<table>
<thead>
<tr>
<th>Title</th>
<th>Stream Data Gathering in Wireless Sensor Networks Within Expected Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shu, Lei; Zhou, ZhangBing; Aguilar, Antonio; Hauswirth, Manfred</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2007</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/570</td>
</tr>
</tbody>
</table>
Stream Data Gathering in Wireless Sensor Networks with Expected Lifetime

Motivation
Some applications do not need sensor networks with a long lifetime, such as monitoring an erupting volcano or hazardous conditions in a few hours. These applications generally expect that sensor networks can provide stream data as much as possible by working continuously during a short expected lifetime.

Approach
• Maximizing stream data gathering (MSDG) within an expected lifetime;
• Minimizing transmission delay (MTD) for stream data gathering within an expected lifetime;
• Optimal greedy forwarding bypassing hole routing.

Solutions to Typical Problems

Results

Figure 1. Q: How to gather stream data from multiple source nodes when sensor nodes use maximum transmission bandwidth and some of them are dead
A: Node disjoint routing for stream data gathering with dead sensor nodes

Figure 2. Q: How to gather stream data from multiple source nodes when sensor nodes do not use maximum transmission bandwidth
A: Tree topology based multi-source stream data gathering

Figure 3. Q: How to gather stream data from single source node when data producing speed of source node several times larger than sensor node’s maximum transmission bandwidth
A: Stream data multi-path transmission with holes

Figure 4. Q: How to gather stream data from multiple source nodes when data producing speed of source nodes several times larger than sensor node’s maximum transmission bandwidth
A: Stream data multi-source multi-path transmission with holes

Figure 5. MSDG: Stream data gathering vs expected lifetime

Figure 6. MSDG: Average delay vs expected lifetime

Figure 7. MTD: Stream data gathering vs expected lifetime

Figure 8. MTD: Average delay vs expected lifetime

Lei Shu E: lei.shu@deri.org
Zhangbing Zhou E: zhangbing.zhou@deri.org
Antonio Aguilar E: antonio.aguilar@deri.org
Manfred Hauswirth E: manfred.hauswirth@deri.org