

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published

version when available.

Downloaded 2022-05-23T00:16:30Z

Some rights reserved. For more information, please see the item record link above.

Title Cost-Aware Processing of Similarity Queries in Structured
Overlays

Author(s) Karnstedt, Marcel; Hauswirth, Manfred

Publication
Date 2006

Publication
Information

Marcel Karnstedt, Kai-Uwe Sattler, Manfred Hauswirth,
Roman Schmidt "Cost-Aware Processing of Similarity Queries
in Structured Overlays", Proceedings of the 6th International
Conference on Peer-to-Peer Computing, 2006.

Item record http://hdl.handle.net/10379/565

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Cost-Aware Processing of Similarity Queries in Structured Overlays∗

Marcel Karnstedt, Kai-Uwe Sattler
Technische Universität Ilmenau

Germany

Manfred Hauswirth, Roman Schmidt
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Switzerland

Abstract

Large-scale distributed data management with P2P sys-
tems requires the existence of similarity operators for
queries as we cannot assume that all users will agree on ex-
actly the same schema and value representations and data
quality problems due to spelling errors and typos. In this
paper, we present an approach for efficient processing of
similarity selections and joins in a structured overlay. We
show that there are several possible strategies exploiting
DHT features to a different extent (i.e., key organization,
routing, multicasting) and thus the choice of the best oper-
ator implementation in a given situation (selectivity, data
distribution, load) should be based on cost information al-
lowing the system to estimate the computation and commu-
nication costs of query execution plans. Hence, we present
a cost model for similarity operations on structured data in
a DHT and demonstrate the efficiency of our proposal by
experimental results from a large-scale PlanetLab deploy-
ment.

1 Motivation

P2P systems are starting to be recognized as tools for
large-scale, decentralized information management tasks.
For example, emerging applications for the Semantic and
the Social Web such as metadata and index data for (special-
ized) search engines, catalogs, reputation data, name and
directory services, etc., require public data management
(PDM) as an enabling technology. In public data manage-
ment, information, its structure, and its semantics as well
as discovery and integration of data are controlled by the
participants without any central control.

∗The work presented in this paper was supported (in part) by the Na-
tional Competence Center in Research on Mobile Information and Com-
munication Systems (NCCR-MICS), a center supported by the Swiss
National Science Foundation under grant number 5005-67322 and was
(partly) carried out in the framework of the EPFL Center for Global Com-
puting and supported by the Swiss National Funding Agency OFES as part
of the European project NEPOMUK No FP6-027705.

A promising infrastructure approach for PDM are struc-
tured P2P overlays based on distributed hashtables (DHT)
due to their good scalability and efficiency and their pre-
dictable behavior and guarantees. However, the original
DHT proposals support only exact lookups for key-value
pairs and are therefore too restrictive for general-purpose
data management and only a few systems support more
complex queries, for example, range queries in P-Grid or
joins in CAN. Similarity as a concept for dealing with the
expected heterogeneities both at the data and at the schema
levels is not available in DHTs so far. Similarity queries
are a key requirement in PDM systems for two simple rea-
sons: (1) Data quality may be suboptimal due to spelling
errors and typos and (2) we cannot assume that all users
will agree on exactly the same schema and value represen-
tations, i.e., naturally people will use different though often
syntactically similar conceptualizations for the same data.
Therefore, we argue that similarity-based query operations
play a key role in dealing with heterogeneities by enabling
to retrieve data (similarity lookup and filtering) as well as to
combine data (similarity join and grouping) based on fuzzy
matching conditions.

Our approach for cost-aware processing of similar-
ity queries in structured overlays, which we will present
in the following, is based on a “vertical” triple stor-
age model similar to RDF’s model. This means that
each tuple (oid, v1, . . . , vn) of a given relation schema
R(A1, . . . , An) is stored in the form of n triples
(oid,A1, v1), . . . , (oid,An, vn), where oid is a unique key,
e.g., a URI, and the attribute names Ai may contain a
namespace prefix ns which allows the user to distinguish
different relations. In order to support queries exploiting
the efficient key lookup of DHTs, each triple (oid,Ai, vi) is
inserted three times into the DHT using the oid, Ai#vi (the
concatenation of Ai and vi), and vi as keys. This enables
search based on the unique key, queries of the form Ai ≥ vi,
and using vi as the key for queries on an arbitrary attribute.
Though this data organization produces some overhead, it
has the advantages that the data are self-descriptive, i.e., do
not have not to obey a predefined relation schema, and that
in several DHTs, e.g., CAN or P-Grid, similar values are

stored at the same peer or neighboring peers, thus decreas-
ing the efforts incurred in processing range queries, joins,
or similarity operations.

Based on this model which was introduced in [9], we
present and discuss strategies for efficient processing of
similarity selections and joins in a structured overlay. We
will show that there are several possible strategies exploit-
ing DHT features to a different extent (i.e., key organiza-
tion, routing, multicasting) and thus the choice of the best
operator implementation in a given situation (selectivity,
data distribution, load) should be based on cost informa-
tion allowing the system to estimate the computation and
communication costs of query execution plans. Obviously,
this cannot be done in the same way as in classical central-
ized database systems where all necessary statistical cost
information are available. Hence, we present a cost model
for similarity operations on structured data in a DHT-based
overlay network.

Basically our approach is generally applicable to any
P2P system, be it structured, e.g., Chord, CAN, P-Grid, or
unstructured, e.g., Gnutella. However, structured P2P sys-
tems have a couple of advantages, we can exploit in process-
ing similarity queries: (1) Cost-aware processing requires
the definition of accurate cost measures which in turn re-
quires the knowledge about the complexity involved in the
processing tasks, which cannot be provided for unstructured
systems like Gnutella, but are available for structured sys-
tems. (2) Structured overlays, specifically DHTs, offer very
low overheads for locating data items, typically O(log(n)).
As we insert and query large amounts of small data items
in our approach, this is an important factor for minimiz-
ing costs. (3) DHTs offer better data-processing related
guarantees, for example, for completeness, existence, etc.,
which are important properties for database-like processing
of predicates.

Our contribution is twofold: First, we present strategies
and implementations for similarity operations as part of a
distributed query engine for our query language VQL (a
derivative of SPARQL), complementing and extending pre-
vious work [9]. And second, we describe a cost model en-
abling the system to find the most efficient query execution
plan based on different operator implementations. We show
the efficiency and correctness of our model by presenting
results from an experimental evaluation on PlanetLab.

This paper is structured as follows: Section 2 exempli-
fies the type of queries we target, Section 3 defines the sim-
ilarity measures we support, and Section 4 then presents
the implementations of the similarity operators. Based on
this, Section 5 discusses our approach to cost-based query
planning. To demonstrate its efficiency, we present the re-
sults of a large-scale PlanetLab deployment in Section 6 and
compare our approach with related work in Section 7 before
concluding the paper.

2 Motivating Examples

In a PDM system, users will want to search for (1) data,
(2) metadata, and (3) combinations of both by defining con-
straints on both the data and schema levels. Queries should
encompass simple search conditions, but also advanced op-
erations on the distributed data, such as joins or ranking,
should be supported. To enable the user to express these
types of queries, we use the VQL query language which
is based on SPARQL [13], a query language for RDF. As
query formulation and the logical algebra used for repre-
senting query plans are not in the focus of this paper, we
will only informally introduce VQL and the logical algebra
through some simple examples demonstrating its capabili-
ties and the types of queries we discuss in this work.

Let us assume that each user in a P2P system has a
movie database similar to IMDB (http://www.imdb.com/).
For simplicity, without constraining generalization, we as-
sume that the following simple relations are used by the par-
ticipants:�

�
�
�

movies: (title, year, type)
top100: (movie, director)
actors: (name, mtitle, rolename)

The basic construct of a query in VQL is a SELECT
- WHERE block similar to SQL, but as we do not man-
age relations in a horizontal manner we do not have to
provide a FROM clause. The WHERE clause is defined
on triples (oid,A, v), selection is done using optional
FILTER(expr) statements in the WHERE clause, and the
functions dist and edist allow the user to express similar-
ity in terms of distance (Euclidean or edit distance). Each
term in a query starting with a question mark represents a
variable and all expressions in the WHERE clause are im-
plicitly combined conjunctively. Additional clauses such as
ORDER BY, LIMIT and OFFSET are optional and have the
same meaning as in SQL.

The following VQL statement defines a query for all di-
rectors who worked with actors named similar to “Billy
Bill” in the years 2000-2004, including also the movie ti-
tle and year in the result set, and ordered by the year the
movie was produced. Additionally, we take the complicat-
ing assumption that the data provided by the users is erro-
neous and thus also the join operation on the movie titles,
required to produce the final result uses similarity-based
string matching.�

�

�

�

SELECT ?d,?t,?y
WHERE { (?o1,name,?n)

FILTER (edist(?n,Billy Bill)<3)
(?o1,mtitle,?t) (?o2,movie,?s)
FILTER (edist(?t,?s)<2)
(?o3,title,?u) FILTER (edist(?t,?u)<2)
(?o3,year,?y) FILTER (dist(?y,2002)<3)
(?o2,director,?d) }

ORDER BY ?y DESC

A powerful advantage of the vertical storage model we
use is the possibility to express similarity on the schema
level in addition to similarity on the data level, which
simplifies homogenization tasks. The following example
joins data from movies with corresponding data from
actors, by applying similarity first on the schema level
(only edist(title,mtitle)=1 can satisfy the filter
condition on schema level in line 3) and then on instance
(data) level (the actual movie titles). Moreover, to keep the
final result size small, we only select those 10 movies which
where produced closest to 2005 (top-N query).�

�

�

�

SELECT ?v1,?v2,?n,?r,?y
WHERE { (?o1,?a1,?v1) (?o2,?a2,?v2)

FILTER (edist(?a1,?a2)<2)
FILTER (edist(?v1,?v2)<3)
(?o1,rolename,?r) (?o1,name,?n)
(?o2,year,?y) }

ORDER BY dist(?y,2005) LIMIT 10

The logical algebra used to represent the resulting op-
erator plans is closely related to the relational algebra, but
extended by some special operators.

3 Similarity Measures and Processing

The typical distance measure for numerical values is the
Euclidean distance which can be mapped on range queries
in the overlay network. As range queries have received
quite some attention recently and several DHTs can handle
them already, we will not discuss similarity on numerical at-
tributes in further detail. For similarity measures on string
values the situation is different as they cannot be mapped to
range queries. This is especially true for the popular Leven-
shtein distance or edit distance [10]. Without constraining
the general applicability of our approach, we will focus on
the processing of single string similarity predicates based
on the edit distance edist(s1, s2) (our approach works for
any distance measure d(x, y) → <).

In its simplest form the edit distance of two strings s1 and
s2 is the number of operations (insertion, deletion or substi-
tution of characters) needed to transform s1 into s2. For
instance, the edit distance of “edna” and “eden” is 2. Sev-
eral approaches exist to efficiently process similarity mea-
sures based on the edit distance. We base our work on that
of Navarro et al. [11] and Gravano et al. [6] who suggest
the evaluation of the edit distance using substrings of fixed
length q, so-called q-grams. We briefly discuss the main
results of these works which we exploit in our approach.
The main observation is that if we pick any d + 1 non-
overlapping q-grams, at least one of them must be fully con-
tained in the comparison string (the two matching q-grams
correspond to each other) [11].

As a consequence, we extend the original storage scheme
highlighted in Section 1 as follows: Rather than indexing

only whole strings, we additionally split them into q-grams
and index those (both on the instance and on schema levels),
i.e., for a triple t = (oid,Ai, vi) we store the following in
the DHT:

[h(oid), (oid, t)], [h(Ai#vi), (oid, t)], [h(vi), (oid, t)],
[h(Ai#qg1(vi)), (oid, t)], . . . , [h(Ai#qgn(vi)), (oid, t)],
[h(qg1(vi)), (oid, t)], . . . , [h(qgn(vi)), (oid, t)],
[h(qg1(Ai)), (oid, t)], . . . , [h(qgm(Ai)), (oid, t)]

(h() denotes the hash function of the DHT to generate
the key under which the triple is stored, and qgi(s) denotes
the ith q-gram of s). This storage scheme involves a non-
negligible overhead (depending on the actual choice of in-
dexed attributes), but decreases query processing costs con-
siderably, as we will show in the following sections.

As an example, consider a tuple t: {123,edna}
with schema s: {id,name}. In the original scheme the
following data items would be stored in the DHT (we as-
sume that the triple’s OID is 1):

[h(1), (1,id,123)], [h(id#123), (1,id,123)],
[h(123), (1,id,123)],
[h(1), (1,name,edna)], [h(name#edna), (1,name,edna)],
[h(edna), (1,name,edna)]

Extending this by a 3-gram index on instance level of
attribute name produces the following additional data items
to be stored:

[h(name#edn), (1,name,edna)],
[h(name#dna), (1,name,edna)],
[h(edn), (1,name,edna)], [h(dna), (1,name,edna)]

Additionally, indexing on schema level results in the fol-
lowing additional data items to be stored:

[h(nam), (1,name,edna)], [h(ame), (1,name,edna)]

4 Physical Operators

Having discussed the basic conceptual approach for sim-
ilarity queries, we will now describe the implementations
of similarity operators available in our query engine. As
already mentioned, we distinguish between queries on in-
stance level, on schema level, and queries combining both
levels. Due to space constraints we will only describe the
processing of queries on instance level as the handling of
queries on schema level differs only in the part of the triples
which is processed. We start with similarity selections as
the basis for advanced operators and then present similar-
ity joins and ranking operators as examples for advanced
operators. In the following we will only deal with string
similarity as numerical similarity measures can simply be
mapped on range queries as argued in Section 3 and addi-
tionally, string data will be the dominating data type in most
systems (not only on schema, but also on instance level).

In principle, we could process string similarity queries
by only utilizing the functionality already provided by a
DHT. By issuing key lookups, we can locate the data con-
cerned by similarity predicates, e.g., by prefix searches on
the attribute names. However, this would be very expensive
as instance level queries can result in involving the whole
overlay if popular attributes are distributed among all peers,
e.g., as in Chord. If this is combined with similarity mea-
sures on the schema level the situation would be even worse
as we have to look at even more data using this simplis-
tic approach. Additionally, only a fraction of the queried
peers will actually contribute to the final result. We will
denote this simple strategy as term-based processing which
will serve as a basic means of comparison to show the gain
we can achieve through our q-gram-based processing strat-
egy. This strategy exploits additional indexes based on q-
grams as described above and incurs additional messages
for querying these indexes, but saves a lot of bandwidth and
message costs for processing the queries in most cases.

To be able to compare the costs of these two alternatives
we will define a cost model in Section 5. However, it is not
the focus of this paper to redefine optimization and plan-
ning tasks already known from relational and distributed
database systems. Rather we target the costs incurred by
the actual gathering of data distributed among the peers of
the overlay network which is required to be able to process
similarity queries.

4.1 Similarity Selection

The most fundamental operation we have to support in
processing similarity queries is similarity selection, which
means that all data corresponding to a similarity predi-
cate is located and returned to the peer having initiated
the query. With term-based processing, we contact each
peer responsible for a part of the data to be checked as
shown in Algorithm 1 for basic similarity predicates such
as edist(A, s) < d, where A is a given attribute name, h()
is the hashing function used by the overlay, p is the peer to
send the query to (determined by the routing algorithm of
the used overlay), s is the search string, and d is a positive
integer denoting the edit distance.

Algorithm 1 Term-based similarity selection
TSel(s,A, d, p)
1: T = SimRetrieve(h(A), p, s, d);
2: R = ∅;
3: for all t ∈ T do
4: R = R∪ ./OID ; {Retrieve(h(ξ(t, 1)), p))}
5: end for

Assuming that Retrieve(key, peer) is the normal
query forwarding and search function of an overlay,
SimRetrieve extends it with similarity search function-
ality, i.e., the normal routing is not touched but each peer

receives the search string s to be used for similarity match-
ing plus the required similarity d for local evaluation. We
also assume that Retrieve can do both exact and prefix
(path) queries, for example, as in P-Grid [1]. Thus a query
for h(A) would be successful although we actually indexed
A#v as described in Section 1. This is just a shortcut to
exploit existing overlay functionality and to be more effi-
cient in query processing. For systems not offering prefix
search, triples (oid,Ai, vi) would be indexed with Ai as
the key. However, in the following we implicitly assume
that prefix search is supported by Retrieve and thus also
by SimRetrieve, without constraining the general appli-
cability of the algorithms. As we are dealing not only with
triples, but also with tuples, ./OID uses the OID to retrieve
all parts of a tuple and reconstruct it (this is equivalent to
Retrieve(key(ξ(t, 1)), p)), where ξ(t, i) simply means to
take the ith field of a tuple t, which in our storage model is
the OID for i = 1). The result of this operation is then col-
lected in R. If we would only work with triples, e.g., RDF,
this step would not be necessary.

The q-gram based variant of similarity selection is shown
in Algorithm 2.

Algorithm 2 Q-gram-based similarity selection:
QSel(s,A, d, p)
1: determine d + 1 q-grams Q from s;
2: R = ∅;
3: for all q ∈ Q do
4: T = SimRetrieve(h(A#q), p, s, d);
5: for all t ∈ T do
6: R = R∪ ./OID {Retrieve(h(ξ(t, 1)), p))};
7: end for
8: end for

The main difference to the term-based variant is that
SimRetrieve is called in a loop, once for each q-gram.
Then, we again reconstruct the tuples (line 6) by querying
for all found OIDs. Algorithm 2 is actually a revised ver-
sion of the algorithm suggested in [9]. The same paper also
proposes some improvements differing in the application of
concrete filtering steps and the amount of state which needs
to maintained in the query processing. This improved vari-
ant only differs slightly from Algorithm 2:

DelSel: Instead of gathering temporary results in line 4,
peers responsible for q-grams delegate the query to peers
responsible for corresponding OIDs, and those reply to the
initiating peer.

The impact of this variant depends on the current net-
work state and data distribution, and is covered by our cost
model which we present in Section 5.

4.2 Similarity Join

A similarity join is one of the most important similarity
operators as it is a powerful tool to overcome heterogeneity

at the schema level, which allows the system to deal with
semantic inconsistencies, i.e., supports schema integration,
and at the data level to address inconsistencies or inaccura-
cies in the data to be processed. The following discussions
are based on the definition of similarity string joins given
in [5]: Given two input sets of tuples r and s with schemas
r̂ : (X1 . . . Xk) and ŝ : (Y1 . . . Yl) a similarity join pro-
duces the cross product of all tuples and returns those tuples
t with schema t̂ := (X1 . . . XkY1 . . . Yl) for which a simi-
larity predicate p : edist(Xi, Yj) < c, i ≤ k ∧ j ≤ l ∧ c is
constant, is true.

Such joins are also conceivable only on schema level,
but we expect joins comprising both levels to occur much
more frequently. This corresponds to similarity predicates
like edist(Â, B̂) < c1 ∧ edist(A,B) < c2 (where Â de-
notes the attribute’s name, rather than its content A). In the
following we discuss similarity joins on the instance level
as the same algorithms can be applied on the schema level
and a combination of the two levels then is straight-forward.
Figure 1 shows part of an operator plan we have to handle
for a similarity join on instance level.

./edist(A,B)<d

σBσA

Figure 1. Join part of an operator plan
To process such a join, three basic approaches exist:

1. Process σA and σB separately and evaluate the join
on the data gathered locally. The disadvantage of this
strategy is that a lot of data may be transferred unnec-
essarily which will not contribute to the result.

2. Process σA, i.e., materialize data for σA (w.l.o.g. we
expect the left side to be materialized) and apply a
nested loop approach for querying similar data from
the right side.

3. Include both selections into the join processing: a peer
responsible for object(s) from the left side delegates
the query to peer(s) responsible for the right side, sim-
ilar to the standard approach of mutant query plans
[12].

Term-based processing implies to gather all data needed
at the query initiator and process everything locally. This
corresponds to the first variant above and involves the ex-
ecution of two (similarity) selections, which again can be
varied in the actual way of processing.

Assuming that the left input set is materialized com-
pletely, we can use the approach of processing string sim-
ilarity based on q-grams in order to find matching candi-
date tuples from the right side, before completely fetching
all of the corresponding strings (variant 2 above). An intu-
itive implementation is based on a (block) nested loop ac-
cess, which means that each materialized tuple from the left

side is used as input for a corresponding similarity selection
on the right side (not single tuples, but actually block(s) of
them, respectively). Algorithm 3 illustrates this approach.

Algorithm 3 Nested Loop Similarity join:
NLJoin(A,B, d, p)
1: L = Retrieve(h(A), p);
2: R = ∅;
3: for all t ∈ L do
4: R = R ∪ {./ (t, t′) : t′ ∈ QSel(ξ(t, A), B, d, p))};
5: end for

To get a more complete view, we also included the left-
side selection (here exemplarily by calling Retrieve in
line 1), though this is a separate operator. The actual join tu-
ples are built in line 4: Each tuple from the left side is joined
with all similar tuples from the right side (located by call-
ing QSel) by issuing ./. The final result is collected in R.
The somehow “centralized” character of this method allows
for minimizing the repeated querying of duplicate strings
and q-grams. This can be achieved by merging the single
queries into multiple blocks (or only one single block). This
eliminates the disadvantage of variant 1, but still puts the
join processing load on a single node.

An interesting alternative for distributed environments
as P2P systems is to include both materializing opera-
tions into the join operator, rather than only the left one
(variant 3 above). In this case, peers responsible for
parts of the left side delegate directly to right side peers:
DelJoin(Retrieve(key(A), p), p, B, d). DelJoin calls
Retrieve as introduced before, but responsible peers do not
return results directly. Rather, they forward similarity selec-
tions to the peers responsible for the right side. These peers
reply to the peer referenced by the second parameter p (the
first p only applies to Retrieve), if any tuples are actually
joined according to edist(A,B) < d. This variant may be
extended to a block-based processing at each involved peer,
similar to Algorithm 3. The advantage of this method is,
that we do not include any waiting states in the processing.
The disadvantage is that less opportunities exist to elimi-
nate repeated querying of identical strings and q-grams, as
outlined for Algorithm 3.

4.3 Ranking Operators

In large-scale environments, like, for example, Google,
where only best-effort solutions are applicable, ranking
queries are a necessary query type. As an example, we dis-
cuss top-N similarity queries. Top-N queries are always
based on a certain ranking function. We describe the imple-
mentation of a nearest neighbor ranking (NN), though other
rankings are supported, but rather unsuitable for string pro-
cessing.

For the term-based variant we simply query for the at-
tributes needed and determine the top-N strings locally at

the initiating peer. The q-gram-based version relies on the
predetermination of an interval to query. This interval is
determined such, that it potentially comprises all N needed
tuples. If not, this interval is successively extended until at
least N objects are available locally. Algorithm 4 illustrates
the method.

Algorithm 4 Top-N Query: TopN(s,A, N, p)
1: c = |{d ∈ δ(p) : h(d) ⊇ h(A)}|;
2: {determine the size r of the local range of A;}
3: range = N/ c

r
= N · r

c
;

4: d = DetIntv(range, s, 0);
5: R = ∅;
6: repeat
7: R = R ∪ QSel(s, A, d, p);
8: range = N/

|R|
2·d = N · 2·d

|R| ;
9: d = DetIntv(range, s, d);

10: until |R| ≥ N
11: R = Limit(Sort(R, A), N);

First each peer determines the number of local data ele-
ments for attribute A. Based on this number the peer cal-
culates a data density which approximates the number of
values from A that are stored at a single peer. If the data
is distributed among peers load balanced, this density is a
good choice for determining an according interval to query
first. If we have to adapt the interval we calculate a new
data density based on values actually retrieved.

5 Cost-Based Planning

The crucial part about optimizing query plans is how to
obtain the data in the distributed case, i.e., how to access the
corresponding peers in the DHT in an optimal way without
unnecessary (re-)transmissions. If data is available locally,
cost estimation for operators is identical to the relational
case. The main possible alternatives for obtaining data are
(1) to collect all data and process operators locally and (2)
to use the indexes defined in the underlying DHT as access
structures in a way that minimizes data transmission and
query costs. In this section we discuss the problem of cost
estimation for the introduced physical operators in order to
be able to compare the different variants and enable a DHT
to choose the optimal query plan.

In a distributed environment the main cost measures are
the number of messages m and the number of hops h needed
to process queries. Low bandwidth consumption and short
query answer times may also be of interest, but are very
hard (if not impossible) to predict. Luckily, the number of
query hops usually reflects query answer times. In the fol-
lowing we provide formulas to estimate m and h for each
of the introduced operators. This builds on estimating costs
for processing a single lookup query in the overlay system.
Usually, a limit logarithmic in the number of peers N for m
and h is guaranteed. In the following we will refer to ml for

the number of messages a lookup results in, and hl for the
number of hops, respectively. We will only consider query
messages, no system messages or answers transmitted be-
tween peers directly.

We provide knowledge about string and q-gram selectiv-
ities by managing local indexes on each peer for approxi-
mating data distribution. One possibility is using tries as
in [14]. In the following we expect all needed values to be
available at each peer. In a real-world environment some of
these values will have to be approximated.

operator op mop hop

Fetch(A) ml + rA − 1 hl + rA − 1
TSel(s, A, d) mF etch(A) hF etch(A)
QSel(s, A, d) (d + 1) · ml hl

DelSel(s, A, d) (d + 1) · ml hl

TJoin(A, B, d) mLeftSel(A)+ max(hLeftSel(A),
mF etch(B) hF etch(B))

NLJoin(A, B, d) mLeftSel(A) hLeftSel(A)
+ +

cleft · mQSel(sA, B, d) hQSel(sA, B, d)
DelJoin(A, B, d) mLeftSel(A) hLeftSel(A)

+ +
cleft · mQSel(sA, B, d) hQSel(sA, B, d)

Table 1. Costs for physical operators

Table 1 summarizes the formulas for cost estimation.
The Fetch operation was not introduced separately. This
operator provides the functionality of the first step in TSel,
where all values of a single attribute are fetched. This is
processed in a sequential way: a first query is sent to one
peer responsible for a part of that attribute. This peer re-
turns matching data and forwards the query if there are other
peers which are responsible. This processing is repeated un-
til the last responsible peer is queried. We have to effort ml

messages to reach the first peer, and rA − 1 messages for-
warded to next peers, if rA represents the number of peers
responsible for attribute A and key data is clustered accord-
ing to A. Instead of fetching a whole attribute, the q-gram-
based similarity selection QSel queries for d + 1 q-grams
in parallel.

If cA represents the number of unique values in A and
sels the selectivity of the predicate edist(A, s) ≤ d, we
have to query for cA ·sels complete tuples in the final step of
both selections, resulting in cA ·sels ·ml messages. This is a
factor equal for all implementations if the tuples are materi-
alized finally. Thus, the formulas do not include these costs
for tuple materialization. Subqueries for this operation can
be processed in (quasi-)parallel, which results in hl hops.

The main impact on performance between TSel and
QSel lies in rA. A term-based selection gets the more
expensive the more peers are responsible for a part of
the queried attribute. Furthermore, performance of TSel
strongly depends on the current network state, because of
its sequential character. The last of the introduced similarity
selection operators is particularly suited for dynamic envi-
ronments, because there are no temporary answers to and no

waiting state at the initiating peer. This is at the expense of
more query messages, as several tuples will be queried mul-
tiple times for materialization (issued by different peers).

The costs for advanced operators are estimated on the
basis of the costs of similarity selections. LeftSel(A)
symbolizes any suitable (similarity) selection on attribute
A. The nested loop similarity join promises to be ef-
ficient if LeftSel(A) refers to a selection that reduces
the size cleft of the left input, e.g., a similarity selec-
tion QSel(sA, A, dA). In TJoin the right input is always
fetched completely. Another main difference should to be
found in the consumed bandwidth, as TJoin completely
fetches attribute B and NLJoin usually only a small frac-
tion. Similar to QSel and DelSel, the third join implemen-
tation DelJoin differs in the number of answer messages
and the economized waiting state at the query initiator.

6 Evaluation

We implemented our algorithms on top of the Java-based
P-Grid DHT and performed first experiments on Planet-
Lab [4]. The aim of these experiments was to evaluate band-
width consumption and number of messages as the key per-
formance characteristics. Furthermore, we give a first proof
of concept for the introduced cost model by comparing es-
timated costs to the real costs.

6.1 Experimental setup

In the experiments we used a network of approximately
400 peers each running on a dedicated physical PlanetLab
node. Each node inserted 10 strings of lengths between 8
and 45 characters, randomly chosen from a 4000 entry sam-
ple of movie titles from the IMDB database with a skewed
heavy-tail key distribution as shown in Figure 2 (log-log
scale). The figure only shows keys which were inserted
more than once and highlights a power-law like key dis-
tribution, as it is usual in DHT-based systems when work-
ing on string data. The figure provides a general view on
the actual data distribution and thus, gives directions for se-
lectivity estimation on strings (and q-grams, in particular),
which is used in the introduced cost model. With all q-
grams and replication (average replication factor: 5) each
peer was responsible for approximately 900 index entries.
The constructed P-Grid tree had a height of 8.

We implemented all of the introduced physical opera-
tors. In Section 5 we already discussed possible problems
of several processing strategies in dynamic environments.
The term-based operators can result in involving a main part
of the peers in the overlay system into the processing of a
single similarity selection. As a consequence we encounter
a huge amount of messages and heavy load, which results in
poor answer times and can bring peers to crash. Moreover,

10
0

10
1

10
2

10
3

10
1

10
2

10
3

Key

O
c
c
u
rr

e
n

c
e
s

Figure 2. Key distribution (log-log scale)

the sequential character of the strategy results in poor per-
formance in general, and processing of a query may not be
finished at all, as crashed peers can interrupt a correspond-
ing sequence of queried peers completely. We experienced
these symptoms in the real-world environment of Planet-
Lab and could not achieve useful results with the described
experimental setup. Thus, we can only provide cost esti-
mations for these operators, but these reflect the bad perfor-
mance of the approach. For the future, we plan to improve
this strategy by applying parallelized routing techniques and
extended usage of acknowledgment messages in order to
overcome the performance problems.

To evaluate other operators we used similarity queries
which affected data from all partitions of the data set. A set
of 5 randomly chosen strings was queried in distance 3 us-
ing the q-gram based similarity selections. We extended the
query mix by 5 similarity string joins. The left input of these
joins was provided by a q-gram based selection in distance
1. We set the actual join distance for tuples from the right to
3. Each peer initiated a randomly generated query mix like
this by starting a query every 5-8 minutes. All of the follow-
ing figures show the average number of messages, average
bandwidth consumption, respectively, measured per minute
at each peer.

6.2 Experimental results

Figure 3 shows the measured number and estimated
number of messages for the similarity string joins.

From time 340-380 (time 0-340 was used to bootstrap
the P-Grid overlay system) we ran the NLJoin operator
and predicted corresponding costs. From time 380-420 the
plot of estimated costs also shows the estimations for the
term-based similarity join. As explained before, we did not
achieve useful results with this operator in the described ex-
perimental setup. But, this is anticipated by the estimated
costs as well. The performance of the nested loop join be-
haves as expected and also as estimated. The small peaks
signalize materialize operations of tuples contained in the
final result. These subqueries result in several extra mes-
sages, because object IDs are spread all over the system. As
we want to determine the correct relations between costs of

340 360 380 400 420
0

10

20

30

40

50

60

Time [minutes]

M
e
s
s
a
g
e
s

query estimated

query

query reply

Figure 3. Real and estimated costs for
NLJoin (time 340-380) and TJoin (time 380-
420)

different physical implementations, rather than exact costs,
these results are fine. The plot shows that we are able to
achieve this.

420 440 460 480 500 520
0

10

20

30

40

50

60

Time [minutes]

M
e
s
s
a
g
e
s

query estimated

query

query reply

Figure 4. Real and estimated costs for QSel
(time 420-450), DelSel (time 450-480) and
TSel (time 480-510)

In Figure 4 we present analog results for similarity se-
lections. Time 420-450 corresponds to the execution of
QSel, time 450-480 to DelSel, and time 480-520 to the
term-based selection TSel (again, only predicted costs are
plotted). The estimated costs are constant, because we only
involve the processing of actual queries into the calculation
(no query replies). This is reflected by the real costs, small
fluctuations are due to the following materialize operations.
Again, the burst in the plot of estimated costs reflects the
bad performance of the term-based similarity selection. As
estimated, the costs of QSel and DelSel are almost identi-
cal. Similar to the experiments on joins, the plots show the
correctness of our cost model and that the bad performance
of the implemented term-based selection is predictable a-
priori.

Finally, we illustrate the bandwidth consumption of both
query types in Figures 5 and 6. These figures show that,
despite the storage overhead we experience, the consumed
bandwidth is within an acceptable range. The tested se-
lection types in Figure 6 show little difference between
bandwidth used for queries and bandwidth used for query

340 350 360 370 380
0

50

100

150

200

250

Time [minutes]

B
a
n
d
w

id
th

 [
B

p
s
]

query

query reply

Figure 5. Bandwidth consumption for similar-
ity join

replies. The plots also show the higher bandwidth consump-
tion of join queries in contrast to selections. This conforms
with our expectations, because the join operators combine
selection operators with additional queries.

420 430 440 450 460 470 480
80

90

100

110

120

130

140

150

160

Time [minutes]

B
a
n
d
w

id
th

 [
B

p
s
]

query

query reply

Figure 6. Bandwidth consumption for similar-
ity selections

As a consequence, we experience the q-gram based al-
gorithms as an importing extension to known overlay sys-
tems in order to process similarity queries efficiently. In
contrast to traditional implementations this approach scales
up to high numbers of peers and is applicable in dynamic
environments with skewed data distributions. The costs of
these operators can be estimated in an easy fashion, allow-
ing optimizers to speed up processing and lower network
load. Such estimations are based on small information, but
are quite accurate, which is reflected by the correct relations
of estimated costs for analog operators implemented differ-
ently.

7 Related Work

There is a number of related approaches aiming to sup-
port complex structured queries on DHT-based data man-
agement solutions. Strategies for implementing classical
relational algebra operators and particularly joins on top of
a CAN-based overlay have been developed as part of the
PIER project [7, 8]. Query operators such as equi-selection,

range selection and hash joins, and their implementation,
using modified Chord search algorithms are presented in
[16]. Extensions of this work address range queries and
load balancing as well as replication using a so-called multi-
rotation hashing.

The approach presented in [3] exploits a similar data or-
ganization for RDF data as in our work, but does not address
similarity-based queries. Several other approaches consid-
ering range queries already as similarity queries exist. How-
ever, we consider here only systems that support already a
more complex notion of similarity, such as top-N queries
and similarity on textual data.

Compared to all above approaches, our approach sup-
ports a larger set of query types on structured data, i.e., top-
N queries with different ranking functions, similarity joins
on schema and instance level as well as other advanced sim-
ilarity queries, and allows us to combine these with standard
relational algebra operators.

LSH forest [2] uses a locality-sensitive hashing (LSH)
function to index high-dimensional data for answering (ap-
proximate) similarity queries. The queries return the m
points in the data set closest to the query according to a
distance function. The system is based on P-Grid and stores
documents in the overlay network using the LSH function.
Therefore, similarity queries can be performed by first rout-
ing to the peer closest to the initial query and then returning
documents similar to the query by using existing neighbor
links in P-Grid. The paper does not provide an evaluation
of required messages or bandwidth as provided by us.

EZSearch [15] is based on the Zigzag hierarchy which
clusters semantically close nodes in a multi-layer hierarchy
and supports range queries and top-N queries. The evalu-
ation of the system by a simulation shows that the system
works well for both query types even for Zipf-like query
distributions, but it remains unclear how the system deals
with skewed data distributions, which require sophisticated
load balancing mechanisms. Additionally, no experimental
evaluation exists.

8 Conclusions

In this work, we presented similarity queries in DHTs
as a key functionality for evolving structured overlays into
a viable infrastructure for large-scale public data man-
agement and information retrieval. Similarity queries on
schema and instance levels are a basic requirement to over-
come semantic inconsistencies and poor data quality, and
we specifically discussed similarity queries, joins and top-
N queries as the major relevant operators. Our approach
elegantly combines the efficiency of structured overlays
with the flexibility of similarity query processing. The cost
model included in our approach allows the system to predict
the costs of the available physical operators dynamically

to choose the optimal one for the current network condi-
tions. We discussed various physical operator implementa-
tions and demonstrated the efficiency of our approach with
experimental results from a large-scale PlanetLab deploy-
ment.

References

[1] K. Aberer. P-Grid: A self-organizing access structure for
P2P information systems. In CoopIS, pages 179–194, 2001.

[2] M. Bawa, T. Condie, and P. Ganesan. LSH forest: self-
tuning indexes for similarity search. In WWW, pages 651–
660, 2005.

[3] M. Cai and M. Frank. RDFPeers: a scalable distributed RDF
repository based on a structured peer-to-peer network. In
WWW, pages 650–657, 2004.

[4] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Over-
lay Testbed for Broad-Coverage Services. ACM SIGCOMM
Computer Communication Review, 33(3):3–12, 2003.

[5] W. W. Cohen. Data integration using similarity joins and
a word-based information representation language. ACM
Trans. Inf. Syst., 18(3):288–321, 2000.

[6] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB, pages 491–
500, 2001.

[7] M. Harren, J. Hellerstein, R. Huebsch, B. Thau Loo,
S. Shenker, and I. Stoica. Complex Queries in DHT-based
Peer-to-Peer Networks. In IPTPS, pages 242–259, 2002.

[8] R. Huebsch, J. M. Hellerstein, N. Lanham, B. Thau Loo,
S. Shenker, and I. Stoica. Querying the Internet with PIER.
In VLDB, pages 321–332, 2003.

[9] M. Karnstedt, K.-U. Sattler, M. Hauswirth, and R. Schmidt.
Similarity Queries on Structured Data in Structured Over-
lays. In Int. Workshop on Networking Meets Databases
(NetDB’06) icw ICDE, pages 32–37, 2006.

[10] V. Levenshtein. Binary codes of correcting deletions, inser-
tions, and reversals. Soviet Physics Doklady, 10(8):707–710,
1966.

[11] G. Navarro and R. A. Baeza-Yates. A Practical q -Gram
Index for Text Retrieval Allowing Errors. CLEI Electron. J.,
1(2), 1998.

[12] V. Papadimos and D. Maier. Mutant Query Plans. Informa-
tion and Software Technology, 44(4):197–206, April 2002.

[13] E. Prud’hommeaux and A. Seaborne. SPARQL Query Lan-
guage for RDF. W3C Candidate Recommendation 6 April
2006. http://www.w3.org/TR/rdf-sparql-query/.

[14] E. Schallehn, I. Geist, and K. Sattler. Supporting Similarity
Operations based on Approximate String Matching on the
Web. In CoopIS, pages 227–244, 2004.

[15] D. A. Tran. Hierarchical Semantic Overlay Approach to P2P
Similarity Search. In USENIX Technical Conference, pages
355–358, 2005.

[16] P. Triantafillou and T. Pitoura. Towards a Unifying Frame-
work for Complex Query Processing over Structured Peer-
to-Peer Data Networks. In DBISP2P’04 icw SIGMOD,
pages 169–183, 2004.

