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 22 

ABSTRACT 23 

Anaerobic digestion (AD) is an attractive wastewater treatment technology, leading to the 24 

generation of recoverable biofuel (methane). Most industrial AD applications, carry excessive 25 

heating costs however, as AD reactors are commonly operated at mesophilic temperatures 26 

while handling waste streams discharged at ambient or cold temperatures. Consequently, 27 

low-temperature AD represents a cost effective strategy for wastewater treatment. The 28 

comparative investigation of  key microbial groups underpinning laboratory-scale AD 29 

bioreactors operated at 37°C, 15°C and 7°C was carried out. Community structure was 30 

monitored using 16S rRNA clone libraries, while abundance of the most prominent 31 

methanogens was investigated using qPCR. In addition, metaproteomics was employed to 32 

access the microbial functions carried out in situ. While δ-Proteobacteria were prevalent at 33 

37°C, their abundance decreased dramatically at lower temperatures with inverse trends 34 

observed for Bacteroidetes and Firmicutes. Methanobacteriales and Methanosaeta were 35 

predominant at all temperatures investigated while Methanomicrobiales abundance increased 36 

at 15°C compared to 37°C and 7°C. Changes in operating temperature resulted in the 37 

differential expression of proteins involved in methanogenesis, which was found to occur in 38 

all bioreactors, as corroborated by bioreactors’ performance. This study demonstrated the 39 

value of employing a polyphasic approach to address microbial community dynamics and 40 

highlighted the functional redundancy of AD microbiomes. 41 

 42 

INTRODUCTION 43 

Employing anaerobic digestion technology in a low-temperature context holds economic 44 

incentives over traditional mesophilic (>20°C) and thermophilic (>45°C) approaches through 45 

the reduced operation costs associated with the treatment of dilute wastewaters (Connaughton 46 

et al., 2006; Enright et al., 2007; McKeown et al., 2009). Low temperature anaerobic 47 

digestion has been successfully applied to treat a vast range of wastewater types such as 48 

phenolic (Scully et al 2006), chlorinated aliphatic (Siggins et al., 2011a), brewery 49 

(Connaughton et al., 2006), pharmaceutical (Enright et al., 2007) and glucose (Akila and 50 

Chandra, 2007) -based wastewaters. Evidence of comparable treatment efficiencies to 51 

mesophilic setups has also been recorded (McHugh et al., 2004, Collins et al., 2005; 52 

Trzcinski and Stuckey, 2010), as well as the successful treatment of complex wastewater 53 

(Alvarez et al., 2008 and Gao et al., 2011). Despite successful applications, there is a lack of 54 
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fundamental knowledge relating to the mechanisms underpinning AD. The design of 55 

bioreactors is generally based on rule of thumb, and bioreactor over-dimensioning; process 56 

instability and failures are still common. AD is operated based on relationships between 57 

bioreactor performance and empirical operating parameters, but the differences between 58 

successful and unsuccessful bioreactors are poorly understood. The future full-scale 59 

implementation of AD, and particularly the development of promising new applications, such 60 

as low-temperature AD, is severely impaired by this knowledge gap. Methanogenic 61 

populations have been the focus of many low-temperature AD studies due to their crucial role 62 

in biogas formation and biofilm integrity (Liu et al., 2002). Much of this work has focused on 63 

uncovering temporal methanogenic community dynamics under various operating 64 

temperatures primarily using nucleic acid based methods (Syutsubo et al., 2008; O’Reilly et 65 

al., 2009; McKeown et al., 2009). Although important insights have been gathered (e.g. 66 

Methanocorpusculum prevalence during AD operation at 15°C; McKeown et al., 2009), 67 

minimal information relating methanogenic presence to functional significance (metabolic 68 

pathways employed, physiological responses etc.) has been documented (Abram et al., 2011; 69 

Siggins et al., 2012). Metaproteomics, which can be defined as the identification of proteins 70 

expressed at a given time within an ecosystem, is an essential component of such a function-71 

based approach. Linking microbial community structure (DNA-based) to function (protein-72 

based) could provide a greater level of understanding of the AD process occurring at low-73 

temperature. To this end, we employed quantitative real-time PCR, clone libraries and 74 

metaproteomics to investigate microbial community composition and function underpinning 75 

granular sludge in bioreactor trials operated at 37°C, 15°C and 7°C. 76 

 77 

MATERIALS AND METHODS 78 

Source of biomass. Anaerobic granular sludge samples were obtained from three laboratory-79 

scale expanded granular sludge bed (EGSB) bioreactors operated at 37°C (R1), 15°C (R2) 80 

and 7°C (R3; Siggins et al., 2011a,b). Each bioreactor had a working volume of 3.5 L. R1 81 

and R2 were operated for 631 days, while R3 was operated for 609 days including 438 days 82 

at 7°C after acclimation from 15°C (Siggins et al., 2011a,b). The bioreactors treated a 83 

synthetic volatile fatty acid (VFA) wastewater consisting of acetic acid, propionic acid, 84 

butyric acid and ethanol with a chemical oxygen demand (COD) ratio of 1:1:1:1 buffered 85 

with NaHCO3. At the time of sampling, the bioreactors’ influent contained a total of 3 g COD 86 

L-1 for R1 and R2 and 0.75 g COD L-1 for R3. Initially, R3 organic loading rate was of 3 g 87 

COD L-1 (as that of R1 and R2) but this had to be decreased after 231 days of operation, due 88 
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to VFA accumulation in the bioreactor (Siggins et al., 2011b). A hydraulic retention time of 89 

24 h was applied to all bioreactors, which were   originally seeded with anaerobic granular 90 

sludge from a full-scale (1500m3) internal circulation anaerobic digester, operated at 37°C at 91 

the Carbery Milk Products plant (Ballineen, Co. Cork, Ireland). Biomass was sampled for this 92 

study at the end of the trial, at day 631 for R1 and R2 and at day 609 for R3. At the time of 93 

sampling COD removal was greater than 80% with a biogas production containing >70% 94 

CH4 in all bioreactors (Siggins et al., 2011a,b). 95 

 96 

DNA extraction. Total genomic DNA was extracted from 0.5 g of granular sludge biomass 97 

at the conclusion of the trial using an automated nucleic acid extractor (Magtration 12GC, 98 

PSS Co., Chiba, Japan). Prior to extraction, granular biomass was finely crushed under liquid 99 

nitrogen using a mortar and pestle, and resuspended in sterile double distilled water to a ratio 100 

of 1:4 (vol/vol). A 100 μl aliquot of the biomass suspension was loaded per extraction. Each 101 

extraction was performed in duplicate and the extracted DNA was eluted in Tris-HCl buffer 102 

(pH 8.0) and stored at -20 °C until use. 103 

 104 

Clone library analysis of bacterial 16S rRNA gene. Partial bacterial 16S rRNA gene 105 

sequences were amplified using forward primer 27F (5’-AGAGTTTGATCCTGGCTCAG - 106 

3’; Delong, 1992) and reverse primer 1392R (5’ACGGGCGGGGRC -3’; Lane et al., 1985). 107 

The PCR conditions and component concentrations were identical to those outlined by 108 

Siggins et al. (2011a). Subsequent construction of clone libraries (TOPO®XL), amplified 109 

ribosomal DNA restriction analysis (ARDRA) and plasmid sequencing were performed as 110 

described by Collins et al. (2003). Any vector contamination was removed by screening 111 

sequence data using National Center for Biotechnology Information (NCBI) Vecscreen 112 

software. The resulting sequence data were compared to nucleotide databases using basic 113 

local alignment NCBI search tool (BLASTn). Sequences were aligned using MacClade 4.0 114 

software (Sinauer Assoc) with nearest relatives from the BLASTn database and selected 115 

sequences downloaded from the Ribosomal Database Project (RDP). The resulting partial 116 

16S rRNA gene sequences were deposited in the Genbank database under the accession 117 

numbers (R1) HQ655412-HQ655420; (R2) HQ655421-HQ655434; (R3) HQ655435-118 

HQ655457. 119 

 120 

qPCR analysis of archaeal 16S rRNA gene. Quantitative real-time PCR was performed on 121 

technical replicate samples using a LightCycler 480 (Roche, Mannheim, Germany). Four-122 
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methanogenic 16S rRNA gene primer and probe sets were used, specific for two 123 

hydrogenotrophic orders, Methanomicrobiales (857F: 5’-CGWAGGGAAGCTGTTAAGT-124 

3’;  1059R: 5’TACCGTCGTCCACTCCTT-3’; 929P: -5’AGCACCACAACGCGTGGA-3’; 125 

Yu et al., 2005) and Methanobacteriales (282F: 5’-ATCGRTACGGGTTGTGGG-3'; 832R 126 

:5’-CACCTAACGCRCATHGTTTAC-3'; 749P: 5’-127 

TYCGACAGTGAGGRACGAAAGCTG-3';Yu et al., 2005) and two acetoclastic families, 128 

Methanosaetaceae (702F: 5’-GAAACCGYGATAAGGGGA-3'; 862R :5’-129 

TAGCGARCATCGTTTACG-3'; 753P: 5’-TTAGCAAGGGCCGGGCAA-3';Yu et al., 130 

2005) and Methanosarcinaceae (380F: 5’-TAATCCTYGARGGACCACCA-3'; 828R :5’-131 

CCTACGGCACCRACMAC-3'; 492P: 5’-ACGGCAAGGGACGAAACGTAGG-3';Yu et 132 

al., 2005) accounting for most methanogens present in anaerobic digesters (Yu et al., 2005; 133 

Lee et al., 2009). Experimental procedures, including reaction mixtures, LightCycler 134 

conditions and standard curve preparation was undertaken as previously described (Lee et al., 135 

2009; Siggins et al., 2011a). The volume-based concentrations (gene copies μl-1) were 136 

converted into the biomass-based concentrations (gene copies gVSS μl-1). VSS was 137 

determined gravimetrically according to Standard Methods American Public Health 138 

Association. 139 

 140 

Metaproteomics. Proteins were extracted from 50 ml granular sludge samples and 141 

subsequently separated by 2-dimensional gel electrophoresis (2-DGE) using a sonication 142 

protocol as described previously (Abram et al., 2011). Briefly, the first dimension consisted 143 

of isoelectric focusing (IEF) using 7 cm IPG strips with linear pH gradients (pH 4 to 7; 144 

Amersham). The second dimension polyacrylamide (12% w/v) gels were run in pairs along 145 

with molecular weight markers with a range of 10-225 kDa (Broad Range Protein Molecular 146 

Markers, Promega). Gel images were captured by scanning with an Epson Perfection V350 147 

photo scanner at a resolution of 800 dpi. Duplicate independent protein extractions and four 148 

technical replicates were analyzed for each bioreactor. Gel images were processed using 149 

PDQuest-Advanced software, version 8.0.1 (BioRad). Spot counts were obtained using the 150 

spot detection wizard enabling the Gaussian model option as recommended by the 151 

manufacturer. Protein expression ratios were determined for each bioreactor and only ratios 152 

greater than two-fold were considered significant. Proteins of interest were excised from the 153 

gels prior to analysis using nanoflow liquid chromatography-electrospray ionization tandem 154 

mass spectrometry (nLC-ESI-MS/MS) on an ABSciex QStar XL instrument. MS/MS data for 155 

+1 to +5 charged precursor ions which exceeded 150 cps was processed using the Paragon™ 156 
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and Pro group™ search algorithms (Shilov et al., 2007; Xiao et al., 2010) within ProteinPilot 157 

4.0 software (ABSciex, Foster City, CA) against NCBInr database with no species restriction. 158 

Only proteins with ≥ 2 peptides identified at > 99% confidence with a competitor error 159 

margin (Prot Score) of 2.00 were considered. 160 

 161 

RESULTS AND DISCUSSION 162 

Bacteroidetes and Methanosaetaceae are prevalent at low temperature in AD systems.  163 

The bacterial community was found to be dominated by δ-Proteobacteria at 37°C, 164 

accounting for 61% of the clones identified (Fig. 1). Their relative abundance decreased in 165 

low-temperature biomass, representing 19% and 13% of the clone libraries at 15°C and 7°C, 166 

respectively. Interestingly, Bacteroidetes, only accounting for 10% of the bacterial clones at 167 

37°C increased to 16% and 47% at 15°C and 7°C, respectively. In addition, while the relative 168 

abundance of Chloroflexi decreased at low temperature, Firmicutes were found to be more 169 

prevalent at 15°C and 7°C when compared to 37°C (Fig. 1). The importance of 170 

Methanosaetaceae in AD systems operated at low temperature was highlighted by qPCR 171 

(Fig. 2). This correlated with previous observations reporting that Methanosaeta-like clones 172 

accounted for 29%, 75% and 93% at 37°C, 15°C and 7°C, respectively (Siggins et al., 173 

2011a,b). Strikingly, Methanomicrobiales levels were found to increase at 15°C compared to 174 

37°C and 7°C, likely indicating an important role for these hydrogenotrophic methanogens at 175 

this temperature (Fig. 2). This was also in agreement with previous work (O’Reilly et al., 176 

2010; Abram et al., 2011; Siggins et al., 2011a,b). Particularly, an increase from 2% to 19% 177 

of Methanomicrobiales-like clones at 15°C, compared to 37°C was previously observed 178 

(Siggins et al., 2011a), while no clones assigned to this taxonomic order were detected at 7°C 179 

(Siggins et al., 2011b). Methanobacteriales were found to be abundant in all bioreactors and 180 

were detected at the highest level at 37°C (Fig. 2), in accordance with previous clone libraries 181 

results indicating the presence of 30%, 2% and 7% of Methanobacteriales-like clones at 182 

37°C, 15°C and 7°C, respectively (Siggins et al., 2011a,b). Finally, Methanosarcinaceae 183 

were detected below the quantification limit of the qPCR assay (106 copies gVSS-1) in all 184 

bioreactors. Taken together, the bioreactor operating temperature was found to have a 185 

profound effect on microbial community composition particularly among bacteria and 186 

highlighted an important role for Bacteroidetes and Methanosaetaceae at low temperature 187 

and for δ-Proteobacteria, Methanosaetaceae and Methanobacteriales at 37°C in AD systems. 188 

 189 
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Changes in operating temperature lead to the differential expression of enzymes from 190 

methanogenesis. Sixty protein spots were excised from 2-DGE gels (267 ± 26.4 spots 191 

detected; n=24) and analyzed by nLC-ESI-MS/MS, which led to the identification of 41 192 

distinct proteins (Table 1) present in each sample. Overall, 36 proteins (88%) were assigned 193 

to methanogenic archaea, with 29 proteins from Methanosaeataceae, 1 from 194 

Methanosarcinaceae, 4 from Methanobacteriales and 2 from Methanomicrobiales. Amongst 195 

these, 16 proteins were involved in methanogenesis (from CO2 and acetate) including 7 196 

proteins displaying differential expression in a temperature dependent manner (Table 1). 197 

Remarkably, a protein involved in methanogenesis from CO2, (tetrahydromethanopterin S-198 

methyltransferase subunit H; Table 1), which was found to be expressed at higher level at 199 

37°C, was assigned to Methanoseata concilii. Until recently, Methanoseata were considered 200 

to exclusively produce methane from acetate. Rotaru et al., (2014), however, demonstrated 201 

that these methanogens were able to reduce CO2 to methane using metatranscriptomics and 202 

radiotracer experiments. The detection of this protein (tetrahydromethanopterin S-203 

methyltransferase) in the three bioreactors investigated in the present study indicates that M. 204 

concilii was actively producing methane from both CO2 and acetate (see corresponding 205 

proteins in Table 1) at the time of sampling. Interestingly, a subunit of methyl-coenzyme M 206 

reductase, catalyzing the last step of methanogenesis, assigned to Methanoculleus marisnigri 207 

(Methanomicrobiales) showed reduced levels of expression as the operating temperature 208 

decreased with an expression ratio of 18.6 fold decrease at 7°C compared to 37°C and 11.7 209 

fold decrease between 15°C and 7°C (Table 1). The same enzyme assigned to 210 

Methanospirullum hungatei was found to have an increased expression at 15°C (Table 1), 211 

somewhat correlating with the increased level of Methanomicrobiales detected by qPCR at 212 

this temperature (Fig.2). Another subunit of methyl-coenzyme M reductase assigned to 213 

Methanothermobacter was found to show a reduced level of expression at 15°C, when 214 

compared to 37°C and 7°C (Table 1). This was also supported by the decrease in abundance 215 

of Methanobacteriales reported at 15°C by qPCR (Fig. 2). Strikingly, 2 homologues of 216 

acetyl-coA synthetase, converting acetate to acetyl-CoA, assigned to Methanoseata concilii 217 

were found to be differentially regulated at different temperatures. While one homologue was 218 

expressed at higher level at low temperatures compared to 37°C (expression ratios of -2.6 for 219 

37/15 and -4.5 for 37/7), the other was expressed in an opposite fashion displaying a higher 220 

level of expression at 37°C when compared to 15°C and 7°C (expression ratios of 15.8 for 221 

37/15 and 8.5 for 37/7; Table 1). In addition, these two enzymes were expressed at similar 222 

level at 15°C and 7°C (Table 1), suggesting a differential regulation at 37°C. Ten proteins 223 
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involved in energy and metabolism were found to be expressed in all bioreactors, amongst 224 

which 2 proteins were differentially expressed as a function of operating temperature (Table 225 

1). Active pathways included glycolysis/gluconeogenesis possibly using acetate from the 226 

bioreactors’ influent as a precursor. Enzymes involved in the pentose phosphate pathway, 227 

TCA cycle and amino acid biosynthesis, such as leucine, which can be derived from pyruvate 228 

metabolism (a glycolytic intermediate) were also detected (Table 1). Of particular note was 229 

the differential expression of the bifunctional enzyme Fae/Hps, which abundance increased as 230 

the operating temperature decreased (expression ratios of -3.5 for 37/15 and -2.9 for 15/7; 231 

Table 1). This enzyme contains 2 domains: i) one homologous to formaldehyde-activating 232 

enzyme (Fae) and ii) the other to 3-hexulose-6-phosphate synthase (Hps; Grochowski et al., 233 

2005), also separately detected in all bioreactors at similar levels (Table 1). Interestingly, the 234 

two reactions catalyzed by Fae/Hps involve formaldehyde as a substrate. The first enzyme 235 

converts formaldehyde and tetrahydromethanopterin to 5,10-methylene-236 

tetrahydromethanopterin, an intermediate of methanogenesis from CO2, while the second 237 

enzyme combines formaldehyde with D-ribulose-5-phosphate (an intermediate from the 238 

pentose phosphate pathway) to produce hexulose-6-phosphate, which can be further 239 

converted to D-fructose-6-phosphate, an glycolytic intermediate. The production of 240 

formaldehyde could result from the anaerobic oxidation of CH4 to methanol (Caldwell et al., 241 

2008). An increased expression of Fae/Hps is likely to be related to an increase in 242 

formaldehyde production, which could possibly result from an increase in anaerobic CH4 243 

oxidation. This, in turn, is supported by the increased solubility of CH4 with decreasing 244 

temperatures (Servio and Englezos, 2002), which would facilitate microbial access for 245 

methane oxidation. This could potentially limit the success of anaerobic digestion at 246 

temperature as low as 7°C, where CH4 production could be partially diverted towards 247 

carbohydrate metabolism via the process of anaerobic CH4 oxidation. Finally 8 proteins 248 

detected in all bioreactors were found to be involved in cell maintenance processes including 249 

4 displaying chaperone activities indicating an important role for these enzymes in AD 250 

systems. Of particular note was the differential expression of GroEL assigned to δ-251 

Proteobacteria, detected at higher levels at 37°C compared to 15°C and 7°C (expression 252 

ratios of 2.5 for 37/15 and 3.9 for 37/7; Table 1), which correlated with the marked increased 253 

abundance of δ-Proteobacteria-like clones observed at this temperature (Fig. 1). Similarly a 254 

protein of unknown function assigned to this taxonomic class was found to be expressed at 255 

higher level at 37°C with expression ratios of 2.5 for 37/15 and 2.2 for 37/7. Taken together 256 
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the phylogenetic analyses (using qPCR and clone libraries) are largely supporting 257 

metaproteomic assignment. 258 

 259 

Overall this study has highlighted the importance of Methanosaetaceae to the AD process 260 

with the assignment to this methanogenic group of 29 proteins out of the 41 identified. 261 

Importantly, while methanogenesis was found to occur at all temperatures investigated, 262 

differential expression of methanogenic enzymes was observed at 37°C, 15°C and 7°C. 263 

Interestingly, this did not indicate the regulation of specific steps of the methanogenesis 264 

pathway but seemed to correlate with changes in microbial community composition. For 265 

example, proteins involved in the last step of methanogenesis that were assigned to 266 

Methanomicrobiales, were found to be expressed at higher levels at 15°C when compared to 267 

37°C, while those assigned to Methanobacteriales followed the opposite trend. This was 268 

supported by phylogenetic analyses, which correspondingly reported similar observations 269 

using both qPCR and clone librairies (Siggins et al., 2011a,b). Taken together this study has 270 

highlighted a functional redundancy within the AD microbiome where different microbial 271 

groups carry out the same functions under different operating conditions. 272 
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Table 1: Identification and putative function of proteins excised from 2-DGE gels from 359 

anaerobic granular biomass of reactors operated at 37°C, 15°C and 7°C. 360 
Proteina Accession No % 

Covb 
Protein Assignment Phylogenetic 

classification 
Ratioc 

37/15    37/7     15/7 
Predicted 
Function 

Cellular information processing 
PIN domain-
containing 
protein 

gi|330507600 9.1 Methanosaeta concilii Methanosaetaceae -2.6 1.3 3.1 Ribonuclease 
activity 

 
Chaperone & cell maintenance 
Chaperonin 
GroEL 

gi|253698887 7.3 Geobacter sp. δ- proteobacteria 2.5 3.9 1.6 Protein folding 

 gi|197116649 7.3 Geobacter bemidjiensis      
 gi|189425979 7.3 Geobacter lovleyi      
Chaperone 
DnaK 

gi|330507176 4.2 Methanosaeta concilii Methanosaetaceae 4.5 2.4 -3.4 Protein folding 

LPXTG-motif 
cell wall 
anchor domain 
protein 

gi|395612836  13.9 Streptococcus pneumoniae Firmicutes 1.9 -1.3 -1.5 Cell wall 
maintenance 

 gi|395574460 13.9 Streptococcus pneumoniae      
Proteasome α-
subunit 

gi|73669981 12.6 Methanosarcina barkeri  Methanosarcinaceae -2.5 -1.2 -2.1 Cell regulation 

 gi|52550031 5.7 Uncultured archaeon      
Proteasome α-
subunit 

gi|386002841 13.2 Methanosaeta 
harundinacea 

Methanosaetaceae 1.8 1.6 -1.2 Cell regulation 

 gi|116754662 10 Methanosaeta thermophila      
S-layer 
duplication 
domain 
containing 
protein 

gi|330507267 22.8 Methanosaeta concilii Methanosaetaceae 1.2 -1.2 -1.6 Cell envelope 
maintenance 

Thermosome 
α-subunit 

gi|330506447 52.4 Methanosaeta concilii Methanosaetaceae -3.3 -5.0 -1.2 Molecular 
chaperone 

Thermosome 
δ-subunit 

gi|330507490 37.1 Methanosaeta concilii Methanosaetaceae 1.0 1.5 1.6 Molecular 
chaperone 

         
Energy & 
metabolis
m 

        

3-hexulose-6-
phosphate 
synthase 

gi|330506676 15.7 Methanosaeta concilii Methanosaetaceae -1.6 1.2 -1.5 Pentose 
phosphate 
pathway 

3-
isopropylmalat
e dehydratase 
large subunit 

gi|330507399 7.7 Methanosaeta concilii Methanosaetaceae 1.2 1.8 1.4 Leucine 
biosynthesis 

Aspartate-
semialdehyde 
dehydrogenase 

gi|330507317 7.9 Methanosaeta concilii Methanosaetaceae 2.3 2.1 1.6 Amino acid 
biosynthesis  

S-
adenosylmethi
onine 
synthetase 

gi|330508591 14.9 Methanosaeta concilii Methanosaetaceae 1.1 1.2 1.1 Methionine 
metabolism 

Bifunctional 
enzyme 
Fae/Hps 

gi|330507450 14.7 Methanosaeta concilii Methanosaetaceae -3.5 -2.0 -2.9 Pentose 
phosphate 
pathway/meth
anogenesis 

Enolase gi|33050645 40.1 Methanosaeta concilii Methanosaetaceae -1.9 -1.3 1.8 Glycolysis 
Manganese-
dependent 
inorganic 
pyrophosphata
se 

gi|330507876 42.4 Methanosaeta concilii Methanosaetaceae 1.2 1.9 1.8 Cellular 
energy 

Succinyl-CoA 
synthetase β-
subunit 

gi|116749138 2.8 Syntrophobacter 
fumaroxidans 

δ- proteobacteria 1.1 1.7 1.6 TCA cycle 

V-type ATP 
synthase α-
subunit 

gi|330508339 24.8 Methanosaeta concilii Methanosaetaceae 1.8 -1.5 -1.5 ATP 
synthesis 
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V-type ATP 
synthase β -
subunit 

gi|330508338 45.8 Methanosaeta concilii Methanosaetaceae 1.7 1.7 1.2 ATP 
synthesis 

         
Methanoge
nesis 

        

H4MPT S-
methyltransfer
ase subunit H 

gi|330507199 29.9 Methanosaeta concilii Methanosaetaceae 2.6 2.9 1.3 Methanogenesis 
from CO2 

5,10-
methylene- 
H4MPT 
reductase 

gi|333988092 26.8 Methanobacterium sp. Methanobacteriales -1.1 -1.4 1.2 Methanogenesis 
from CO2 

Acetyl-CoA 
synthetase 

gi|330506786 20.1 Methanosaeta concilii  Methanosaetaceae -2.6 -4.5 1.7 Methanogenesis 
from acetate 

Acetyl-CoA 
synthetase 

gi|330506787 8.2 Methanosaeta concilii Methanosaetaceae 15.8 8.5 1.2 Methanogenesis 
from acetate 

CO 
dehydrogenase
/acetyl-CoA 
synthase α-
subunit 

gi|330507409 13.8 Methanosaeta concilii Methanosaetaceae 1.5 1.8 1.9 Methanogenesis 
from acetate 

CO 
dehydrogenase
/acetyl-CoA 
synthase β-
subunit 

gi|330507407 32.9 Methanosaeta concilii Methanosaetaceae 1.2 1.3 -1.7 Methanogenesis 
from acetate 

CO 
dehydrogenase
/acetyl-CoA 
synthase δ-
subunit 

gi|330507405 17.1 Methanosaeta concilii Methanosaetaceae  1.3 2.7 2.6 Methanogenesis 
from acetate 

Methyl-
coenzyme M 
reductase I α-
subunit 

gi|333988259 16.0 Methanobacterium sp. Methanobacteriales 1.6 1.2 1.4 Methanogenesis 

Methyl-
coenzyme M 
reductase I α-
subunit 

gi|330506955 33.6 Methanosaeta concilii Methanosaetaceae 1.3 1.7 1.3 Methanogenesis 

Methyl-
coenzyme M 
reductase I β-
subunit 

gi|126178567 4.1 Methanoculleus marisnigri Methanomicrobiales -1.4 18.6 11.7 Methanogenesis 

Methyl-
coenzyme M 
reductase I β-
subunit 

gi|517427  
 

5.9 Methanothermobacter 
thermautotrophicus 

Methanobacteriales 1.9 -1.2 -1.5 Methanogenesis 

 gi|3891379 5.8 Methanothermobacter 
marburgensis 

     

Methyl-
coenzyme M 
reductase I β-
subunit 

gi|88603391 6.1 Methanospirillum hungatei Methanomicrobiales -3.1 -2.4 2.3 Methanogenesis 

Methyl-
coenzyme M 
reductase I β-
subunit 

gi|330506958 56.7 Methanosaeta concilii Methanosaetaceae -1.1 1.1 1.5 Methanogenesis 

Methyl-
coenzyme M 
reductase I γ-
subunit 

gi|330506956 41.2 Methanosaeta concilii Methanosaetaceae 1.2 1.1 1.4 Methanogenesis 

Methyl-
coenzyme M 
reductase I γ-
subunit 

gi|304315294 
 

9.2 Methanothermobacter 
marburgensis 

Methanobacteriales 13.9 6.5 -2.7 Methanogenesis 

 gi|3334251 9.1 Methanothermobacter 
thermautotrophicus 

     

Putative 
methanogenesi
s marker 
protein 15 

gi|330506647 21.3 Methanosaeta concilii Methanosaetaceae 1.4 1.8 1.1 Methanogenesis 

         
Transport         



15 
 

Family 5 
extracellular 
solute-binding 
protein 

gi|330508239 16.0 Methanosaeta concilii Methanosaetaceae 1.1 -1.9 1.3 ABC 
transporter 

ABC 
transporter 
substrate-
binding 
protein 

gi|502902166 3.8 Segniliparus rotundus Actinobacteria 1.1 3.9 4.8 ABC 
transporter 

         
Unknown 
function  

        

Hypothetical 
protein 

gi|330508095 13.8 Methanosaeta concilii Methanosaetaceae -2.0 -1.4 -1.4 Unknown 

Hypothetical 
protein 

gi|310823886 6.1 Stigmatella aurantiaca δ- proteobacteria 2.5 2.2 1.6 Unknown 

Hypothetical 
protein 

gi|330509044 41.8 Methanosaeta concilii Methanosaetaceae -3.3 2.0 1.8 Unknown 

Hypothetical 
protein 

gi|330507300 10.3 Methanosaeta concilii Methanosaetaceae 1.5 1.3 1.4 Unknown 

a Proteins identified with at least 2 peptides > 99% confidence through Paragon™ and Progroup™ search algorithms. 361 
b Protein sequence coverage estimated by the percentage of matching amino acids from the identified peptides with a confidence level of ≥ 362 
95%.        363 
c Ratios relate to differential abundance of protein for the two biomass samples at 37°C, 15°C and 7°C. Proteins present at reduced levels are 364 
expressed as a negative reciprocal. Significantly expressed proteins are in bold.  365 
Fae/Hps, formaldehyde activating enzyme/ hexulose-6-phosphate synthase; H4MPT, Tetrahydromethanopterin; CoA, coenzyme. 366 
 367 

368 
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FIGURE LEGENDS 368 
 369 

 370 
Figure 1: Phylogenetic affiliation of bacterial 16S rRNA gene sequences obtained from 371 

biomass samples from bioreactors operated at 37°C, 15°C and 7°C. Pie charts were 372 

constructed using the frequency of 16S rRNA sequences assigned to the relevant taxonomic 373 

groups (n=155, 114 and 116 at 37°C, 15°C and 7°C, respectively). 374 

375 
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 375 
Figure 2: Quantification of 16S rRNA gene concentrations for methanogens: MBT 376 

Methanobacteriales; MMB Methanomicrobiales; MSc Methanosarcinaceae; MSt 377 

Methanosaetaceae present in 37°C, 15°C and 7°C bioreactor biomass samples. Error bars 378 

indicate the standard deviation and are the result of two technical replicates. Dashed line 379 

relates to the detection limit of the assay (106 gene copies per gram of VSS). 380 

 381 


