) is used to create mutated variants.

7.2.3.3 Elitism

An Elitism method is used in the GA. More specifically, after the selection in every

generation, an exact copy of the best individual is added directly into the next generation

without crossover or mutation (the original instance may still participate in the crossover

and mutation). Elitism ensures the best individual is kept through the evolution until

a better individual has occurred.

Core - Constraint-aware Event Service Discovery and Composition 131

L

Figure 7.5: Traffic sensors in Aarhus City

7.3 Experiment Evaluations

In this section, the evaluation results of the proposed approaches are presented. The

experiments scenario is the travel planning scenario using both real and synthetic sensor

datasets. The evaluation has two parts: in the first part, the performance of the genetic

algorithm is analysed. In the second part, the correctness of the QoS aggregation rules

is demonstrated. Experiment results are averaged from 30 iterations.

7.3.1 Experiment Scenario: Travel Planning

The scenario of the experiment is a variation of the travel planning scenario in Section

2.1. The scenario leverages the sensor data streams related to urban traffic. The traffic

sensors are paired as start nodes and end nodes. Each pair is capable of monitoring the

average vehicle speed v and vehicle count n on a street segment (from the start node to

the end node). Combined with the distance d between the two sensors, the estimated

travel time t = d/v and congestion level c = n/d can be easily derived. Figure 7.5

shows some traffic sensor nodes on the Aarhus city map. Suppose a user, Alice, has

an important appointment in 15 minutes, and she has to travel from home (point A in

Figure 7.5 to her work place (point F in Figure 7.5) within the time frame. Alice decides

not to pick a route randomly since it is rush hour and there is a good chance that she

may experience traffic congestion. Instead, Alice uses a travel planner application on

her smartphone to select the fastest route. Also, Alice would like to receive live traffic

condition reports during her trip, in case some traffic incidents happen on the selected

route and a detour is necessary. To do that, she specifies the start and end location of

the travel, she also wants to be sure that the time estimation is accurate, so she sets

Core - Constraint-aware Event Service Discovery and Composition 132

some non-functional constraints such as the accuracy of the estimated travel time above

90%.

According to Alice’s request, the backend system will calculate possible paths and query

the sensor services for the latest traffic condition. Based on this information, the system

calculates the fastest route (A-D-F) for Alice. Meanwhile, the backend system will

have its own non-functional constraint, which is to create composition plans with the

minimal network traffic demand for the requests. Taking into account the non-functional

constraints from Alice and the system, composition plans reusing event services on

different granularity are created. For example, as shown in the map in Figure 7.5, if other

users, e.g., Bob and Charlie, are living in the neighbourhood and they have deployed

some semi-permanent services monitoring the traffic conditions within some segments

(B-C-G and E-F) on the route that Alice chooses, and have registered these services to

the service registry, the backend system will recognise these services as reusable and try

different combinations of reusable services to find the optimal solution. Meanwhile, the

optimisation needs to be efficient to enable real-time re-planning and adapt to the fast

changing service environment, simply enumerating all possible composition plans would

not scale.

7.3.2 Part 1: Performance of the Genetic Algorithm

In this part of the evaluation, the QoS utilities and the scalability achieved by Brute-

Force (BF) enumeration and GA based approach are compared. Moreover, the impact

of different GA parameters is analysed and guidelines to fine-tune GA parameters are

provided.

7.3.2.1 Datasets

There are 449 pairs of traffic sensors in Open Data Aarhus (ODAA), which are used

in the experiments to answer requests on travel planning. ODAA also provides other

types of sensors, which might be used in traffic monitoring and travel planning, e.g.,

air pollution sensors and weather sensors. These sensors are not actually relevant to

requests like Alice’s (Qa in Figure 7.6) or Bob’s (Qb in Figure 7.7), i.e., they are noise

to queries like Qa, Qb (but could be used in other travel related queries). In total 900

real sensors from ODAA are used, in which about half of them are noise. This dataset

sensor repository is denoted R0.

Core - Constraint-aware Event Service Discovery and Composition 133

AND

loc B C E F G

Qa outputs: sum(estimated_time_on_segment); (loc.lat, loc.long);
Qa

Figure 7.6: Traffic planning request for Alice
(denoted Qa): calculate the sum of the estimated
travel time from A to F on the map when a traf-
fic update from all segments are received, mean-

while, keep track of Alice’s latest location.

blk

B

AND

G

OR

C

Qb

Figure 7.7: A variant of
Bob’s request (denoted Qb):
notify the user when conges-
tion events detected on street
B, C and G, or if a road
construction has blocked the

streets (labelled “blk”)

Table 7.3: Simulated sensor repositories

R1 R2 R3 R4 R5 R6 R7 R8 R9

N 1 2 3 4 5 6 7 8 9
total size 1800 2700 3600 4500 5400 6300 7200 8100 9000

Each sensor in R0 is annotated with a simulated random quality vector < L,Acc, C, S >

where L ∈ [0ms, 300ms] is the latency, Acc, C ∈ [50%, 100%] are the accuracy and com-

pleteness, respectively, S ∈ [1, 5] is the security level. Price or energy consumption are

not modelled in the experiments because their aggregation rules are similar to band-

width consumption, for similar reasons availability is not modelled. The frequency of

the sensor is annotated as f ∈ [0.2Hz, 1Hz]. To test the algorithms on a larger scale,

the size of the sensor repository is further increased by adding N functionally equivalent

sensors to each sensor in R0 with a random quality vector, resulting in the 9 different

repositories as shown in Table 7.3. In the experiments, a loose constraint2 is used to

enlarge the search space and all QoS weights are equally set to 1.03. The queries used

in the experiments are summarised in Table 7.4.

7.3.2.2 QoS Utility Results and Scalability

The scalability, i.e., efficiency of the GA is first compared to the BF enumeration. The

results in Figure 7.8 indicate that the composition time of a Brute-Force (BF) enumera-

tion grows exponentially with regard to the complexity of the query (number of sensors

involved) and to the number of sensors in the repository. When we apply the GA over

2Constraint used in the evaluation: (L ≤ 3000ms,Acc ≥ 0, C ≥ 0, S ≥ 1, B ≤ 50)
3In this thesis, the weights represent users’ personal preferences and I do not differentiate between

“good” or “bad” weight settings.

Core - Constraint-aware Event Service Discovery and Composition 134

Table 7.4: Queries Used in Experiments

Queries Description Nodes
Qa Alice’s query on estimated travel time on route,

depicted in Figure 7.6.
1 AND operator, 6 streams

Qb Bob’s query on whether a route has been con-
gested or blocked, depicted in Figure 7.7.

1 AND operator, 1 OR oper-
ator, 4 streams

Q′
a A variants of Qa with more nodes. 1 AND operator, 3 random

operators, 8 streams
Q′

b A variant of Qb with more nodes. 1 AND operator, 1 OR oper-
ator, 10 streams

L

1702	

12305	

2305	

89	
211	

25	
48	

1	

10	

100	

1000	

10000	

100000	

R1	-	BF	 R2	-BF	 R2	-	GA	

ms	

Repositories	

Qa	

Qa'	

Qb'	

Figure 7.8: Brute-Force vs. GA on R1 and R2

Q′b on R2, we save approximately 80% of the execution time. However, for Qa and Q′a,

the solution space is too small for the GA evolution.

The usefulness of the GA is demonstrated by comparing the QoS utility of the compo-

sition plan derived by GA to a BF algorithm and a random pick algorithm. Figure 7.9

shows the experiment results for Qa over R3 to R9, where Qa has 6 service nodes and 1

operator. A more complicated variant of Qa with 8 service nodes and 4 operators is also

tested, denoted Q′a. In particular, Figure 7.9 shows the utilities of the composition plans

derived from BF, GA and a random picking approach for Qa, Q
′
a. In the experiments in

Section 7.3.2.2, the GA has the following parameter settings: the initial population size

is set to 200, crossover rate is 95%, mutation rate is 3%.

The best utility obtained by the GA is the highest utility of the individual in the last

generation before the GA stops. Given the best utility from BF Ūbf , best utility from GA

Ūga and the random utility of the dataset Ūrand, the degree of optimisation is calculated

as d = (Ūga − Ūrand)/(Ūbf − Ūrand). From the results in Figure 7.9 it is observable that

the average d = 89.35% for Qa and Q′a. In some cases the BF algorithm fails to complete,

e.g., Qa over R8 and R9, because of the scalability issue of brute-force enumeration. The

results also show that for smaller repositories, d is bigger. This is because under the

same GA settings, the GA has a higher chance of finding the global optimum during the

evolution when the solution space is small and the elitism method described in Section

Core - Constraint-aware Event Service Discovery and Composition 135

0.4	

0.45	

0.5	

0.55	

0.6	

0.65	

0.7	

0.75	

0.8	

3600	
 4500	
 5400	
 6300	
 7200	
 8100	
 9000	

u"lity	

repo	
 size	

bf-­‐max-­‐Qa	
 rand-­‐Qa	

ga-­‐max-­‐Qa	
 bf-­‐max-­‐Qa'	

rand-­‐Qa'	
 ga-­‐max-­‐Qa'	

Figure 7.9: QoS utilities derived by
brute-force, genetic algorithm and ran-

dom pick

0	

500	

1000	

1500	

2000	

2500	

3600	
 4500	
 5400	
 6300	
 7200	
 8100	
 9000	

!me	
 (ms)	

repo	
 size	

min	

avg	

max	

Figure 7.10: Genetic algorithm scal-
ability over event service repository

size

7.2.3.3 makes sure that, if found, the global optimum “survives” till the end of evolution,

e.g., in the GA results for Qa over R3, R4 in Figure 7.9.

0	

1	

2	

3	

4	

5	

6	

6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	

!me	
 (s)	

ep	
 size	

min	

avg	

max	

Figure 7.11: Genetic algorithm scal-
ability over query pattern size

0	

2	

4	

6	

8	

10	

12	

14	

16	

10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

!me	
 (s)	

ERH	
 size	

min	

avg	

max	

Figure 7.12: Genetic algorithm scal-
ability over event reusability forest size

It is evident that a BF approach for QoS optimization is not scalable because of the

NP-hard nature of the problem. The scalability of the GA is analysed using different

repository sizes, queries with different sizes (the size of a query is the sum of the number

of event operators and event service nodes), as well as different number of CESs in the

ERF.

The results in Figure 7.10 show that the composition time of Qa grows linearly for GA

when the size of the repository increases. To test the GA performance with different

event pattern sizes with different operators, the EST of Qb is used as a base and replaces

its leaf nodes with randomly created sub-trees (invalid ESTs excluded). Then the GA

convergence time of these queries over R5 is tested. The results from this experiment are

detailed in Figure 7.11, and they indicate that the GA execution time increases linearly

with regard to the query pattern size.

Core - Constraint-aware Event Service Discovery and Composition 136

In order to test the scalability over a different number of CESs in the ERF (called ERF

size), 10 to 100 random CESs are added to R5, resulting in 10 new repositories. The GA

is tested on a query created in the previous step (denoted Q′b) with the size of 12 nodes

(2 operators, 10 sensor services). The execution time of the GA is detailed in Figure

7.12. To ensure each CES could be used in the composition plan, all the CESs added are

sub-patterns of Q′b. From the results, it is observable that although the increment of the

average execution time is generally linear, in some rare test instances there are “spikes”,

such as the maximum execution time for ERF of size 40 and 80. After analysing the

results, I found that most (over 90%) of the time in those cases is used during population

initialisation, and this is caused by the complexity of the ERF, i.e., the number of edges

considered during ACP creation.

7.3.2.3 Fine-tuning the Parameters

In the experiments in Section 7.3.2.2, a fixed set of settings is used for the GA parameters,

including crossover rate, mutation rate and population size. In order to find good settings

of the GA in the given problem domain, the mutation rate (m), population size (p) and

crossover rate (c) are fine-tuned based on the default setting used in Section 7.3.2.2

(m = 0.03, c = 0.95, p = 200), i.e., one parameter value is changed at a time while other

parameters are kept unchanged.

In order to determine the effect of the parameter tuning, a Cost-Effectiveness score (i.e.,

CE-score) is defined as follows: given the random pick utility of a dataset Ūrand, the

final utility derived by GA Ūga and the number of milliseconds taken for the GA to

converge tga, CE-score = (Ūga − Ūrand) ∗ 105/tga. Two queries Qa, Qb′ are tested over

two new repositories R′5, R
′
9, which are R5 and R9 with 50 and 100 additional CESs,

respectively. Hence there are 4 test combinations on both simple or complex queries and

repositories. The results for fine tuning the mutation rate, population size and crossover

rate are shown in Figure 7.13, 7.14 and 7.15.

From the results of fine-tuning the mutation rate shown in Figure 7.13, it is observable

that the optimal mutation rate is quite small for all tests, i.e., from 0% to 0.4%. Results

of fine-tuning the population size are shown in Figure 7.14, they indicate that for smaller

solutions spaces such as Qa over R′5 and R′9, the optimal initial population size is smaller,

i.e., with 60 individuals in the initial population. For more complicated queries and larger

repositories, using a larger population size e.g., 100, is more cost-efficient. Results from

Figure 7.15 indicate that for Qa over R′5, the optimal crossover rate is 35%, because

the global optimum is easier to achieve and more crossover operations bring overhead.

However, for more complicated queries and repositories, a higher crossover rate, e.g.,

Core - Constraint-aware Event Service Discovery and Composition 137

27.82	

13.12	

11.68	

3.64	

0	

5	

10	

15	

20	

25	

30	

0	
 0.01	
 0.02	
 0.03	
 0.04	
 0.05	
 0.06	
 0.07	
 0.08	
 0.09	
 0.1	
 0.2	
 0.5	

ce-­‐score	

muta,on	
 rate	

Qa-­‐R5'	

Qa-­‐R9'	

Qb'-­‐R5'	

Qb'-­‐R9'	

Figure 7.13: Cost-effectiveness score
over mutation rate

42.39	

23.31	

13.20	

4.38	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	
 200	
 300	
 500	

ce-­‐score	

init.	
 popula0on	
 size	

Qa-­‐R5'	

Qa-­‐R9'	

Qb'-­‐R5'	

Qb'-­‐R9'	

Figure 7.14: Cost-effectiveness score
over population size

from 90% to 100%, is desired. It is worth noticing that in the results from Figure 7.13,

7.14 and 7.15, the changes of the score for Q′b over R′9 is not significant. This is due to

the fact that the GA spends much more time (about 90% of the time) trying to initiate

the population, making the cost-effectiveness score small and the differences moderate.

32.92	

19.12	

14.92	

3.72	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

ce-­‐score	

cross	
 over	
 rate	

Qa-­‐R5'	
 Qa-­‐R9'	

Qb'-­‐R5'	
 Qb'-­‐R9'	

Figure 7.15: Cost-effectiveness
score over cross over rate

0.45	

0.47	

0.49	

0.51	

0.53	

0.55	

0.57	

0.59	

0.61	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	
 95	
 100	

avg.	
 u'lity	

genera'ons	

p=60	
 p=80	

p=100	
 pf=60	

pf=80	
 pf=100	

Figure 7.16: Average utility over gen-
erations using reducible (marked “p=x”,
“x” represents the initial size) and fixed
(marked “pf=x”, “x” represent the size)

population

In the previous experiments in this chapter, every individual is chosen to reproduce

once (except for the elite whose copy is also in the next generation). This will ensure

the population will get smaller as the evolution progresses and the GA will converge

quickly. This is desirable because the algorithm is called at run-time and is time sensitive.

However, it is also possible to allow an individual to reproduce multiple times and keep

a fixed population size during the evolution.

In order to compare the differences of having a fixed or reducible population size, the

average utility (of Q′b over R′9) over the generations is shown in Figure 7.16. The results

show that the evolution iterations (number of generations before converged) for reducible

Core - Constraint-aware Event Service Discovery and Composition 138

population sizes are similar, while larger initial sizes achieve higher utilities. Meanwhile,

the evolution iterations in fixed population sizes are very different: for a fixed population

size of 60 the GA converges in about 60 generations and for the size of 100 it lasts

more than 100 generations. Larger sizes also produce better final results in a fixed

population, but it is much slower and the utilities are lower than those obtained from

reducible populations. In summary, using a reducible population size is better than a

fixed population size using the GA described in this problem setting.

7.3.3 Part 2: Validation of QoS Aggregation Rules

In this part of the evaluation, the validity of the QoS aggregation rules is demonstrated

using simulated data.

7.3.3.1 Datasets and Experiment Settings

In order to demonstrate the effect of QoS aggregation and optimisation, two composition

plans are generated by GA for Qa over R′9 using the same constraints as in Section

7.3.2.1: CP1 is optimised for latency, with the weight of latency set to 1.0 and other

QoS weights set to 0.1; while CP2 is optimised for bandwidth consumption, with the

weight of bandwidth consumption set to 1.0 and others 0.1. The reason these two plans

are used is that the they are the most different in structure, as shown in Figure 7.17.

sum(estimated_time_on_segment)
AND

loc1 B1 C1 E1 F1 G1

sum(estimated_time_on_segment)

Composition Plan #1 (CP1): optimised for latency.
 Urand1=0.413, U1=0.524

AND

loc2 ES

AND

B2 C2 E2 F2 G2

ES

Composition Plan #2 (CP2): optimised for bandwidth consumption.
 Urand2=0.416, U2=0.483

Figure 7.17: Composition plans for Qa under different weight vectors

When the two composition plans are generated, the composition plans are transformed

into stream reasoning queries (i.e., CSPARQL query) using the query transformation

algorithm defined in [211]. The queries are evaluated against the semantically annotated

traffic data collected from ODAA sensors. According to the composition plan as well as

the quality annotations of the event services (both sensor services and CESs) involved

in the plans, the event streams are simulated on a local test machine, i.e., artificial

delays, wrong and lost messages are created according to the QoS values in the quality

vector, the sensor update frequency is set to be the frequency annotated (so as to affect

the messages consumed by the query engine). Security is annotated but not simulated,

Core - Constraint-aware Event Service Discovery and Composition 139

Table 7.5: Validation for QoS aggregation and estimation.

! Compositional+
Pattern+

Event+Stream+
Engine++

End4to4End+
Simulated++

End4to4end+
Deviations+

Plan!1!(CP1)!
! Latency! 40!ms! 604!ms! 673!ms! +4.50%!

Accuracy! 50.04%! 100%! 51.43%! +2.78%!
Completeness! 87.99%! 97.62%! 72.71%! B14.89%!
Traffic!
Consumption!

4.05!msg/s! 4.05!msg/s! 3.84!msg/s! B5.19%!

Plan!2!(CP2)!
! Latency! 280!ms! 1852!ms! 2328!ms! +9.19%!

Accuracy! 53.10%! 100%! 51.09%! B3.79%!
Completeness! 87.82%! 73.18%! 46.31%! B17.96%!
Traffic!
Consumption!

0.37!msg/s! 0.40!msg/s! 0.32!msg/s! B13.51%!

!

latency!&!accuracy!estimation!is!more!accurate!than!others!

estimation!of!simple!querys!more!accurate!than!composed! !

interdependency!of!qos!values!(completeness,traffic)!

escalated!cost!for!internal!composability!

because the aggregation rule for security is trivial, i.e., estimated to be the lowest security

level. Notice that the simulated quality is the Service Infrastructure quality (see Section

7.1.2). The results and the query performance over these simulated streams are observed

and compared with the QoS estimation using the rules in Table 7.1 and 7.2, to see the

differences between the practical quality of composed event streams and the theoretical

quality as per estimation.

7.3.3.2 Simulation Results

The results of the comparison between the theoretical and simulated quality of the event

service composition are shown in Table 7.5. The first column is the quality dimensions of

the two composition plans, the second column is the computed quality values based on

the aggregation rules defined in Table 7.2. The rules take into account the Composition

Pattern of the query as well as the Service Infrastructure quality of the composed ser-

vices. This quality is denoted QoScp. However, this is not the end-to-end QoS, because

the quality of the event stream engine needs to be considered. To get the stream engine

performance, the queries are deployed with optimal Service Infrastructure quality, i.e.,

no artificial delay, mistake or loss, and the performance are recorded in the third column.

The engine quality is denoted QoSee. The simulated end-to-end quality is recorded in

the fourth column, denoted QoSs. The theoretical end-to-end quality based on QoScp

and QoSee is calculated using Table 7.1. This theoretical end-to-end quality is denoted

QoSt and calculate the deviation d = (QoSs/QoSt) − 1, which is recorded in the last

column.

From the results it is observable that the GA is very effective in optimising latency for

CP1 and bandwidth consumption for CP2: latency of the former is 1/7 of the latter and

event messages consumed by the latter are less than 1/8 of the former.

Core - Constraint-aware Event Service Discovery and Composition 140

It is also observable that the deviations of latency and accuracy are moderate for both

plans, however, the completeness estimation is about 15% to 18% different to the actual

completeness. For the bandwidth consumption in CP1 the estimation is quite accurate,

i.e., about 5% more than the actual consumption. However, the bandwidth consumption

for CP2 deviates from the estimated value by about 13.51%. The difference is caused

by the unexpected drop in CSPARQL query completeness when a CES with imperfect

completeness is reused in CP2, which suggests that an accurate completeness estima-

tion of a service could help improving the estimation of the bandwidth consumption for

event service compositions using the service. Indeed this shows that the utility between

completeness and network consumption are not independent, a workaround will be pro-

hibiting users to specify non-zero preferences on both parameters, i.e., when the user

specify the preference of either parameter to be zero, the utility contribution of com-

pleteness will not be calculated twice for network consumption (which leads to biased

results).

Another interesting observation from Table 7.5 is that the end-to-end delay of CP2 is

about 1650 ms longer than CP1, while the artificial delay imposed by the CES is no more

than 280 ms. This is caused by the internal query mechanism of the CSPARQL engine:

when composed queries are registered to the same engine instance, the engine will take

much more time to process the query because of the concurrency. This suggests that a

federated manner of query composition over distributed engine instances is desirable.

7.4 Related Work

In various event publish/subscribe system [212] architectures, Event Broker Networks

(EBN) has gained much research interests in recent years because of the scalability

of this architecture. Early works in EBN can be found in [44, 213]. However, these

systems have very different characteristics and they do not provide a common ground

for comparing and evaluating them in terms of service quality [203]. In [203], the authors

identify important QoS metrics in EBN systems, and describe their application to the

publish-subscribe model. A survey in [32] review a selection of eight EBN middlewares

and analyse their support for five QoS metrics: latency, bandwidth, reliability, delivery

semantics and message ordering. According to the survey, the support for QoS-aware

event routeing is quite poor: three of the eight middleware do not provide any support for

the five metrics. Jedi [206] supports message ordering, Gryphon [207] supports delivery

semantics, Hermes [213] and Medym [214] supports reliability, IndiQoS [202] supports

latency and bandwidth. The above QoS-aware EBNs (and many other peer works)

develop various routeing policies to determine event distribution routes with the optimal

Core - Constraint-aware Event Service Discovery and Composition 141

performance. However, they don’t provide a holistic view of QoS aspects for event

services, also, most of them do not cater for complex events and event compositions.

Moreover, the routeing decisions are made based on network analysis, e.g., link status

and node resources, while in this chapter, the QoS propagation is also influenced by the

event engine and composition pattern.

The first step of solving the QoS-aware service composition problem is to define a QoS

model, a set of QoS aggregation rules and a utility function. Existing works have dis-

cussed these topics extensively, e.g., by Alrifai et al. [201], Jaeger et al. [84] and Mela et

al. [85]. In this chapter some typical QoS properties are extracted from the existing work

and analysed. However, the aggregation rules in existing works focus on conventional

web services rather than complex event services, which need a different QoS aggregation

schema. For example, the event engine also has an impact on the QoS aggregation,

which is not considered in conventional service QoS aggregation. Also, the aggregation

rules for some QoS properties based on event composition patterns is different to those

based on workflow patterns (as in Jaeger et al. [84]), as explained in detail in Section

2.3.2.2 and 7.1.2.

As a second step, different concrete service compositions are created and compared with

regard to their QoS utilities to determine the optimal choice. To achieve this efficiently,

various heuristic approaches are developed. There are two prominent strands: Integer

Programming (IP) (e.g., [87, 201, 210]) and Genetic Algorithm (GA) (e.g., [89–92])

based solutions. The studies in [215, 216] discuss some other heuristics used besides

GA, e.g., Simulated Anealling, Tabu Search etc. In the following, mainly IP- and GA-

based approaches are discussed, because of their relevance and popularity.

Zeng et al [87] elaborate the limitation of local optimisation and the necessity of global

planning. The authors propose to address the complexity problem of global planning

by introducing an IP-based solution with an SAW based utility function to determine

the desirability of an execution plan. This approach is extended by Berbner et al.

[210] with more heuristics to promote efficiency. Alrifai et al. [201] propose a hybrid

approach of local and global optimisation, in which global constraints are delegated

to local tasks, and the constraint delegation is modelled as an IP-based optimisation

problem. The problem with IP-based solutions is that they apply only on a fixed set of

service classes in a composition plan, without discussing how different service classes on

different granularity levels are generated. Moreover, since the constraint allocation relies

on the QoS distribution of the existing service candidates, the overhead of recomputing

constraints are significant in dynamic environments [87], such as IoT-based event services

studied in this chapter.

Core - Constraint-aware Event Service Discovery and Composition 142

Approaches Differences to QoS-aware discovery and composi-
tion in ACEIS

Event Broker Networks,
e.g., Jedi [206], Gryphon
[207], Hermes [213], Me-
dym [214] and IndiQoS
[202]

Content-based subscription partitioning, do not support
pattern-based decomposition for complex events, routing
algorithms based on network analysis, do not consider QoS
influenced by event engine or composition pattern.

Integer programming
based, e.g., Zeng et al
[87], Berbner et al. [210],
Alrifai et al. [201]

Do not scale well when number of service candidates in-
creases (except for Alrifai et al. [201]), apply to a fixed set
of service classes in a service composition plan, not suitable
in dynamic environments.

Canfora et al. [90] Use fixed length encodings.
Zhang et al. [91] Use two-dimensional encodings to capture all execution

paths, no validation for crossover.
Gao et al [92] Use tree coding chromosomes with validations on crossover

and mutation.
Zhang et al. [89] Genetic encoding length not fixed, poor readability of the

genomes.
Wu et al. [85] Can compose services on different granularity levels using

Generalised Component Services.
All existing GA Use IOPE-based service matchmaking, not suitable for

complex event services.

Table 7.6: Related works in QoS-aware service composition

Several GA based solutions are therefore proposed for address QoS-aware web service

optimisation, some of them (e.g., [90, 217]) provides efficiency analysis showing that the

GA-based solutions can provide on-demand, close to real-time solutions within millisec-

onds to seconds. Zhang et al. [89] encode the chromosomes of service compositions with

binary bits representing whether a service is selected or not. The problem with this

approach is that the readability of the genomes are poor and the chromosome length

is not fixed during evolution. Canfora et al. [90] use a different encoding approach,

which leads to a fixed chromosome length. In the work done by Zhang et al. [91],

a two-dimensional genome encoding is proposed to express all execution paths while

considering task relations, but crossover and mutation need validation. Gao et al [92]

use tree coding chromosomes, crossovers operate on sub-trees and mutation operate on

leaf nodes to avoid invalid reproductions. Karatas et al. [218] develop a GA-based ap-

proach that goes beyond QoS-aware composition and enables compliance-aware service

composition.

The above GA-based approaches can only evaluate service composition plans with fixed

sets of service tasks (abstract services) and cannot evaluate composition plans which

are semantically equivalent but consists of different service tasks, i.e., service tasks on

different granularity levels. A more recent work done by Wu et al. [85] addresses

this issue by presenting the concept of Generalised Component Services (GCS) and

developing the GA encoding techniques and genetic operators based on GCS. Results

in [85] indicate that up to 10% utility enhancement can be obtained by expanding the

Core - Constraint-aware Event Service Discovery and Composition 143

search space. Composing events on different granularity levels is also a desired feature

for complex event service composition. However, [85] only caters for Input, Output,

Precondition and Effect (IOPE) based service compositions. Complex event service

composition requires an event pattern based reuse mechanism [167]. As a result, it

requires different genetic encoding mechanisms and crossover operations. Table 7.6

summarises the comparison of the related works in this chapter.

7.5 Summary and Discussion

In this chapter, the issue of enabling QoS-aware event service composition and optimi-

sation using services is addressed. A QoS aggregation schema is proposed to calculate

the overall QoS vector for an event service composition. Based on a user-defined con-

straint and weight vector, a QoS utility function is defined to calculate the performance

event composition. A genetic algorithm for creating optimal event service compositions

is developed and evaluated. The proposed approach is evaluated over a travel plan-

ning scenario with both real and synthetic datasets. The experimental results show

that the genetic algorithm is scalable (the execution time increases linearly) over the

service repository size, query pattern size and ERF size. It gives near-optimal (about

89% optimal) results efficiently, i.e., within 2.5 seconds for a repository with 9000 ser-

vices/sensors. The fast convergence of the GA allows it to be used for on-demand

optimisation of CESs, where the user may tolerate a waiting period of seconds for online

applications but not minutes [219]. The study in [219] shows that the users rate the

service quality as low when waiting for more than 10 seconds. Considering the GA in

this chapter rarely spends more than 10 seconds in our scalability test, it is safe to say

that it can be used for an online application.

Guidelines on how to fine-tune the GA parameters including mutation rate, crossover

rate and population size in order to achieve the best performance of GA are provided.

The experiment results show that the optimal mutation rate is between 0% to 0.4%,

the optimal crossover rate is smaller (about 35%) in cases of simple queries and small

repositories, and is greater (about 95%) when complicated queries and larger reposi-

tories are used. The experiments also show that having a reducible initial population

size out-performs using a fixed population size. The experiments on the validation of

QoS aggregation shows that the estimation model does not deviate too far from the

practical results (± 2.78% to 17.96%). Notice that in this chapter, only standard GA

algorithm with elitism is implemented, and we leave optimisations of the standard GA

(e.g., Breeder GA [220]) for the future work. Also, when the QoS constraints cannot

be fulfilled, we simply notify the user about the composition failure. Some future works

Core - Constraint-aware Event Service Discovery and Composition 144

can be done in this direction to negotiate the constraints with the users, similar to the

SLA-based service negotiations discussed in [221].

The composition plan derived in this chapter is not yet executable, in the next chapter,

the implementation of composition plans are discussed, i.e., how the executable RSP

queries are generated from the composition plans is elaborated. Moreover, mechanisms

allowing run-time adjustments for the composition plans are discussed.

Chapter 8

Automatic Event Service

Implementation and Adaptation*

Using the methods described in Chapter 7 it is possible to efficiently create event ser-

vice composition plans with good Quality-of-Service (QoS) performance. However, these

composition plans cannot be executed directly, they need to be translated into event/-

data stream queries executable by event/stream processing engines. Moreover, although

these event service compositions have good QoS performance when they are created

and deployed, their performance may change during execution, especially when using

Internet-of-Things (IoT) services, whose performance may be affected by environmental

changes [223]. In this chapter, the means for facilitating an automatic and adaptive

semantic event service implementation are discussed, in order to implement the Query

Transformer and Adaptation Manager in the Automatic Complex Event Implementa-

tion System (ACEIS), as shown in Figure 8.1.

ACEIS supports different event engines for evaluating event patterns defined with the ex-

tended Business Event Modelling Notation (BEMN+). However, different event engines

may support different sets of operators. In order to correctly implement the Complex

Event Services (CESs), i.e., ensure the same event request implemented over different

engines can produce the same set of results, it is necessary to compare and align the

semantics of the event operators in BEMN+ with the query operators used in the event

engines. Then, different query transformation algorithms are needed for different event

engines which translate the patterns described in BEMN+ into queries executable on the

target event engines. In Smart City applications, especially in the applications based

on IoT services, it is unrealistic to assume an implementation of a CES (based on the

query generated from the transformation algorithms) can always remain valid during

*Part of the content in this chapter is published in [211, 222].

145

Core - Automatic Event Service Implementation and Adaptation 146

 ACEIS Core

Resource
Management

Application
Interface

Semantic Annotation

Knowledge Base

Data Mgmt,
Indexing,
Caching

Stream
Description

Historical
Events

User Input

Event Request

Data
Federation

Resource Discovery

Event Service Composer

Composition Plan

Subscription
Manager

Query Transformer

Query Engine

Query

Results

Data Store IoT Data
Stream

Social Data
Stream

Sc
he

du
le

r

QoS
Stream

QoS
Updates

In
fo

rm
at

io
n

M
od

el

(O
nt

ol
og

ie
s)

Adaptation
Manager

Figure 8.1: The query transformer and adaptation manager modules in ACEIS

the lifespan of the CES. IoT-based data streams are inherently dynamic in nature and

somehow unreliable, therefore more prone to fluctuations in quality. For example, a

wireless sensor could be offline due to network issues, the accuracy of a sensor might be

affected by its battery level [224], air temperature, humidity [225] etc. In order to main-

tain the performance of a CES implementation, it is needed to continuously monitor

the QoS of the event services involved in the composition and determine if an adap-

tation is required, when a QoS update is received. It is also important to determine

the scope of changes when an adaptation is needed, since there is typically a trade-off

between efficiency and effectiveness of the adaptation, depending on how much changes

are needed. To summarise, an automatic and adaptive event service implementation

needs to consider the following issues:

1. How to ensure the correctness of the stream query transformation over different

stream query languages?

2. What are the suitable algorithms to create queries for stream processing engines?

3. How to determine whether an event service adaptation is necessary?

4. When an adaptation is required, what are the suitable adaptation strategies and

process?

Core - Automatic Event Service Implementation and Adaptation 147

The remainder of this chapter is organised as follows. Section 8.1 addresses the first

and second issues by aligning the semantics of event patterns in BEMN+ and the query

semantics of existing RDF Stream Processing (RSP) engines and presenting the query

transformation algorithms. Section 8.2 addresses the third issue by using the QoS ag-

gregation methods discussed in Section 7.1. Section 8.2 also addresses the fourth issue

by elaborating different QoS-aware event service adaptation strategies as well as the

adaptation process in ACEIS. Section 8.3 evaluates the adaptation strategies with both

real and synthetic datasets in Smart City environments. Section 8.4 discusses the related

works before Section 8.5 summarises.

8.1 Automatic Event Service Implementation

Implementing a Primitive Event Service (PES) is trivial, i.e., simply making a subscrip-

tion to the PES is sufficient. The implementation of a CES is more complicated and

it involves the following steps. Upon receiving an event composition plan for a CES,

the Subscription Manager makes subscriptions to the relevant event sources using the

service bindings provided in the composition plan. Then, the query transformer creates

stream queries and registers the queries at the stream engine according to the event pat-

tern specified in the composition plan. In this section, the algorithms for transforming

composition plans into RSP queries are discussed.

:Observation_1 a ssn:Observation;
ssn:observedBy :sampleTrafficSensor
ssn:observedProperty [a ct:EstimatedTime];
ssn:featureOfInterest :FoI_1;
ssn:observationResult :observationResult_1.

:observationResult_1 ssn:hasValue
[ssn:hasQuantityValue "25"ˆˆxsd:integer;
muo:unitOfMeasurement muo:second].

Listing 8.1: Traffic sensor stream data in Semantic Sensor Network Ontology

In the current ACEIS implementation, CQELS and CSPARQL are used as the RSP en-

gines. ETALIS engine is not integrated into the current prototype implementation but

the semantic alignments for ETALIS operators are presented. These engines consume

semantically annotated events. The query transformation algorithms in ACEIS depends

on the schema of annotated events, i.e., the ontologies used. However, they can adapt to

different event ontologies with little effort as long as the essential information (i.e., the

source of event and event payload) is provided. Without loss of generality, the primitive

events in the smart city context are assumed to be annotated as sensor observations in

the SSN ontology. A sample traffic sensor reading annotated as Observation in SSN is

Core - Automatic Event Service Implementation and Adaptation 148

shown in Listing 8.1. In the following the semantics alignments of the event operators

in BEMN+ and RSP query operators are discussed. Then the detailed query transfor-

mation algorithm for generating CQELS and CSPARQL queries based on the semantic

alignments are presented.

8.1.1 Semantics Alignment

To ensure the query transformation creates queries that detect the right event patterns,

it is required to map the semantics of event operators to query operators. Table 8.1

summarises how event operators in BEMN+ can be implemented by query operators in

CQELS, CSPARQL and ETALIS. In the following, the details are discussed.

Table 8.1: Semantics Alignment for Event Operators

BEMN+ E And Or Seq Repo Repn Sel Filter Window
CQELS SGP on ./ - - - BGP+proj Filter Window

CSPARQL BGP on ./ ft on +ft f+
t BGP+proj Filter Window

ETALIS BGP on ./ SeqJoin on +SeqJoin SeqJoin+ BGP+proj Filter getDuration()

8.1.1.1 EventDeclaration

An Event Declaration E in an event pattern ep indicate the occurrences of event in-

stances of type E. As shown in Listing 8.1 the occurrences of sensor events are annotated

as observations. If one uses SPARQL to query the occurrences of sensor observations, a

single triple pattern can suffice:

t = (?id, rdf:type, ssn:Observation)

Given a set of mappings Ψ, u ∈ Ψ is a partial function from variables to values, such

that u(var(t)) gives the mapping value, i.e., the Internationalized Resource Identifier

(IRI) of the subject of the triple t where var(t) is the set of variables in t. To get only

the observations produced by E, a BasicGraphPattern (BGP)

P = (t ∪ (?id, ssn:observedBy, E.src))

can be used, where E.src is the source (i.e., service id) of E specified in the composition

plan. Then, Ψ(var(P)) gives all the IRIs of sensor observations produced by E. Ψ(P)

gives the set of triples by replacing the variables in t with corresponding values from Ψ.

These triples are called event id triples for E, denoted Tid(E) and this pattern event id

pattern for E, denoted Pid(E) . Indeed the existence of Tid(E) indicates the occurrence

Core - Automatic Event Service Implementation and Adaptation 149

of an event instance of type E in the dataset (i.e., event stream). Notice that Tid(E)

should contain only 1 sensor observation if E is primitive, otherwise it may contain more

than 1 observations, which are the member event instances in the EIS triggering E. The

engines in Table 8.1 reuse and extend the query semantics of SPARQL, therefore the

same BGPs1 can be used to query the occurrence of events instances of type E.

8.1.1.2 AND Operator

An And operator indicates instances of the connected 2 sub-event types E1, E2 should

occur, i.e., Given E3 := ∧(E1, E2), Tid(E3) = Tid(E1) ∪ Tid(E2), where Tid(E1) 6=
∅∧Tid(E2) 6= ∅. This event operator can be implemented by join (on) in SPARQL. Given

P1, P2,Ψ1,Ψ2 such that Ψ1(P1) = Tid(E1), Ψ2(P2) = Tid(E2), it is evident that Ψ1 join

Ψ2 creates a new set of mappings Ψ3 = Ψ1 on Ψ2 such that dom(u3) = dom(u1)∪dom(u2)

where u1 ∈ Ψ1, u2 ∈ Ψ2, u3 ∈ Ψ3. Notice that u1, u2 are always compatible because they

are disjoint. Since u3 is also a partial function, it must provide mapping values for

each variable v ∈ dom(u3), i.e., Ψ3 = ∅ ⇐⇒ Ψ1 = ∅ ∨ Ψ2 = ∅. The Join operator

in SPARQL is reused in the semantic stream query engines so that the And operator

can be implemented by join. However, using join is only correct for the cumulative

event instance selection policy (recall Section 5.2.4.1 and 5.2.4.2), since all mappings,

i.e., event instance sequences fitting the pattern, are picked. If the selection policy is

configured as last, a result processing program is needed to filter out all variable bindings

that appeared in previous query solutions.

8.1.1.3 OR Operator

An Or operator indicates at least one of its sub-events should occur, i.e., Given E4 :=

∨(E1, E2), Tid(E4) = Tid(E1) ∪ Tid(E2), where ¬(Tid(E1) = ∅ ∧ Tid(E2) = ∅). It can

be implemented by using LeftOuterJoin (./) operator with bound filters in SPARQL.

To do that a new set of mappings: Ψ4 = ./ Ψ1 ./Ψ2 is created, where Ψ4 satisfies the

condition:

∀u4 ∈ Ψ4,∃v4 ∈ dom(u4)⇒ bound(v4) = true

It is evident that Ψ4 can be implemented by the OPTIONAL keyword and the condition

can be implemented by a set of bound filters.

1In CQELS StreamGraphPattern (SGP) is used as an extension of BGP

Core - Automatic Event Service Implementation and Adaptation 150

8.1.1.4 SEQUENCE Operator

A Sequence operator requires all its sub-events to occur in a temporal order, e.g.,

E5 :=; (E1, E2). To implement E5, it is required to join event id triples based on their

timestamps. In ETALIS a SeqJoin operator is defined as an extension of SPARQL

join. For brevity the readers are referred to [19] for detailed definition. In CSPARQL

such an extension does not exist. However, CSPARQL provides a function ft to query

the timestamp of a variable mapping, denoted ft(v) where v ∈ dom(u) is a variable in

a mapping u. Using this function a set of mappings Ψ5 = Ψ1 on Ψ2 is created such

that: ∀u5 ∈ Ψ5, u5 = u1 on u2 where u1 ∈ Ψ1, u2 ∈ Ψ2, ft(v1)<ft(v2) holds for all

v1 ∈ dom(u1)∩dom(u5) and v2 ∈ dom(u2)∩dom(u5). Intuitively, this condition ensures

all event instances of type E1 occurred before those of type E2. Currently CQELS (pub-

lic version 1.0.0) does not support SeqJoin or provide functions to access the timestamps

of the stream triples, therefore Sequence is not supported in CQELS.

8.1.1.5 REPETITION Operator

Repetition is a generalization of sequence, recall definitions in Section 5.2.4.1, an over-

lapping (i.e., Repo) or non-overlapping (i.e., Repn) repetition can be transformed into

a conjunction of sequence or a sequence of sequence, respectively. Therefore, repetition

can be implemented in CSPARQL and ETALIS by combining the ways they implement

∧ and ; event operators, while CQELS does not support repetition because sequence is

not allowed in CQELS.

8.1.1.6 Selection

Selection retrieves event payloads from member event instances. If payload p ∈ D where

D is the set of payloads for event E is selected, information on p can be queried by adding

triple patterns to Pid(E):

(?id ssn:observationResult ?x. ?x ssn:hasValue ?v...)

and project the relevant variables into the query results. For brevity not all triple

patterns required are listed here.

Core - Automatic Event Service Implementation and Adaptation 151

8.1.1.7 Filter and Window

Filter and Window operators in event patterns is be mapped to Filter and Window

operators in the three engines, respectively. Notice that in ETALIS an explicit Win-

dow operator does not exist, the window operator is implemented by using a filter

F (getDuration() < δ,Ψ) where getDuration is a function retrieving the duration all

mappings in Ψ and δ is a time interval.

8.1.1.8 Data or Time Driven Query Execution

CQELS uses a data-driven approach to invoke query execution, i.e., whenever new data

arrives in the window, the query is evaluated against the data in the current window.

However, CSPARQL uses a time driven approach, in which a query is executed peri-

odically, whenever the window slides. In order to have the same results produced by

CQELS and CSPARQL engines, a post-processing filter is deployed on the CQELS re-

sult handler that reports only the results when the time window slides and simulates

the time driven query execution.

8.1.2 Transformation Algorithm

The event pattern specified in a composition plan specifies the event query to be deployed

and evaluated on the RSP engine. In this section the algorithms for parsing Event Syntax

Trees (ESTs) of event patterns and creating semantic stream queries (i.e., CQELS and

CSPARQL queries) based on the semantics alignments presented in Section 8.1.1 are

described. Recall that in an EST, the nodes can be event operators in four types:

Sequence, Repetition, And and Or, or they can be member event declarations; the edges

represent the provenance relation in the complex event detection: the parent node is

detected based on the detection of the child nodes.

8.1.2.1 CQELS Query Transformation

Using a top-down traversal of the event pattern tree and querying the semantics align-

ment table for each event operator encountered during the traversal, the event pattern

in the composition plan is transformed into a CQELS query following the divide-and-

conquer style. Algorithm 7 shows the pseudo code of the main parts of the query

transformation algorithm.

Lines 1 to 6 in Algorithm 7 construct the CQELS query with three parts: a pre-defined

query prefix, a select clause derived from the getSelectClause() function and a where

Core - Automatic Event Service Implementation and Adaptation 152

Algorithm 7 Transform event patterns into CQELS queries.

Require: Composition Plan: comp, Query Prefix String prefixStr
Ensure: CQELS Query String: queryStr

1: procedure transform(comp, prefixStr)
2: selectClause← getSelectClause(comp.ep)
3: whereClause← getWhereClause(comp.ep)
4: queryStr ← prefixStr + ”SELECT” + selectClause+ ”WHERE” + whereClause
5: return queryStr
6: end procedure

Require: Event Pattern: ep
Ensure: Where Clause String: whereClause

7: procedure getWhereClause(ep)
8: root← getRootNode(ep), whereClause← ∅
9: if root ∈ Opseq ∪Oprep then

10: fail and terminate
11: else if root ∈ EventServiceDescription then
12: whereClause← getSGP(ep, root)
13: else if root ∈ Opand then
14: for subPattern← getSubPatterns(ep, root) do
15: whereClause← whereClause+ getWhereClause(subPattern)
16: end for
17: else if root ∈ Opor then
18: for subPattern← getSubPatterns(ep, root) do
19: whereClause← whereClause+ ”optional” + getWhereClause(subPattern)
20: end for
21: whereClause← whereClause+ getBoundFilters(ep)
22: end if
23: if filters← getFilters(ep) 6= ∅ then
24: whereClause← whereClause+ getFilters(filters)
25: end if
26: return ”{” + whereClause+ ”}”
27: end procedure

clause derived from the getWhereClause() function. Lines 7-27 define the getWhere-

Clause() function in a recursive way. It takes as input the event pattern in the com-

position plan (Line 7) and finds the root node in the event pattern (Line 8). Then,

it investigates the type of the root node: if it is a Sequence or Repetition operator,

the transformation algorithm terminates, currently transformation cannot be applied

for Sequence or Repetition because of the limitations of the underlying query language

(CQELS) (Lines 9-10). If the root node is an event service description, a getSGP()

function creates the Stream Graph Patterns (SGP) in CQELS (Lines 11-12) describing

the triple patterns of the observations delivered by the event service, and this SGP is

returned as a part of the where clause. If the root node is an And or Or operator, the

algorithm invokes itself on all sub-patterns of the root node and combines the where

clauses derived from the sub-patterns (Lines 13-20). In addition, if the root is an Or

operator, an OPTIONAL keyword is inserted for each where clause of the sub-pattern

and a bound filter is created indicating at least one of the sub-patterns has bound vari-

ables (at least one sub-events occurs, Line 21). If there are filters specified in the event

Core - Automatic Event Service Implementation and Adaptation 153

Select ?locId ?es4 ?value1 ... Where {
Graph <http://purl.oclc.org/NET/ssnx/ssn#>

{?ob rdfs:subClassOf ssn:Observation.}
Graph <http://sampleStaticKB>

{?es4 ct:owner foaf:Alice}
Stream <locationStreamURL> [range 5s]{

?locId rdf:type ?ob. ?locId ssn:observedBy ?es4.
?locId ssn:observationResult ?result1.
?result1 ssn:hasValue ?value1.
?value1 ct:hasLongtitude ?lon. ?value1 ct:hasLatitude ?lat.
?loc ct:hasLongtitude ?lon. }

Stream <trafficStreamURL1> [range 5s] {
?seg1Id rdf:type ?ob. ?seg1Id ssn:observedBy ?es1.
?seg1Id ssn:observationResult ?result2.
?result2 ssn:hasValue ?value2.
?value2 ssn:hasQuantityValue ?eta1.}

Stream <trafficStreamURL2> [range 5s] {...}
Stream <trafficStreamURL3> [range 5s] {...} }

Listing 8.2: CQELS query example

pattern, a getFilters() function is invoked to add the filter clauses to the where clause

(Lines 23-25). Finally, the where clause is returned with a pair of brackets (Line 26).

Listing 8.2 shows the transformation result for an event request similar to the query in

Figure 7.6. Notice that the first graph pattern (?ob rdfs:subClassOf ssn:Observation) is

used to join the SGPs in the query only because CQELS does not allow disjoint join.

Also, getSGP() function can insert static graph patterns to combine the dynamic triples

with static background knowledge, if such information is necessary (i.e., expressed in

the event requests).

8.1.2.2 CSPARQL Query Transformation

The transformation algorithm for CSPARQL queries is shown in Algorithm 8. It has the

same structure as Algorithm 7. It has a main method (i.e., transform()) taking the com-

position plan and query prefix mappings as input to produce the query string as output.

The transform() method invokes several sub-methods to organise the select, from and

where clauses of the query. Notice that while the ”from stream..” clauses are retrieve by

the getSGP() function in CQELS for each leaf node, in CSPARQL these from clauses

are retrieved all at once by the getFromClause() because of the difference in syntax.

The main difference in CSPARQL query transformation is that the recursively defined

getWhereClause function supports sequence and repetition transformation (see Line 21-

29). Indeed, many methods, e.g., getSelectClause(), getSubPatterns(), getBoundFilters()

and getFilters() can be reused from Algorithm 7, this also demonstrates that develop-

ing a dedicated query transformation for yet another stream reasoning engine with a

similar language syntax (i.e., extended from SPARQL) will not take much additional

effort. An example of the transformation result is shown in Listing 8.3. Notice that

Core - Automatic Event Service Implementation and Adaptation 154

in this CSPARQL query a sequence is specified for the user location update event and

traffic report event, in order to demonstrate how sequence operator is implemented in

CSPARQL using the timestamp filtering function ft.

Algorithm 8 Transform event patterns into CSPARQL queries.

Require: Composition Plan: comp, Query Prefix String prefix
Ensure: CSPARQL Query String: queryStr

1: procedure transform(comp, prefixStr)
2: sClause← getSelectClause(comp.ep)
3: fClause← getFromClause(comp.ep)
4: wClause← getWhereClause(comp.ep)
5: queryStr ← prefix+ sClause+ fClause+ ”WHERE” + wClause
6: return queryStr
7: end procedure

Require: Event Pattern: ep
Ensure: Where Clause String: wClause

8: procedure getWhereClause(ep)
9: root← getRootNode(ep), wClause← ∅

10: if root ∈ EventDeclaration then
11: wClause← getBGP(ep, root)
12: else if root ∈ Opand then
13: for subPattern← getSubPatterns(ep, root) do
14: wClause← wClause+ getWhereClause(subPattern)
15: end for
16: else if root ∈ Opor then
17: for subPattern← getSubPatterns(ep, root) do
18: wClause← wClause+ ”optional” + getWhereClause(subPattern)
19: end for
20: wClause← wClause+ getBoundFilters(ep)
21: else if root ∈ Opseq then
22: for subPattern← getSubPatterns(ep, root) do
23: wClause← wClause+ getWhereClause(subPattern)
24: end for
25: wClause← wClause+ getTimestampFilters(subPattern)
26: else if root ∈ Oprep then
27: subPattern← expandRepetition(comp.ep, root)
28: wClause ← wClause+ getWhereClause(subPattern)
29: end if
30: if filters← getFilters(ep) 6= ∅ then
31: wClause← wClause+ getFilters(filters)
32: end if
33: return ”{” + wClause+ ”}”
34: end procedure

8.1.3 Event (Re-)Construction from Stream Query Results

The query solutions derived from evaluating the queries in Listing 8.2 and 8.3 are sets of

variable bindings. To facilitate event stream composition on different abstract levels, i.e.,

allow the query results to be reused by other complex event requests, these results must

be reconstructed into complex events. While the schema/ontology used to reconstruct

Core - Automatic Event Service Implementation and Adaptation 155

Select ?locId ?es4 ?value1 ... Where {
Graph <http://sampleStaticKB> {...}
From Stream <locationStreamURL> [range 5s]
From Stream <trafficStreamURL1> [range 5s]
From Stream <trafficStreamURL2> [range 5s]
...
{
?locId rdf:type ?ob. ?locId ssn:observedBy ?es4.
?locId ssn:observationResult ?result1.

?result1 ssn:hasValue ?value1.
?value1 ct:hasLongtitude ?lon. ?value1 ct:hasLatitude ?lat.
}
{
?seg1Id rdf:type ?ob. ?seg1Id ssn:observedBy ?es1.
?seg1Id ssn:observationResult ?result2.

?result2 ssn:hasValue ?value2.
?value2 ssn:hasQuantityValue ?eta1.
} ...

Filter(f:timestamp(?loiId) < f:timestamp(?seg1Id))...}

Listing 8.3: CSPARQL query example

the complex events may vary depending on the applications, one can always reconstruct

all the primitive events and forward them to the upper-level queries to ensure there is no

information loss. However, this query-and-forward approach will demand more network

traffic in the event service network.

8.2 QoS-aware Event Service Adaptation

Existing approaches to data stream processing address different issues related to streams

and data processing such as stream data management, query processing, and data min-

ing. However, it is still an open challenge to properly address issues that are more closely

related to the quality of a federated stream, more precisely integration of the federated

data/event streams while keeping their quality metrics in mind.

The quality metrics associated with the data streams can be defined as part of the users’

or applications’ non-functional requirements. These requirements may contain a set of

constraints and preferences, as discussed in Section 7.1. Maintaining the quality of event

stream is especially important and challenging in IoT environments [223]. To facilitate

adaptability in quality-aware federation of IoT streams for smart city applications, the

following requirements are considered in this thesis:

• Monitor Quality Updates: to monitor any updates in the quality metrics of

the IoT streams involved in stream federation,

Core - Automatic Event Service Implementation and Adaptation 156

• Evaluate Criticality: to determine whether any particular quality update is

critical and if there is any adaptation action that should be carried out, and

• Perform Adaptation: once a critical update is confirmed, perform necessary

actions for automatic adaptation according to the new conditions/environment.

The adaptation manager can monitor the quality updates using pulling or pushing. In

the current implementation pushing is used. The criticality evaluation (i.e., QoS aggre-

gation and estimation) methods described in Section 7.1 are adopted for the adaptation

manager. In the following the strategies for creating new service compositions at runtime

are introduced. An abstract example is used for elaborating the adaptation. Then, the

technical details of the adaptation manager and the adaptation process are presented.

8.2.1 Adaptation Strategies

Three different adaption strategies can be used for creating new composition plans: local,

global, and incremental adaptations. All 3 approaches rely on querying the ERH to find

valid candidate services. In the following these three strategies are elaborated on using

an example ERH shown in Figure 8.2.

SES2SES2CES4

CES3 SES4

SES3

CES1

CES2

CES3

CES4

CES5

CES6

PES2

PES3

PES4

PES1

CES0

reuses

Figure 8.2: Example of an ERH

Recall that in Section 6.2.3.2, an ERH is described as a hierarchy that captures reusabil-

ity between event services. In Figure 8.2 a (partial) example of an ERH (denoted

erh = (V,R)) is presented, which contains 11 functionally different CES and SES nodes.

Arrows in Figure 8.2 represent the Rr relations, and Re relations are abstracted as

stacked nodes, representing functional identical services. Suppose an instance of the

ACEIS adaptation manager is currently monitoring the service CES0, and its current

composition plan contains a set of member event services mes(CES0) = {CES4, PES3,

CES6}, the adaptation manager for CES0 will subscribe to the QoS updates for all

event services in mes(CES0). When a QoS update, say, for PES3 is detected, it will

Core - Automatic Event Service Implementation and Adaptation 157

recalculate the aggregated QoS metrics for CES0 to see if it still complies with the user-

defined constraint C. If the constraint C still holds for CES0, it will do nothing except

to update the QoS for SES3 in the composition plan of CES0 and publish a QoS up-

date for CES0 to all other interested adaptation manager instances. Otherwise it marks

PES3 as a critical node (marked in red), triggers an adaptation process, and tries to

create a new composition plan for CES0 that satisfies C using one of the following three

strategies:

• Local adaptation that finds all functional equivalent services to PES3, ranks

them based on constraint C and preference P , and then substitutes PES3 with

the highest ranking replacement PES′3 in the current composition plan of CES0;

• Global adaptation that recomposes a new composition plan entirely for CES0

based on C,P and

• Incremental adaptation that follows the steps:

1. try local adaptation, if failed i.e., no substitutes available or the substitution

of PES3 cannot satisfy C then,

2. try to recompose the critical node, if failed, i.e., no composition possible, e.g.,

the critical node here is an PES, or replacing the critical node with the new

composition cannot satisfy C then,

3. find all Intermediate Nodes (denoted IN) between CES0 to PES3 in erh

such that

IN ⊆ V | ∀v ∈ IN =⇒ (v, PES3) ∈ R∗r

where R∗r is the transitive closure of Rr ⊆ R,

4. starting from the node with shortest to the largest distance to PES3 in IN ,

i.e., in the sequence of CES5, CES3 and CES0, mark the node as the critical

node and repeat step 1 and 2 on this node until a satisfying new composition

plan is created and

5. if all above steps failed to create a valid composition plan, exit with an adap-

tation failure notification to the users or the application, triggering the nec-

essary recovery mechanisms.

Algorithm 9 provides the pseudo code for the adaptation algorithm, with a focus on

incremental adaptation. Intuitively, each of the above three strategies has its own merits

and drawbacks. Local adaptation causes the smallest changes to the composition plan

and requires the least computational effort, however it has a relatively low chance of a

successful adaptation, and even if it succeeds, the resulting new event service composition

Core - Automatic Event Service Implementation and Adaptation 158

Algorithm 9 CES adaptation algorithm

Require: Composition Plan: comp, QoS update: qUpdate, Constraint: C, Adaptation Mode:
mode, Event Reusability Hierarchy: erh

Ensure: Adapted Composition Plan: resultP lan
1: procedure adapt(comp, qUpdate, C,mode, erh)
2: needAdpt← checkConst(comp, qUpdate, C)
3: resultP lan← ∅
4: if needAdpt = true then
5: if mode = local then
6: resultP lan← localAdpt(comp, qUpdate, C)
7: else if mode = global then
8: resultP lan← globalAdpt(comp, qUpdate, C)
9: else if mode = incremental then

10: resultP lan←
11: incrementalAdpt(comp, qUpdate, C, erh)
12: end if
13: end if
14: return resultP lan
15: end procedure
Require: Composition Plan: comp, QoS update: qUpdate, Constraint: C, Event Reusability

Hierarchy: erh
Ensure: Adapted Composition Plan: resultP lan
16: procedure incrementalAdpt(comp, qUpdate, C, erh)
17: resultP lan← ∅
18: IN ← getIN(comp, erh) ∪ comp
19: for criticalService ∈ IN do
20: resultP lan← localAdpt(comp, qUpdate, C)
21: if resultP lan = ∅ then
22: subP ← getSubPattern(comp, criticalService)
23: subResult← globalAdpt(subP, qUpdate, C)
24: resultP lan← mergeResult(comp, subResult)
25: if checkConst(resultP lan, qUpdate, C) then
26: result← ∅
27: end if
28: end if
29: if resultP lan 6= ∅ then
30: break
31: end if
32: end for
33: return resultP lan
34: end procedure

may have a low overall QoS, since the substitute options are limited. Global adaptation

ensures a high probability of success while it gets the best possible (with regard to the

composition algorithm used) resulting QoS. However, it may change dramatically the

structure of the original service composition and requires the same time of composing

the original service in the service planning phase. As such, the time needed for global

adaptation may be unacceptable for an adjustment during service execution phase, in

which timeliness is crucial. Incremental adaptation is a more “balanced” choice between

local and global adaptation [226], i.e., it changes the scope of adaptation when necessary,

thus on average, it takes the intermediate time to adapt and creates the intermediate

Core - Automatic Event Service Implementation and Adaptation 159

resulting QoS. Notice that in the case when an incremental adaptation is regressed into

a global one, they produce the same quality results, but the incremental approach may

take even more time than the global, due to the overhead of failed attempts. In Section

7.3 the above intuitions are verified with experiments.

8.2.2 Adaptation for Service Failures

It is worth mentioning that by adopting the QoS aggregation methods described in Sec-

tion 7.1, ACEIS can handle adaptations for constraints over eight QoS metrics, including

latency, accuracy, availability, completeness, security and energy/monetary/bandwidth

consumption. However, service failures, such as server offline, or connection broken, are

not directly supported. Nevertheless, service failures can be easily adopted as critical

QoS updates and trigger the adaptation, as long as those service failures provide explicit

notifications to the service consumers. In cases where no explicit notifications are pro-

vided, prediction methods based on statistics or patterns can be used to detect service

failures and trigger adaptations [227]. These methods are not detailed in this chapter.

8.2.3 Adaptation Process

Figure 8.3 illustrates the structure of the adaptation manager and its interactions with

the other ACEIS components. The adaptation manager consists of three components,

namely: the QoS Stream Discovery component, the QoS Monitor component and the

Adaptation Handler.

Application
Interface

Adaptation Manager

Adaptation
Handler

QoS Stream Discovery

QoS Monitor QoS
Stream

Resource
Management Composition

Plan

Data
Federation

Adaptation
Request

QoS
Update

Adaptation
Failure

Event
Request

Figure 8.3: Structure and workflow of the Adaptation Manager in ACEIS

• QoS Stream Discovery: this module receives a composition plan with a refer-

ence to the event request for which the composition plan was generated. The event

Core - Automatic Event Service Implementation and Adaptation 160

request contains user/application functional requirements as well as quality con-

straints and preferences. The discovery module finds the relevant quality update

streams to subscribe for the event streams used in the composition plan. Notice

that this discovery module is different to the resource discovery in the Resource

Management component.

• QoS Monitor: this module generates a subscription request for any update in the

quality scores of the relevant data streams. The monitoring module continuously

monitors and verifies whether quality scores of all the contributing data streams

in a composition plan are compliant to the event request.

• Adaptation Handler: this module is triggered if any of the user-defined non-

functional constraints and preferences is violated, it utilises different adaptation

strategies and tries to determine the scope of the adaptation. If an adaptation

is possible, it invokes the Resource Management component to find replacements

for parts of (or the entire) original composition plan. Then it creates the new

composition plan via merging or replacing the original composition plan and sends

it back to the Data Federation component for query re-deployment and other

subsequent actions.

AdaptationHandler

Activity 5.1 – Technical Adaptation

Subscription Manager

2. subscribeQoS(QoSStreams)

QoSUpdate
StreamsQoSMonitor

alt
If QoS constraint violated

loop
for each QoS update

QoS update

Thread.start()

new instance

 2. new(serviceId)

subscriptionRequest

subscriptionResponse

alt
If adaptation succeed

0. register(compPlan)
1. new(compPlan)

 5. new(newServiceId)

5. register(newCompPlan)

6. adaptationFaillure

QoSStream
Discovery

2. findQoSStreams(compPlan)
QoSStreams

3. checkQoS(serviceId)

 4. adaptation(serviceId)

Figure 8.4: Sequence diagram of adaptation loop

Figure 8.4 depicts the system sequence diagram to showcase the interactions of the

adaptation modules with each other as well as with the external components. A detailed

step-by-step description is as follows:

Core - Automatic Event Service Implementation and Adaptation 161

1. When an event service composition plan compPlan for a user’s request is reg-

istered by the Subscription Manager, an instance of the Adaptation Manager is

instantiated as a new thread, and its start() function is called.

2. The newly instantiated Adaptation Manager receives the compPlan with a ref-

erence to the event request (for which the composition plan was generated) as a

parameter. The QoS Stream Discovery module discovers relevant quality update

streams for the subscription. Once discovered it invokes the subscribeQoS()

function in the Subscription Manager to subscribe to those quality update streams.

Meanwhile, QoS Monitors are instantiated to capture the quality updates.

3. Whenever there is an update in the stream quality, the listener receives the up-

date from the QoS Update Streams and invokes the checkQoS() function in the

QoS Monitor to check if the overall quality performance still conforms with the

user/application constraints defined.

4. Whenever the quality constraints are violated. The Adaptation Handler invokes

the adaptation() process with a parameter serviceID indicating which ser-

vice performance is violating the quality constraints. The adaptation() process

tries to create a new composition plan by invoking the event service discovery and

composition components in the Resource Management module.

5. If the adaptation succeeds, the new composition plan is sent to the Subscription

Manager and registers the new plan. The Subscription Manager then invokes the

Query Transformer to create and deploy the new event query as well as renewing

the subscriptions to the relevant streams. Meanwhile, the Adaptation Manager

updates its quality monitors to listen to updates for new streams.

6. If the adaptation process fails, the Adaptation Handler sends a notification to

the user/application. The notification message contains which event request is

affected, and caused by which member event service.

8.3 Experiment Evaluation

In this section, the performance of the adaptation strategies is tested in a traffic mon-

itoring scenario in the smart city context. In the following the scenario and dataset

are described. The results of the experiments as well as the analysis of the results are

presented.

Core - Automatic Event Service Implementation and Adaptation 162

8.3.1 Scenario and Datasets

The set of 449 traffic sensors in the City of Aarhus is used as the sensor repository in the

experiments. The live traffic data, along with other sensor data on air pollution, weather

etc. have been made publicly available via the Open Data Aarhus (ODAA) platform, as

introduced in Section 9.2.1. The sensor data streams are wrapped as SESs that publish

sensor data as sensor observation events. These events are fed to the ACEIS engines

and consumed.

Figure 8.5: Traffic monitoring query on the map

To experiment on the adaptation capability, the QoS measurements are collected for

the sensors used during August 2014 and play it back with the sensor observations to

simulate the real-time quality updates2. Figure 8.6 and 8.7 show the QoS analysis for an

event request over the selected month. In the experiments, a query of traffic congestion

events over a specific route in the city is monitored (similar to the query in Figure 7.6).

Figure 8.5 shows the start and end locations of the queried route, which consists of 10

street segments (10 traffic sensor services deployed on the route from point A to B in

Figure 8.5). The accuracy of a sensor is calculated based on comparing each observation

value to the real value and dividing the number of accumulated correct results with the

total observation count periodically. All the accuracy reports of the 10 sensors during

the selected month are recorded and the distribution of the accuracy values are shown

in Figure 8.6. Figure 8.7 shows the trend of the aggregated accuracy for the query

during the month, i.e., for each day of the month, the maximum, minimum and average

of the aggregated accuracy of the query (multiplication of the accuracy of 10 sensors)

are recorded. From the accuracy distribution and aggregated accuracy for each day

it is observable that although for about 90% of the time the sensor observations are

correct (100% accuracy), there are still some low accuracy results when investigating

large queries using observations from many sensors.

2The CityPulse team at the University of Applied Sciences Osnabrück (UASO) is acknowledged for
the QoS data assessment and collection.

Core - Automatic Event Service Implementation and Adaptation 163

376	
 172	
 249	
 296	
 355	
 717	
 1157	
 1497	
 1414	
 1363	

60636	

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

0.8	
 0.82	
 0.84	
 0.86	
 0.88	
 0.9	
 0.92	
 0.94	
 0.96	
 0.98	
 1	

number	
 of	

measurements	

Accuracy	

Figure 8.6: Accuracy distribution
over a month

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	
 3	
 5	
 7	
 9	
 11	
 13	
 15	
 17	
 19	
 21	
 23	
 25	
 27	
 29	
 31	

Accuracy	

Day	
 of	
 Month	

min	

avg	

max	

Figure 8.7: Accuracy trend over a
month

8.3.2 Performances of Adaptation Manager

To investigate the adaptation performance in more detail, the QoS updates are replayed

in a random day of the month (e.g., 21st of August, 2014). The reactions of the adapta-

tion manager to the quality updates are observed. In addition to the real-world datasets,

for experimental purposes, synthesised datasets are created: for each sensor deployed in

the city, 10 functionally equivalent virtual sensors are added, so that local adaptation is

possible. QoS updates for these virtual sensors are also simulated: for each real sensor

QoS update stream, ten different (and random) offsets are applied over the timestamps

(e.g., +1 hour) of the updates to create 10 virtual sensor quality updates streams. Also,

100 CESs are deployed in the ERH, each CES is a random combination of the street

segments used in the query in Figure 8.5. These CESs represents traffic monitoring

queries over smaller regions and their results can be reused by the investigated query,

so that the incremental adaptation is possible.

8.3.2.1 Comparison of Different Strategies

Table 8.2 shows an overall comparison of different adaptation strategies. The first col-

umn lists the adaptation strategies used (“n/a” stands for no adaptation) under 3 QoS

constraints: a (relatively) strict constraint (C1) requires the accuracy of query results

above 90%, a medium constraint (C2) above 80% and a loose constraint (C3) above 70%.

The second column lists the QoS updates that are considered critical, i.e., the updates

causing constraint violations. It shows that while local adaptation can reduce some crit-

ical quality updates by switching data streams, global and incremental adaptation can

reduce the amount to the minimum. The third column lists the number of successful

adaptations. The results indicate that local adaptation has a much lower success rate

than global and incremental. The fourth column lists the time required for the adapta-

tions. From the results it is clear that local adaptation is very efficient while global may

take more than 3 seconds to complete, and incremental adaptation takes less time than

Core - Automatic Event Service Implementation and Adaptation 164

the global option and more than the local adaptation. The fifth column lists the number

of query results (i.e., congestion events) obtained from the event stream engine. If the

“n/a” option is used as the baseline (i.e., assuming the event engine does not create

false positive/negatives), it is observable that the global and incremental adaptation

suffers from high message loss (≈ 30% loss in the worst case) and local adaptation does

not lose many event messages (less than 0.7%). More analysis on this is provided in

Section 8.3.2.2. The sixth column shows the portion of time during the day that the

constraints are satisfied using different adaptation strategies. The results show that the

global and incremental adaptation can always keep the constraints satisfied, while the

local adaptation provides slightly improved satisfactory time for constraint C1 and C2

and has worsened the situation for constraint C3
3. This effect is also reflected in the

seventh column, where the summed accuracies of different strategies over the day are

compared to the non-adapted approach.

Table 8.2: Comparison of adaptation strategies

! critical!
updates!

valid!
adpt.!

avg.!adpt.!
time!(ms)!

query!
results!

satisfied!
period!

total!acc.!
changes!

Constraint!C1:!accuracy!>!90%

! n/a$ 470$ 0$ 0$ 2160$ 22.67%$ $
local$ 407$ 10$ 8$ 2145$ 22.96%$ +1.18%$
global$ 17$ 17$ 3243$ 1487$ 100.00%$ +43.09%$
incremental$ 16$ 16$ 2272$ 1596$ 100.00%$ +44.67%$

Constraint!C2:!accuracy!>!80%!
! n/a$ 413$ 0$ 0$ 2161$ 36.32%$ $

local$ 349$ 5$ 9$ 2161$ 37.53%$ +1.39%$
global$ 9$ 9$ 3332$ 1654$ 100.00%$ +39.47%$
incremental$ 14$ 14$ 919$ 1661$ 99.91%$ +31.93%$

Constraint!C3:!accuracy!>!70%!
! n/a$ 355$ 0$ 0$ 2145$ 50.02%$ $

local$ 317$ 2$ 8$ 2143$ 48.38%$ <1.41%$
global$ 7$ 7$ 3446$ 1668$ 100.00%$ +38.73%$
incremental$ 6$ 6$ 815$ 1836$ 100.00%$ +28.15%$

!

In summary, the results in Table 8.2 show that the local adaptation is more efficient

and has less message loss than the global and incremental adaptation due to the limited

search space available. However, for the same reason it has a much lower success rate and

quality improvement. The local adaptation success rate is likely to improve if there are

more functional equivalent event services to adapt to. Users can choose the most suitable

adaptation strategy according to their needs. To have a more intuitive representation of

the accuracy trends over the day using different strategies, the hourly averaged accuracy

of the query is plotted in Figure 8.8.

3Local adaptation may perform even worse than the original results without adaptation because, if
the local replacement soon decreases its performance and there is no adaptations at the time that can
restore the quality to above the threshold, the algorithm does nothing.

Core - Automatic Event Service Implementation and Adaptation 165

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

00:
00	

02:
00	

04:
00	

06:
00	

08:
00	

10:
00	

12:
00	

14:
00	

16:
00	

18:
00	

20:
00	

22:
00	

Accuracy	

Time	
 of	
 Day	

n/a	

local	

global	

incremental	

(a) Accuracy trend under constraint C1

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

00:
00	

02:
00	

04:
00	

06:
00	

08:
00	

10:
00	

12:
00	

14:
00	

16:
00	

18:
00	

20:
00	

22:
00	

Accuracy	

Time	
 of	
 Day	

(b) Accuracy trend under constraint C2

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

00:
00	

02:
00	

04:
00	

06:
00	

08:
00	

10:
00	

12:
00	

14:
00	

16:
00	

18:
00	

20:
00	

22:
00	

Accuracy	

Time	
 of	
 Day	

(c) Accuracy trend under constraint C3

Figure 8.8: Accuracy trends under different constraints over a day using different
strategies

8.3.2.2 Message Loss and Adaptation Time

From Table 8.2, it is evident that the message loss is positively related to the average

adaptation time. Indeed, if more time is required to make the adjustments, there is a

higher chance that a query result is lost. The frequency of query result update depends

on the frequency of the input streams. In the experiments above the traffic conditions

are reported every 3 seconds. To see the impact of stream frequency over the message

loss rate, global and incremental adaptation are used under constraint C2 using different

streaming intervals. The results are shown in Figure 8.9. From the results, it is clear

that slowing down the streaming rate can reduce the message loss for both strategies,

but it cannot eliminate them. In fact, even when a streaming interval of 9 seconds is

used, the message loss is still high: ≈ 15% for both strategies. By further analysing

the data, two more reasons are found for the message loss: 1) when a new event query

is registered as a result of adaptation, a new event window is used and the previous

events are discarded, thus, some query results may be lost, and 2) the semantic stream

engine (e.g., CSPARQL) takes additional time (e.g., several seconds) to get the query

results after the query is registered. To deal with these two causes one can deploy the

Core - Automatic Event Service Implementation and Adaptation 166

0.00%	

5.00%	

10.00%	

15.00%	

20.00%	

25.00%	

30.00%	

35.00%	

3s	
 6s	
 9s	

msg.	
 loss	

rate	

stream	
 interval	
 	

global	
 incremental	

Figure 8.9: Message loss rate
under constraint C2 using differ-

ent stream rates

1808	

1490	

1027	

1270	

919	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

20	
 40	
 60	
 80	
 100	

!me	
 (ms)	

CESs	
 in	
 ERH	

avg_adpt_1

Figure 8.10: Avg. time used by
incremental adaptation over dif-
ferent Event Reusability Hierar-

chies

0.00%	
 21.43%	

53.33%	
 36.36%	

42.86%	

61.54%	

50.00%	

26.67%	

36.36%	

21.43%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

20	
 40	
 60	
 80	
 100	

CESs	
 in	
 ERH	

global	
 recompose	

parent	
 recompose	

local	
 replace	

Figure 8.11: Distribution of in-
cremental adaptation over differ-
ent Event Reusability Hierarchies

new query along with the old one and keep the old query results until the new query is

fully functional, i.e., the old time window has perished completely and the new query

has started giving results. However, it causes an overhead and the system may receive

low-quality query results.

The adaptation time is an important metric for evaluating the adaptation strategies.

For local adaptation the time required simply depends on the number of Re relations

in the ERH. The global adaptation time depends on the efficiency of the event ser-

vice composition algorithm. For incremental adaptation, the time required to create

new composition plans largely depends on the structure and size of the ERH used. A

successful incremental adaptation could be completed during 3 different phases in the

adaptation procedure (recall the incremental adaptation steps in Section 8.2.1): local re-

placement (i.e., from steps 1 and 2), parent replacement and recompose (i.e., from steps

3 and 4 excluding global recomposition) and global recomposition. The local replace-

ment and global recomposition take the least and most time to complete, respectively.

Therefore, an ERH is ideal for incremental adaptation if the distribution of global re-

composition can be minimised, i.e., it contains sufficient Re relations to enable local

Core - Automatic Event Service Implementation and Adaptation 167

replacement as well as sufficient Rr relations between the query and the critical node

to enable parent replacement. The adaptation time and the distribution of successful

incremental adaptations over ERHs with different sizes are tested under constraint C2.

The results are shown in Figure 8.10 and Figure 8.11. From the results it is observable

that in general, the adaptation time is negatively related to the size of the ERH and is

positively related to the percentage of global recompositions occurred.

8.4 Related Work

Using query transformation techniques to create stream queries automatically is not

novel. However, most of such query transformation techniques are platform-specific and

can only be used for a specific kind of query engine, such as in [23]. To the best of my

knowledge, the query transformation techniques in this chapter are the first attempt to

align the semantics of different RSP engines and provide a platform-independent way of

creating RSP queries with the same semantics over different types of RSP engines. The

W3C RSP Working Group4 is making an attempt to consolidate the query semantics and

syntax of different RSP engines and create a unified RSP query language as a standard.

However, the discussion is still on-going and no concrete outputs have been released

yet. In the following, the related works on QoS adaptation in Event Broker Network

(EBN) and Complex Event Processing (CEP) as well as service adaptation techniques

are discussed.

8.4.1 QoS Adaptation in EBN and CEP

EBN has gained much research interests in the last decade because of their scalabil-

ity, i.e., they provide sophisticated routeing techniques for Event Processing Networks

(EPNs) [1] to enable efficient event transmission in wide-area networks(e.g., SIENA [44]).

QoS support in EBN has been discussed extensively and is an active topic in current

research. Mahambre et al. [53] propose an adaptive routeing algorithm to choose routes

with the best-estimated reliability. Tariq et al. [228] leverage the knowledge of event

traffic, user subscriptions and network topology to minimise the communication cost.

Fischer et al. [229] use an automated workflow to create QoS-aware configurations at

design time using event, domain and network profiles. In the works done by Koldehofe et

al. [58] and Tariq et al. [59], the authors discuss how Software Defined Network (SDN)

concepts can be used to improve the performance of EBNs. However, the above EBN

based approaches are platform-dependant. Also, they evaluate the QoS of the network

4RDF Stream Processing Community: https://www.w3.org/community/rsp/, last accessed:
July, 2015.

https://www.w3.org/community/rsp/

Core - Automatic Event Service Implementation and Adaptation 168

(and for a particular broker node) based on link analysis, which is not applicable in

ESN, in which physical links are hidden.

Addressing non-functional aspects in CEP is an active area of research. Hasan et al.

[230, 231] propose an approximate event processing to deal with inexact event type

matchings. In the work done by Wasserkrug et al. [232] Bayesian Networks are used

to calculate probabilities of detected events. These approaches deal with uncertainty in

the stream data but they do not fully address the stream quality issues. Many CEP

systems use query rewriting to determine the distributed operator execution plans to

optimise the query processing time (e.g., Schultz-Molle et al. [97] and Rabinovich et

al. [233]) but the rewriting does not consider stream source replacement. Wagle et

al. [234] introduce a fault tolerance mechanism for System S [235], which deals with

errors caused by stream connection lost using transactional database operations. Buys

et al. [236] use replica deployment and selection to improve reliability for publish and

subscribe services (i.e., WS-Eventing, WS-Notification etc). While the basic idea in

[236] is similar to the adaptation manager, ACEIS provides QoS adaptability not only

for conventional WS-* services but also for CESs. Table 8.3 summarises the comparison

of existing QoS adaptation in EBN and CEP to the adaptation technique discussed in

this chapter.

Approaches Differences to QoS-aware service adaptation in
ACEIS

Mahambre et al. [53] Adaptive routing for optimising reliability.
Tariq et al. [228] Using dynamic information on event traffic, subscriptions

and network topology to minimise communication cost.
Fischer et al. [229] Use automatic work flow to update and optimise configu-

ration of EBNs at design-time.
Koldehofe et al. [58] and
Tariq et al. [59]

Propose Software Defined Network to address end-to-end
QoS for EBNs.

Above EBN-based ap-
proaches

Platform-dependant, evaluate QoS based on link analysis,
not applicable in ESN.

Hasan et al. [230, 231] Facilitate inexact event matching, do not address QoS.
Query rewriting in CEP
systems, e.g., Schultz-
Molle et al. [97] and Ra-
binovich et al. [233]

Dynamically adapt execution plans and changes the se-
quence of operators evaluated, do not discuss data source
replacements.

Wagle et al. [234] Addresses errors for System S using transactional database
operators.

Buys et al. [236] Use replica deployment and selection to optimise event ser-
vices, but do not address complex event services.

Table 8.3: Related works in QoS-aware event broker networks and complex event
processing engines

Core - Automatic Event Service Implementation and Adaptation 169

8.4.2 Adaptive Service Composition

QoS-aware adaptive service composition and self-recovery have been discussed exten-

sively in the service computing community over the past decade. Mei et al. [237] use a

multi-tier ranking system to categorise services based on link analysis over a snapshot of

the service network. This approach can select popular services in the network based on

dynamic bindings, however it can only recover from service failures, i.e., severe service

problems. Also, only service re-discovery at an atomic level is realised. Qu et al. [99]

use Back Propagation (BP) neural network to evaluate and detect service deficiencies

from the service network. Service failure rate, response time, quality complaint rate and

etc. are used as evidence in the BP network to decide whether a service composition

becomes unreliable. If so, a global service re-composition is triggered. This approach

demands a learning time for the BP network, so it is not very ideal for the IoT services

where sensor services can be added or removed from the network frequently. Yu et al.

[101] use reinforcement learning to optimise service compositions, however, like [99] and

other learning based approaches, the learning phase is needed.

Joshi et al. [238] propose to use ontology-based solutions to manage the service life-cycle

in the cloud, including service discovery, negotiation, composition and monitoring. A

fuzzy-logic-based framework is used to monitor service quality. However, it does not

provide sophisticated recovery mechanisms, other than re-defining new service require-

ments and iterate a new life-cycle. Wang et al. [239] discuss different service recovery

strategies and a Dynamic Local Backup Recovery Algorithm (DLBRA) is proposed for

ubiquitous services. DLBRA is quite similar to the approach in [237], only that the back-

ups are proactively searched by the service monitor instead of taking snapshots when

the recovery mechanism is triggered (as in [237]), also the quality analysis is based on

a quality utility aggregated from multiple quality metrics instead of link analysis. How-

ever, proactively searching backups will introduce an overhead, also local recovery has

a lower success rate because the choices are very limited. Bucchiarone et al. [226] pro-

pose a context-aware adaptive composition over IoT services. It adopts an incremental

adaptation strategy, which is similar to the idea to the incremental adaptation strategy

developed in ACEIS. However, it focuses on adapting contextual changes rather than

quality constraint violations. Moreover, existing approaches in adaptive service com-

puting rely on imperative workflows, which is inherently different to declarative event

pattern definitions in complex event services. Therefore, they cannot be applied directly

to the ESNs proposed in this chapter. Table 8.4 summarises the comparison of existing

QoS-aware service adaptation techniques to the adaptation technique discussed in this

chapter.

Core - Automatic Event Service Implementation and Adaptation 170

Approaches Differences to QoS-aware service adaptation in
ACEIS

Mei et al. [237] Only support service failures, only re-discover service at an
aotmic level.

Qu et al. [99] and Yu et
al. [101]

Use learning algorithms to decide when an adaptation by
global re-planning is needed, demands learning phase.

Joshi et al. [238] Use statistics of service quality to re-define service require-
ments.

Wang et al. [239] Proactively search service backups, introduces overhead.
Bucchiarone et al. [226] Use incremental adaptation similar to ACEIS to adapt con-

textual changes rather than QoS constraint violations.

Table 8.4: Related works in QoS-aware service adaptation

8.5 Summary and Discussion

In this chapter, the means of transforming event patterns specified in BEMN+ into RSP

queries are provided. In particular, the semantics of event operators in BEMN+ and

the query operators in CQELS, CSPARQL and ETALIS are aligned. Based on these se-

mantics alignments, the algorithms for generating CQELS and CSPARQL queries from

BEMN+ event patterns are developed and some example results are presented. Lever-

aging the automatic query transformation and deployment technique, it is possible to

carry out automatic adaptation for event service compositions. Then, a service-oriented

approach for quality-aware adaptive event stream federation is presented. The details

of the event service adaptation mechanisms, including three different adaptation strate-

gies: local, global and incremental adaptation, are discussed and the adaptation process

in ACEIS is described. Finally, the different adaptation strategies are evaluated in a

Smart City scenario with both real and synthesised datasets and analyse the evaluation

results. The experiments show that local adaptation is the most efficient (takes several

milliseconds to complete) and suffers least from message loss (about 0.7%), however its

contribution in improving the QoS is insignificant (up to 1.4%). Global adaptation takes

much more time (more than 3 seconds) to complete and causes a lot of message losses

(about 30%), however, it can greatly improve the QoS (38.73% to 43.09%). Incremental

adaptation uses less time than global adaptation (from 815 to 2272 milliseconds) and

causes fewer message losses (from 14.4% to 26.1%). The average improvement of QoS

caused by incremental adaptation is less than the global adaptation (28.15% to 44.67%).

The results reveal that there is no global optimised strategy for the event service adap-

tation and users should choose different strategies based on their requirements as well

as the characteristics of the datasets (i.e., service repositories). The experiments also

show that using lower stream rate and less adaptation time can reduce the message loss

rate. The adaptation module completes the life-cycle of SESs. In the next chapter, the

prototypes using SES are demonstrated and the feasibility of using SESs in smart city

scenarios is analysed.

Part III

Finale - Usage, Conclusion and

Future Research

171

Chapter 9

Prototype Implementation and

Query Performance Analysis*

The validity and feasibility of Semantic Event Service (SES) modelling, planning, im-

plementation and adaptation in the Automatic Complex Event Implementation System

(ACEIS) are discussed in previous chapters (Chapter 5 to Chapter 8). In this chapter,

the practicality of ACEIS is showcased by demonstrating the usage of ACEIS in real-

world applications. In particular, the user interfaces of the aforementioned smart city

applications are presented and their functionalities are described, in order to demonstrate

the contribution of ACEIS in smart city scenarios. Moreover, this chapter investigates

the performance of ACEIS with regard to SES execution in realistic scenarios. Since

ACEIS offers the SES composition as semantic event queries evaluated by RDF Stream

Processing (RSP) engines, the performance of these engines (i.e., CQELS [37] and C-

SPARQL [38]) has a great impact on the user experience of the smart city applications.

A benchmarking system is developed to evaluate the performance of these two engines

under different settings. The benchmarking results help an ACEIS user/developer to

decide which type of RSP engine best suits his/her requirements. In addition, since

both RSP engines show limited capabilities in processing a large number of concurrent

queries in the benchmarking results, multiple instances of RSP engines are deployed in

ACEIS in parallel. Load balancing techniques are applied to distribute the workload over

different RSP engine instances, in order to improve the query execution performance.

In summary, this chapter validates the ACEIS approach by answering the following

questions:

1. How is ACEIS deployed in real-world scenarios and how does it fulfil the application

requirements?

*Part of the content in this chapter is published in [70].

172

Finale - Prototype Implementation and Event Query Performance Analysis 173

2. How to evaluate the performance of the RSP engines used in ACEIS and how RSP

engines perform using the realistic datasets and queries?

3. Can existing RSP engines used in ACEIS provide efficient SES execution at large-

scale? If not, how to optimise the performance while handling concurrent queries?

The remainder of this chapter is organised as follows. Section 9.1 answers the first

question and describes the usage of ACEIS in prototypical applications in Smart City

environments. Section 9.2 answers the second question and discusses the design of an

RSP engine benchmark together with the analysis of the benchmarking results. Section

9.3 answers the third question and investigates the load balancing techniques used for

optimising RSP query execution performance in ACEIS when using multiple RSP engine

instances.

9.1 Usage in Smart City Application Prototypes

As part of the on-going activities in the CityPulse project, two prototypes are collabora-

tively developed by the teams involved in the project, namely the Smart Travel/Parking

Planner (STPP) application and the Smart City Dashboard (SCD) application. Recall

that in Section 2.1, three different scenarios are proposed: travel planner (S1), parking

space finder (S2) and city administration console (S3). S1 facilitates the optimisation

of the users’ travel paths based on their preferences for route type, health and travel

cost, as well as the real-time information (including traffic, weather, parking availability

and so on) that can impact this optimisation. S2 is designed to facilitate car drivers

in finding a parking spot combining parking data streams and predicted parking avail-

ability based on historical patterns. S3 facilitates city administrators by notifying them

of the occurrence of specific events of interest. STPP covers part of the functionalities

described in S1 and S2, SCD covers part of the functionalities in S1 and S3. STPP and

SCD are implemented with datasets from the city of Aarhus.

Both STPP and SCD are built in a Client/Server fashion. The server side hosts a

Smart City Framework, which is the output of the CityPulse project consisting of a set

of interacting modules including Data Virtualisation, Data Quality Analysis, Decision

Support and Data Federation. The Data Virtualisation module provides semantically

annotated data graphs and data streams for the Data Federation module. This thesis

is mainly used in the Data Federation and we acknowledge the CityPulse team for

implementing the other components, including the User Interfaces.

The Data Quality Analysis module provides quality associated annotations for the data.

ACEIS is deployed as the Data Federation module in the framework and is responsible

Finale - Prototype Implementation and Event Query Performance Analysis 174

for creating federated queries over data streams based on users’ functional and non-

functional requirements and deploying/maintaining the queries. The Decision Support

module offers real-time decision making based on results from the Data Federation mod-

ule as well as the context of the user. The architecture of the applications is shown in

Figure 9.1. The client side of STPP is a mobile application on Android and the client

of SCD is a web-based application. In the following, the user interfaces of the client

applications are presented and the functionalities of STPP and SCD are described.

Data Virtualisation

Data Federation
(ACEIS)

Data
Quality

Analysis

Decision Support

request response

RDF streams

Server Client

Input

Output

user inputs

event query
results

decisions

Figure 9.1: Architecture of the smart city application prototypes

9.1.1 Smart Travel/Parking Planner

When the user starts the client application of STPP, the city map is displayed and the

user can select on the map a start and end point of his/her journey. The user can also

specify whether the type of transportation such as walking, by car or by bicycle, as

shown in Figure 9.2. After selecting the transport type, the user can also specify some

preferences on the recommended routes, such as fastest, shortest or cleanest, as shown in

Figure 9.3. Using these user inputs the DS component will first query the geographical

database to create routes on the map and then filter these routes based on real-time

sensor data (e.g., current traffic congestion levels, current air pollution levels) retrieved

from ACEIS. In order to obtain the real-time sensor data, a one-time event request is

sent to ACEIS and ACEIS will discover and subscribe to relevant sensors to get data

snapshots. As a result, the recommended routes are displayed on the interface, as shown

in Figure 9.4.

When the user selects a route and starts the navigation, the Decision Support com-

ponent will deploy a set of event queries to detect events that may affect the user’s

Finale - Prototype Implementation and Event Query Performance Analysis 175

Figure 9.2: STPP
route selection

Figure 9.3: STPP
route constraints

Figure 9.4: STPP
selected routes

journey, such as traffic accidents happening on the user’s current route. Also, ACEIS

will deploy continuous queries on the average speed and the air pollution index on the

user’s current route and show the results on the client, as shown in Figure 9.5. When

the user is travelling by car and is approaching the destination, he/she may switch to

the “parking space” tab and specify an area to find parking spaces within. This area can

be centered by the destination point or by the user’s current location (shown as a blue

circle on the map), as shown in Figure 9.6. The user may also choose to look for parking

spaces with the cheapest toll or shortest walking distance to the destination, and the

Decision Support will retrieve the real-time information about the parking spaces from

ACEIS, including the price and parking availability. Based on the real-time parking

information, recommendations for the best parking spaces can be made. An example of

the recommended parking space is shown in Figure 9.7 as the red pin.

Table 9.1 summarises the functionalities required by STPP application with regard to

integration and processing of data/event streams, and relevant solutions provided by

ACEIS.

9.1.2 Smart City Dashboard

In the SCD application, a user is a city administrator, who is interested in monitoring

various physical properties on different routes in the city, including the traffic conditions,

air pollution and weather information. To use SCD, first the user needs to login to the

Finale - Prototype Implementation and Event Query Performance Analysis 176

Figure 9.5: STPP
event notification and
continuous query re-

sults

Figure 9.6: STPP
parking request

Figure 9.7: STPP
selected parking

spaces

Required Functionalities Solutions Provided by ACEIS
Static description of traffic and parking
data streams

Semantic event service annotations us-
ing Complex Event Service Ontology
(Section 5.1)

Finding traffic and parking streams
based on geographical information

Semantic Resource Discovery (Chapter
6) component

Reusing existing complex event services
based on implicit functional constraints

Pattern-based event service composi-
tion provided by Event Service Com-
poser (Chapter 6 and 7)component

Reusing existing complex event services
based on implicit non-functional con-
straints

Constraint-aware event service compo-
sition provided by Event Service Com-
poser component

Create and deploy user queries over
RSP engines

Automatic RSP query creation algo-
rithms implemented within the Query
Transformer (Section 8.1) component

Query evaluation and result monitoring Real-time RDF stream processing pro-
vided by the Query Engine used in
ACEIS

Compliance of non-functional con-
straints during run-time

QoS-aware event service adaptation
techniques developed in the Adaptation
Manager (Section 8.2) component

Performance optimisation for multiple
users

Load balancing techniques developed in
the Scheduler (Section 9.3) component

Table 9.1: Requirements and solutions in Smart Travelling/Parking Planner with
regard to data stream integration

web server that hosts the SCD web application and open the “location” tab on the page

to specify the start and end locations of the route as well as the transport type, as shown

Finale - Prototype Implementation and Event Query Performance Analysis 177

in Figure 9.8. Additionally, the user can specify which set of functional properties (i.e.,

properties observed by sensors) is monitored on the route. The user can choose from

traffic, air pollution or weather properties and apply aggregations and/or thresholds

on the monitored properties as constraints, as shown in Figure 9.9. The user can also

specify non-functional constraints and preferences as shown in Figure 9.10. It is worth

mentioning that the top half of the interface in Figure 9.10 controls the data replay rate

and duration, for historical data playback function.

Figure 9.8: SCD start and end
locations

Figure 9.9: SCD functional prop-
erties

When the user has specified all the inputs, he/she can start the monitoring by clicking

a button on the client to send a request to the server. On the server side, the Decision

Support component invokes a routeing algorithm to generate a route. Using the route

information together with the functional/non-functional requirements, an event request

is generated and sent to ACEIS. As a result, an event service composition plan is created

by ACEIS and a federated RSP query is deployed. The RSP query results are sent back

to the client and displayed on the user interface. Meanwhile, the Decision Support

component will detect some contextual events on the route, such as traffic accidents,

or heavy air pollutions etc using pre-defined event rules, and display those events as

bubbles on the 3-dimensional city map. The user can zoom in/out and navigate on the

map to find out the details of the geographical information of those events.

Table 9.2 summarises the functionalities required by SCD application with regard to

integration and processing of event streams, and relevant solutions provided by ACEIS.

Compared to Table 9.1, it can be observed that the STPP and SCD applications share

many requirements, e.g., both need semantic description and discovery for heterogeneous

data streams, as well as creation, deployment and execution of semantic event queries

over RSP queries. Also, both applications can reuse existing event services deployed on

different servers leveraging the service-oriented nature of ACEIS and the event service

Finale - Prototype Implementation and Event Query Performance Analysis 178

Figure 9.10: SCD non-functional re-
quirements

Figure 9.11: SCD result
panel

composition mechanisms offered within. For example, a traffic monitoring query de-

ployed on SCD servers could be utilised by the STPP application to create a travel plan

for a user. The major difference between the two applications is that the STPP server

expects a large number of “casual” users, e.g., citizens using the application in their

daily lives, while the SCD server expects a small group of professional users monitoring

the situations happening in the city. For this reason, STPP provides implicit settings for

the functional/non-functional constraints when performing event service compositions,

and SCD allows explicit constraint specifications, considering the users of SCD may

have more advanced requirements and constraints. Also, because of the potential high

concurrency of users in STPP, the load balancing techniques are deployed by integrating

a Scheduler component in ACEIS.

Required Functionalities Solutions Provided by ACEIS
Static description of traffic, weather
and pollution data streams

Semantic service annotations using
Complex Event Service Ontology

Finding traffic, weather and pollution
streams based on geographical informa-
tion

Semantic Resource Discovery compo-
nent

Reusing existing complex event services
based on explicit functional constraints

Pattern-based event service composi-
tion provided by Event Service Com-
poser component

Reusing existing complex event services
based on explicit non-functional con-
straints

Constraint-aware event service compo-
sition provided by Event Service Com-
poser component

Create and deploy monitoring queries
over RSP engines

Automatic RSP query creation algo-
rithms implemented within the Query
Transformer component

Query evaluation and result monitoring Real-time RDF stream processing pro-
vided by the Query Engine used in
ACEIS

Compliance of non-functional con-
straints during run-time

QoS-aware event service adaptation
techniques developed in the Adaptation
Manager component

Table 9.2: Requirements and solutions in Smart City Dashboard with regard to data
stream integration

Finale - Prototype Implementation and Event Query Performance Analysis 179

9.2 Benchmarking RSP Engines with Realistic Datasets

During the prototype development, the query performance issue of the RSP engines,

i.e., CQELS and CSPARQL, is noticed. More specifically, the query delay and the

usage of resources (e.g., CPU time and memory) may increase significantly when using

more complicated queries or when experiencing higher levels of concurrency, which may

pose threats to the scalability of the system. To analyse the query performance, a

benchmarking system for RSP engines using realistic datasets from cities is developed,

called the CityBench. In the following the design of CityBench and some benchmarking

results are discussed. The source code and reproducible experiment results are provided

in a public repository1.

9.2.1 Datasets and Queries

Various datasets can be collected from an urban environment and used in Smart City

applications as event sources. Leveraging the outcomes of the CityPulse project, the

datasets collected from the city of Aarhus, Denmark2 are used. In the following, each

of the datasets is briefly described.

• Vehicle Traffic Dataset. This dataset contains traffic data. The City adminis-

tration has deployed 449 pairs of sensors over the major roads in the city. Traffic

data is collected by observing the vehicle count between two points over a dura-

tion of time. Observations are currently generated every five minutes. Each pair

of traffic sensors reports the average vehicle speed, vehicle count, estimated travel

time and congestion level between the two points set over a segment of road. This

dataset is provided via CKAN3 server in CSV4 format.

• Parking Dataset. Parking lots in Aarhus are equipped with sensors and capable

of producing live data streams indicating the number of vacant places. The Parking

Dataset consists of observations generated by 8 public parking lots around the city.

This data is available from a RESTful web service5 in XML format.

• Weather Dataset. Currently, there is only a single weather sensor available in

the city to collect live sensor observations about the weather condition. Weather

1CityBench GitHub repository: https://github.com/CityBench/Benchmark/, last accessed:
Dec., 2015.

2The CityPulse consortium team is acknowledged for the provision of Datasets http://iot.ee.
surrey.ac.uk:8080/datasets.html (last accessed: Apr., 2015)

3CKAN data portal homepage: http:ckan.org, last accessed: Apr., 2015.
4Comma separated values, RFC 4180 standard: https://tools.ietf.org/html/rfc4180, last

accessed: Apr., 2015.
5Aarhus live parking web service: http://pgsaar.dyndns.org:4000/consumer/

webServices/getGarageData.aspx, last accessed: Apr., 2015.

https://github.com/CityBench/Benchmark/
http://iot.ee.surrey.ac.uk:8080/datasets.html
http://iot.ee.surrey.ac.uk:8080/datasets.html
http:ckan.org
https://tools.ietf.org/html/rfc4180
http://pgsaar.dyndns.org:4000/consumer/webServices/getGarageData.aspx
http://pgsaar.dyndns.org:4000/consumer/webServices/getGarageData.aspx

Finale - Prototype Implementation and Event Query Performance Analysis 180

sensor data provides observations related to dew point (◦C), humidity (%), air

pressure (mBar), temperature (◦C), wind direction (◦), and wind speed (kph).

This dataset is available from a web interface in JSON6 format.

• Pollution Dataset. Pollution is directly related to the traffic level, however due

to unavailability of the pollution sensors, a synthesised pollution data for the city

of Aarhus is made available to complement the traffic dataset. Observation points

for traffic sensors are replicated to create mock-up sensors for pollution at the exact

same location as traffic sensors. An observation for air quality index is generated

every 5 minutes using a pre-selected pattern. Details regarding the procedure fol-

lowed to synthesised pollution data are accessible at: http://iot.ee.surrey.

ac.uk:8080/datasets/pollution/readme.txt. This dataset is streamed

via web sockets in CSV format.

• Cultural Event Dataset. This dataset is quasi-static and contains cultural

events provided by the municipality of Aarhus. The dataset is periodically updated

to reflect the latest information related to planned cultural events. Updates can

be delivered in data streams (a notification service notifies of any updates in the

dataset) or it can be used as background knowledge that updates on a daily or

weekly basis. This dataset can be crawled from the city event website7.

• Library Events Data. This dataset contains a collection of past and future

library events hosted by libraries in the city. A total collection of 1548 events is

described in this dataset. Similarly to the Cultural Events Dataset, updates in the

Library Events Dataset are also not frequent, therefore, the dataset is considered

quasi-static. This dataset can be crawled from the city library website8.

• User Location Stream. Most of the IoT-enabled Smart City applications are

designed to be location-aware, therefore they strongly rely on updates on the

location of mobile users. A User Location Stream is simulated to mock-up the

movements of a user. This data stream contains periodic observations with geo-

location coordinates of a fictional mobile user. The user location data is typically

provided by an API in Software Development Kits for smartphones, e.g., Android

SDK9.

It is worth mentioning that apart from the cultural and library event datasets, all the

other above datasets contain metadata describing the data/event sources. For example,

6Javascript Object Notation: http://json.org/
7Aarhus cultural events: https://www.billetlugen.dk/, last accessed: May, 2015.
8Aarhus library website: https://www.aakb.dk/, last accessed: May, 2015.
9Android devkit: https://developer.android.com/sdk/index.html, last accessed: Apr.,

2015.

http://iot.ee.surrey.ac.uk:8080/datasets/pollution/readme.txt
http://iot.ee.surrey.ac.uk:8080/datasets/pollution/readme.txt
http://json.org/
https://www.billetlugen.dk/
https://www.aakb.dk/
https://developer.android.com/sdk/index.html

Finale - Prototype Implementation and Event Query Performance Analysis 181

for traffic sensors the metadata describes the locations of the sensors by giving the

GPS coordinates and street names they are deployed, for parking datasets the metadata

describes the locations of the parking lots as well as their maximum parking vacancies

etc. Below we list 13 different queries for the three scenarios (Q1 to Q5 for S1, Q6 to

Q9 for S2 and the rest for S3) described in Section 2.1, that utilize the above datasets:

Q1: What is the traffic congestion level on each road of my planned journey?

This query monitors the traffic congestion from all traffic sensors located on the roads

which are part of the planned journey. This query uses the traffic dataset.

Q2: What is the traffic congestion level and weather conditions on each road of my

planned journey?

Q2 is similar to Q1 with an additional type of input streams containing weather obser-

vations for each road at the planned journey of the user. This query uses the traffic and

weather datasets.

Q3: What are the average congestion level and estimated travel time to my destination?

This query includes the use of aggregate functions and evaluates the average congestion

level on all the roads of the planned journey to calculate the estimated travel time. This

query uses the traffic dataset.

Q4: Which cultural event happening now is closest to my current location?

Q4 consumes user location data streams and integrates it with background knowledge

on the list of cultural events to find out the closest cultural event happening near his

current location. This query uses the traffic and cultural event datasets.

Q5: What is traffic congestion level on the road where a given cultural event X is hap-

pening? Notification for congestion level should be generated every minute starting from

10 minutes before the event X is planned to end, till 10 minutes after.

Q5 is a conditional query which should be deployed at the occurrence of an event

and have predefined execution duration. This query uses the traffic and cultural event

datasets.

Q6: What are the current parking conditions within the range of 1 km from my current

location?

Finale - Prototype Implementation and Event Query Performance Analysis 182

This query represents a most common query issued by users of a parking application to

easily find a nearby parking place. This query uses the traffic and parking datasets.

Q7: Notify me whenever a parking place near to my destination is full.

Q7 is a combination of the travel planning and parking functionalities, where a user

wants to be notified about parking situation close to the destination. This query uses

the traffic and parking dataset.

Q8: Which parking places are available nearby library event X?

This query combines parking data streams with the static information about the library

events to locate parking spaces nearby the library. This query uses the library event

and parking datasets.

Q9: What is the parking availability status nearby the city event with the cheapest tickets

price?

Similarly to Q8, this query monitors parking availability near a city event which has the

cheapest ticket price. This query uses the cultural event and parking datasets.

Q10: Notify me every 10 minutes, about the most polluted area in the city.

Q10 is an analytical query executed over the pollution data streams to find out which

area in the city in most polluted and how this information evolves. This query uses the

pollution dataset.

Q11: Notify me when no observation from weather sensors have been generated in the

last 10 minutes.

This query helps to detect any faulty sensors which are not generating observations or

networking issues. This query uses the weather dataset.

Q12: Notify me whenever the congestion level on a given road goes beyond a predefined

threshold more than 3 times within the last 20 minutes.

This query helps in early detection of areas where traffic conditions are becoming prob-

lematic. This query uses the traffic dataset.

Q13: Increase the observation monitoring rate of traffic congestion if it surpasses a

pre-specified threshold.

Finale - Prototype Implementation and Event Query Performance Analysis 183

Configurable Testbed Infrastructure (CTI)

Query
Configuration

Module

Da
ta

se
t C

on
fig

ur
at

io
n

M
od

ul
e

RSP Engine
Static

Datastore

Smart City
Data Streams

Performance
Evaluator

Benchmark
Results

CityBench Queries

Sm
ar

t C
ity

 A
pp

lic
at

io
ns

…

…

Figure 9.12: An overview of the configurable testbed infrastructure

This query provides a more frequent status update on congestion levels in critical con-

ditions such as traffic jams or accidents. This query uses the traffic dataset.

9.2.2 CityBench Design

The performance of RSP engines does not depend only on language features but also on

dynamic metrics related to the data and to the application. To evaluate the performance

of RSP engines according to the dynamic requirements of smart city applications, a

Configurable Testbed Infrastructure (CTI) containing a set of APIs is provided to set

up the testbed environment. CTI allows its users to configure a variety of metrics for

the evaluation of RSP engine. Figure 9.12 provides an overview of the CTI, there are

three main modules, (i) Dataset Configuration Module: allows configuration of stream

related metrics, (ii) Query Configuration Module: allows configuration of query related

metrics, and (iii) Performance Evaluator: is responsible for recording and storing the

measurements of the performance metrics. The CTI allows the following configurations:

• Changes in Input Streaming Rate: The throughput for data stream gener-

ation can be configured in CityBench. For example, a rate r ∈ [1, inf] can be

configured to set up the streaming rate to the real interval between observations

(r = 1 means replay at original rate), or a frequency f can be used to set a different

streaming rate.

• PlayBack Time: CityBench also allows to playback data from any given time

period to replay and mock-up the exact situation during that period.

• Variable Background Data Size: CityBench allows to specify which dataset

to use as background knowledge, in order to test the performance of RSP engines

Finale - Prototype Implementation and Event Query Performance Analysis 184

with different static datasets. Duplicated versions (with varying size) of two static

datasets, Cultural Event Dataset and Library Event Dataset (described in Section

9.2.1), are also provided. Any version of the given background datasets can be

loaded to test RSP engines with different size of background data.

• Number of Concurrent Queries: CityBench provides the ability to specify

any number of queries to be deployed for testing purposes. For example, any

number of queries can be selected to be executed concurrently any number of

times. Such situation will simulate a situation where a number of simultaneous

users are executing the same query using any application.

• Increase in the Number of Sensor Streams within a Single Query: In

order to test the capability of the RSP engine to deal with data distribution,

CityBench makes it possible to configure the various size of streams involved within

a single query. For example, for a query similar to traffic condition monitoring over

a given path, to increase the number of streams involved within the query, one can

simply increase the length of the observed path.

• Selection of RSP Query Engines: CityBench allows to seamlessly use dif-

ferent query engines as part of the testing environment. Currently, CQELS and

CSPARQL are supported. However, users are encouraged to extend the list of

RSP engines by embedding their engines within CTI.

9.2.3 Benchmarking Results

In order to showcase the feasibility of CityBench and highlight the importance of config-

uration parameters, experimental evaluations over CQELS and CSPARQL engines using

CityBench are conducted. A testbed is set up with multiple configurations of CTI per-

formance metrics. The two RSP engines are evaluated with respect to (i) Latency, (ii)

Memory Consumption, and (iii) Completeness. It is worth mentioning that the overhead

caused by the benchmark is insignificant and does not pose any threats to the validity

of the results, i.e., for latency it costs several milliseconds to annotate a CSV row as an

RDF graph, for memory consumption the benchmark uses up to 10 MB for tracking the

results produced, for completeness the benchmark do not introduce any overhead.

9.2.3.1 Latency

Latency refers to the time consumed by the RSP engine between the input arrival and

output generation. The latency of RSP engines is evaluated by increasing the number

Finale - Prototype Implementation and Event Query Performance Analysis 185

0	

1000	

2000	

3000	

4000	

5000	

6000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

latency	
 (ms)	

experiment	
 1me	
 (minutes)	

Q10_5-­‐cqels	

Q10_8-­‐csparql	

Q10_2-­‐csparql	

Q10_2-­‐cqels	

Q10_5-­‐csparql	

Figure 9.13: Latency over increasing number of data streams

of input streams within a query and by increasing the number of concurrent queries

executed.

Increasing the Number of Input Streams. Three variations of query Q10 10 are

designed to generate an immediate notification about polluted areas in the city with

three configurations for the number of input data streams (2, 5 and 8). Results shown

in Figure 9.13 depict that the overhead for CSPARQL was minimal with increasing

number of streams, however CQELS suffer from abnormal behaviour for the query with

5 input streams and was unable to process 8 input streams within a single query. In

summary, CSPARQL is the better choice for optimising query latency when the query

involves many streams.

Increasing the Number of Concurrent Queries. The scalability test is performed

by executing Q1, Q5 and Q8 over both engines. Queries are executed with three different

configurations (1, 10, and 20) for the number of concurrent queries. Figure 9.14 and

Figure 9.15 show the effect over latency with increasing number of concurrent queries

for CQELS. A closer look at the results reveals that CQELS has a substantial delay,

when the number of concurrent queries is increased from 0 to 10 for all three queries.

However, CQELS performance is not much affected over subsequent increase from 10 to

20. As depicted in Figure 9.16 and Figure 9.17, CSPARQL seems to have a constant

size of overhead for delay with the increasing number of concurrent queries in contrast

to CQELS. In summary, CQELS is the better choice for optimising query latency when

handling multiple concurrent queries.

10Different queries are selected for each experiment based on their suitability for the corresponding
configuration metric. A comprehensive report containing complete results for all queries is available at
CityBench website: https://github.com/CityBench/Benchmark/tree/master/result_log/
samples, last accessed: Dec., 2015.

https://github.com/CityBench/Benchmark/tree/master/result_log/samples
https://github.com/CityBench/Benchmark/tree/master/result_log/samples

Finale - Prototype Implementation and Event Query Performance Analysis 186

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

latency	
 (ms)	

experiment	
 1me	
 (minute)	

Q1	

Q1-­‐10	

Q1-­‐20	

Figure 9.14: Latency over concurrent
queries (Q1 over CQELS)

0	

100	

200	

300	

400	

500	

600	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

latency	
 (ms)	

experiment	
 1me	
 (minute)	

Q5	
 Q5-­‐10	

Q5-­‐20	
 Q8-­‐20	

Q8-­‐10	
 Q8	

Figure 9.15: Latency over concurrent
queries (Q5 and Q8 over CQELS)

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

latency	
 (ms)	

experiment	
 1me	
 (minute)	

Q1	

Q1-­‐10	

Q1-­‐20	

Figure 9.16: Latency over concurrent
queries (Q1 over CSPARQL)

0	

500	

1000	

1500	

2000	

2500	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

latency	
 (ms)	

experiment	
 1me	
 (minute)	

Q5	

Q5-­‐10	

Q5-­‐20	

Q8	

Figure 9.17: Latency over concurrent
queries (Q5 and Q8 over CSPARQL)

60	

80	

100	

120	

140	

160	

180	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

memory	

(MB)	

experiment	
 0me	
 (minute)	

Q1	

Q1-­‐20	

Q5-­‐1	

Q5-­‐20	

Figure 9.18: Memory consumption
over concurrent queries (CSPARQL)

0	

100	

200	

300	

400	

500	

600	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

memory	

(MB)	

experiment	
 0me	
 (minute)	

Q1	

Q1-­‐20	

Q5	

Q5-­‐20	

Figure 9.19: Memory consumption
over concurrent queries (CQELS)

9.2.3.2 Memory Consumption

The memory usage of RSP engines is observed during the concurrent execution of an

increasing number of queries and increasing the size of the background data.

Finale - Prototype Implementation and Event Query Performance Analysis 187

Increasing the Number of Concurrent Queries. CityBench measures the memory

consumption for Q1 and Q5 during 15 minutes of execution of each query. As shown in

Figure 9.18, with an increasing number of concurrent queries, CSPARQL has a minimal

impact on memory consumption for both queries. However, as time elapses during

query execution, there is a constant increase in memory consumption for Q5, the rate of

increase in memory is similar for both single query execution and 20 concurrent queries

execution. In contrast, CQELS seems to have increasing memory consumption issue for

Q1, there is also a substantial increase in memory consumption for Q1 after an increase

in the number of concurrent queries from 1 to 20. As depicted in Figure 9.19, CQELS

has better performance regarding the stability of the engine over the time period of 15

minutes execution of Q5. Also, it is noticeable that the memory consumption of Q5

increases linearly and it would eventually reach the memory limit and crash the engine.

The reason for the abnormal behaviour is perhaps the cross-product join on the static

data in Q5 creates a lot (millions) of intermediate results and are not cleared from the

cache properly in both engines. In summary, the CSPARQL is more memory efficient

when increasing the number of concurrent queries.

Increasing the Size of Background Data. CityBench analyses memory consumption

while increasing the size of background data. Three versions of background data required

for the execution of query Q5 are generated, with varying size of 3MB, 20MB and 30

MB. Figure 9.20 shows that CQELS seems to be better at memory management with

background data of increasing size.

9.2.3.3 Completeness

The completeness of results generated by RSP engines is evaluated by executing Query

Q1 with variable input rates of data streams. Each stream is allowed to produce x

observations and the benchmark counts y unique observation IDs in the results, hence

the completeness c is given by: c = y/x. Note that the streams do not stop immedi-

ately when they finished sending triples but waited for a period of time until no new

results are generated, this ensured that the stream engines have enough time for query

processing. Figure 9.21, shows that CQELS completeness level has been dropped up to

50%, while CSPARQL continues to produce results with a completeness ratio of above

95%. The most probable cause of the completeness drop in CQELS is the complexity

and concurrency of join over multiple streams. In summary, CSPARQL out-performs

CQELS with regard to query result completeness.

Finale - Prototype Implementation and Event Query Performance Analysis 188

0	

50	

100	

150	

200	

250	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

memory	

(MB)	

experiment	
 0me	
 (minutes)	

3MB-­‐cqels	
 20MB-­‐cqels	

30MB-­‐cqels	
 3MB-­‐csparql	

20MB-­‐csparql	
 30MB-­‐csparql	

Figure 9.20: Memory consumption
for increasing size of background data

(Q5)

91.4	

82.4	

73.2	
 74.2	

54.4	

98	
 97	
 96	
 97	
 96	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

30	
 60	
 90	
 120	
 150	

Completeness	

(%)	

stream	
 input	
 rate	
 (triple/s)	

cqels	
 csparql	

Figure 9.21: Completeness of results
with increasing rate of input stream

9.2.4 Comparison to Existing Benchmarks

There exist several prominent works in Benchmarking RDF stores, including the Berlin

SPARQL benchmark [240], LUBM [241] and SP2 [242]. However, these benchmarks

are designed for static RDF storing and querying systems. LS Bench [39] and SR

Bench [40] are two well-known efforts for benchmarking RSP engines. SR Benchmark

is defined on weather sensors observations collected by Kno.e.sis11. The dataset is part

of the Linked Open Data Cloud and contains weather data collected since 200212. All

sensor observations are semantically annotated using the SSN ontology. Beside weather

streams, SR contains two static datasets (GeoNames13 and DBPedia14) for integration

of streaming data with background knowledge. The benchmark contains the verbal

description of 17 queries covering stream flow, background integration and reasoning

features. However, due to the lack of a common RDF stream query language, some of

the queries are not supported by the existing engines and, therefore, cannot be executed.

LS Benchmark is a synthetically generated dataset on linked social data streams. The

dataset contains 3 social data streams, namely (i) Location (GPS coordinates) stream

of a social media user, (ii) stream of micro posts generated or liked by the user, and

(iii) a stream of notification whenever a user uploads an image. LS Bench also provides

a data generator to synthesised datasets of varying size. LS Bench contains 12 queries,

covering the processing of streaming data as well as the integration of background data.

Both LS and SR benchmarks focus on evaluating RSP engines to demonstrate their query

language support, process query operators and performance in a pre-configured static

11Wright State University homepage: http://knoesis.wright.edu, last accessed: Aug., 2015.
12Linked Sensor Data: http://wiki.knoesis.org/index.php/LinkedSensorData, last ac-

cessed: Aug., 2015.
13GeoNames dataset: http://datahub.io/dataset/geonames, last accessed: Aug., 2015.
14DBPedia homepage: http://wiki.dbpedia.org/, last accessed: Aug., 2015.

http://knoesis.wright.edu
http://wiki.knoesis.org/index.php/LinkedSensorData
http://datahub.io/dataset/geonames
http://wiki.dbpedia.org/

Finale - Prototype Implementation and Event Query Performance Analysis 189

testbed. Best practices to design a benchmark are discussed by Gray et al. [102] and

Scharrenbach et al. [103]. The real-world environment for the applications using RSP

is however dynamic. Duan et al. [63] demonstrate that synthesised benchmark datasets

do not portray the actual dataset requirements and therefore might produce unreliable

results. CityBench extends the existing benchmarks and takes a new perspective on the

evaluation of RSP engine which relies on the applications requirements and dynamicity

of the environment to draw a picture that is closer to reality. Table 9.3 summarises the

related work in RSP benchmarks.

Approaches Differences to CityBench
Berlin [240], LUBM [241]
and SP2 [242]

Applicable for static RDF repositories.

SR Bench [40] Tests 17 verbally described queries over weather data
streams and static datasets, not all are supported in exist-
ing engines, uses synthetic weather datasets and predefined
configurations.

LS Bench [39] Tests 12 queries over social media streams and user location
data streams, provides data generator to create datasets
of varing size, all datasets are synthetic, uses predefined
configurations.

Table 9.3: Comparison to existing RSP benchmarking

9.3 Optimisation for Concurrent Queries

Benchmarking results in Section 9.2.3 show acceptable query latency and memory con-

sumption for CQELS and CSPARQL. However, their capability for handling concurrent

queries are limited, thus limits their use in city-scale applications. In order to investigate

the feasibility of using RSP engines in large-scale applications, performance evaluation

and optimisation with regard to concurrent queries is required. In Section 9.2.3 some

initial results for handling concurrency are presented. However, only duplicates for a

same query are used as concurrent queries and only 20 queries are tested at one time

over a single engine instance. In the following, the performance of single CQELS and

CSPARQL engines is analysed when processing multiple different queries. Then, the

optimisation technique of using multiple engine instances in parallel and evaluate the

improvement in query performance is discussed. Finally, the experiment results of the

stress tests are presented in order to find out the capability of the server that hosts RSP

engines using the aforementioned optimisation techniques. The experiments on con-

current queries are deployed over a machine running Debian GNU/Linux 6.0.10, with

8-cores of 2.13 GHz processor and 64 GB RAM. The queries used in the experiments

are randomly created with 2-4 streams and 8 - 16 triple patterns15. The stream rate is

15This setting is the typical situation in the STPP and SCD scenario

Finale - Prototype Implementation and Event Query Performance Analysis 190

configured to 15 triples per second per stream. Thus, for a single query, the input rate

is 30 to 60 triples per second.

9.3.1 Multiple Different Queries over Single Engine Instance

Figure 9.22 and 9.23 show the performance of CQELS and CSPARQL engines when

dealing with multiple queries. In the result data series, the letter “p” denotes the

number of engine instances deployed and “q” represents the number of queries deployed.

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

latency	
 (ms)	

Experiment	
 Time	
 (minutes)	

p=1,q=1	

p=1,q=10	

p=1,q=20	

p=1,q=30	

Figure 9.22: Latency of multiple dif-
ferent queries over single CQELS en-

gine

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

latency	
 (ms)	

Experiment	
 Time	
 (minutes)	

p=1,q=1	

p=1,q=10	

p=1,q=20	

p=1,q=30	

Figure 9.23: Latency of multiple dif-
ferent queries over single CSPARQL

engine

The results in Figure 9.22 and 9.23 indicate that for both types of engines, the query

latency increases when handling more queries. Notably, the latency of CQELS decreases

significantly in the begining of the experiments. This is perhaps caused by the caching

mechanisms implemented in CQELS result decoder. CQELS is relatively more efficient

when handling multiple queries. Also, when the number of concurrent queries exceeds

30, the query latency is not stable, i.e., does not converge to stable values and will stop

producing results after a period of time.

9.3.2 Optimisation using Multiple Engine Instances

One natural thought in handling many concurrent queries is to deploy multiple engine

instances in parallel and distribute the workload over different engines. Thanks to

the service-oriented nature of ACEIS, queries can reuse results from different engine

instances and even from different types of engines. However, a load balancing strategy

is needed to determine at run-time which queries are going to be deployed on which

engine instances. For this purpose, an additional Scheduler module is developed, which

Finale - Prototype Implementation and Event Query Performance Analysis 191

consists of a query dispatcher and a performance monitor. The performance monitor

gathers real-time status of the query engine instances, such as query latency, number

of queries deployed and overall memory consumption etc. When a composition plan

arrives at the subscription manager, the subscription manager queries the dispatcher

for the current best engine instance for the composition. The dispatcher calculates the

best engine instance based on the status of the engines reported by the performance

monitor and send the identifier of the engine instance to the subscription manager. The

subscription manager then deploys the query derived from the composition plan to the

best engine instance. When necessary, the dispatcher will create new engine instances.

The interactions between the scheduler and other components in ACEIS is depicted in

Figure 9.24

Data
Federation Composition PlanComposition Plan

Query
Transformer

Query Engine

Scheduler

Dispatcher

Query
Monitor

Composition Plan

Query EngineQuery Engine

Subscription Manager getEngine()

engineID
deploy(qid,engineID) sendStats()

createEngineInstance()

Figure 9.24: ACEIS concurrent query scheduler

The scheduler performs load balancing using different strategies. The simplest strategy

is to initialise a fixed amount of engine instances in the beginning and keep the same

amount of queries on each engine instance. This strategy is called the Equalised Query

(denoted “EQ”) strategy. Another strategy is to dynamically create new instances based

on the current system load. This strategy is called the Elastic (denoted “EL”) strategy.

Since the experiments on a single engine instance suggest that an engine instance may

become unstable when dealing with more than 30 concurrent queries, in EL, a new

engine instance is deployed when the current engine reaches n queries, where n ≤ 30 (n

is set to 20 in the experiments below).

Figure 9.25 and 9.26 show the average query latency of multiple CQELS and CSPARQL

engines, respectively. The results show that using two engine instances reduces the query

latency for both CQELS and CSPARQL compared with single engine instance. However,

deployment of more engines does not necessary result into better query performance,

e.g., when 4 engines are used for 30 queries, the latency can sometimes be higher than

using a single engine. Meanwhile, the elastic approach performs better than equalised

Finale - Prototype Implementation and Event Query Performance Analysis 192

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

latency	
 (ms)	

Experiment	
 Time	
 (minutes)	

p=2,q=30	

p=4,q=30	

p=1,q=30	

elas4c,	
 q=30	

Figure 9.25: Latency of CQELS en-
gines using EQ

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

latency	
 (ms)	

Experiment	
 Time	
 (minutes)	

p=2,q=30	

p=4,q=30	

p=1,q=30	

elas4c,q=30	

Figure 9.26: Latency of CSPARQL
engines using EQ

queries in this experiment. Indeed, using multiple engines demands more resources such

as memory and initialising all engines upfront creates overhead. Figure 9.27 and 9.28

show the memory usage for CQELS and CSPARQL under different number of concurrent

queries and engine instances, respectively.

0	

20	

40	

60	

80	

100	

120	

p=
1,q
=1
	

p=
1,q
=1
0	

p=
1,q
=2
0	

p=
1,q
=3
0	

p=
2,q
=3
0	

p=
3,q
=3
0	

p=
4,q
=3
0	

p=
5,q
=3
0	

memory	

(MB)	

Figure 9.27: Memory consumption of
multiple CQELS engines

0	

20	

40	

60	

80	

100	

120	

p=
1,q
=1
	

p=
1,q
=1
0	

p=
1,q
=2
0	

p=
1,q
=3
0	

p=
2,q
=3
0	

p=
3,q
=3
0	

p=
4,q
=3
0	

p=
5,q
=3
0	

memory	

(MB)	

Figure 9.28: Memory consumption of
multiple CSPARQL engines

From the results in Figure 9.27 and 9.28, it is clear that the memory consumption

increases with the increasing number of concurrent queries as well as the number of

engine instances. Also, CQELS uses less memory than CSPARQL when dealing with

fewer queries but the memory growth rate over the increasing number of queries and

engine instances are faster than CSPARQL.

Since the memory availability is limited in any system, the elastic approach will have to

stop creating new engine instances at some point. Then it will regress to the equalised

queries approach. An alternative way is to deploy queries on the engine that has the low-

est average query latency. This strategy is called the Balanced Latency (denoted“BL”)

strategy. The results in Figure 9.29 and 9.30 show that the balanced latency strategy

Finale - Prototype Implementation and Event Query Performance Analysis 193

0	

500	

1000	

1500	

2000	

2500	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

latency	
 (ms)	

Experiment	
 Time	
 (minute)	

balanced	
 latency	

equalized	
 queries	

Figure 9.29: Latency of CQELS
engines using EQ and BL while

p=5,q=50

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

100000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	

latency	
 (ms)	

Experiment	
 Time	
 (minutes)	

balanced	
 latency	

equalized	
 queries	

Figure 9.30: Latency of CSPARQL
engines using EQ and BL while

p=5,q=50

outperforms equalised query on both CQELS and CSPARQL when dealing with 50 con-

current queries over 5 instances. In particular, CSPARQL is unstable when using the EQ

strategy but is stabilised when using BL. The results in Figure 9.31 show the improve-

76	

69	

49	

36	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

cqels	
 balanced	

latency	

cqels	
 equalized	

queries	

csparql	

balanced	

latency	

csparql	

equalized	

queries	

Percentage	

Figure 9.31: Query latency distribution, p=5,q=50

ment of query latency distribution when using BL instead of EQ. From the results, it is

observable that, for CQELS engines, the number of query results with latency less than

500 milliseconds is 76% and 69% when using BL and EQ respectively. For CSPARQL

engines, the number of query results with latency less than 5000 milliseconds is 49% and

36% when using BL and EQ respectively. The combined strategy of using the elastic

approach in the beginning and switch to balanced query strategy when the memory limit

has been reached is called Elastic-Balanced-Latency strategy (denoted “EBL”).

9.3.3 Stress Tests

In order to further investigate the feasibility of running federated RSP queries in large

scale, i.e., with high input rate, large amount of input streams, and high volume of

Finale - Prototype Implementation and Event Query Performance Analysis 194

concurrent users, stress tests are conducted to evaluate the system with hundreds to

thousands of queries (deploying a new query every 1-3 seconds) with the EBL load

balancing strategy. The query latencies over an hour for CQELS and CSPARQL engines

are shown in Figure 9.32 and 9.33.

0	

5000	

10000	

15000	

20000	

25000	

1	
 4	
 7	
 10	
 13	
 16	
 19	
 22	
 25	
 28	
 31	
 34	
 37	
 40	
 43	
 46	
 49	
 52	
 55	
 58	

latency	
 (ms)	

Experiment	
 Time	
 (minutes)	

q=1000	

q=500	

Figure 9.32: Latency of CQELS en-
gines using EBL

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

1	
 4	
 7	
 10	
 13	
 16	
 19	
 22	
 25	
 28	
 31	
 34	
 37	
 40	
 43	
 46	
 49	
 52	
 55	
 58	

latency	
 (ms)	

Experiment	
 TIme	
 (minute)	

q=80	

q=90	

Figure 9.33: Latency of CSPARQL
engines using EBL

The stress test results show that CQELS can handle around 1000 concurrent queries with

a 15-20 second delay, while CSPARQL has a much more limited capacity of processing

no more than 100 queries in a stable status. It is also worth mentioning that during the

experiments it is observable that CQELS tends to use all CPU time when the workload is

heavy, but CSPARQL does not use more than 30% of the CPU time even the concurrency

and query delays are high. It is not clear whether this behaviour of CSPARQL is by

design or an implementation issue.

9.4 Summary and Discussion

In this chapter, the usage of ACEIS prototype in real-world scenarios is introduced.

The user interfaces of a smart travel/parking planning application and a smart city

dashboard application are presented and the functionalities of these two applications are

discussed. In order to evaluate the performance of RSP engines in real-world scenarios,

a benchmarking tool is developed based on real-world datasets, called CityBench. The

evaluation results of CQELS and CSPARQL engines using the datasets and queries

introduced in Section 2.1 are presented and discussed. The benchmarking results indicate

that both CQELS and CSPARQL have their own merits, e.g., CSPARQL is better for

handling joins over multiple streams and CQELS is better at handling multiple queries

etc. Leveraging the benchmark results, a developer using ACEIS can decide which type

of RSP engine would be the best choice to execute the composition plans created by

ACEIS, given the specific computing resources, datasets and queries he/she may have.

Finale - Prototype Implementation and Event Query Performance Analysis 195

Benchmarking results from CityBench indicate that both RSP engines have limited

capability in handling concurrent queries, which could hinder their usage in large-scale

applications.

The practical problem of processing a large amount of queries concurrently using exist-

ing RSP engines (i.e., CQELS and CSPARQL) is further analysed. Means have been

provided in this chapter to improve RSP engine performance without revising the in-

ternal data processing algorithms of CQELS and CSPARQL engines. In particular, the

service-oriented nature of ACEIS is utilised and RSP queries are deployed as service

compositions over service instances provided by multiple query engine instances. Thus,

data federation over different engine instances is made possible. On top of multiple en-

gine instances, different load balancing techniques are developed, including the equalised

query, balanced latency and elastic strategy to determine which query should be dele-

gated to which engine at run-time. A scheduler is integrated within ACEIS to control

the delegation of query tasks over multiple RSP engine instances. Experiment results

show that combing the Elastic and Balanced Latency strategy can achieve the best per-

formance. Stress tests are carried out on CQELS and CSPARQL engines using EBL

load balancing and the results show that on a single server node, CQELS can handle

about 1000 queries in parallel while the current version of CSPARQL cannot deal with

more than 100 concurrent queries. The experiment results also suggest that CSPARQL

has a better performance in more complicated queries with more input streams. While

the scheduler have shown progress in improving RSP capacity, this is still not enough

for a city-scale application, where thousands or even millions of users can be expected.

Further optimisation is required for a distributed and scalable RSP.

Chapter 10

Conclusions and Future Work

The thesis set out to explore the management of Semantic Event Service (SES) and

their usage in Smart City applications, where real-time and large-scale federation of

heterogeneous data streams are required. The study has investigated how to manage

different activities within the life-cycle of SESs, namely the modelling, planning, imple-

mentation and adaptation phases. The state-of-the-art research in Service Computing

has not provided adequate models or methods for handling SESs with event patterns

and the Complex Event Processing community provides only platform-specific solutions.

The study sought to answer four main research questions:

1. What is the suitable information model for describing event services and event

patterns?

2. How to facilitate efficient and customised event service composition?

3. How to realise automatic and adaptive event service implementation?

4. How to evaluate and improve the performance of semantic event service execution?

The research questions are put into the context of Smart City applications in Chapter 2.

The concept of a Smart City is introduced, the participants in a Smart City application

and the roles they take are discussed. Sample datasets from a real-world city (the City of

Aarhus, Denmark) are listed and different queries from three possible scenarios, namely

the travel planner, parking place finder and city administration console, are presented.

The analysis of these queries shows a strong need in the federation of heterogeneous

data interfaces, formats and semantics, as well as real-time data analysis at a large-

scale. These requirements justify the use of SESs in Smart City applications as an

integration of Service Oriented Architecture, Complex Event Processing and Semantic

Web technologies. The background of these technologies is introduced in Chapter 3. The

196

Finale - Conclusions and Future Work 197

management issues of the life-cycle of SESs and the gaps between the state-of-the-art

are then discussed with examples from the motivational scenarios.

The solutions for the first three research questions constitute the main functionalities of

an Automatic Complex Event Implementation System (ACEIS). An overview of ACEIS

is presented in Chapter 4, where the functional design and architectural components are

elaborated.

The information model used in ACEIS is described in Chapter 5. The information model

consists of a Complex Event Service Ontology (CESO) extended from OWL-S and an

event pattern language extended from Business Event Modelling Notations (BEMN),

called BEMN+. The language constructs, abstract syntax and formal semantics of

BEMN+ are elaborated. The event semantics of BEMN+ is compared with existing

languages, e.g., ETALIS [19], CSPARQL [38], CQELS [37], and BEMN [3], using the

event semantic meta-model proposed in [62].

Leveraging the information model, Chapter 6 provides algorithms for pattern-based com-

plex event service discovery and composition, which is used in the Resource Discovery

and Event Service Composer components in ACEIS. It first discusses how to derive

canonical event patterns from general ones in order to compare the semantic equiva-

lence between event patterns. Then, algorithms are developed to create event service

compositions based on semantic equivalence/subsumption relations between event pat-

terns. This chapter also carries out evaluations on the performances of the proposed

algorithms.

The complex event service discovery and composition algorithms in Chapter 6 are ex-

tended in Chapter 7 to address non-functional constraints and preferences. It first

introduces a QoS aggregation schema to estimate the QoS metrics for event service

compositions. Then, a Genetic Algorithm (GA) is designed to optimise event service

compositions using their estimated QoS as the heuristic. The performance of the GA

and the validity of the QoS aggregation are evaluated over synthesised datasets. The

GA is also used in the Event Service Composer in ACEIS.

The composition plans generated by the algorithms in Chapter 6 and Chapter 7 are

transformed into stream queries using the algorithms developed in Chapter 8, so that the

requested SES can be implemented as continuous queries over annotated event streams.

Chapter 8 also provides a means to enable QoS-aware event service adaptation. in

cases when the user-defined QoS constraints are violated. Evaluations on the feasibility

and performance of the automatic adaptation are presented and discussed. Algorithms

provided in Chapter 8 are used in the Query Transformer and Adaptation Manager in

ACEIS.

Finale - Conclusions and Future Work 198

The answers for the fourth research question are provided in Chapter 9. This chapter

first validates the usage of ACEIS in real-world scenarios by presenting the prototypical

implementation of the ACEIS in two sample Smart City applications, namely the Smart

Travel/Parking Planner (STPP) and the Smart City Dashboard (SCD). The functional

requirements of STPP and SCD, as well as the fulfilment of the requirements by ACEIS

are discussed. Then, an RSP benchmark (CityBench) is designed and developed to eval-

uate the performance of the RSP engines (which are responsible for the SES execution)

used in ACEIS based on realistic datasets and queries. Understanding the limitation

of the capacity of existing RSP engines, load balancing techniques over multiple RSP

engine instances are integrated into a Scheduler component in ACEIS, in order to im-

prove the RSP performance in handling concurrent queries. The benchmarking and

optimisation results are presented and analysed.

The remainder of this chapter is organised as follows. Section 10.1 draws the conclu-

sions of the thesis by answering the research questions. Section 10.2 presents the core

contributions of the thesis. Section 10.3 discusses the limitation of the study. Section

10.4 presents some possible future directions of the research. Section 10.6 concludes.

10.1 Answers to the Research Questions

In this section, the answers for the research questions are summarised based on the

solutions provided in this thesis.

RQ1: What is the suitable information model for describing event services

and event patterns?

(a) How to semantically annotate the description for event services and requests?

The Complex Event Service Ontology (CESO) extends OWL-S to provide semantic

annotations for event services and requests. By extending the Service Profile concept

in OWL-S, CESO allows semantically annotating event service capabilities with both

functional (e.g., event patterns, event payloads) and non-functional properties (e.g., QoS

properties). Also, leveraging the Grounding concept in OWL-S, CESO can describe the

access mechanism for event services, including their streaming protocol, subscription

endpoint and message formats. An event request in CESO is modelled as an incomplete

event service without concrete service groundings. An event request can express its

functional requirements by describing the requested event pattern (event services in

requested patterns also do not have groundings). Constraints and preferences over QoS

properties can be used in event requests for non-functional requirements.

Finale - Conclusions and Future Work 199

(b) How to define the formal semantics of complex event patterns?

The abstract syntax and semantics of the event patterns used in CESO are defined as an

extended version of the Business Event Modelling Notations (BEMN), called BEMN+.

The comparison on the event semantics in BEMN+ with existing approaches shows that

BEMN+ covers most existing event operators, including sequence, repetition, conjunc-

tion, disjunction, filters and window operators, and can define event patterns for different

scenarios.

(c) How to graphically present the event semantics so that the business users can under-

stand and define them easily?

BEMN+ reuses and extends the graphical notations defined in BEMN, which are com-

patible with the standardised Business Process Model Notations (BPMN). This way

BEMN+ allows non-technical/business users to define event patterns with minimal learn-

ing overhead.

RQ2: How to facilitate efficient and customised event service composition?

(a) How to efficiently create event service compositions based on the functional aspects

of event services?

The functional aspects of event services are captured by the semantics of the event pat-

terns. Canonical forms of event patterns can be provided by applying rules for removing

redundant operators. Then, the problem of comparing the semantics of two event pat-

terns is translated into the problem of comparing the isomorphism of two canonical event

patterns. A top-down traversal algorithm based on substituting semantically equivalent

(sub-) event patterns is provided to compose complex event services. However, this al-

gorithm has a high time complexity and is not efficient. To improve the efficiency, an

index of event patterns is proposed based on the reusability of event patterns, called

Event Reusability Forest (ERF). An algorithm is developed to build ERFs by inserting

reusable patterns as descendant nodes of existing nodes. An index-based composition al-

gorithm is then developed and evaluated. Using the reusability index, the pattern-based

composition can be carried out efficiently for large service repositories and complicated

queries.

(b) How to efficiently create event service compositions based on the non-functional

aspects of event services?

A QoS aggregation schema is proposed for different QoS parameters to estimate the

overall QoS performance of an event service composition and a utility function based on

the weighted sums of QoS values is defined to calculate and compare QoS performances.

Finale - Conclusions and Future Work 200

The QoS aggregation model is validated with simulated datasets to show that the QoS-

aware optimisation is effective. A Genetic Algorithm (GA) is developed to create near-

optimal event service compositions efficiently, using the QoS utility function as the

heuristic. The population initialisation and crossover operations of the GA utilise the

ERF for ensuring the correctness and improving the efficiency. Guidelines on fine-

tuning the parameters of the genetic algorithms are provided, in order to obtain better

composition results. For example, depending on the size of the solution space, the

mutation rate should be set to 0 to 0.4%, population size should be set to 60 to 100,

crossover rate should be 35% to 95%. The experiments results show that having a

reducible population is more efficient (takes less time) and effective (achieves better

results) than using a fixed size population (by allowing two individuals to crossover

more than once).

RQ3: How to realise automatic and adaptive event service implementation?

(a) How to automatically deploy executable services according to composition plans?

The semantics of event operators in event patterns and query operators in RDF Stream

Processing (RSP) are aligned. Query transformation algorithms are thus developed

for two RSP engines, CQELS and CSPARQL, in order to generate RSP queries from

composition plans and achieve automatic deployment of event service composition plans.

(b) How to efficiently redeploy event service compositions when constraint violations are

detected at run-time?

Leveraging the capability of automatic implementation of event service compositions, an

automatic, QoS-aware event service adaptation is realised. Different adaptation strate-

gies, including local, global and incremental adaptations, are discussed and evaluated.

The experiment results show that although there is a trade-off between adaptation suc-

cess rate and adaptation time and no single best adaptation strategy can be found,

the incremental adaptation based on the reusability index of the event services is the

balanced choice between efficiency (time) and effectiveness (success rate). Further ex-

periments show that the adaptation time of the incremental adaptation can be reduced

when the ERF contains more edges and nodes, i.e., there exists more reusable patterns

in the index, since the need for global re-composition is reduced when performing the

incremental adaptation.

RQ4: How to evaluate and improve the performance of semantic event ser-

vice execution?

(a) How to design a configurable benchmark for RDF stream processing engines?

Finale - Conclusions and Future Work 201

A configurable benchmark for RSP engines is designed, taking into consideration multi-

ple factors that may affect the RSP performance, including input streaming rate, play-

back time, background data size, the number of concurrent queries and the number of

streams within a query. The evaluation results cover the latency over a different number

of input streams and concurrent queries, memory consumption over different number

of concurrent queries and different amount of background data, as well as completeness

over different stream rates. The benchmark uses realistic datasets collected from the

City of Aarhus as well as synthetic datasets (for simulating user locations). The queries

are implemented based on the ones described in Chapter 2.

(b) What are the differences of the RDF stream processing engines in terms of query

performance?

The benchmarking results show that CSPARQL is better at optimising query latency

when handling queries with more streams involved, but CQELS is better at optimising

query latency when handling more concurrent queries. CQELS consumes more mem-

ory when handling concurrent queries, while for CSPARQL the difference in memory

usage is not distinguishable for handling 1 and 20 queries. Both engines consume more

memory when using a larger amount of background data, but CQELS uses less memory

than CSPARQL. The results on completeness show that is better at maintaining a high

completeness than CQELS, when dealing with higher stream rates.

(c) How to improve the performance of RDF stream processing engines with regard to

handling concurrent queries?

Applying load balancing techniques over multiple RSP engine instances can increase the

number of concurrent queries processable by the engines. However, deploying multiple

engine instances has an overhead, and the experiments show that when deploying a small

number (e.g., 30) of concurrent queries over many (e.g., more than 4) engine instances,

the overhead sometimes outweighs the optimisation. Therefore, creating engine instances

elastically is the better choice. Moreover, balancing the load based on the average latency

outperforms distributing the same number of queries over all engine instances.

10.2 Main Contributions

The core contributions of this thesis are the provision of the integrated solutions (i.e.,

ACEIS) for managing the life-cycle of SESs together with a configurable RSP benchmark

based on realistic datasets and queries. More specifically, the contributions can be

categorised into the following five sub-sections.

Finale - Conclusions and Future Work 202

10.2.1 User-centric Event Service Modelling

The Complex Event Service Ontology is a novel service ontology extended from

OWL-S [117]. CESO describes the service capability with both functional and non-

functional aspects as well as access mechanisms for event services. It is the first service

ontology that explicitly defines the concepts for event patterns, making complex events

first-class citizen in SOA. Event requests are also modelled in CESO, with the possibility

to specify QoS constraints and preferences for service consumers.

The Extend Business Event Modelling Notations is a graphical event pattern

definition language extended from BEMN [3]. The graphical notations are reused from

BEMN to be compatible with process modelling languages. The semantics of BEMN is

revised and extended to be aligned with the query semantics in existing RDF stream

processing engines.

10.2.2 Pattern-based Event Service Composition

Canonical Event Pattern Derivation is made possible by applying a pattern com-

plete and reduce function. It is proved that these functions create isomorphic patterns

for semantically equivalent patterns without altering the semantics. Most canonical

event patterns can be created efficiently, i.e., out of 5000 random patterns with 3 to 130

nodes, 92% of them are created in less than 100 ms while 2.4% of the event patterns took

more than one second, and in extreme cases it goes up to 8 seconds. In the cases when

the derivation took much longer time than average, the main cause is the expanding and

merging operations for the repetition nodes with high cardinality.

The Event Reusability Forest is constructed as an index for event services, based on

the reusable relation between event patterns. The evaluation of the ERF construction

algorithm shows that it scales well with the increasing size of service repositories, i.e.,

the completion time increases almost linearly. Also, for 1500 patterns with 10 and

25 nodes in average, indexing them takes about 58 and 323 seconds. While for very

complicated patterns, e.g., patterns with 70 nodes on average, it may take nearly an

hour. Fortunately, the construction of the index only needs to be done once when the

server initialises. Maintaining the index during run-time would be much more efficient,

i.e., inserting a pattern with 70 nodes into the index with 1500 70-node patterns takes

about 2 seconds.

An Efficient Event Service Composition Algorithm is developed based on the

ERF. The evaluation of the indexed and non-indexed pattern-based event service com-

position algorithm show that using the index will cause an overhead, leading to lower

Finale - Conclusions and Future Work 203

composition performance when the solution space is small, but the benefit of using

the index emerges when the solution space gets larger. For example, when composing

queries with 14 nodes over 500 service candidates, the unindexed algorithm uses 638

milliseconds and the indexed algorithm takes 2413 milliseconds, when composing more

complicated queries with 25 nodes, the unindexed approach takes 11941 milliseconds and

the indexed approach takes 6606 milliseconds, out-performing the unindexed algorithm

by using only 55% of the composition time. When dealing with even large repositories

with 1000 service candidates, the indexed approach takes 41% of the time, compared to

the unindexed approach. The evaluation also shows that when the number of reusable

patterns increases in the repositories, the indexed approach will out-perform the unin-

dexed approach even if the solution space is small, e.g., for composing queries with only

14 nodes over 1000 service candidates, in which more than 70% of them can be reused

by at least one another event service, the indexed composition performance is better

than the unindexed.

10.2.3 Constraint-aware Event Service Composition

A QoS Aggregation Schema is developed to estimate the QoS for event service com-

positions based on the QoS of the services involved in the compositions. Unlike con-

ventional QoS aggregation approaches ([84, 85, 201]) which cater only for composition

plans represented as service workflows, the propose QoS aggregation schema is designed

for declarative event composition plans and it takes into account three factors that may

affect the QoS of the composition, including service infrastructure, event engine and

composition pattern and it covers eight typical QoS metrics. The evaluation of the QoS

aggregation shows that the estimated QoS for composition plans do not deviate too

much from the real values observed from simulations. The observed latency (from simu-

lation) deviates from the estimated value by +4.50% to +9.19%, the accuracy deviates

by −3.79% to +2.78% the network consumption deviated by −13.51% to −5.19% and

the completeness deviates from −17.96% to −14.89%. The reason that the deviation

of completeness is more than the other metrics is that the RSP engines lose additional

messages when evaluating queries over the composed data streams.

A Genetic Algorithm for Optimising Event Service Composition is developed

with genetic encodings, population initialisation, crossover and mutation operations de-

signed for event services. The evaluation of the GA shows that it can achieve about 89%

optimal results (by comparing to the global optimum and the random picking results)

efficiently, i.e., for a 12-node query, composed over 3000 to 9000 service candidates takes

about 0.5 to 2 seconds. The GA also scales well with regard to the size of the query

Finale - Conclusions and Future Work 204

pattern and the size of the ERF, i.e., experiment results show that the execution time

increases linearly.

10.2.4 Automatic Event Service Implementation and Adaptation

RSP Query Transformation Algorithms are developed to transform composition

plans created by ACEIS into RSP queries executable over different RSP engines. The

query transformation component in ACEIS is the first attempt to incorporate multiple

target event engines (RSP engines), unlike existing systems (e.g., in [23]) which cater

for a single event engine. The basis of the transformation algorithms is the semantics

alignment of BEMN+ with RSP query semantics. The alignment ensures correctness of

the query transformation. Current transformation algorithms are designed for CQELS

and CSPARQL but Incorporating other RSP engines will not take too much efforts

following this methodology, since they have a similar syntax based on SPARQL.

Development and Evaluation of Different Adaptation Strategies, namely the

local, global and incremental adaptation, are provided for event services. Existing adap-

tation strategies in CEP systems consider mainly the query rewriting to re-organise

operators to achieve better performance, e.g., in [97, 233]. The adaptation in ACEIS

takes a different approach by replacing the data sources. The evaluation of the adapta-

tion strategies shows that the local adaptation is the most efficient choice, using about 8

milliseconds to complete on average, while the incremental adaptation takes about 1335

milliseconds and the global adaptation takes about 3340 milliseconds. The improvement

of QoS is lowest when using the local adaptation, i.e., about 0.4% improvement, while

the improvement for the incremental and global adaptation is about 34.92% and 40.43%,

respectively.

10.2.5 RSP Benchmarking and Performance Optmisation

CityBench is developed as an RSP benchmarking tool. Unlike existing RSP bench-

marks (i.e., LS Bench [39] and SR Bench [40]) which use mostly synthetic dataset and

queries, with static test configurations, CityBench results are generated from realistic

datasets. CityBench also offers configurable parameters to simulate different problem

settings. The benchmarking results help a developer (or an ACEIS user) to determine

which type of RSP engines has the better performance considering specific problem set-

tings. The results for the completeness reveal a possible implementation issue in CQELS

regarding the triple window maintenance.

Finale - Conclusions and Future Work 205

Load Balancing for RSP Engines are implemented in the Scheduler component

in ACEIS. In particular, three load balancing techniques are implemented: Equalised

Query (EQ), Elastic (EL) and Balanced Latency (BL). Evaluation results show that

the EL strategies out-performs the EQ strategy, i.e., for handling 30 queries using EL,

CQELS and CSPARQL query latency is about 300 and 800 milliseconds, respectively.

Using EQ, CQELS latency is about 425 milliseconds (averaged from results using 2 and

4 engine instances), and for CSPARQL with EQ, the average latency is about 3250

milliseconds. Also, the results show that both EQ and EL strategy out-performs the

single engine performance. The evaluation results show that BL also out performs EQ

over a fixed number of engine instances used. For example, when handling 50 queries

with 5 engine instances, for CQELS engines, the number of query results with latency

less than 500 milliseconds is 76% and 69% when using BL and EQ respectively. For

CSPARQL engines, the number of query results with latency less than 5000 milliseconds

is 49% and 36% when using BL and EQ respectively. The combined strategy of EL and

BL is called the Elastic-Balanced-Latency (EBL) strategy, in which the EL is applied

first and switches to BL when reaching the memory limit. Leveraging EBL, the number

of concurrent queries that could be handled by CQELS (in stable states) increases from

30 to 1000, and for CSPARQL, the number increases from 30 to 90.

10.3 Limitations of the Study

In the following, the limitations of this study is discussed:

• Incomplete event semantics captured in BEMN+. In this thesis, not all

the event semantics are incorporated in ACEIS. Rather, a set of typical event

operators and execution semantics adopted by existing RSP engines are selected

and analysed. Nevertheless, the queries in the motivational scenarios and the

functionalities in the prototypes of Smart City applications show that ACEIS can

address various needs in Smart Cities.

• Datasets from a single city. The scenarios and datasets used in the experi-

ments in this thesis come from one single city, i.e., the city of Aarhus, Denmark.

Integrating scenarios and datasets from multiple cities, preferably from different

countries or event continents could improve the validity of the research and the

feasibility of the approach. However, collecting data from cities presents a chal-

lenge in itself during the past few years. It is believed that with the prosperity of

IoT-enable devices and Smart City initiatives, more datasets will be available in

the future.

Finale - Conclusions and Future Work 206

• Performance limitation of existing RSP engines. As discussed in Chapter

9, the performance of existing RSP engine are limited. Although some optimisa-

tion techniques can be applied, they still cannot compete with conventional CEP

engines like Esper (according to the figures provided in [39]), especially when dy-

namic reasoning is used. Some efforts have been made (e.g., in [243]) to leverage

parallel stream processing engines (e.g., Apache Storm1) to implement RSP in a

elastic and scalable way. However, so far no stable releases of such approaches are

provided.

• Integration with other semantic event engines. ACEIS is designed to work

with different event engines. Currently, only CQELS and CSPARQL engines are

implemented as the target systems, in order to demonstrate the mechanisms of

using multiple RSP engines. The semantics alignments for ETALIS is also pro-

vided but the engine is not used in the current ACEIS implementation. There are

other RSP engines in the literature, such as TA-SPARQL [244], tSPARQL [245],

Streaming SPARQL [246] and SPARQLstream [162], which may worth exploring.

In the current ACEIS implementation, CQELS and CSPARQL are used because of

their maturity levels and availability for technical support. Apart from these RSP

engines, some rule-based semantic event engines (e.g., in [22, 156]) could also be

considered, however, the query transformation might be more complicated, since

they do not necessarily follow a SPARQL-like syntax.

10.4 Future Directions

The following directions are recommended for future research:

• Extending event semantics in ACEIS. Incorporating more event operators

and event pattern semantics could expand the usage of ACEIS in more scenarios

and allow ACEIS to incorporate more event engines. Possible extensions to the

event semantics can be adding support for negation operators, exclusive disjunc-

tions and interval-based events etc. In order to implement these extensions, the

canonical pattern creation algorithm needs to be updated, more specifically, the

lifting and merging operations in the event pattern reduction function need to be

extended to support new operators, or updated to support interval-based events.

Then, the definitions for reusable relations need to be expanded. The creation of

reusability index and the composition algorithms based on the index can remain

unchanged. Finally, the transformation algorithms needs to be redesigned.

1Apache Storm: http://storm.apache.org/index.html, last accessed: Dec., 2015.

http://storm.apache.org/index.html

Finale - Conclusions and Future Work 207

• Decentralising event service composition algorithms. Currently, the com-

position algorithms are implemented as centralised Java programs. These algo-

rithms can be decentralised by dividing the composition task into a set of sub-tasks

and distributing the sub-tasks to a set of autonomous and collaborating agents in

a Multiple Agent System (MAS) [247]. This way the composition task can be exe-

cuted as parallel sub-tasks and achieve better efficiency. Different methods can be

used to determine the division of composition tasks, for example, learning methods

could be used to determine the division based on analysing historical composition

results. The reusability index developed in this thesis may also be decentralised

to allow distributed service query, such as in [248].

Another possibility is to leverage logic programming approaches, e.g., Constraint

Programming [249], to address the event service composition problem. This would

require encoding the event patterns as logical rules processable by the logic systems

and use the reasoning capability to create optimal compositions.

• Improving the QoS-aware event service adaptation. The adaptability of

ACEIS can be improved in several aspects. Firstly, the criticality of QoS updates

are evaluated based on precise QoS values, i.e., using hard constraints, in the

current ACEIS implementation. In highly fluctuated environments, this may result

in frequent and unnecessary adaptation actions. Alternatively, fuzzy logics can be

used to determine the QoS update criticality as well as adaptation actions, e.g, in

[250, 251]. Results from [250] show that using fuzzy inferencing systems can reduce

the number of adaptation required, applying similar techniques over ACEIS could

help reducing the cost of adaptation. This implies redesigning the QoS rules, and

taking into consideration the adaptation cost while making choices for adaptation.

Secondly, constraint delegation and negotiation techniques can be used to divide

global QoS constraints into local constraints, and transform the scale of the QoS

optimisation problem from global to local to reduce the complexity, e.g., in [201].

Integer Programming techniques can be used to determine how to delegate the

constraints, however, means for handling dynamic service attributes is needed, in

order to cope with IoT devices and Smart City applications.

Thirdly, the message loss in adaptation needs to be minimised. As discussed in

Chapter 8, existing adaptation mechanisms may incur more than 30% message loss

rate. The main reason of message loss is that existing event engines cannot may

dynamic changes to queries deployed, while keeping the continuity of the query

evaluation. To enable this feature, the key issue is to maintain the event window

as well as the query execution plan at run-time to cope with the changes in the

query.

Finale - Conclusions and Future Work 208

• Optimising RSP engine performance. RDF stream processing is still in its

early stages and further investigation and research is required to provide scal-

able and mature solutions for integrating RSP engines in smart city applications.

The usage and optimisation of RSP technologies in this thesis can serve as a good

baseline for future optimisation and improvement in RSP engines. For example, in

Chapter 9, the limitation of CQELS engine with regard to multiple stream joins are

observed from the benchmarking results. To further investigate this issue, evalua-

tions on different types of joins, e.g., “star-” or “chain-” shaped joins over different

streams needs to be studied. Also, for improving the performance for concurrent

queries, it could be beneficial to reuse intermediate query results among multi-

ple queries within the same engine instance, which could be challenging because

dependencies are introduced into a set of dynamic queries.

• Automating event service annotation. The current ACEIS implementation

assumes event service annotations are provided by the service providers. In re-

ality, this assumption may not hold, because providing the annotations could be

a challenging task [?]. Automatic service annotations are studied extensively,

e.g., in [252–255]. However, existing approaches focus on providing annotations

for service tasks and requests. Providing automatic semantic annotations for event

services and event patterns remains largely unexplored.

10.5 Lessons Learned

Looking back to the progress made during the years spent completing this thesis, I have

learned the following lessons:

• Literature reviews should be updated frequently: as the research communities de-

velop, some statements can easily get out-dated and continuous efforts are required

to keep the literature up-to-date.

• The scope of the Ph.D. research should be chosen wisely: the topic cannot be too

generic, one could end up doing everything and nothing at all: in the early stage

of this research it was set out to explore both complex events and tasks, later I

realised it is too ambitious and had to remove the part on the tasks; it also should

not be too specific, which may limit the use of the outcomes.

• Problem formalisation before solutions: having only an “intuition” for the problem

is insufficient and could be misleading. Formalising the problem always offer more

clarity on the issue and its solutions - the formalisation of the event semantics

Finale - Conclusions and Future Work 209

introduced in this thesis is actually developed at later stages, which resulted in

revisions of a lot of algorithms and evaluations.

• Planning is more important than implementation: rushing into experiment im-

plementation could cost you time and effort, a well-thought experiment design is

crucial. The experiments for Chapter 7 was revised because of the overlooked

issues regarding scalability, query complexity and GA parameter configurations

etc.

• “Bad” results are not failures: they often reveal much more interesting insights

to the problem than “expected results”, e.g., the limitations of the RSP capacity

were not expected until the evaluation results are obtained, however, this opened

new research opportunity for optimisation.

10.6 Conclusion

In this thesis, data streams and continuous query results over the data streams are mod-

elled as primitive and complex event services. The data items and stream metadata are

annotated using SSN and CESO, respectively, in order to improve data (and metadata)

interoperability. This way, the problem of federating heterogeneous data streams can

be transformed into the problem of modelling, composing and implementing Semantics

Event Services (SESs). Basic principles and notions in conventional Web Service compo-

sition can thus be borrowed and extended to address the issues of managing the life-cycle

of SESs. For example, the notion of service index is extended to create a reusability

index for SESs, the Genetic Algorithms for optimising Web Service compositions are

revised to cope with SES compositions. Evaluations of the composition algorithms show

that they are scalable and effective for large service repositories and complex event re-

quests. Leveraging the formal semantics defined for the event patterns considered in this

thesis and its alignment with the query semantics of existing RSP engines, query trans-

formation algorithms are developed to create executable RSP queries for different types

of RSP engines, allowing a cross-platform collaboration of RSP engines. Adaptation

strategies are then developed and tested to improve the adaptability of SES composi-

tions. Run-time adjustments are thus made possible for RSP engines in order to keep

the user-defined, multi-modal QoS constraints satisfied.

The aforementioned techniques are bundled into a stream federation middleware named

Automatic Complex Event Implementation System (ACEIS). ACEIS facilitates easy-

to-use, on-demand and scalable data/event stream processing and it has been deployed

in prototypes of Smart City applications to evaluate the feasibility of using SESs. In

Finale - Conclusions and Future Work 210

the evaluation, particularly during the benchmarking of the RSP performance, the lim-

itations of RSP capacity with regard to handling concurrent queries are revealed and

efforts are made to improve the RSP capacity by applying load balancing over parallel

RSP engine instances.

Appendix A

Examples of CESO

@prefix : <http://www.insight-centre.org/dataset/SampleEventService#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix owls: <http://www.daml.org/services/owl-s/1.2/Service.owl#> .
@prefix owlssc: <http://www.daml.org/services/owl-s/1.2/ServiceCategory.owl#> .
@prefix qoi: <http://ict-citypulse.eu/ontologies/StreamQoI/> .
@prefix ces: <http://www.insight-centre.org/ces#> .

:trafficSensor-234 a ssn:Sensor , ces:PrimitiveEventService ;
ssn:observes :Property-avgSpeed-234 , :Property-vehicleCount-234 ;
owls:presents :234-Profile ;
owls:supports

[a ces:HttpGrounding ;
ces:httpService

] .

:234-Profile a ces:EventProfile ;
owlssc:serviceCategory

[a owlssc:ServiceCategory ;
owlssc:serviceCategoryName

"traffic_report"ˆˆxsd:string
] ;

ces:hasNFP
[a qoi:Correctness ;
qoi:value "0.99"ˆˆxsd:float

] .

:Property-avgSpeed a ct:AvgSpeed;
ssn:isPropertyOf :FoI-1 .

:Property-vehicleCount a ct:VehicleCount ;
ssn:isPropertyOf :FoI-2 .

Listing A.1: Example of a PES description in CESO

211

Finale - Conclusions and Future Work 212

@prefix : <http://www.insight-centre.org/dataset/SampleEventService#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix owls: <http://www.daml.org/services/owl-s/1.2/Service.owl#> .
@prefix ces: <http://www.insight-centre.org/ces#> .

:ComplexEventService-1 a ces:ComplexEventService ;
owls:presents :ComplexEventService-1-Profile ;
owls:supports

[a ces:HttpGrounding ;
ces:httpService

] .

:ComplexEventService-1-Profile a ces:EventProfile ;
ces:hasPattern

[a rdf:Bag , ces:And ;
rdf:_1 [a ces:ServiceNode ;

ces:hasNodeId "node-1"ˆˆxsd:string ;
ces:hasService :trafficSensor-230

] ;
rdf:_2 [a ces:ServiceNode ;

ces:hasNodeId "node-2"ˆˆxsd:string ;
ces:hasService :trafficSensor-234

] ;
ces:hasSelection

[a ces:Selection ;
ces:hasNodeId "node-1" ;
ces:selectedProperty :Property-avgSpeed-230

] ;
ces:hasSelection

[a ces:Selection ;
ces:hasNodeId "node-2" ;
ces:selectedProperty :Property-avgSpeed-234

] .

Listing A.2: Example of a PES description in CESO

Finale - Conclusions and Future Work 213

@prefix : <http://www.insight-centre.org/dataset/SampleEventService#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix owls: <http://www.daml.org/services/owl-s/1.2/Service.owl#> .
@prefix ces: <http://www.insight-centre.org/ces#> .

:ComplexEventService-1 a ces:ComplexEventService ;
owls:presents :ComplexEventService-1-Profile ;
owls:supports

[a ces:HttpGrounding ;
ces:httpService

] .

:ComplexEventService-1-Profile a ces:EventProfile ;
ces:hasPattern

[a rdf:Bag , ces:And ;
rdf:_1 [a ces:ServiceNode ;

ces:hasNodeId "node-1"ˆˆxsd:string ;
ces:hasService :trafficSensor-230

] ;
rdf:_2 [a ces:ServiceNode ;

ces:hasNodeId "node-2"ˆˆxsd:string ;
ces:hasService :trafficSensor-234

] ;
ces:hasSelection

[a ces:Selection ;
ces:hasNodeId "node-1" ;
ces:selectedProperty :Property-avgSpeed-230

] ;
ces:hasSelection

[a ces:Selection ;
ces:hasNodeId "node-2" ;
ces:selectedProperty :Property-avgSpeed-234

] .

Listing A.3: Example of an Event Request in CESO

Appendix B

XML serialization of BEMN+

<?xml version=”1.0” encoding=”ISO−8859−1” ?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<!−− definition of simple elements −−>
<xs:element name=”varID” type=”xs:IDREF”/>

<xs:element name=”aggID” type=”xs:IDREF”/>

<!−− definition of attributes −−>
<xs:attribute name=”headType”>

<xs:simpleType>

<xs:restriction base=”xs:string”>

<xs:pattern value=”select|ask”/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name=”nodeType”>

<xs:simpleType>

<xs:restriction base=”xs:string”>

<xs:pattern value=”start|and|or|event|end”/>

</xs:restriction>

</xs:simpleType>

</xs:attribute> −−>

<xs:attribute name=”op”>

<xs:simpleType>

<xs:restriction base=”xs:string”>

<xs:pattern value=”gt|lt|eq”/>

</xs:restriction>

</xs:simpleType>

214

Finale - Conclusions and Future Work 215

</xs:attribute>

<xs:attribute name=”aggregateOp”>

<xs:simpleType>

<xs:restriction base=”xs:string”>

<xs:pattern value=”sum|all|count|avg”/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name=”varType”>

<xs:simpleType>

<xs:restriction base=”xs:string”>

<xs:pattern value=”loc|time|id|payload”/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<!−− definition of complex elements −−>
<xs:element name=”CEP” maxOccurs=”1”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”head” minOccurs=”1” maxOccurs=”1”/>

<xs:element ref=”node”maxOccurs=”unbounded”/>

<xs:element ref=”arc”maxOccurs=”unbounded”/>

<xs:element ref=”filter”maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute name=”patternName” type=”xs:string” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”head”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”varID” minOccurs=”0” maxOccurs=”unbounded”/>

<xs:element ref=”aggregate” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

<xs:attribute ref=”headType” use=”required”/>

</xs:element>

<xs:element name=”aggregate”>

<xs:complexType>

Finale - Conclusions and Future Work 216

<xs:attribute name=”id” type=”xs:ID” use=”required”/>

<xs:attribute name=”varID” type=”xs:IDREF” use=”required”/>

<xs:attribute ref=”aggregateOp” use=”required”/>

<xs:attribute name=”label” type=”xs:string” use=”optional” />

</xs:complexType>

</xs:element>

<xs:element name=”node”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”event” minOccurs=”0” maxOccurs=”1”/>

</xs:sequence>

<xs:attribute name=”id” type=”xs:ID” use=”required”/>

<xs:attribute ref=”nodeType” use=”required”/>

<xs:attribute name=”label” type=”xs:string” use=”optional” />

</xs:complexType>

</xs:element>

<xs:element name=”event”>

<xs:complexType>

<xs:sequence>

<xs:element name= sample type=”xs:string”>

<xs:element ref=”var” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute name=”eventType” type=”xs:QName” use=”required”/>

<xs:attribute name=”observedProperty” type=”xs:QName” use=”required”/>

<xs:attribute name=”featureOfInterest” type=”xs:QName” use=”required”/>

<xs:attribute name=”eventSource” type=”xs:anyURL” use=”optional”/>

<xs:attribute name=”timeWindow” type=”xs:string” use=”optional”/>

</xs:complexType>

</xs:element>

<xs:element name=”var”>

<xs:complexType>

<xs:sequence>

<xs:element name=”varPattern” type=”xs:string”

minOccurs=”0” maxOccurs=”1”>

</xs:sequence>

<xs:attribute name=”id” type=”xs:ID” use=”required”/>

<xs:attribute ref=”varType” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”arc”>

Finale - Conclusions and Future Work 217

<xs:complexType>

<xs:attribute name=”from” type=”xs:IDREF” use=”required”/>

<xs:attribute ref=”to” type=”xs:IDREF” use=”required”/>

</xs:complexType>

</xs:element>

<xs:element name=”filter”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”left”minOccurs=”1” maxOccurs=”1”/>

<xs:element ref=”right”minOccurs=”1” maxOccurs=”1”/>

</xs:sequence>

</xs:complexType>

<xs:attribute name=”id” ype=”xs:ID” use=”required”/>

<!−− <xs:attribute ref=”filterType” use=”required”/> −−>
<xs:attribute ref=”op” use=”required”/>

</xs:element>

<xs:element name=”left”>

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref=”varID” />

<xs:element ref=”aggID” />

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”right”>

<xs:complexType>

<xs:choice>

<xs:element ref=”varID”/>

<xs:element name=”value” type=”xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Listing B.1: XML Schema for Extended BEMN

Bibliography 218

References

[1] Opher Etzion and Peter Niblett. Event processing in action. Manning Publications Co.,

2010.

[2] V. Tsiatsis, P. Anatharam, P. Barnaghi, M. Fischer, F. Ganz, M. I. Ali, S. Kolozali,

D. Kümper, A. Mileo, C.-S. Nechifor, D. Puiu, R. Tönjes, and T. Iggena. Smartcity

framework. Project Deliverable 2.2, 9 2014.

[3] Gero Decker, Alexander Grosskopf, and Alistair Barros. A graphical notation for modeling

complex events in business processes. In edoc, page 27. IEEE Computer Society, October

2007. ISBN 0-7695-2891-0. doi: 10.1109/EDOC.2007.41.

[4] P. Barnaghi, R. Tonjes, J. Holler, M. Hauswirth, A. Sheth, and P. Anantharam. Citypulse:

Real-time iot stream processing and large-scale data analytics for smart city applications.

In ESWC, 2014.

[5] Dave Evans. The internet of things: How the next evolution of the internet is changing

everything. CISCO white paper, 1, 2011.

[6] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44, August 2009.

ISSN 0001-0782. doi: 10.1145/1536616.1536632. URL http://doi.acm.org/10.

1145/1536616.1536632.

[7] David Luckham. The Power of Events: An Introduction to Complex Event Processing

in Distributed Enterprise Systems. In Nick Bassiliades, Guido Governatori, and Adrian

Paschke, editors, Interchange and Reasoning on the Web Rule Representation, volume 5321

of Lecture Notes in Computer Science, pages 3–3. Springer Berlin / Heidelberg, 2008. URL

$http://dx.doi.org/10.1007/978-3-540-88808-6_2$. 10.1007/978−3−540−
88808− 62.

[8] Nenad Stojanovic, Ljiljana Stojanovic, Yongchun Xu, and Boban Stajic. Mobile cep in

real-time big data processing: Challenges and opportunities. In Proceedings of the 8th

ACM International Conference on Distributed Event-Based Systems, DEBS ’14, pages

256–265. ACM, 2014. ISBN 978-1-4503-2737-4. doi: 10.1145/2611286.2611311. URL

http://doi.acm.org/10.1145/2611286.2611311.

[9] Roland Stühmer and Nenad Stojanovic. Large-scale, situation-driven and quality-aware

event marketplace: the concept, challenges and opportunities. In Proceedings of the 5th

ACM international conference on Distributed event-based system, pages 403–404. ACM,

2011.

[10] Yiannis Verginadis, Ioannis Patiniotakis, Nikos Papageorgiou, and Roland Stuehmer. Ser-

vice adaptation recommender in the event marketplace: conceptual view. In The Semantic

Web: ESWC 2011 Workshops, pages 194–201. Springer, 2012.

[11] Mike P. Papazoglou. Service oriented computing: Concepts, characteristics and direc-

tions. In Proceedings of the Fourth International Conference on Web Information Systems

http://doi.acm.org/10.1145/1536616.1536632
http://doi.acm.org/10.1145/1536616.1536632
$http://dx.doi.org/10.1007/978-3-540-88808-6_2$
http://doi.acm.org/10.1145/2611286.2611311

Bibliography 219

Engineering, WISE ’03, pages 3–12, Washington, DC, USA, 2003. IEEE Computer Soci-

ety. ISBN 0-7695-1999-7. URL http://dl.acm.org/citation.cfm?id=960322.

960404.

[12] Olga Levina and Vladimir Stantchev. Realizing event-driven soa. In 2009 Fourth Inter-

national Conference on Internet and Web Applications and Services, pages 37–42. IEEE,

2009.

[13] Jean-Louis Maréchaux. Combining service-oriented architecture and event-driven archi-

tecture using an enterprise service bus. IBM Developer Works, pages 1269–1275, 2006.

[14] Brenda M Michelson. Event-driven architecture overview. Patricia Seybold Group, 2, 2006.

[15] Stefan Appel, Sebastian Frischbier, Tobias Freudenreich, and Alejandro Buchmann.

Eventlets: Components for the integration of event streams with soa. In Service-Oriented

Computing and Applications (SOCA), 2012 5th IEEE International Conference on, pages

1–9. IEEE, 2012.

[16] Stefan Bischof, Athanasios Karapantelakis, Cosmin Septimiu Nechifor, Amit Sheth,

Alessandra Mileo, and Payam Barnaghi. Semantic modeling of smart city data. In Proc.

of the W3C Workshop on the Web of Things: Enablers and services for an open Web of

Devices, Berlin, Germany, June 2014. W3C.

[17] Sylva Girtelschmid, Matthias Steinbauer, Vikash Kumar, Anna Fensel, and Gabriele Kot-

sis. Big data in large scale intelligent smart city installations. In Proceedings of Inter-

national Conference on Information Integration and Web-based Applications & Ser-

vices, IIWAS ’13, pages 428:428–428:432, New York, NY, USA, 2013. ACM. ISBN 978-

1-4503-2113-6. doi: 10.1145/2539150.2539224. URL http://doi.acm.org/10.1145/

2539150.2539224.

[18] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data – The Story So Far.

International Journal on Semantic Web and Information Systems, (3), 2009.

[19] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. Ep-sparql: a unified

language for event processing and stream reasoning. In Proceedings of the 20th interna-

tional conference on World wide web, WWW ’11, pages 635–644, 2011.

[20] Marc Schaaf, Stella Gatziu Grivas, Dennie Ackermann, Arne Diekmann, Arne Koschel,

and Irina Astrova. Semantic complex event processing. Recent Researches in Applied

Information Science, pages 38–43, 2012.

[21] Kia Teymourian, Malte Rohde, and Adrian Paschke. Fusion of background knowledge and

streams of events. In Proceedings of the 6th ACM International Conference on Distributed

Event-Based Systems, pages 302–313. ACM, 2012.

[22] Adrian Paschke and Alexander Kozlenkov. Rule-based event processing and reaction rules.

In Rule Interchange and Applications, pages 53–66. Springer, 2009.

http://dl.acm.org/citation.cfm?id=960322.960404
http://dl.acm.org/citation.cfm?id=960322.960404
http://doi.acm.org/10.1145/2539150.2539224
http://doi.acm.org/10.1145/2539150.2539224

Bibliography 220

[23] Kerry Taylor and Lucas Leidinger. Ontology-driven complex event processing in heteroge-

neous sensor networks. In The Semanic Web: Research and Applications, pages 285–299.

Springer, 2011.

[24] Zang Li, Chao-Hsien Chu, Wen Yao, and Richard A Behr. Ontology-driven event detec-

tion and indexing in smart spaces. In Semantic Computing (ICSC), 2010 IEEE Fourth

International Conference on, pages 285–292. IEEE, 2010.

[25] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic web services. IEEE Intel-

ligent Systems, 16(2):46–53, 2001. ISSN 1541-1672. doi: http://doi.ieeecomputersociety.

org/10.1109/5254.920599.

[26] Matthias Klusch, Benedikt Fries, and Katia Sycara. Automated semantic web service

discovery with owls-mx. In Proceedings of the fifth international joint conference on Au-

tonomous agents and multiagent systems, pages 915–922. ACM, 2006.

[27] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition meth-

ods. In Jorge Cardoso and Amit Sheth, editors, Semantic Web Services and Web Process

Composition, volume 3387 of Lecture Notes in Computer Science, pages 43–54. Springer

Berlin Heidelberg, 2005. ISBN 978-3-540-24328-1. doi: 10.1007/978-3-540-30581-1 5. URL

http://dx.doi.org/10.1007/978-3-540-30581-1_5.

[28] Qian Ma, Hao Wang, Ying Li, Guotong Xie, and Feng Liu. A semantic qos-aware dis-

covery framework for web services. In Web Services, 2008. ICWS’08. IEEE International

Conference on, pages 129–136. IEEE, 2008.

[29] Collins english dictionary - complete & unabridged 10th edition. Dec 2015.

[30] Jian Yang and Mike P Papazoglou. Service components for managing the life-cycle of

service compositions. Information Systems, 29(2):97–125, 2004.

[31] Qing Gu and Patricia Lago. A stakeholder-driven service life cycle model for soa. In 2nd

international workshop on Service oriented software engineering: in conjunction with the

6th ESEC/FSE joint meeting, pages 1–7. ACM, 2007.

[32] Shruti P. Mahambre, Madhu Kumar S.D., and Umesh Bellur. A taxonomy of qos-aware,

adaptive event-dissemination middleware. IEEE Internet Computing, 11(4):35–44, 2007.

ISSN 1089-7801. doi: http://doi.ieeecomputersociety.org/10.1109/MIC.2007.77.

[33] Pythagoras Karampiperis, Giannis Mouchakis, Georgios Paliouras, and Vangelis Karkalet-

sis. Er designer toolkit: a graphical event definition authoring tool. In PETRA’11, pages

34–34, 2011.

[34] N. Milanovic and M. Malek. Current solutions for web service composition. Internet

Computing, IEEE, 8(6):51 – 59, nov.-dec. 2004. ISSN 1089-7801. doi: 10.1109/MIC.2004.

58.

[35] Sonia Ben Mokhtar, Anupam Kaul, Nikolaos Georgantas, and Valérie Issarny. Effi-

cient semantic service discovery in pervasive computing environments. In Proceedings of

http://dx.doi.org/10.1007/978-3-540-30581-1_5

Bibliography 221

the ACM/IFIP/USENIX 2006 International Conference on Middleware, pages 240–259.

Springer-Verlag New York, Inc., 2006.

[36] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and Klaus Pohl. A

journey to highly dynamic, self-adaptive service-based applications. Automated Software

Engineering, 15(3-4):313–341, 2008.

[37] Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred Hauswirth. A

native and adaptive approach for unified processing of linked streams and linked data. In

The Semantic Web–ISWC 2011, pages 370–388. Springer, 2011.

[38] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael

Grossniklaus. C-sparql: Sparql for continuous querying. In Proceedings of the 18th inter-

national conference on World wide web, pages 1061–1062. ACM, 2009.

[39] Danh Le-Phuoc, Minh Dao-Tran, Minh-Duc Pham, Peter Boncz, Thomas Eiter, and

Michael Fink. Linked stream data processing engines: Facts and figures. In Proc. of

ISWC 2012, pages 300–312. Springer, 2012.

[40] Ying Zhang, Minh-Duc Pham, Óscar Corcho, and Jean-Paul Calbimonte. Srbench: A

streaming rdf/sparql benchmark. In Proc. of ISWC 2012, pages 641–657, 2012.

[41] Marc Koerner and Odej Kao. Multiple service load-balancing with openflow. In High

Performance Switching and Routing (HPSR), 2012 IEEE 13th International Conference

on, pages 210–214. IEEE, 2012.

[42] George Porter and Randy H Katz. Effective web service load balancing through statistical

monitoring. Communications of the ACM, 49(3):48–54, 2006.

[43] Bhaskaran Raman and Randy H Katz. Load balancing and stability issues in algorithms

for service composition. In INFOCOM 2003. Twenty-Second Annual Joint Conference of

the IEEE Computer and Communications. IEEE Societies, volume 2, pages 1477–1487.

IEEE, 2003.

[44] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation of

a wide-area event notification service. ACM Trans. Comput. Syst., 19(3):332–383, August

2001. ISSN 0734-2071. doi: 10.1145/380749.380767. URL http://doi.acm.org/10.

1145/380749.380767.

[45] Andreas Ulbrich, Gero Mühl, Torben Weis, and Kurt Geihs. Programming abstractions for

content-based publish/subscribe in object-oriented languages. In Robert Meersman and

Zahir Tari, editors, On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and

ODBASE, volume 3291 of Lecture Notes in Computer Science, pages 1538–1557. Springer

Berlin Heidelberg, 2004. ISBN 978-3-540-23662-7. doi: 10.1007/978-3-540-30469-2 44.

URL http://dx.doi.org/10.1007/978-3-540-30469-2_44.

[46] Guoli Li and Hans-Arno Jacobsen. Composite subscriptions in content-based publish/sub-

scribe systems. In Proceedings of the ACM/IFIP/USENIX 2005 International Conference

on Middleware, pages 249–269. Springer-Verlag New York, Inc., 2005.

http://doi.acm.org/10.1145/380749.380767
http://doi.acm.org/10.1145/380749.380767
http://dx.doi.org/10.1007/978-3-540-30469-2_44

Bibliography 222

[47] Sinan Sen, Nenad Stojanovic, and Ruofeng Lin. A graphical editor for complex event pat-

tern generation. In Proceedings of the Third ACM International Conference on Distributed

Event-Based Systems, DEBS ’09, pages 41:1–41:2, 2009. ISBN 978-1-60558-665-6.

[48] Paolo Bellavista, Antonio Corradi, and Andrea Reale. Quality of service in wide scale

publish—subscribe systems. Communications Surveys & Tutorials, IEEE, 16(3):1591–

1616, 2014.

[49] Thomas Fischer, Andreas M Wahl, and Richard Lenz. Automated quality-of-service-aware

configuration of publish-subscribe systems at design-time. In Proceedings of the 8th ACM

International Conference on Distributed Event-Based Systems, pages 118–129. ACM, 2014.

[50] David Ingram. Reconfigurable middleware for high availability sensor systems. In Pro-

ceedings of the Third ACM International Conference on Distributed Event-Based Systems,

DEBS ’09, pages 20:1–20:11. ACM, 2009. ISBN 978-1-60558-665-6. doi: 10.1145/1619258.

1619285. URL http://doi.acm.org/10.1145/1619258.1619285.

[51] Raphaël Barazzutti, Pascal Felber, Hugues Mercier, Emanuel Onica, and Etienne Rivière.

Thrifty privacy: Efficient support for privacy-preserving publish/subscribe. In Proceedings

of the 6th ACM International Conference on Distributed Event-Based Systems, DEBS ’12,

pages 225–236. ACM, 2012. ISBN 978-1-4503-1315-5. doi: 10.1145/2335484.2335509. URL

http://doi.acm.org/10.1145/2335484.2335509.

[52] Raphaël Barazzutti, Pascal Felber, Christof Fetzer, Emanuel Onica, Jean-François Pineau,

Marcelo Pasin, Etienne Rivière, and Stefan Weigert. Streamhub: A massively parallel

architecture for high-performance content-based publish/subscribe. In Proceedings of the

7th ACM International Conference on Distributed Event-based Systems, DEBS ’13, pages

63–74. ACM, 2013. ISBN 978-1-4503-1758-0. doi: 10.1145/2488222.2488260. URL http:

//doi.acm.org/10.1145/2488222.2488260.

[53] Shruti P. Mahambre and Umesh Bellur. An adaptive approach for ensuring reliability

in event based middleware. In Proceedings of the Second International Conference on

Distributed Event-based Systems, DEBS ’08, pages 157–168. ACM, 2008. ISBN 978-1-

60558-090-6. doi: 10.1145/1385989.1386010. URL http://doi.acm.org/10.1145/

1385989.1386010.

[54] Christian Esposito, Domenico Cotroneo, and Aniruddha Gokhale. Reliable publish/sub-

scribe middleware for time-sensitive internet-scale applications. In Proceedings of the Third

ACM International Conference on Distributed Event-Based Systems, DEBS ’09, pages

16:1–16:12. ACM, 2009. ISBN 978-1-60558-665-6. doi: 10.1145/1619258.1619280. URL

http://doi.acm.org/10.1145/1619258.1619280.

[55] Arnd Schröter, Gero Mühl, Jan Richling, and Helge Parzyjegla. Adaptive routing in

publish/subscribe systems using hybrid routing algorithms. In Proceedings of the 7th

Workshop on Reflective and Adaptive Middleware, ARM ’08, pages 51–52, New York,

NY, USA, 2008. ACM. ISBN 978-1-60558-367-9. doi: 10.1145/1462716.1462726. URL

http://doi.acm.org/10.1145/1462716.1462726.

http://doi.acm.org/10.1145/1619258.1619285
http://doi.acm.org/10.1145/2335484.2335509
http://doi.acm.org/10.1145/2488222.2488260
http://doi.acm.org/10.1145/2488222.2488260
http://doi.acm.org/10.1145/1385989.1386010
http://doi.acm.org/10.1145/1385989.1386010
http://doi.acm.org/10.1145/1619258.1619280
http://doi.acm.org/10.1145/1462716.1462726

Bibliography 223

[56] Christian Kuka and Daniela Nicklas. Quality matters: supporting quality-aware pervasive

applications by probabilistic data stream management. In Proceedings of the 8th ACM

International Conference on Distributed Event-Based Systems, pages 1–12. ACM, 2014.

[57] Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. Elastic scaling for data

stream processing. Parallel and Distributed Systems, IEEE Transactions on, 25(6):1447–

1463, 2014.

[58] Boris Koldehofe, Frank Dürr, and Muhammad Adnan Tariq. Tutorial: Event-based sys-

tems meet software-defined networking. In Proceedings of the 7th ACM International

Conference on Distributed Event-based Systems, DEBS ’13, pages 271–280. ACM, 2013.

ISBN 978-1-4503-1758-0. doi: 10.1145/2488222.2488270. URL http://doi.acm.org/

10.1145/2488222.2488270.

[59] Muhammad Adnan Tariq, Boris Koldehofe, Sukanya Bhowmik, and Kurt Rothermel.

Pleroma: A sdn-based high performance publish/subscribe middleware. In Proceedings

of the 15th International Middleware Conference, Middleware ’14, pages 217–228, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-2785-5. doi: 10.1145/2663165.2663338.

URL http://doi.acm.org/10.1145/2663165.2663338.

[60] Josef Schiefer, Szabolcs Rozsnyai, Christian Rauscher, and Gerd Saurer. Event-driven

rules for sensing and responding to business situations. In DEBS, volume 233 of ACM

International Conference Proceeding Series, pages 198–205. ACM, 2007. ISBN 978-1-

59593-665-3.

[61] Liangzhao Zeng, Anne HH Ngu, Boualem Benatallah, Rodion Podorozhny, and Hui Lei.

Dynamic composition and optimization of web services. Distributed and Parallel Databases,

24(1-3):45–72, 2008.

[62] Detlef Zimmer and Rainer Unland. On the semantics of complex events in active database

management systems. In Data Engineering, 1999. Proceedings., 15th International Con-

ference on, pages 392–399. IEEE, 1999.

[63] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea. Apples

and oranges: a comparison of rdf benchmarks and real rdf datasets. In Proc. of ACM

SIGMOD 2011, pages 145–156. ACM, 2011.

[64] Mohammed A Saifullah and MA Mohammed. Scalable load balancing using en-

hanced server health monitoring and adimission control. In Engineering and Technology

(ICETECH), 2015 IEEE International Conference on, pages 1–4. IEEE, 2015.

[65] Varsha Thakur and Sanjay Kumar. A comparison of select load balancing algorithms in

cloud computing. IUP Journal of Computer Sciences, 9(1), 2015.

[66] Qin Zhou, Dariush Shirmohammadi, and WH Edwin Liu. Distribution feeder reconfigu-

ration for service restoration and load balancing. Power Systems, IEEE Transactions on,

12(2):724–729, 1997.

http://doi.acm.org/10.1145/2488222.2488270
http://doi.acm.org/10.1145/2488222.2488270
http://doi.acm.org/10.1145/2663165.2663338

Bibliography 224

[67] Hiroya Matsuba, Kaustubh Joshi, Matti Hiltunen, and Richard Schlichting. Airfoil: A

topology aware distributed load balancing service. In Cloud Computing (CLOUD), 2015

IEEE 8th International Conference on, pages 325–332. IEEE, 2015.

[68] S. Misbah Deen and Mohammed Al-Qasem. A query subsumption technique. In Proceed-

ings of the 10th International Conference on Database and Expert Systems Applications,

DEXA ’99, pages 362–371, London, UK, UK, 1999. Springer-Verlag. ISBN 3-540-66448-3.

URL http://dl.acm.org/citation.cfm?id=648312.755199.

[69] Adegboyega Ojo, Edward Curry, and Tomasz Janowski. Designing next generation smart

city initiatives-harnessing findings and lessons from a study of ten smart city programs.

2014.

[70] Muhammad Intizar Ali, Feng Gao, and Alessandra Mileo. Citybench: A configurable

benchmark to evaluate rsp engines using smart city datasets. In The Semantic Web-ISWC

2015, pages 374–389. Springer, 2015.

[71] S. Kolozali, D. Puschmann, A. Karapantelakis, D. Kümper H. Liang, T. Iggena, M. I.

Ali, and F. Gao. Semantic data stream annotation for automated processing. Project

Deliverable 3.1, 9 2014.

[72] Martin Strohbach, Holger Ziekow, Vangelis Gazis, and Navot Akiva. Towards a big data

analytics framework for iot and smart city applications. In Modeling and Processing for

Next-Generation Big-Data Technologies, pages 257–282. Springer, 2015.

[73] Payam Barnaghi, Amit Sheth, and Cory Henson. From data to actionable knowledge:

Big data challenges in the web of things [guest editors’ introduction]. Intelligent Systems,

IEEE, 28(6):6–11, 2013.

[74] Andrea D’Ambrogio. A model-driven wsdl extension for describing the qos ofweb services.

In Web Services, 2006. ICWS’06. International Conference on, pages 789–796. IEEE, 2006.

[75] Jonathon Kopecky, Tomas Vitvar, Carine Bournez, and Joel Farrell. Sawsdl: Semantic

annotations for wsdl and xml schema. Internet Computing, IEEE, 11(6):60–67, 2007.

[76] Cory Henson, Josh K Pschorr, Amit P Sheth, Krishnaprasad Thirunarayan, et al. Semsos:

Semantic sensor observation service. In Collaborative Technologies and Systems, 2009.

CTS’09. International Symposium on, pages 44–53. IEEE, 2009.

[77] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and

Walter Mann. Specification and analysis of system architecture using rapide. Software

Engineering, IEEE Transactions on, 21(4):336–354, 1995.

[78] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherniack,

Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, et al.

The design of the borealis stream processing engine. In CIDR, volume 5, pages 277–289,

2005.

http://dl.acm.org/citation.cfm?id=648312.755199

Bibliography 225

[79] Marco Seiriö and Mikael Berndtsson. Design and implementation of an eca rule markup lan-

guage. In Rules and rule markup languages for the semantic web, pages 98–112. Springer,

2005.

[80] Yanlei Diao, Neil Immerman, and Daniel Gyllstrom. Sase+: An agile language for kleene

closure over event streams, 2007.

[81] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher, Biswanath

Panda, Mirek Riedewald, Mohit Thatte, and Walker White. Cayuga: a high-performance

event processing engine. In Proceedings of the 2007 ACM SIGMOD international confer-

ence on Management of data, pages 1100–1102. ACM, 2007.

[82] Wei Liu, Zongtian Liu, Jianfeng Fu, Rong Hu, and Zhaomang Zhong. Extending owl for

modeling event-oriented ontology. In Complex, Intelligent and Software Intensive Systems

(CISIS), 2010 International Conference on, pages 581–586. IEEE, 2010.

[83] Mohammad Alrifai and Thomas Risse. Combining global optimization with local selec-

tion for efficient qos-aware service composition. In Proceedings of the 18th international

conference on World wide web, pages 881–890. ACM, 2009.

[84] M.C. Jaeger, G. Rojec-Goldmann, and G. Muhl. Qos aggregation for web service com-

position using workflow patterns. In Proceedings of the Eighth IEEE InternationalEnter-

prise Distributed Object Computing Conference. EDOC 04., pages 149–159, 2004. doi:

10.1109/EDOC.2004.1342512.

[85] Quanwang Wu, Qingsheng Zhu, and Xing Jian. Qos-aware multi-granularity service com-

position based on generalized component services. In Samik Basu, Cesare Pautasso, Liang

Zhang, and Xiang Fu, editors, Service-Oriented Computing, volume 8274 of Lecture Notes

in Computer Science, pages 446–455. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-

45004-4. doi: 10.1007/978-3-642-45005-1 33. URL http://dx.doi.org/10.1007/

978-3-642-45005-1_33.

[86] Milan Zeleny and James L Cochrane. Multiple criteria decision making, volume 25.

McGraw-Hill New York, 1982.

[87] Liangzhao Zeng, B. Benatallah, A. H H Ngu, M. Dumas, J. Kalagnanam, and H. Chang.

Qos-aware middleware for web services composition. Software Engineering, IEEE Trans-

actions on, 30(5):311–327, 2004. ISSN 0098-5589. doi: 10.1109/TSE.2004.11.

[88] Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, and Ralf Steinmetz.

Heuristics for qos-aware web service composition. In Web Services, 2006. ICWS’06. In-

ternational Conference on, pages 72–82. IEEE, 2006.

[89] Liang-Jie Zhang and Bing Li. Requirements driven dynamic services composition for

web services and grid solutions. Journal of Grid Computing, 2(2):121–140, 2004. ISSN

1570-7873. doi: 10.1007/s10723-004-4202-1. URL http://dx.doi.org/10.1007/

s10723-004-4202-1.

http://dx.doi.org/10.1007/978-3-642-45005-1_33
http://dx.doi.org/10.1007/978-3-642-45005-1_33
http://dx.doi.org/10.1007/s10723-004-4202-1
http://dx.doi.org/10.1007/s10723-004-4202-1

Bibliography 226

[90] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. A

lightweight approach for qos-aware service composition. In Proceedings of 2nd international

conference on service oriented computing (ICSOC 04), 2004.

[91] Chengwen Zhang, Sen Su, and Junliang Chen. A novel genetic algorithm for qos-aware

web services selection. In Proceedings of the Second international conference on Data Engi-

neering Issues in E-Commerce and Services, DEECS’06, pages 224–235, Berlin, Heidelberg,

2006. Springer-Verlag. ISBN 3-540-35440-9, 978-3-540-35440-6. doi: 10.1007/11780397 18.

URL http://dx.doi.org/10.1007/11780397_18.

[92] Chunming Gao, Meiling Cai, and Huowang Chen. Qos-aware service composition based

on tree-coded genetic algorithm. In Proceedings of the 31st Annual International Com-

puter Software and Applications Conference - Volume 01, COMPSAC ’07, pages 361–367,

Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2870-8. doi: 10.1109/

COMPSAC.2007.174. URL http://dx.doi.org/10.1109/COMPSAC.2007.174.

[93] W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl: Yet another workflow language.

Inf. Syst., 30(4):245–275, June 2005. ISSN 0306-4379. doi: 10.1016/j.is.2004.02.002. URL

http://dx.doi.org/10.1016/j.is.2004.02.002.

[94] Xitong Li, Yushun Fan, and Feng Jiang. A classification of service composition mismatches

to support service mediation. In Grid and Cooperative Computing, 2007. GCC 2007. Sixth

International Conference on, pages 315–321. IEEE, 2007.

[95] Jörg Nitzsche, Tammo Van Lessen, Dimka Karastoyanova, and Frank Leymann. Bpel for

semantic web services (bpel4sws). In On the Move to Meaningful Internet Systems 2007:

OTM 2007 Workshops, pages 179–188. Springer, 2007.

[96] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell. Sawsdl: Semantic annotations for wsdl

and xml schema. Internet Computing, IEEE, 11(6):60–67, 2007.

[97] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. Distributed com-

plex event processing with query rewriting. In Proceedings of the Third ACM Inter-

national Conference on Distributed Event-Based Systems, DEBS ’09, pages 4:1–4:12.

ACM, 2009. ISBN 978-1-60558-665-6. doi: 10.1145/1619258.1619264. URL http:

//doi.acm.org/10.1145/1619258.1619264.

[98] Christopher Dabrowski and Kevin Mills. Understanding self-healing in service-discovery

systems. In Proceedings of the first workshop on Self-healing systems, pages 15–20. ACM,

2002.

[99] Haitao Qu, Meina Song, Rihua Wang, Wu Qu, Xiaoxiang Luo, Peng Zhao, and Junde

Song. An adaptive service composition performance guarantee mechanism in peer-to-

peer network. In Computer Network and Multimedia Technology, 2009. CNMT 2009.

International Symposium on, pages 1–4. IEEE, 2009.

[100] Andreas Klein, Fuyuki Ishikawa, and Shinichi Honiden. Sanga: A self-adaptive network-

aware approach to service composition. Services Computing, IEEE Transactions on, 7(3):

452–464, 2014.

http://dx.doi.org/10.1007/11780397_18
http://dx.doi.org/10.1109/COMPSAC.2007.174
http://dx.doi.org/10.1016/j.is.2004.02.002
http://doi.acm.org/10.1145/1619258.1619264
http://doi.acm.org/10.1145/1619258.1619264

Bibliography 227

[101] Lei Yu, Wang Zhili, Meng Lingli, Wang Jiang, Luoming Meng, and Qiu Xue-song. Adaptive

web services composition using q-learning in cloud. In Services (SERVICES), 2013 IEEE

Ninth World Congress on, pages 393–396. IEEE, 2013.

[102] Jim Gray. Benchmark handbook: for database and transaction processing systems. Morgan

Kaufmann Publishers Inc., 1992.

[103] Thomas Scharrenbach, Jacopo Urbani, Alessandro Margara, Emanuele Della Valle, and

Abraham Bernstein. Seven commandments for benchmarking semantic flow processing

systems. In The Semantic Web: Semantics and Big Data, pages 305–319. Springer, 2013.

[104] Berners T. Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, May 2001. URL http://www.sciam.com/article.cfm?articleID=

00048144-10D2-1C70-84A9809EC588EF21.

[105] David J Russomanno, Cartik Kothari, and Omoju Thomas. Sensor ontologies: from shal-

low to deep models. In System Theory, 2005. SSST’05. Proceedings of the Thirty-Seventh

Southeastern Symposium on, pages 107–112. IEEE, 2005.

[106] Payam Barnaghi, Stefan Meissner, Mirko Presser, and Klaus Moessner. Sense and sens’

ability: Semantic data modelling for sensor networks. In Conference Proceedings of ICT

Mobile Summit 2009, 2009.

[107] Mike Botts, George Percivall, Carl Reed, and John Davidson. Ogc R© sensor web en-

ablement: Overview and high level architecture. In GeoSensor networks, pages 175–190.

Springer, 2008.

[108] Randall Perrey and Mark Lycett. Service-oriented architecture. In Applications and the

Internet Workshops, 2003. Proceedings. 2003 Symposium on, pages 116–119. IEEE, 2003.

[109] Wil MP Van der Aalst. The application of petri nets to workflow management. Journal

of circuits, systems, and computers, 8(01):21–66, 1998.

[110] Wil MP Van der Aalst. Formalization and verification of event-driven process chains.

Information and Software technology, 41(10):639–650, 1999.

[111] WilM.P. van der Aalst, ArthurH.M. ter Hofstede, and Mathias Weske. Business process

management: A survey. In WilM.P. van der Aalst and Mathias Weske, editors, Business

Process Management, volume 2678 of Lecture Notes in Computer Science, pages 1–12.

Springer Berlin Heidelberg, 2003. ISBN 978-3-540-40318-0. doi: 10.1007/3-540-44895-0 1.

URL http://dx.doi.org/10.1007/3-540-44895-0_1.

[112] Alistair Barros, Marlon Dumas, and Phillipa Oaks. A critical overview of the web services

choreography description language. BPTrends Newsletter, 3:1–24, 2005.

[113] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Russell. On

the suitability of bpmn for business process modelling. In Schahram Dustdar, JoséLuiz

Fiadeiro, and AmitP. Sheth, editors, Business Process Management, volume 4102 of Lec-

ture Notes in Computer Science, pages 161–176. Springer Berlin Heidelberg, 2006. ISBN

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://dx.doi.org/10.1007/3-540-44895-0_1

Bibliography 228

978-3-540-38901-9. doi: 10.1007/11841760 12. URL http://dx.doi.org/10.1007/

11841760_12.

[114] Marta Sabou, Debbie Richards, and Sander Van Splunter. An experience report on using

daml-s. In The Proceedings of the Twelfth International World Wide Web Conference

Workshop on E-Services and the Semantic Web (ESSW’03). Budapest, 2003.

[115] Demian Antony D’Mello and VS Ananthanarayana. A review of dynamic web service

description and discovery techniques. In Integrated Intelligent Computing (ICIIC), 2010

First International Conference on, pages 246–251. IEEE, 2010.

[116] Nikola Milanovic and Miroslaw Malek. Current solutions for web service composition.

IEEE Internet Computing, 8(6):51–59, 2004.

[117] David Martin, Mark Burstein, Drew Mcdermott, Sheila Mcilraith, Massimo Paolucci, Ka-

tia Sycara, Deborah L. Mcguinness, Evren Sirin, and Naveen Srinivasan. Bringing seman-

tics to web services with owl-s. World Wide Web, 10(3):243–277, September 2007. ISSN

1386-145X.

[118] Sourish Dasgupta, Satish Bhat, and Yugyung Lee. Sgps: a semantic scheme for web service

similarity. In Proceedings of the 18th international conference on World wide web, pages

1125–1126. ACM, 2009.

[119] Jeffrey Hau, William Lee, and John Darlington. A semantic similarity measure for semantic

web services. In Web Service Semantics Workshop at WWW, pages 10–14, 2005.

[120] Sourish Dasgupta, Satish Bhat, and Yugyung Lee. Taxonomic clustering and query match-

ing for efficient service discovery. In Web Services (ICWS), 2011 IEEE International

Conference on, pages 363–370. IEEE, 2011.

[121] Eleni Stroulia and Yiqiao Wang. Structural and semantic matching for assessing web-

service similarity. International Journal of Cooperative Information Systems, 14(04):407–

437, 2005.

[122] Mark Carman, Luciano Serafini, and Paolo Traverso. Web service composition as planning.

In ICAPS 2003 workshop on planning for web services, pages 1636–1642, 2003.

[123] Joachim Peer. A pddl based tool for automatic web service composition. In Principles and

practice of semantic web reasoning, pages 149–163. Springer, 2004.

[124] Anton Riabov and Zhen Liu. Scalable planning for distributed stream processing systems.

In ICAPS, pages 31–41, 2006.

[125] Zhen Liu, Anand Ranganathan, and Anton Riabov. A planning approach for message-

oriented semantic web service composition. In PROCEEDINGS OF THE NATIONAL

CONFERENCE ON ARTIFICIAL INTELLIGENCE, volume 22, page 1389. Menlo Park,

CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[126] Brahim Medjahed, Athman Bouguettaya, and Ahmed K Elmagarmid. Composing web

services on the semantic web. The VLDB journal, 12(4):333–351, 2003.

http://dx.doi.org/10.1007/11841760_12
http://dx.doi.org/10.1007/11841760_12

Bibliography 229

[127] Hai Huang, W-T Tsai, and Raymond Paul. Automated model checking and testing for com-

posite web services. In Object-Oriented Real-Time Distributed Computing, 2005. ISORC

2005. Eighth IEEE International Symposium on, pages 300–307. IEEE, 2005.

[128] Zhenhai Duan, Zhi-Li Zhang, and Yiwei Thomas Hou. Service overlay networks: Slas,

qos, and bandwidth provisioning. IEEE/ACM Transactions on Networking (TON), 11(6):

870–883, 2003.

[129] Fatih Karatas and Dogan Kesdogan. An approach for compliance-aware service selection

with genetic algorithms. In Service-Oriented Computing, pages 465–473. Springer, 2013.

[130] Zhen Ye, Athman Bouguettaya, and Xiaofang Zhou. Qos-aware cloud service composition

using time series. In Service-Oriented Computing, pages 9–22. Springer, 2013.

[131] Richard M Fujimoto. Parallel discrete event simulation. Communications of the ACM, 33

(10):30–53, 1990.

[132] Norman W. Paton and Oscar Dı́az. Active database systems. ACM Comput. Surv., 31

(1):63–103, March 1999. ISSN 0360-0300. doi: 10.1145/311531.311623. URL http:

//doi.acm.org/10.1145/311531.311623.

[133] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data

stream to complex event processing. ACM Computing Surveys (CSUR), 44(3):15, 2012.

[134] David Luckham et al. Complex event processing in financial services. 2008.

[135] Chuanzhen Zang and Yushun Fan. Complex event processing in enterprise information

systems based on rfid. Enterprise Information Systems, 1(1):3–23, 2007.

[136] Wen Yao, Chao-Hsien Chu, and Zang Li. Leveraging complex event processing

for smart hospitals using {RFID}. Journal of Network and Computer Applica-

tions, 34(3):799 – 810, 2011. ISSN 1084-8045. doi: http://dx.doi.org/10.1016/j.jnca.

2010.04.020. URL http://www.sciencedirect.com/science/article/pii/

S1084804510000949. {RFID} Technology, Systems, and Applications.

[137] Luca Filipponi, Andrea Vitaletti, Giada Landi, Vincenzo Memeo, Giorgio Laura, and

Paolo Pucci. Smart city: An event driven architecture for monitoring public spaces with

heterogeneous sensors. In Sensor Technologies and Applications (SENSORCOMM), 2010

Fourth International Conference on, pages 281–286. IEEE, 2010.

[138] Adrian Paschke, Paul Vincent, Alex Alves, and Catherine Moxey. Tutorial on advanced

design patterns in event processing. In Proceedings of the 6th ACM International Confer-

ence on Distributed Event-Based Systems, DEBS ’12, pages 324–334. ACM, 2012. ISBN

978-1-4503-1315-5. doi: 10.1145/2335484.2335519. URL http://doi.acm.org/10.

1145/2335484.2335519.

[139] K. Mani Chandy, Michel. Charpentier, and Agostino Capponi. Towards a theory of events.

In Proceedings of the 2007 Inaugural International Conference on Distributed Event-based

Systems, DEBS ’07, pages 180–187. ACM, 2007. ISBN 978-1-59593-665-3. doi: 10.1145/

1266894.1266929. URL http://doi.acm.org/10.1145/1266894.1266929.

http://doi.acm.org/10.1145/311531.311623
http://doi.acm.org/10.1145/311531.311623
http://www.sciencedirect.com/science/article/pii/S1084804510000949
http://www.sciencedirect.com/science/article/pii/S1084804510000949
http://doi.acm.org/10.1145/2335484.2335519
http://doi.acm.org/10.1145/2335484.2335519
http://doi.acm.org/10.1145/1266894.1266929

Bibliography 230

[140] S. Chakravarthy and D. Mishra. Snoop: An expressive event specification language for

active databases. Data Knowl. Eng., 14(1):1–26, November 1994. ISSN 0169-023X. doi: 10.

1016/0169-023X(94)90006-X. URL http://dx.doi.org/10.1016/0169-023X(94)

90006-X.

[141] Ling Liu and M. Tamer Zsu. Encyclopedia of Database Systems. Springer Publishing

Company, Incorporated, 1st edition, 2009. ISBN 0387355448, 9780387355443.

[142] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A

scalable content-addressable network. SIGCOMM Comput. Commun. Rev., 31(4):161–

172, August 2001. ISSN 0146-4833. doi: 10.1145/964723.383072. URL http://doi.

acm.org/10.1145/964723.383072.

[143] Fengyun Cao and Jaswinder Pal Singh. Medym: Match-early with dynamic multicast for

content-based publish-subscribe networks. In Proceedings of the ACM/IFIP/USENIX 2005

International Conference on Middleware, Middleware ’05, pages 292–313, New York, NY,

USA, 2005. Springer-Verlag New York, Inc. URL http://dl.acm.org/citation.

cfm?id=1515890.1515905.

[144] Fengyun Cao and Jaswinder Pal Singh. Efficient event routing in content-based publish-

subscribe service networks. In INFOCOM 2004. Twenty-third AnnualJoint Conference of

the IEEE Computer and Communications Societies, volume 2, pages 929–940. IEEE, 2004.

[145] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better

clusterings. In Proceedings of the eleventh international conference on Information and

knowledge management, pages 600–607. ACM, 2002.

[146] Ki-Yeol Ryu and Jung-Tae Lee. An enhancement of siena event routing algorithms. In

Revised Papers from the International Conference on Information Networking, Wireless

Communications Technologies and Network Applications-Part II, ICOIN ’02, pages 623–

633, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-44255-3. URL http://dl.

acm.org/citation.cfm?id=646286.688450.

[147] Robert Strom, Guruduth Banavar, Tushar Chandra, Marc Kaplan, Kevan Miller, Bodhi

Mukherjee, Daniel Sturman, and Michael Ward. Gryphon: An information flow based

approach to message brokering. arXiv preprint cs/9810019, 1998.

[148] Ludger Fiege, Gero Mühl, and Felix C Gärtner. Modular event-based systems. The

Knowledge Engineering Review, 17(04):359–388, 2002.

[149] Yi-Min Wang, Lili Qiu, Dimitris Achlioptas, Gautam Das, Paul Larson, and Helen J Wang.

Subscription partitioning and routing in content-based publish/subscribe systems. In 16th

International Symposium on DIStributed Computing (DISCÕ02). Citeseer, 2002.

[150] Peter Robert Pietzuch. Hermes: A scalable event-based middleware. PhD thesis, University

of Cambridge Cambridge, UK, 2004.

http://dx.doi.org/10.1016/0169-023X(94)90006-X
http://dx.doi.org/10.1016/0169-023X(94)90006-X
http://doi.acm.org/10.1145/964723.383072
http://doi.acm.org/10.1145/964723.383072
http://dl.acm.org/citation.cfm?id=1515890.1515905
http://dl.acm.org/citation.cfm?id=1515890.1515905
http://dl.acm.org/citation.cfm?id=646286.688450
http://dl.acm.org/citation.cfm?id=646286.688450

Bibliography 231

[151] Roberto Baldoni, Carlo Marchetti, Antonino Virgillito, and Roman Vitenberg. Content-

based publish-subscribe over structured overlay networks. In Distributed Computing Sys-

tems, 2005. ICDCS 2005. Proceedings. 25th IEEE International Conference on, pages

437–446. IEEE, 2005.

[152] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. Meghdoot:

Content-based publish/subscribe over p2p networks. In Proceedings of the 5th ACM/I-

FIP/USENIX International Conference on Middleware, Middleware ’04, pages 254–273,

New York, NY, USA, 2004. Springer-Verlag New York, Inc. ISBN 3-540-23428-4. URL

http://dl.acm.org/citation.cfm?id=1045658.1045677.

[153] Roberto Baldoni and Antonino Virgillito. Distributed event routing in publish/subscribe

communication systems: a survey. DIS, Universita di Roma La Sapienza, Tech. Rep,

page 5, 2005.

[154] Adrian Paschke. A semantic design pattern language for complex event processing. In

AAAI Spring Symposium: Intelligent Event Processing, pages 54–60, 2009.

[155] Robin Keskisärkkä and Eva Blomqvist. Semantic complex event processing for social me-

dia monitoring-a survey. In Proceedings of Social Media and Linked Data for Emergency

Response (SMILE) Co-located with the 10th Extended Semantic Web Conference, Mont-

pellier, France. CEUR workshop proceedings (May 2013), 2013.

[156] Kia Teymourian, Malte Rohde, and Adrian Paschke. Knowledge-based processing of com-

plex stock market events. In Proceedings of the 15th International Conference on Extending

Database Technology, pages 594–597. ACM, 2012.

[157] Lars Brenna, Johannes Gehrke, Mingsheng Hong, and Dag Johansen. Distributed event

stream processing with non-deterministic finite automata. In Proceedings of the Third

ACM International Conference on Distributed Event-Based Systems, DEBS ’09, pages

3:1–3:12. ACM, 2009. ISBN 978-1-60558-665-6. doi: 10.1145/1619258.1619263. URL

http://doi.acm.org/10.1145/1619258.1619263.

[158] Emanuele Valle, Stefano Ceri, Davide Francesco Barbieri, Daniele Braga, and Alessandro

Campi. Future internet — fis 2008. chapter A First Step Towards Stream Reasoning, pages

72–81. Springer-Verlag, Berlin, Heidelberg, 2009. ISBN 978-3-642-00984-6. doi: 10.1007/

978-3-642-00985-3 6. URL http://dx.doi.org/10.1007/978-3-642-00985-3_

6.

[159] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.

Models and issues in data stream systems. In Proceedings of the twenty-first ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 1–16.

ACM, 2002.

[160] Mikko Rinne, Eva Blomqvist, Robin Keskisärkkä, and Esko Nuutila. Event processing in

rdf. Proceedings of WOP, page 13, 2013.

http://dl.acm.org/citation.cfm?id=1045658.1045677
http://doi.acm.org/10.1145/1619258.1619263
http://dx.doi.org/10.1007/978-3-642-00985-3_6
http://dx.doi.org/10.1007/978-3-642-00985-3_6

Bibliography 232

[161] Alessandro Margara, Jacopo Urbani, Frank van Harmelen, and Henri Bal. Streaming the

web: Reasoning over dynamic data. Web Semantics: Science, Services and Agents on the

World Wide Web, 25:24–44, 2014.

[162] Jean-Paul Calbimonte, Oscar Corcho, and Alasdair JG Gray. Enabling ontology-based ac-

cess to streaming data sources. In The Semantic Web–ISWC 2010, pages 96–111. Springer,

2010.

[163] Ixent Galpin, Christian YA Brenninkmeijer, Alasdair JG Gray, Farhana Jabeen, Alvaro AA

Fernandes, and Norman W Paton. Snee: a query processor for wireless sensor networks.

Distributed and Parallel Databases, 29(1-2):31–85, 2011.

[164] William Clocksin and Christopher S Mellish. Programming in PROLOG. Springer Science

& Business Media, 2003.

[165] Syed Gillani, Gauthier Picard, Frédérique Laforest, and Antoine Zimmermann. Towards

efficient semantically enriched complex event processing and pattern matching. In OrdRing

2014-3rd International Workshop on Ordering and Reasoning, page 8p, 2014.

[166] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph isomor-

phism algorithm for matching large graphs. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 26(10):1367–1372, 2004.

[167] Feng Gao, Edward Curry, and Sami Bhiri. Complex Event Service Provision and Com-

position based on Event Pattern Matchmaking. In Proceedings of the 8th ACM Interna-

tional Conference on Distributed Event-Based Systems, Mumbai, India, 2014. ACM. doi:

10.1145/2611286.2611287. URL http://dx.doi.org/10.1145/2611286.2611287.

[168] Feng Gao and Sami Bhiri. User-centric complex event modeling and implementation based

on ubiquitous data service. In Proceedings of the International Conference on Mobile

Ubiquitous Computing, Systems, Services and Technologies, pages 67–70, 2012.

[169] Anupriya Ankolekar, Mark Burstein, Jerry R Hobbs, Ora Lassila, David Martin, Drew

McDermott, Sheila A McIlraith, Srini Narayanan, Massimo Paolucci, Terry Payne, et al.

Daml-s: Web service description for the semantic web. In The Semantic WebÑISWC 2002,

pages 348–363. Springer, 2002.

[170] Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-

oriented computing: State of the art and research challenges. Computer, (11):38–45, 2007.

[171] Kyriakos Kritikos and Dimitris Plexousakis. Requirements for qos-based web service de-

scription and discovery. Services Computing, IEEE Transactions on, 2(4):320–337, 2009.

[172] Jorge Cardoso, Alistair Barros, Norman May, and Uwe Kylau. Towards a unified service

description language for the internet of services: Requirements and first developments.

In Services Computing (SCC), 2010 IEEE International Conference on, pages 602–609.

IEEE, 2010.

http://dx.doi.org/10.1145/2611286.2611287

Bibliography 233

[173] Rubén Lara, Holger Lausen, Sinuhé Arroyo, Jos De Bruijn, and Dieter Fensel. Semantic

web services: description requirements and current technologies. In International Work-

shop on Electronic Commerce, Agents, and Semantic Web Services. Citeseer, 2003.

[174] Rainer von Ammon, Thomas Ertlmaier, Opher Etzion, Alexander Kofman, and Thomas

Paulus. Integrating complex events for collaborating and dynamically changing business

processes. In Proceedings of the international conference on Service-oriented computing,

ICSOC/ServiceWave’09, pages 370–384, 2009. ISBN 3-642-16131-6, 978-3-642-16131-5.

[175] Alistair Barros, Gero Decker, and Alexander Grosskopf. Complex events in business pro-

cesses. In Business Information Systems, pages 29–40. Springer, 2007.

[176] Lily Li and Kerry Taylor. A framework for semantic sensor network services. volume 5364

of Lecture Notes in Computer Science, pages 347–361. Springer Berlin / Heidelberg, 2008.

[177] Nils Glombitza, Dennis Pfisterer, and Stefan Fischer. Integrating wireless sensor networks

into web service-based business processes. In Proceedings of the 4th International Workshop

on Middleware Tools, Services and Run-Time Support for Sensor Networks, MidSens ’09,

pages 25–30, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-851-3.

[178] P. Rosales, Kyuhyup Oh, Kyuri Kim, and Jae-Yoon Jung. Leveraging business process

management through complex event processing for rfid and sensor networks. In 40th

ICCIE, pages 1 –6, 2010.

[179] N. Glombitza, M. Lipphardt, C. Werner, and S. Fischer. Using graphical process modeling

for realizing soa programming paradigms in sensor networks. In Wireless On-Demand

Network Systems and Services, 2009. WONS 2009. Sixth International Conference on,

pages 61 –70, feb. 2009.

[180] V. Stirbu. Towards a restful plug and play experience in the web of things. In ICSC, pages

512 –517, 2008.

[181] Jeong-Hee Kim, Hoon Kwon, Do-Hyeun Kim, Ho-Young Kwak, and Sang-Joon Lee. Build-

ing a service-oriented ontology for wireless sensor networks. In Computer and Information

Science, 2008. ICIS 08. Seventh IEEE/ACIS International Conference on, pages 649 –654,

may 2008.

[182] Phillipa Oaks, Arthur ter Hofstede, and David Edmond. Capabilities: Describing what

services can do. In Maria Orlowska, Sanjiva Weerawarana, Michael Papazoglou, and Jian

Yang, editors, Service-Oriented Computing - ICSOC 2003, volume 2910 of Lecture Notes

in Computer Science, pages 1–16. Springer Berlin / Heidelberg, 2003.

[183] Samir Tartir, I Budak Arpinar, and Amit P Sheth. Ontological evaluation and validation.

In Theory and applications of ontology: Computer applications, pages 115–130. Springer,

2010.

[184] James F. Allen and Lames F. Allen. Maintaining knowledge about temporal intervals.

Communication of ACM, pages 832–843, 1983.

Bibliography 234

[185] Thomas Moser, Heinz Roth, Szabolcs Rozsnyai, Richard Mordinyi, and Stefan Biffl. Se-

mantic event correlation using ontologies. In On the Move to Meaningful Internet Systems:

OTM 2009, pages 1087–1094. Springer, 2009.

[186] A Sasa and O Vasilecas. Ontology-based support for complex events. Electronics and

Electrical Engineering, 113(7):83–88, 2011.

[187] Ingo Wegener. Complexity theory: exploring the limits of efficient algorithms. Springer

Science & Business Media, 2005.

[188] Timos K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23–52,

March 1988. ISSN 0362-5915. doi: 10.1145/42201.42203. URL http://doi.acm.org/

10.1145/42201.42203.

[189] Yanlei Diao and Michael J. Franklin. High-performance xml filtering: An overview of

yfilter. IEEE Data Eng. Bull., pages 41–48, 2003.

[190] E. Curry. Increasing mom flexibility with portable rule bases. Internet Computing, IEEE,

10(6):26–32, Nov 2006. ISSN 1089-7801. doi: 10.1109/MIC.2006.128.

[191] Guoli Li and Hans-Arno Jacobsen. Composite subscriptions in content-based publish/sub-

scribe systems. In Proceedings of the ACM/IFIP/USENIX 2005 International Conference

on Middleware, Middleware ’05, pages 249–269, New York, NY, USA, 2005. Springer-

Verlag New York, Inc. URL http://dl.acm.org/citation.cfm?id=1515890.

1515903.

[192] John Keeney, Dominik Roblek, Dominic Jones, David Lewis, and Declan O’Sullivan. Ex-

tending siena to support more expressive and flexible subscriptions. In DEBS, pages 35–46,

2008.

[193] Zhenyue Long, Beihong Jin, Fengliang Qi, and Donglei Cao. Reuse strategies in dis-

tributed complex event detection. In Quality Software, 2009. QSIC ’09. 9th International

Conference on, pages 325–330, 2009. doi: 10.1109/QSIC.2009.49.

[194] Souleiman Hasan, Sean O’Riain, and Edward Curry. Approximate semantic matching

of heterogeneous events. In Proceedings of the 6th ACM International Conference on

Distributed Event-Based Systems, DEBS ’12, pages 252–263. ACM, 2012. ISBN 978-1-

4503-1315-5. doi: 10.1145/2335484.2335512. URL http://doi.acm.org/10.1145/

2335484.2335512.

[195] Gero Mühl. Large-scale content-based publish-subscribe systems. PhD thesis, TU Darm-

stadt, 2002.

[196] Mert Akdere, Uǧur Çetintemel, and Nesime Tatbul. Plan-based complex event detection

across distributed sources. Proc. VLDB Endow., 1(1):66–77, August 2008. ISSN 2150-8097.

URL http://dl.acm.org/citation.cfm?id=1453856.1453869.

[197] Mo Liu, Elke Rundensteiner, Kara Greenfield, Chetan Gupta, Song Wang, Ismail Ari,

and Abhay Mehta. E-cube: Multi-dimensional event sequence analysis using hierarchical

http://doi.acm.org/10.1145/42201.42203
http://doi.acm.org/10.1145/42201.42203
http://dl.acm.org/citation.cfm?id=1515890.1515903
http://dl.acm.org/citation.cfm?id=1515890.1515903
http://doi.acm.org/10.1145/2335484.2335512
http://doi.acm.org/10.1145/2335484.2335512
http://dl.acm.org/citation.cfm?id=1453856.1453869

Bibliography 235

pattern query sharing. In Proceedings of the 2011 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’11, pages 889–900, New York, NY, USA, 2011. ACM.

ISBN 978-1-4503-0661-4. doi: 10.1145/1989323.1989416. URL http://doi.acm.org/

10.1145/1989323.1989416.

[198] Feng Gao, Edward Curry, Muhammad Ali, Sami Bhiri, and Alessandra Mileo. Qos-aware

complex event service composition and optimization using genetic algorithms. In Proceed-

ings of the 12th International Conference on Service Oriented Computing, Paris, France,

2014. Springer.

[199] Sefki Kolozali, Maria Bermudez-Edo, Daniel Puschmann, Frieder Ganz, and Payam Bar-

naghi. A knowledge-based approach for real-time iot data stream annotation and pro-

cessing. In Internet of Things (iThings), 2014 IEEE International Conference on, and

Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and So-

cial Computing (CPSCom), IEEE, pages 215–222. IEEE, 2014.

[200] D. Kuemper, T. Iggena, M. Bermudez-Edo, D. Puiu, M. Fischer, and F. Gao. Measures

and methods for reliable information processing. Project Deliverable 4.1, 2015.

[201] Mohammad Alrifai and Thomas Risse. Combining global optimization with local selec-

tion for efficient qos-aware service composition. In Proceedings of the 18th international

conference on World wide web, WWW ’09, pages 881–890. ACM, 2009. ISBN 978-1-

60558-487-4. doi: 10.1145/1526709.1526828. URL http://doi.acm.org/10.1145/

1526709.1526828.

[202] N. Carvalho, F. Araujo, and L. Rodrigues. Scalable qos-based event routing in publish-

subscribe systems. In Proceedings of the Fourth IEEE International Symposium on Network

Computing and Applications, pages 101–108, 2005. doi: 10.1109/NCA.2005.45.

[203] Stefan Behnel, Ludger Fiege, and Gero Muhl. On quality-of-service and publish-subscribe.

In Proceedings of the 26th IEEE International ConferenceWorkshops on Distributed Com-

puting Systems, ICDCSW ’06, pages 20–, Washington, DC, USA, 2006. IEEE Com-

puter Society. ISBN 0-7695-2541-5. doi: 10.1109/ICDCSW.2006.77. URL http:

//dx.doi.org/10.1109/ICDCSW.2006.77.

[204] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Hermann De Meer,

Minh Quan Dang, and Kostas Pentikousis. Energy-efficient cloud computing. The computer

journal, 53(7):1045–1051, 2010.

[205] Ramesh Karri and Piyush Mishra. Minimizing energy consumption of secure wireless

session with qos constraints. In Communications, 2002. ICC 2002. IEEE International

Conference on, volume 4, pages 2053–2057. IEEE, 2002.

[206] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The jedi event-based in-

frastructure and its application to the development of the opss wfms. IEEE Trans. Softw.

Eng., 27(9):827–850, September 2001. ISSN 0098-5589. doi: 10.1109/32.950318. URL

http://dx.doi.org/10.1109/32.950318.

http://doi.acm.org/10.1145/1989323.1989416
http://doi.acm.org/10.1145/1989323.1989416
http://doi.acm.org/10.1145/1526709.1526828
http://doi.acm.org/10.1145/1526709.1526828
http://dx.doi.org/10.1109/ICDCSW.2006.77
http://dx.doi.org/10.1109/ICDCSW.2006.77
http://dx.doi.org/10.1109/32.950318

Bibliography 236

[207] Sumeer Bhola, Robert E. Strom, Saurabh Bagchi, Yuanyuan Zhao, and Joshua S. Auer-

bach. Exactly-once delivery in a content-based publish-subscribe system. In Proceedings of

the 2002 International Conference on Dependable Systems and Networks, DSN ’02, pages

7–16, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1597-5. URL

http://dl.acm.org/citation.cfm?id=647883.738567.

[208] Kristo Mela, Teemu Tiainen, and Markku Heinisuo. Comparative study of multi-

ple criteria decision making methods for building design. Advanced Engineering In-

formatics, 26(4):716 – 726, 2012. ISSN 1474-0346. doi: http://dx.doi.org/10.1016/j.

aei.2012.03.001. URL http://www.sciencedirect.com/science/article/pii/

S1474034612000201. EG-ICE 2011 + SI: Modern Concurrent Engineering.

[209] Michael D. Rowe and Barbara L. Pierce. Sensitivity of the weighting summation decision

method to incorrect application. Socio-Economic Planning Sciences, 16(4):173 – 177,

1982. ISSN 0038-0121. doi: http://dx.doi.org/10.1016/0038-0121(82)90036-2. URL http:

//www.sciencedirect.com/science/article/pii/0038012182900362.

[210] Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, and Ralf Steinmetz.

Heuristics for qos-aware web service composition. In Proceedings of the IEEE International

Conference on Web Services, ICWS ’06, pages 72–82, Washington, DC, USA, 2006. IEEE

Computer Society. ISBN 0-7695-2669-1. doi: 10.1109/ICWS.2006.69. URL http://dx.

doi.org/10.1109/ICWS.2006.69.

[211] Feng Gao, Muhammad Intizar Ali, and Alessandra Mileo. Semantic Discovery and Inte-

gration of Urban Data Streams. In Proceedings of the 13th International Semantic Web

Conference (ISWC’14), Workshop on Semantics for Smarter Cities, 2014.

[212] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The

many faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131, 2003.

[213] P.R. Pietzuch and J.M. Bacon. Hermes: a distributed event-based middleware architecture.

In Proceedings of the 22nd International Conference on Distributed Computing Systems

Workshops, 2002., pages 611–618, 2002. doi: 10.1109/ICDCSW.2002.1030837.

[214] Fengyun Cao and JaswinderPal Singh. Medym: Match-early with dynamic multicast

for content-based publish-subscribe networks. In Gustavo Alonso, editor, Middleware

2005, volume 3790 of Lecture Notes in Computer Science, pages 292–313. Springer

Berlin Heidelberg, 2005. ISBN 978-3-540-30323-7. doi: 10.1007/11587552 15. URL

http://dx.doi.org/10.1007/11587552_15.

[215] Anja Strunk. Qos-aware service composition: A survey. In Web Services (ECOWS), 2010

IEEE 8th European Conference on, pages 67–74. IEEE, 2010.

[216] Florian Rosenberg, Max Benjamin Müller, Philipp Leitner, Anton Michlmayr, Athman

Bouguettaya, and Schahram Dustdar. Metaheuristic optimization of large-scale qos-aware

service compositions. In Services Computing (SCC), 2010 IEEE International Conference

on, pages 97–104. IEEE, 2010.

http://dl.acm.org/citation.cfm?id=647883.738567
http://www.sciencedirect.com/science/article/pii/S1474034612000201
http://www.sciencedirect.com/science/article/pii/S1474034612000201
http://www.sciencedirect.com/science/article/pii/0038012182900362
http://www.sciencedirect.com/science/article/pii/0038012182900362
http://dx.doi.org/10.1109/ICWS.2006.69
http://dx.doi.org/10.1109/ICWS.2006.69
http://dx.doi.org/10.1007/11587552_15

Bibliography 237

[217] Sen Su, Chengwen Zhang, and Junliang Chen. An improved genetic algorithm for web

services selection. In Distributed Applications and Interoperable Systems, pages 284–295.

Springer, 2007.

[218] Fatih Karatas and Dogan Kesdogan. An approach for compliance-aware service selection

with genetic algorithms. In Samik Basu, Cesare Pautasso, Liang Zhang, and Xiang Fu,

editors, Service-Oriented Computing, volume 8274 of Lecture Notes in Computer Science,

pages 465–473. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-45004-4. doi: 10.1007/

978-3-642-45005-1 35. URL http://dx.doi.org/10.1007/978-3-642-45005-1_

35.

[219] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. Quality is in the eye of the beholder:

meeting users’ requirements for internet quality of service. In Proceedings of the SIGCHI

conference on Human Factors in Computing Systems, pages 297–304. ACM, 2000.

[220] Heinz Mühlenbein and Dirk Schlierkamp-Voosen. Predictive models for the breeder genetic

algorithm i. continuous parameter optimization. Evolutionary computation, 1(1):25–49,

1993.

[221] Farhana H Zulkernine and Patrick Martin. An adaptive and intelligent sla negotiation

system for web services. Services Computing, IEEE Transactions on, 4(1):31–43, 2011.

[222] Feng Gao, Muhammad Intizar Ali, Edward Curry, and Alessandra Mileo. Qos-aware

adaptation for complex event service. In Proceedings of the 31st ACM Symposium On

Applied Computing (to appear), 2016.

[223] R. Iyer and L. Kleinrock. Qos control for sensor networks. In Communications, 2003. ICC

’03. IEEE International Conference on, volume 1, pages 517–521 vol.1, May 2003. doi:

10.1109/ICC.2003.1204230.

[224] Athanassios Boulis, Saurabh Ganeriwal, and Mani B Srivastava. Aggregation in sensor

networks: an energy–accuracy trade-off. Ad hoc networks, 1(2):317–331, 2003.

[225] Jerome B Johnson and Garry L Schaefer. The influence of thermal, hydrologic, and snow

deformation mechanisms on snow water equivalent pressure sensor accuracy. Hydrological

Processes, 16(18):3529–3542, 2002.

[226] A. Bucchiarone, A. Marconi, M. Pistore, P. Traverso, P. Bertoli, and R. Kazhamiakin.

Domain objects for continuous context-aware adaptation of service-based systems. In Web

Services (ICWS), 2013 IEEE 20th International Conference on, pages 571–578, June 2013.

doi: 10.1109/ICWS.2013.82.

[227] Robin Parker. Missing Data Problems in Machine Learning. VDM Verlag, 2010.

[228] Muhammad Adnan Tariq, Boris Koldehofe, and Kurt Rothermel. Efficient content-based

routing with network topology inference. In Proceedings of the 7th ACM International

Conference on Distributed Event-based Systems, DEBS ’13, pages 51–62. ACM, 2013. ISBN

978-1-4503-1758-0. doi: 10.1145/2488222.2488262. URL http://doi.acm.org/10.

1145/2488222.2488262.

http://dx.doi.org/10.1007/978-3-642-45005-1_35
http://dx.doi.org/10.1007/978-3-642-45005-1_35
http://doi.acm.org/10.1145/2488222.2488262
http://doi.acm.org/10.1145/2488222.2488262

Bibliography 238

[229] Thomas Fischer, Andreas M. Wahl, and Richard Lenz. Automated quality-of-service-

aware configuration of publish-subscribe systems at design-time. In Proceedings of the

8th ACM International Conference on Distributed Event-Based Systems, DEBS ’14, pages

118–129. ACM, 2014. ISBN 978-1-4503-2737-4. doi: 10.1145/2611286.2611293. URL

http://doi.acm.org/10.1145/2611286.2611293.

[230] Souleiman Hasan and Edward Curry. Approximate semantic matching of events for the

internet of things. ACM Trans. Internet Technol., 14(1):2:1–2:23, August 2014. ISSN

1533-5399. doi: 10.1145/2633684. URL http://doi.acm.org/10.1145/2633684.

[231] Souleiman Hasan and Edward Curry. Thematic event processing. In Proceedings of the

15th International Middleware Conference, Middleware ’14, pages 109–120, New York,

NY, USA, 2014. ACM. ISBN 978-1-4503-2785-5. doi: 10.1145/2663165.2663335. URL

http://doi.acm.org/10.1145/2663165.2663335.

[232] Segev Wasserkrug, Avigdor Gal, Opher Etzion, and Yulia Turchin. Complex event pro-

cessing over uncertain data. In Proceedings of the second international conference on

Distributed event-based systems, pages 253–264. ACM, 2008.

[233] Ella Rabinovich, Opher Etzion, and Avigdor Gal. Pattern rewriting framework for event

processing optimization. In Proceedings of the 5th ACM international conference on Dis-

tributed event-based system, pages 101–112. ACM, 2011.

[234] Rohit Wagle, Henrique Andrade, Kirsten Hildrum, Chitra Venkatramani, and Michael

Spicer. Distributed middleware reliability and fault tolerance support in system s. In

Proceedings of the 5th ACM international conference on Distributed event-based system,

pages 335–346. ACM, 2011.

[235] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen, Richard King, Philippe

Selo, Yoonho Park, and Chitra Venkatramani. Spc: A distributed, scalable platform for

data mining. In Proceedings of the 4th international workshop on Data mining standards,

services and platforms, pages 27–37. ACM, 2006.

[236] Jonas Buys, Vincenzo De Florio, and Chris Blondia. Towards context-aware adaptive fault

tolerance in soa applications. In Proceedings of the 5th ACM international conference on

Distributed event-based system, pages 63–74. ACM, 2011.

[237] Lijun Mei, W.K. Chan, and T.H. Tse. An adaptive service selection approach to service

composition. In Web Services, 2008. ICWS ’08. IEEE International Conference on, pages

70–77, Sept 2008. doi: 10.1109/ICWS.2008.22.

[238] K.P. Joshi, Y. Yesha, and T. Finin. Automating cloud services life cycle through semantic

technologies. Services Computing, IEEE Transactions on, 7(1):109–122, Jan 2014. ISSN

1939-1374. doi: 10.1109/TSC.2012.41.

[239] Lijun Wang, Lanlan Rui, Xuesong Qiu, Wenjing Li, and Kangming Jiang. A self-adaptive

recovery strategy for service composition in ubiquitous stub environments. In Computers

and Communications (ISCC), 2013 IEEE Symposium on, pages 000892–000897, July 2013.

doi: 10.1109/ISCC.2013.6755062.

http://doi.acm.org/10.1145/2611286.2611293
http://doi.acm.org/10.1145/2633684
http://doi.acm.org/10.1145/2663165.2663335

Bibliography 239

[240] Christian Bizer and Andreas Schultz. Benchmarking the performance of storage systems

that expose sparql endpoints. World Wide Web Internet And Web Information Systems,

2008.

[241] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl knowledge

base systems. Web Semantics: Science, Services and Agents on the World Wide Web, 3

(2):158–182, 2005.

[242] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel. Spˆ 2bench: a

sparql performance benchmark. In Data Engineering, 2009. ICDE’09. IEEE 25th Inter-

national Conference on, pages 222–233. IEEE, 2009.

[243] Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Chan Le Van, and Manfred Hauswirth. Elastic

and scalable processing of linked stream data in the cloud. In The Semantic Web–ISWC

2013, pages 280–297. Springer, 2013.

[244] Alejandro Rodrıguez, Robert McGrath, Yong Liu, James Myers, and I Urbana-Champaign.

Semantic management of streaming data. Proc. Semantic Sensor Networks, 80, 2009.

[245] Fabio Grandi. T-sparql: A tsql2-like temporal query language for rdf. In ADBIS (Local

Proceedings), pages 21–30. Citeseer, 2010.

[246] Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming sparql extending sparql to

process data streams. In Proc. of ESWC 2008, pages 448–462, Berlin, Heidelberg, 2008.

Springer-Verlag.

[247] Jacques Ferber. Multi-agent systems: an introduction to distributed artificial intelligence,

volume 1. Addison-Wesley Reading, 1999.

[248] M Nedim Alpdemir, Arijit Mukherjee, Norman W Paton, Paul Watson, Alvaro AA Fer-

nandes, Anastasios Gounaris, and Jim Smith. Service-based distributed querying on the

grid. In Service-Oriented Computing-ICSOC 2003, pages 467–482. Springer, 2003.

[249] Vijay A Saraswat and Martin Rinard. Concurrent constraint programming. In Proceedings

of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 232–245. ACM, 1989.

[250] Barbara Pernici and S Hossein Siadat. Selection of service adaptation strategies based

on fuzzy logic. In Services (SERVICES), 2011 IEEE World Congress on, pages 99–106.

IEEE, 2011.

[251] Barbara Pernici, S Hossein Siadat, Salima Benbernou, and Mourad Ouziri. A penalty-

based approach for qos dissatisfaction using fuzzy rules. In Service-Oriented Computing,

pages 574–581. Springer, 2011.

[252] Davide Tosi and Sandro Morasca. Supporting the semi-automatic semantic annotation of

web services: A systematic literature review. Information and Software Technology, 61:

16–32, 2015.

Bibliography 240

[253] Li Yuan-jie and Cao Jian. Web service classification based on automatic semantic annota-

tion and ensemble learning. In Parallel and Distributed Processing Symposium Workshops

& PhD Forum (IPDPSW), 2012 IEEE 26th International, pages 2274–2279. IEEE, 2012.

[254] Khalid Belhajjame, Suzanne M Embury, Norman W Paton, Robert Stevens, and Car-

ole A Goble. Automatic annotation of web services based on workflow definitions. ACM

Transactions on the Web (TWEB), 2(2):11, 2008.

[255] Feng Gao and S. Bhiri. Capability annotation of actions based on their textual descriptions.

In WETICE Conference (WETICE), 2014 IEEE 23rd International, pages 257–262, June

2014. doi: 10.1109/WETICE.2014.68.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	I Foundation - Motivation and Background
	1 Introduction
	1.1 Motivation
	1.2 Research Problems
	1.2.1 Requirements Analysis
	1.2.2 Limitations of Current Approaches
	1.2.3 Research Questions

	1.3 Methodology
	1.4 Overview of the Proposed Approach
	1.5 Summary of Contributions
	1.6 Thesis Outline
	1.7 List of Relevant Publications
	1.7.1 Journal
	1.7.2 Conference
	1.7.3 Workshop and Demo
	1.7.4 Additional

	2 Motivation
	2.1 Context: Smart City Applications
	2.2 Basic Requirements of Smart City Applications
	2.3 Advanced Requirements and Limitations of Existing Approaches
	2.3.1 User-Centric SES Modelling
	2.3.2 Automatic and Customised SES Planning
	2.3.3 Automatic and Adaptive SES Implementation
	2.3.4 Efficient SES Execution

	2.4 Summary and Discussion

	3 Background
	3.1 Semantic Web
	3.1.1 Basic Concepts and Standards in Semantic Web
	3.1.2 Linked Data
	3.1.3 Semantic Web and Sensor Networks

	3.2 Service Oriented Computing
	3.2.1 Service Roles and Activities in SOA
	3.2.2 Web Service and Service Description
	3.2.3 Service Invocation, Orchestration and Choreography
	3.2.4 Semantic Web Service

	3.3 Complex Event Processing
	3.3.1 Basic Concepts in CEP Systems
	3.3.2 Event Channel and Routing
	3.3.3 Event Pattern
	3.3.4 Semantic Event Processing and Stream Reasoning

	3.4 Summary and Discussion

	II Core - Semantic Event Service Management
	4 Overview of the Automatic Complex Event Implementation System
	4.1 ACEIS Key Functionality Design
	4.1.1 Event Service Annotation and Event Pattern Definition
	4.1.2 Pattern-based Event Service Discovery and Composition
	4.1.3 Constraint-aware Event Service Discovery and Composition
	4.1.4 Automatic Event Service Implementation and Adaptation

	4.2 ACEIS Architecture
	4.2.1 Knowledge Base
	4.2.2 Application Interface
	4.2.3 Semantic Annotation
	4.2.4 ACEIS Core

	4.3 ACEIS Deployment in Smart City Framework
	4.4 Summary and Discussion

	5 Event Service Ontology and Event Pattern Definition
	5.1 Complex Event Service Ontology
	5.1.1 Overview
	5.1.2 Event Profile
	5.1.3 Event Pattern
	5.1.4 Event Request
	5.1.5 Traceability between Event Services

	5.2 Extended Business Event Modeling Notations
	5.2.1 Overview of Business Event Modeling Notation
	5.2.2 Advantages and Limitations of BEMN
	5.2.3 BEMN+: the Revised Constructs, Syntax and Constraints
	5.2.4 BEMN+: Formal Semantics of Event Pattern

	5.3 Related Work
	5.3.1 Event Ontologies
	5.3.2 Graphical Event Pattern Definition Languages

	5.4 Summary and Discussion

	6 Pattern-based Event Service Discovery and Composition
	6.1 Canonical Event Pattern
	6.1.1 Definitions of Event Syntax Tree
	6.1.2 Complete Event Pattern
	6.1.3 Irreducible Event Pattern
	6.1.4 Syntax Tree Reduction Algorithm

	6.2 Event Pattern Discovery and Composition
	6.2.1 Optimisation based on Network Traffic Estimation
	6.2.2 Event Pattern Composition based on Substitution
	6.2.3 Event Pattern Composition based on Re-usability Index

	6.3 Experiment Evaluation
	6.3.1 General Experiment Settings
	6.3.2 Performance of Event Query Reduction
	6.3.3 Performance of Event Reusability Forest Construction
	6.3.4 Performance of Event Composition

	6.4 Related Work
	6.5 Summary and Discussion

	7 Constraint-aware Event Service Discovery and Composition
	7.1 QoS Model Aggregation Schema
	7.1.1 QoS Properties of Event Services
	7.1.2 Quality-of-Service Aggregation
	7.1.3 Event QoS Utility Function

	7.2 Genetic Algorithm for QoS-Aware Event Service Composition Optimisation
	7.2.1 Population Initialisation
	7.2.2 Genetic Encodings for Event Syntax Trees
	7.2.3 Crossover and Mutation Operations

	7.3 Experiment Evaluations
	7.3.1 Experiment Scenario: Travel Planning
	7.3.2 Part 1: Performance of the Genetic Algorithm
	7.3.3 Part 2: Validation of QoS Aggregation Rules

	7.4 Related Work
	7.5 Summary and Discussion

	8 Automatic Event Service Implementation and Adaptation
	8.1 Automatic Event Service Implementation
	8.1.1 Semantics Alignment
	8.1.2 Transformation Algorithm
	8.1.3 Event (Re-)Construction from Stream Query Results

	8.2 QoS-aware Event Service Adaptation
	8.2.1 Adaptation Strategies
	8.2.2 Adaptation for Service Failures
	8.2.3 Adaptation Process

	8.3 Experiment Evaluation
	8.3.1 Scenario and Datasets
	8.3.2 Performances of Adaptation Manager

	8.4 Related Work
	8.4.1 QoS Adaptation in EBN and CEP
	8.4.2 Adaptive Service Composition

	8.5 Summary and Discussion

	III Finale - Usage, Conclusion and Future Research
	9 Prototype Implementation and Query Performance Analysis
	9.1 Usage in Smart City Application Prototypes
	9.1.1 Smart Travel/Parking Planner
	9.1.2 Smart City Dashboard

	9.2 Benchmarking RSP Engines with Realistic Datasets
	9.2.1 Datasets and Queries
	9.2.2 CityBench Design
	9.2.3 Benchmarking Results
	9.2.4 Comparison to Existing Benchmarks

	9.3 Optimisation for Concurrent Queries
	9.3.1 Multiple Different Queries over Single Engine Instance
	9.3.2 Optimisation using Multiple Engine Instances
	9.3.3 Stress Tests

	9.4 Summary and Discussion

	10 Conclusions and Future Work
	10.1 Answers to the Research Questions
	10.2 Main Contributions
	10.2.1 User-centric Event Service Modelling
	10.2.2 Pattern-based Event Service Composition
	10.2.3 Constraint-aware Event Service Composition
	10.2.4 Automatic Event Service Implementation and Adaptation
	10.2.5 RSP Benchmarking and Performance Optmisation

	10.3 Limitations of the Study
	10.4 Future Directions
	10.5 Lessons Learned
	10.6 Conclusion

	A Examples of CESO
	B XML serialization of BEMN+
	Bibliography

