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We study shear waves propagating in a special viscoelastic model proposed first by

Fosdick and Yu in 1996. We deduce an asymptotic approximation which reduces

the full balance equations to a system of evolution equations which are a vectorial

generalization of the Modified KDV-Burger equation. In such a way we show that

the model takes into account not only dissipative effects but also dispersive effects.

1. Introduction

We consider a transverse wave, polarized in the (XY ) plane, and propagat-
ing in the Z direction, of a Cartesian coordinate system associated with an
unbounded solid,

x = X + u(z, t), y = Y + v(z, t), z = Z. (1)

Here u and v are the unknown scalar functions describing the motion. We
compute the usual geometrical quantities of interest, here the left Cauchy-
Green strain tensor and its inverse,

B =





1 + u2
z uzvz uz

uzvz 1 + v2
z vz

uz vz 1



 , B−1 =





1 0 −uz

0 1 −vz

−uz −vz 1 + (u2
z + v2

z)



 . (2)
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For a general hyperelastic, incompressible, isotropic material, we have
the following constitutive equation for the Cauchy stress tensor T (see
Chadwick1 for instance),

T = −pI + 2(∂Σ/∂I1)B − 2(∂Σ/∂I2)B
−1, (3)

where I is the identity tensor and p = p(x, t) is the arbitrary Lagrange
multiplier associated with the constraint of incompressibility (

√
det B = 1

at all times). In Eq. (3), Σ is the strain energy function, which for an
incompressible material depends only on I1 and I2, the first two principal
invariants of B: I1 ≡ tr B, I2 ≡ [I2

1 −tr (B2)]/2. For the motion of Eq. (1),
the first two invariants are

I1 = I2 = 3 + u2
z + v2

z . (4)

The equations of motion, in the absence of body forces, are given in
current form as div T = ρẍ, where ρ is the mass density; here they read

−
∂p

∂x
+
∂T13

∂z
= ρutt, −

∂p

∂y
+
∂T23

∂z
= ρvtt,

∂T33

∂z
= 0. (5)

Differentiating these equations with respect to x, we find pxx = pyx = pzx =
0, so that px = p1(t), say. Similarly, by differentiating the equations with
respect to y, we find py = p2(t), say. The first two equations in (5) reduce
to

−p1(t) + (Quz)z = ρutt, −p2(t) + (Qvz)z = ρvtt, (6)

and the third equation determines p. Here, Q = Q(u2
z+v2

z) is the generalized

shear modulus of nonlinear elasticity, defined by

Q = 2(∂Σ/∂I1 + ∂Σ/∂I2). (7)

Following Destrade and Saccomandi2, we take the derivative of Eqs.
(6) with respect to z, we introduce the notations U = uz, V = vz, and the
complex function W = U +iV , and we recast Eq. (6) as the single complex
equation

(QW )zz = ρWtt, (8)

where Q is now a function of U2 +V 2 alone, Q = Q(U2 +V 2). In nonlinear
elasticity, it is common to require that the acoustic tensor be positive, in
which case (8) is an hyperbolic system.

Now we decompose the complex function W into modulus Ω and argu-
ment θ as

W (z, t) = Ω(z, t) exp(iθ(z, t)), (9)
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and we focus on travelling wave solutions in the form

W = W (s) = Ω(s)eiθ(s), where s = z − ct, (10)

c being the speed. This ansatz reduces Eq. (8) to (QW )′′ = ρc2W ′′. We
integrate it twice taking each integration constant to be zero in order to
eliminate the rigid and the homogeneous motions. We end up with the
simple equation,

(

Q − ρc2
)

W = 0. (11)

Eq.(11) says, in accordance with the theory of hyperbolic second order
nonlinear equations, that waves of permanent form are impossible unless
Q − ρc2 = 0. This last opportunity is possible only if Q is independent of
z, a situation that may happen only (a) for special classes of constitutive
equations or (b) for a special classes of initial data.

For the first possibility (a), we determine that the most general consti-
tutive class for which the generalized modulus is independent of z is the
Mooney-Rivlin model, for which 2Σ = C(I1 − 3) + E(I2 − 3), where C and
E are positive material constants; then Q = C + E = const. This is a
special case of a general result by Ruggeri3 about the existence of a double
exceptional wave in unconstrained isotropic elastic materials.

For the second possibility (b), Carroll4 determined the special solutions
known as circularly polarized harmonic waves,

u(z, t) = A cos k(z − ct), v(z, t) = ±A sin k(z − ct), (12)

where A and k are arbitrary constants. For these motions, U2 +V 2 = A2k2

and therefore Q is independent of z; then the equation of motion Eq. (11)
leads to the following dispersion equation,

Q(A2k2) = ρc2, (13)

which may be solved for any reasonable constitutive equation.
Smooth solutions of initial-value problems for nonlinear hyperbolic sys-

tems are rare. Usually singularities will develop after a finite time, even
when the initial data are smooth. To the best of our knowledge, theorems
of global-in-time well-posedness to the initial-value problem for quasi-linear
wave equations may be achieved only under the assumption of small ini-
tial data and the additional null condition5. Since our solutions (12) are
smooth also for arbitrary large initial-data, it is clear that our knowledge
of the mathematics of hyperbolic systems is still incomplete.
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Kolsky6 and Mason7 showed that it is possible to produce experimen-
tally tensile waves in stretched natural rubber bands, where the front be-
comes sharper as they progress. This is because natural vulcanized rubber
becomes increasingly stiff with increasing tensile stress and because the
stress-strain curve changes from concave to convex when very large defor-
mations are involved. We argue that the hyperbolic system (8) may be
a good mathematical approximation of such shock-like phenomena (For a
more recent account of similar experiments, we refer to Vermorel et al.8.)

On the other hand, rubber-like materials exhibit strong attenuation in
the usual range of applications; it is for this reason that rubber is often used
to damp out vibrations and to absorb shocks. Moreover, the underlying
microstructure of polymeric materials introduces a characteristic nonlocal
scale which is nearly 30 times the characteristic scale of face centered cubic
materials such as copper9. This means that in many interesting applications
there is an important range of wave-lengths where wave phenomena in
elastomers and soft-tissues must be dispersive.

Thus it is necessary to improve our mathematical models of dynamic
phenomena in rubber-like materials and to take into account both dissipa-

tion and dispersion. The aim of the present Note is to introduce a simple
model accounting for these two effects in the framework of nonlinear solid
mechanics.

2. Dispersion and dissipation

Guided by preliminary work2, we now augment the constitutive equation
Eq. (3) to T + TD, with

TD = νA1 + α[A2 − A2
1], (14)

where D is the stretching tensor, and A1 and A2 are the first two Rivlin-
Ericksen tensors,

D ≡ (L + LT)/2, A1 ≡ 2D, A2 ≡ Ȧ1 + A1L + LTA1. (15)

The viscosity function ν = ν(D · D), and the dispersion material function

α = α(D · D), must be positive due to thermodynamics restrictions.
Destrade and Saccomandi10, show that at ν ≡ 0, Eq. (14) coincides

exactly with the dispersion function proposed by Rubin et al.11, and that
TD is a straightforward generalization of the extra Cauchy stress tensor
associated with a non-Newtonian fluid of second grade12, which is

νA1 + α1A2 + α2A
2
1, (16)
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where ν is the classical viscosity and α1,α2 are the microstructural coeffi-
cients.

In the case of the motion (1), the kinematical quantities of interest are
A1, A2

1, and A2, given by




0 0 uzt

0 0 vzt

uzt vzt 0



 ,





u2
zt uztvzt 0

uztvzt v2
zt 0

0 0 u2
zt + v2

zt



 ,





0 0 uztt

0 0 vztt

uztt vztt 2(u2
zt + v2

zt)



 ,

(17)
respectively. Hence we find that

D · D = 1
2 (u2

zt + v2
zt). (18)

Following the process conducted in Section 2 for hyperelastic materials,
and introducing the complex function W ≡ U + iV , we recast the deter-
mining equations for the transverse wave motions as the following single
complex equation,

(QW )zz + (νWt + αWtt)zz = ρWtt, (19)

where Q is again a function of U2 +V 2 = Ω2 alone: Q = Q(Ω2), and ν and
α are now functions of U2

t + V 2
t alone: ν = ν(U2

t + V 2
t ), α = α(U2

t + V 2
t ).

3. A vector evolution equation

As is usual, we now perform a moving frame expansion for equation Eq.
(19), with the new scales s = z − ct, τ = εt (here ε is a small parameter).

We assume that W is of the form

W = ε1/2w, where w = O(1). (20)

Then Ω = |W | = ε1/2|w| and we expand the terms in (8) as

(QW )zz = ε1/2Q(0)wss + ε3/2Q′(0)
(

|w|2w
)

ss
+ . . . ,

ρWtt = ε1/2ρc2wss − 2ε3/2ρcwsτ + . . . ,

(νWt)zz = −ε1/2cν(0)wsss + ε3/2ν(0)wssτ + . . . ,

(αWtt)zz = ε1/2c2α(0)wssss − 2ε3/2cα(0)wsssτ + . . . (21)

In order to recover the linear wave speed at the lowest order (here, ε1/2)
given by Q(0) = ρc2, we must assume that

Q(0) = O(1), ν(0) = O(1), and α(0) = O(ε) = εα0 (say), (22)

where α0 is a constant of order O(1).
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Then we find that at the next order,

Q′(0)
(

|w|2w
)

ss
− cν(0)wsss + c2α0wssss = −2ρcwsτ , (23)

which we integrate once with respect to s to get the vectorial MKdV-Burgers

equation,

wτ + q
(

|w|2w
)

s
− nwss + pwsss = 0, (24)

where q ≡ Q′(0)/(2ρc), n ≡ ν(0)/(2ρ), and p ≡ cα0/(2ρ).
In this equation, the third derivative term is associated with dispersive

phenomena whereas the second derivative term is associated with dissipa-
tive phenomena. To derive (24), we assumed that the nonlinear elastic
effects are of the same order as the dissipative effects whilst the dispersive
effects are of smaller order than elastic and dissipative effects. This as-
sumption is quite realistic in biological applications at the length scales of
interest in the framework of elastography.

4. Travelling waves solutions

We search for travelling wave solutions to equation (24). Introducing the
variable ξ = s − vτ , where v is the speed in the moving frame, we reduce
(24) to the ordinary differential equation

−vw′ + q
(

|w|2w
)′ − nw′′ + pw′′′ = 0, (25)

where a prime denotes the derivative with respect to ξ. With the usual
asymptotic boundary conditions, we integrate once to obtain

(

q|w|2 − v
)

w − nw′ + pw′′ = d, (26)

(here d is a real integration constant, to be considered null if we are inter-
ested in drop boundary conditions). Then, separating the real part of this
equation from the imaginary part, by using the notation w(ξ) = ω(ξ)eiϑ(ξ)

say, gives

p
(

ω′′ − ωϑ
′2

)

− nω′ +
(

qω2 − v
)

ω = d, ω2ϑ′ = Ie
n

p
ξ, (27)

where the imaginary part has been integrated directly, with I as the inte-
gration constant. If we set n = 0 (no dissipation) in (27), then we recover
a classical result by Gorbatcheva and Ostrosky13.

The system (27) may be reduced to a single non-autonomous second
order equation in the general case (I $= 0.) When we consider linearly-
polarized waves (I = 0) we get an autonomous Duffing-like equation with
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damping

ω′′ −
n

p
ω′ +

(

q

p
ω2 −

v

p

)

ω = d. (28)

In fact, if we focus on linearly polarized waves from the outset, then
|w| = w, and Eq. (24) is the scalar MKdV-Burgers equation,

wτ +
(

w3
)

x
= αwxx + βwxxx, (29)

where x ≡ s/q, α = n/q2, and β = −p/q3. The possibility of travel-
ling wave solutions to the modified Korteweg-deVries-Burgers equation has
been studied in great details over the years, in particular by Jacobs et al.14,
Wang15, Feng16, or Vladimirov et al.17. However it seems that the combi-
nation: α > 0, β < 0, — as found here — precludes the possibility of exact
solutions.

We recall that the governing equations derived above have been obtained
for any type of nonlinear incompressible solid, for which dispersion and
dissipation can be modelled by Eq. (14); however, the equations were the
result of a small parameter expansion, see Section 3. We now remark that it
is also possible to study travelling waves for the exact equation (19), both in
the case of linearly-polarized waves and in the non-linearly polarized case,
when a given constitutive behaviour is chosen. For instance, we make the
constitutive assumptions that α = const., ν = const., which are the simplest
assumptions we can make for the modelling of dispersion and dissipation.
For the shear modulus, the choice Q = const. corresponds to a Mooney-
Rivlin type of elastic behaviour and it has been treated elsewhere18: it
leads to linear differential equations. Then the assumption Q = µ0 + µ1Ω2

(where µ0, µ1 are positive constants) is the simplest one we can make
to uncover nonlinear governing equations; it corresponds to fourth-order
elasticity theory10. With these assumptions, equation (19) reduces to

[

(µ0 + µ1Ω
2)W

]

zz
+ νWtzz + αWttzz = ρWtt, (30)

a vectorial version of the damped good Boussinesq equation. A thorough
review on several mechanical aspects and applications of this equation may
be found in the recent paper by Christov et al.19. When we study travelling
waves of (30) in the linearly polarized case, we obtain

αc2Ω′′ − νcΩ′ +
(

µ1Ω
2 + µ0 − ρc2

)

Ω = D, (31)

which is equivalent to (28).
By standard phase plane analysis it is possible to obtain the conditions

on the coefficients of (31) for which kink -like solutions are possible. For
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example in the case D = 0 (or d = 0 if we are considering (28)) a de-
tailed discussion of these solutions is provided by Feng20 where it is shown
that monotonous kinks (like in dissipative systems) are possible when the
classical viscosity is sufficiently strong. Otherwise, when dispersive and/or
nonlinear elastic effects are more important than dissipative effects, we ob-
serve kink-like solutions with an oscillatory character.
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