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Abstract: 

A new, fully automated, rapid method, referred to as kernel principal component analysis 

residual diagnosis (KPCARD), is proposed for removing with cosmic ray artifacts (CRAs) in 

Raman spectra, and in particular for large Raman imaging datasets.  KPCARD identifies CRAs 

via a statistical analysis of the residuals obtained at each wavenumber in the spectra.  The 

method utilizes the stochastic nature of CRAs; therefore, the most significant components in 

principal component analysis (PCA) of large numbers of Raman spectra should not contain any 

CRAs.  The process worked by first implementing kernel PCA (kPCA) on all the Raman 

mapping data and second accurately estimating the inter- and intra-spectrum noise to generate 

two threshold values.  CRA identification was then achieved by using the threshold values to 

evaluate the residuals for each spectrum and assess if a CRA was present.  

CRA correction was achieved by spectral replacement where, the nearest neighbor (NN) 

spectrum, most spectroscopically similar to the CRA contaminated spectrum and principal 

components (PCs) obtained by kPCA were both used to generate a robust, best curve fit to the 

CRA contaminated spectrum.  This best fit spectrum then replaced the CRA contaminated 

spectrum in the dataset.  KPCARD efficacy was demonstrated by using simulated data and real 

Raman spectra collected from solid-state materials.  The results show that KPCARD is fast (<1 
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min per 8400 spectra), accurate, and precise and suitable for the automated correction of very 

large (>1 million) Raman datasets.   

 

KEYWORDS:  Cosmic ray artifacts; Raman spectroscopy, Correction, Kernel PCA,  

quantitative.   

 

1.  Introduction 

Raman spectroscopy is widely used spectroscopic for the analysis of chemically complex 

materials in many areas, and in particular the pharmaceutical industry [1-6].  The use of Raman 

imaging/mapping spectroscopy provides micron-scale spatial information about materials, and is 

popular for the identification of active pharmaceutical ingredients (APIs), detection of 

contaminants/impurities, and mapping the distribution of components in solid-state materials [3, 

5, 7-14].  However, charge-coupled device (CCD) detectors used in Raman spectroscopy are 

sensitive to cosmic ray events, which generate occasional, positive, unidirectional, erroneous 

spikes in Raman spectra.  The frequency and location of these cosmic ray artifacts (CRAs) is 

random, and peak intensity and width can vary very significantly.  CRAs increase unwanted 

signal variance, distort spectra when overlapped with Raman bands, thus complicate signal 

interpretation, and degrade chemometric modelling accuracy [7, 12, 15].   

There are many methods available for dealing with CRAs, and in general, one of four 

approaches is used.  The first is a replicate measurement approach, acquiring additional spectra 

for each sample (or grid point in a map) and then discarding CRA contaminated spectra via 

manual or automated assessment [7].  This approach is based on the fact that the probability of 

CRAs appearing at the same positions in two sequential spectra is low and thus using spectral 

comparison the CRA can be identified and eliminated [16, 17].  However, when dealing with 

large numbers of spectra in Raman mapping this would impose an unsustainable increase in 

spectral acquisition time.  The second category involves optical hardware design, for example by 

having a straight slit image on the CCD one can compare the spectra from multiple strips to 

identify and then automatically correct for CRAs in a single acquisition [18].  However, this may 

not be available on all models of Raman spectrometer.  User set parameter-based methods are the 

third category, which include both threshold- and filter-based methods [12, 19-27].  
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Implementation requires user intervention, and method performance in terms of CRA removal 

depends significantly on the specification of critical thresholds and/or filter size.  Improper 

parameter choice may result either in incomplete CRA removal or spectral signal distortion and 

there is a time penalty associated with the optimization process.  The fourth category follows a 

fully automated approach, which aims to remove subjective user input and improve productivity 

when dealing with large datasets.  The only existing method was two-dimensionally coincident 

second difference cosmic ray spike removal (2DCDR) [15].  

The need for a simple, fully automated method that could generate minimal spectral 

distortion motivated us to develop this novel CRA removal method.  KPCARD first used the 

stochastic nature of CRAs coupled with accurate noise measurements available from the large 

Raman mapping datasets and the residuals from kPCA for identification.  Then the most similar 

NN spectrum and the principal components from kPCA were used to fit and replace CRA 

contaminated spectra.  Here we quantify the benefits of CRA removal by KPCARD in terms of 

effects on spectral variance and model accuracy.   

2.  Materials and Methods  

2.1 Materials:  Piracetam (2-oxo-1-pyrrolidineacetamide, polymorphic form III), L-proline 

(≥99%), L-tyrosine (≥98%) and L-cysteine·HCl·H2O (≥98%) were purchased from Sigma-

Aldrich (Ireland) and used as received.  50 binary powder mixtures of piracetam and proline 

were prepared with 0 to 100% (w/w%) piracetam content as previously described [7].   

2.2 Raman instrumentation:  Raman spectra (180–1896 cm−1/2 cm−1 resolution) of tyrosine and 

cysteine were measured using a 785 nm excitation Avalon Instruments RamanStation 

spectrometer with a laser power of ~70 mW at the sample.  Each sample was scanned over a 5×5 

grid (0.2 mm spacing), and at each grid-point a 3×10 second exposure was accumulated.  These 

were then averaged (3×25 spectra) to give the low noise spectra for building the simulated data.  

Raman spectra of the piracetam/proline mixtures were obtained with a RAMAN 

WORKSTATION™ Analyzer (Kaiser Optical Systems, Inc.), with 785 nm excitation and PhAT 

imaging capability [7].  Raman spectra (200–1896 cm–1) were collected from on each of 10 

channels using a 29×29 pixel grid with 1 mm spacing and a 1-second exposure.  Each sample 

map dataset consisted of 8410 spectra generated by the 10 channels.  
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2.3 Simulated data & data analysis:  To test efficacy, synthetic Raman datasets were created as 

follows: (1) Raman spectra of pure L-tyrosine and L-cysteine·HCl·H2O were superimposed in 

random proportions to create 500 simulated mixture spectra with randomly generated 

concentrations.  Each simulated spectrum had 859 wavenumber channels (180 to 1896 cm−1) 

with a 2 cm−1 interval;  (2) Gaussian high-frequency, white noise at five levels of 0, 0.001, 0.005, 

0.01 and 0.02 (defined as the ratio of the standard deviation of the white noise to the highest 

Raman spectral signal), were randomly generated and then added into the data;  (3) Finally, a 

subset of 30 CRA contaminated spectra was generated with 54 spikes, the remaining 470 spectra 

were CRA-free.  These spikes were randomly assigned different wavenumbers and intensities, 

and given a random width of between 1 and 8 pixels, which was either smaller than or 

comparable to the bandwidths of the Raman bands of tyrosine and/or cysteine (the MATLAB 

code and process description is provided in the supplemental information, SI,  S4).  Then, CRAs 

were superimposed on the simulated spectra, with varying levels of added noise.  MATLAB 

R2014b (The MathWorks Inc., Natick, MA) with in-house written code for data processing 

which was carried out on a standard desktop computer: Microsoft Windows 7 OS,  Xeon 2.8 

GHz CPU, and 6 GB RAM.   

3.  Methodology  

Conventional notation was adopted throughout this paper:  Uppercase boldface letters for 

matrices (as X), lowercase boldface for vectors (as x), italicized subscript characters for vector 

index (as xi or ej), and lowercase italicized letters for scalars (as eij or nij_orig).  Superscripts are 

assigned as follows: T, vector or matrix transpose; and –1, matrix inverse.  Principal component 

analysis (PCA) is one of the most important  techniques in multivariate data analysis [28].  PCA 

can be expressed in terms of a product of two matrices U and V, and a residual matrix E:  

  X = UVT + E                                                          (1)         

where the column eigenvector matrix V (loading matrix) of the cross product matrix XTX holds 

the latent variables (or PC factors), along the wavenumber/wavelength axis.  U (Score matrix) 

represents the sample/object distribution pattern in X, which corresponds to the eigenvector 

matrix of the cross product matrix XXT.  V provides chemically or physically meaningful 

interpretation to the patterns observed in U.  The residual matrix E is the portion of the data not 

explained by the PC factors used for the data representation, and this comprises elements such as 
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noise, experimental errors, and uncertainties.  V can be obtained by a variety of PCA algorithms: 

singular value decomposition (SVD), eigenvalue decomposition (EVD), NIPALS, and POWER 

methods [29].  When X is very large, the EVD algorithm is preferred as it is much faster.  

Obtaining V is crucial because V can be used to obtain U, and calculate the scores of new objects:   

  U = XV                                                                   (2)         

  Unew = XnewV                                                          (3)         

However, when n (variables) >>m (spectra) in X, the eigenvector is first estimated through U 

from XXT instead of XTX, and then V is indirectly obtained.   

  V = XTUΓ−1/2                                                          (4)         

where, Γ is the diagonal matrix of eigenvalues of XXT and XXT is termed a kernel matrix.  This 

approach is much faster than trying to directly obtain V from XTX and thus less computational 

effort is needed [30, 31].  

If r factors adequately represent the spectral features in X, then the residual E should consist 

only of white Gaussian noise (Enoise_w), heteroscedastic noise (Enoise_hetero), and CRAs:    

  E = Enoise_w + Enoise_hetero + ECRA                            (5)         

If m spectra are measured under identical conditions it is then often assumed that the high 

frequency noise is normally or approximately normally distributed, uncorrelated, and random.  In 

contrast, CRAs by their nature are stochastic in terms of frequency of occurrence, location, 

intensity, and peak width.  If noise (i.e., Enoise_w + Enoise_hetero) can be accurately estimated, then 

CRAs can be discriminated, and the challenge was therefore how to accurately measure the true 

noise level.  This involves first estimating the noise at a given wavenumber across all the 

different spectra, and second recognizing that noise varies with spectrum wavelength due to 

instrumental effects.  Once this was done, two threshold values (t1, t2) were generated for each 

point in the spectrum, and used to identify CRAs. 

The upper limit of the confidence level of the distributed residue ej of m objects at the jth 

wavenumber was calculated using accepted statistical procedures (α=0.01 or 0.05), according to: 

  P (cllower_j ≤ eij ≤ clupper_j) = 1−α, (i=1, 2, …, m, and j=1, 2, …, n) (6)  

where eij is the element of ej, clupper_j and cllower_j were the upper and lower limits, respectively, 

when the confidence interval (1−α) was applied.  The first threshold (t1) was obtained from: 

  t1_j = λ1_j·clupper_j       (7)  
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where λ1_j was a penalty parameter required to ensure CRA detection sensitivity yet preserved 

the real Raman band intensity variation and thus avoid misidentifying real Raman bands as 

CRAs.  This was analogous to the definition of limit of detection (LOD) where the analyte signal 

was at least three times greater than background noise, and in that simple case, λ1_j =3.  However, 

for Raman spectroscopy where heteroscedastic noise is present (due to varying wavelength 

sensitivity of CCD detectors), the λ1_j value has to be adjustable, and here we used a value of 60.  

This value is instrumentation and spectral noise level dependent.  

The idea of indirectly estimating noise in a spectrum is not new, but the ability to deal 

automatically and efficiently with very large numbers of Raman spectra is innovative [15, 32].  

The method principle is briefly described here.  The noise-only variance of an original spectrum 

was equal to the variance of its second difference spectrum divided by six, if no band residuals or 

other artefacts were present in the second difference spectrum:  

   ) ..., 2, 1,(            ,6  2
2

2 minn diff_iorig_i     (8)         

where ni_orig and ni_2diff denoted the noise level in the ith original spectrum and its second 

difference spectrum, respectively.  The second difference spectrum was obtained by first shifting 

the original spectrum by one channel to a greater index number and wraparound of the end, 

second by subtracting the original from the shifted spectrum to produce the first difference 

spectrum, and then repeating the first and second steps on the first difference spectrum to 

produce the second difference spectrum.  

To determine the noise, ni_2diff, the second difference spectrum was segmented into many 

windows with a defined window size (30 channels were used here).  Note that the ni_2diff noise 

estimate was not related to the window size chosen, however, the window size should be smaller 

than a spectral region (SRno) where there were no signal bands present in the original spectrum, 

i.e. noise only region.  Then, the noise was individually calculated for each window and the 

window with the minimum noise level (noiseref) was found, and this should correspond to SRno.  

Starting with the SRno window and moving only one channel (called adjacent channel) to a 

higher index number along the wavenumber axis, a new window of the same size was created 

and the noise level, noisenew, estimated for this new window.  If noisenew was > 6  times larger 

than noiseref, then it indicated that either a CRA or Raman band residual was present at the 

adjacent channel in the second difference spectrum, and this fact was recorded.  Then, the value 



Kernel principal component analysis residual diagnosis (KPCARD):  an automated method to remove 
cosmic ray artefacts in Raman spectra. B. Li, A. Calvet, Y. Casamayou-Boucau,  A.G. Ryder,  Analytica 
Chimica Acta., 913, (111-120), (2016).  DOI:  10.1016/j.aca.2016.01.042  
 

Page 7 of 26 
 

of the adjacent channel was replaced with the mean value of this new window and the noise level 

recalculated, giving a new noiseref.  The window was advanced to the next channel and the 

procedure repeated, until the last channel had been analyzed.   

Once completed, the procedure was repeated in the opposite direction, moving from the 

minimum noise window to a lower index number.  The combination of both runs generated a 

continuous noise estimate along the wavenumber axis (j=1, 2, …, n) for each spectrum, i.e., 

nij_2diff for the ith (i=1, 2, …, m) second difference spectrum and nij_orig for the original spectrum 

according to Equation (8).  This noise estimate explicitly accounted for any heteroscedastic noise 

related such as wavelength-dependent detector performance, and was used to define the second 

threshold:   

  t2_ij = λ2_ij·nij_orig      (9)         

The penalty factor λ2_ij was set to 3, again analogous to the LOD definition, but the value can be 

varied where necessary.  Finally, when the two thresholds were applied to each element of the 

residual E for the spectra in Equations (1) and (5), and if: 

  eij > min(t1_j, t2_ij)                (10)         

then a CRA was present, otherwise eij represented noise.  The noise estimate and CRA 

identification were implemented automatically using in-house written MATLAB codes.  When 

this was applied to Raman data, the output was a list of CRA contaminated spectra and the 

wavenumber locations of the artefacts.  CRA contaminated spectra can be discarded and this 

may be acceptable if there are very large datasets and the target analytes are present in relatively 

high concentrations.  However, for low-concentration quantification applications [7], this may 

not always be ideal and it is more advisable to use a correction procedure, here we implemented 

a chemometric curve fitting and approximation based approach. 

The CRA contaminated spectrum xi was first compared with spectra in the adjoining pixels 

(here a 3×3 pixel neighborhood) using the NN comparison method [12, 33] and the most similar 

spectrum (xnn) was selected.  The rationale for this was based on the fact that the probability of a 

CRA appearing at the exact same wavenumber in a spatially adjacent spectrum is low.  The NN 

spectrum (xnn) and the r PC factors were then combined to fit the CRA contaminated spectrum xi 

using a linear model:   
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1




r

k
ikknni cba ev1xx                                     (11)           

The scaling a and offset b factors accounted for spectral intensity variations between xi and xnn.  

Vector vk and scaling factor ck corresponded to the kth PC of the loading V and its weight in the 

fit respectively.  The error ei included the deviation of the linear fitting from the true relationship 

and contribution from spectral noise sources.  Finally, a best-fit spectrum (xri) was generated by:  

        
1




r

k
kknnri cba v1xx                                         (12)           

It then replaced the CRA contaminated spectrum in the dataset used for chemometric modelling.  

KPCARD can be automatically implemented using MATLAB and the only prerequisite was that 

all the spectral features of Raman data were extracted into the lowest number of PCA factors and 

that no spectral information was retained in the residuals.  A flowchart illustrating all the steps in 

the KPCARD method is shown in Figure 1a. 
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Figure 1:  (a) Flowchart showing the implementation steps for the KPCARD method;  (b) The synthetic 
CRAs that were added to the simulated Raman spectra, and (c) Superimposed spectra of tyrosine and 
cysteine without any additional noise.  Dotted ellipses highlight specific CRAs.  

 

 

4.  Results and Discussion  

To demonstrate KPCARD method efficacy, the simulated data with known, added synthetic 

CRAs, was first used to quantify the negative effects of CRA contamination on partial least-

squares (PLS) based quantification, second to test method efficacy on datasets with varying 

levels of noise, and third to compare KPCARD with other CRA correction methods.  
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4.1 CRA contamination effect:  To investigate the detrimental effect of CRAs on model accuracy, 

the simulated spectra with five different added levels of noise were used for tyrosine 

quantification.  The 54 synthetic CRAs (Figure 1b) had variable locations, bandwidths, and 

intensities.  Most were one pixel wide, but two were eight pixels wide (Table S-1, SI).  These 

were added randomly into 30 simulated spectra (Figure 1c) and the spectra with and without 

CRAs, were individually subjected to PLS regression using one factor, mean-centering 

pretreatment, and leave-one-out cross-validation [34].  Model accuracy was assessed using root 

mean square error of calibration (RMSEC), root mean square error from cross-validation 

(RMSECV), square of the correlation coefficient (R2) between predicted and measured tyrosine 

content, and the percent variance of spectral data (%X) and tyrosine content (%y) captured by 

the model (Table 1).  CRA contamination degraded PLS model accuracy whereas noise had little 

effect because PLS per se could filter noise to some extent.  For example in the 0.005 noise data, 

RMSEC/RMSECV values for the spectra in the absence of CRAs were both rather small, 

0.013/0.019.  After CRA superimposition, RMSEC and RMSECV deteriorated, increasing by 

31% and 35%, while R2 and data percent variance captured by the model decreased (74.4% to 

74.1%).  This shows that CRAs have a significant effect on quantification accuracy and the issue 

becomes more significant as the target analyte concentration ranges decrease to the low-content 

regimes below ~0.5% w/w [7].  

 

Table 1:  Summary of PLS models obtained using 30 simulated spectra for investigating the 

CRA contamination and noise effect on model accuracy for the quantification of tyrosine. 

Noise 

level 
CRAs in spectra RMSEC RMSECV R2 

Percent variance 

captured 

%X %y 

0.000 
absent 0.013 0.019 0.998 74.39 99.81 

present 0.017 0.023 0.997 73.85 99.66 

0.001 
absent 0.013 0.019 0.998 74.39 99.81 

present 0.017 0.023 0.997 73.86 99.66 

0.005 
absent  0.013 0.019 0.998 74.37 99.81 

present 0.017 0.023 0.997 73.84 99.66 
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0.010 
absent 0.013 0.020 0.998 74.32 99.80 

present 0.017 0.023 0.996 73.79 99.65 

0.020 
absent 0.013 0.019 0.998 74.06 99.81 

present 0.017 0.023 0.997 73.53 99.66 

 

 

4.2 Method performance: KPCARD performance had to be first evaluated by using the simulated 

Raman data described above.  Accuracy and precision parameters were defined to quantify the 

CRA correction procedure while the ratio of additional noise-to-simulated spectra and noise 

(RNSN) value gives a measure of % variance of the added noise in the Raman datasets: 

 number of  CRAs correctly identified and removed
× 100%

number of  total simulated CRAs  
   Accuracy      (13) 

 Precision = (1 – covariance of  difference spectra between simulated & CRA removed data
) × 100%

covariance of  simulated data with no CRAs  
  (14) 

 100%  
  noise additional and spectra simulated of covariance

noise additional of  covariance
   

 
RNSN              (15) 

This precision was a measure of data distortion induced after implementation of CRA 

correction on contaminated spectra compared to uncontaminated spectra.  A larger precision 

value equates to a lower level of spectral distortion caused by the CRA removal process. 

KPCARD was implemented on the simulated datasets using two PC factors.  In cases where 

the additional noise level was not high (0–0.005) all CRAs were correctly identified and the 

contaminated spectra were thus corrected (Table 2).  The high precision obtained indicated that 

when CRA contaminated spectra were replaced, the real spectral features were preserved and the 

curve fitting process induced no significant spectral distortion.  However, as noise increased, the 

method failed to detect all the CRAs (as expected) and correct the CRA contaminated spectra, 

thus accuracy dropped significantly, whereas precision did not vary much.  This proves that 

KPCARD is able to generate a robust curve fit for the CRA contaminated spectrum correction, 

and that this process is not significantly affected by noise.  

 

Table 2:  Method performance for CRA identification and removal from simulated spectra with 

different levels of synthetic noise added. 
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KPCARD  

Noise 

level 

Spectra with CRAs CRAs Accuracy 

(%) 

Precision 

(%) 
RNSN (%) 

#Corrected/total Identified/total 

0.000 30/30 54/54 100 99.98 0 

0.001 30/30 54/54 100 100 0.0003 

0.005 30/30 54/54 100 99.99 0.0066 

0.010 27/30 50/54 92.59 99.99 0.025 

0.020 22/30 41/54 75.93 99.95 0.093 

DTCSR (thresholds of 0.098 and 0.3) 

Noise 

level 

Spectra with CRAs CRAs Accuracy 

(%) 

Precision 

(%) 

*CRA-free spectra 

modified #Corrected/total Identified/total 

0.000 29/30 28/54 51.85 99.996 0 

0.001 28/30 28/54 51.85 99.996 0 

0.005 29/30 29/54 53.70 99.996 28 

0.010 30/30 29/54 53.70 99.996 109 

0.020 30/30 31/54 57.41 99.995 378 

2DCDR  

Noise 

level 

Spectra with CRAs CRAs Accuracy 

(%) 

Precision 

(%) 

*CRA-free spectra 

clipped (prec.) #Corrected/total Identified/total 

0.000 27/30 28/54 51.85 99.13 348 (99.09) 

0.001 27/30 4/54 7.41 99.13 348 (99.09) 

0.005 27/30 4/54 7.41 99.13 354 (99.09) 

0.010 27/30 3/54 5.56 99.11 391 (99.10) 

0.020 30/30 1/54 1.85 99.14 448 (99.13) 

* This is the number of CRA-free spectra (from the total of 470 CRA free simulated spectra) that were either 
modified by DTCSR or clipped by 2DCDR during the CRA removal process.  The numbers in parentheses denoted 
the precision calculated from the clipped spectra.   

 

These spikes, which could not be identified, were those with intensities nearly equivalent to 

the magnitude of the added high-frequency noise.  Figure 2a shows the four CRAs not identified 

for the 0.01 noise level dataset (~200 arbitrary units, au, of noise); these were located at 1296, 

1506, 1520, and 984 cm−1, with intensities of 175, 208, 110, and 114 au, respectively (Table S-1, 
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SI).  For the 0.02 noise level data, this increased to 13 CRAs in eight spectra, all of which had 

intensities close to the noise, and were thus not an issue for data analysis.  Another important 

consideration was that the simulated spectra were generated from real Raman measurements of 

tyrosine and cysteine, which contained additional intrinsic shot and dark noise. 

 

 

Figure 2:  (a) Overlay plot of the four CRAs (bold spikes) not identified and the added noise (0.01 level) 
for the 30 simulated spectra.  (b) Sample spectrum (black) with the 1296 cm−1 CRA (red) and 0.01 added 
noise, and the estimated noise (green). 

 

Figure 2b shows part of the spectrum in which the undetected 1296 cm−1 CRA was located, 

and the estimated noise was 77.36 au (using a 30-channel window) for the 1296 cm−1 location.  

This comprised of 28.42 au of added noise with the remainder coming from the spectra used for 
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the simulated data.  The CRA intensity (175 au) was less than three times the noise thus 

accounting for the missed identification.  Figure 2b (& Fig. S-1, SI) also shows the estimated 

noise (nij_orig green curve) which is not completely flat and shows the heteroscedastic nature of 

the noise, and in particular, the significant shot noise contribution from strong Raman bands.  

The number of kPCA factors used is crucial because it affected method sensitivity and 

accuracy.  It is critical that the PCs account for all the spectral information relating to the 

analytes and that the residuals only contain noise and CRAs.  Too many PCs could result in 

CRAs being removed from the residuals while too few PCs could result in spectral data being 

incorporated into the residuals leading to Raman bands being misidentified as CRAs.   

 

 

Figure 3:  The first three PCs decomposed from the 500 simulated spectra, the #10 CRA contaminated 
spectrum, and the synthetic CRA superimposed on the spectrum.  For clarity, both the #10 spectrum and 
CRA were scaled.  (left insert) The effects of the number of principal components used in the KPCARD 
procedure on the method accuracy and precision for the 0.005 noise level simulated data set.  (right 
insert) Expanded view of band. 
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To assess the impact of PC number we took the 0.005 noise level data (500 simulated 

spectra, with 30 CRA contaminated spectra having 54 CRAs) and varied kPCA factors from 1 to 

6 (Figure 3).  It was noted that accuracy relied on the number of PCs used, and that two PCs 

were optimal (all 54 CRAs detected and only the 30 CRA contaminated spectra were corrected).  

When one PC was used, it was insufficient to represent all the spectral information of two 

chemical species (tyrosine and cysteine) and as a consequence, some spectral features were 

retained in the residuals, and therefore were included in the noise estimate.  This caused an 

increase in the two threshold (t1/t2) values, which led to the method being less sensitive to 

discriminating between weak Raman bands and CRAs.  This led in turn to some weak Raman 

bands and/or CRAs being misidentified, and only 20 out of 54 CRAs could be properly 

identified, giving a low accuracy of 37.04%.  In addition, 17 CRA-free spectra were 

misidentified as being contaminated.   

For the three PC test (Figure 3), 53 CRAs were successfully identified, 29 spectra were 

corrected, and only one CRA (in spectrum #10) was missed.  In that case, PC3 matched almost 

perfectly the synthetic CRA added to the simulated spectrum.  Since this specific CRA had a 

wide bandwidth (eight channels) similar to a Raman band shape, the over use of one more PC 

(i.e., PC3) meant that this CRA was misidentified as a real spectral feature, and so the #10 

spectrum was not corrected.   

As PC number increased to six, method performance decreased, with accuracy dropping 

from 98.15% (3 PCs), to 96.30% (4 PCs), 87.04% (5 PCs), to 85.19% (6 PCs).  However, adding 

more PCs to the procedure caused no significant change to method precision and all values were 

very close to 100%.  This indicated that once the CRAs were identified and the most similar 

spectra found, the curve fit method generated very robust spectrum fits, even when too many 

PCs were used.  In practice, real sample spectra are more complex than simulated spectra, and 

PC number should be set to a value equal to or slightly larger than the optimal PC number, 

because the failure to remove a real CRA (when more PCs used) is preferred to the incorrect 

elimination of a real spectral band (if fewer PCs were used).  There are many good and fast 

methods available for correctly determining PC number [35]. 

4.3 Method comparison:  KPCARD was compared to two alternative methods from the literature 

in terms of CRA removal performance: dual threshold cosmic spike removal (DTCSR) [12] and 
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2DCDR [15].  In DTCSR, two thresholds were required: a lower threshold set by the user to 

ensure sensitive CRA detection and complete removal, and a higher threshold used to avoid 

clipping Raman bands and to preserve normal Raman band height variability between spectra.  

By studying a region where CRAs were clearly present, thresholds could be determined; 

however, this critically depended on user input.  Once thresholds were set and CRAs identified, 

the NN comparison method was used and automatic CRA correction was then performed on the 

whole Raman dataset.  Therefore, this approach can be considered as being semi-automated.  It is 

worth pointing out that an important difference between DTCSR and KPCARD is that with 

DTCSR only the identified CRAs (and a small spectral region in the vicinity) were replaced by a 

curve fit, whereas with KPCARD the entire CRA contaminated spectra were replaced.   

DTCSR was run on all five simulated datasets and the two thresholds (0.098 and 0.3) were 

selected after optimization to ensure that as many CRAs as possible were identified and removed, 

while minimizing artefact generation in the uncontaminated spectra (Table S-2, SI).  For the 

higher threshold, values between 0.2 and 0.4 gave the similar CRA identification results.  The 

method accuracy and precision were then calculated (Table 2).  The performance of this 

parametric method depended mainly on determining an optimized set of thresholds, which can 

take several iterations (Table S-2, SI).  Furthermore, the noise level also influenced DTCSR 

performance, but, the resultant precision was high (99.996%), as this was intrinsically related to 

the robust curve fit method used.   
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Figure 4:  (a) Spectra showing modification of spectral noise of a CRA-free spectrum when an overly 
sensitive lower threshold was used for DTCSR.  Red (CRA-free spectrum, no added noise), Black (CRA-
free spectrum with added noise and after modification), Blue (Noise features truncated by DTCSR 
modification).  (b) Spectra showing the clipping of two Raman bands (~684 and ~830 cm–1) and CRA not 
fully removed by 2DCDR (0.001 noise level case).  Red solid, black dotted, magenta, blue, and dark 
green curves respectively represent the CRA-included spectrum, the CRA-corrected spectrum, the 
uncontaminated spectrum, the synthetic CRA, and the difference spectrum between the CRA-included 
and CRA-corrected spectra.    
 

If the noise level was low and the lower threshold was not small enough, then the weaker 

CRAs were not detected.  As noise increased, the small lower threshold caused some noise to be 

incorrectly identified as CRAs, which led to more CRA-free spectra being modified: 109/470 for 

the 0.01 noise and 378/470 for the 0.02 noise datasets respectively.  As precision did not change 

much, this was not a major issue, apart from the fact that it increased the computational burden.  
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Figure 4a shows the modification of one representative CRA-free spectrum.  The original CRA- 

and noise-free spectrum (red curve) was smooth, but the addition of 0.005 level noise caused 

significant differences (black-plus-blue curve), making it appear as if there were many CRAs 

present.  The use of an overly sensitive lower threshold (e.g., 0.098) in DTCSR led to the 

modification of some noise interferences by truncating their relatively higher intensity (blue 

curves).  Decreasing the lower threshold could improve CRA removal and accuracy, however, 

this would also result in modification of more CRA-free spectra (Table S-2, SI).  For the higher 

threshold, a value of 0.3 gave the minimum rate of band clipping.  

2DCDR, a fully automated method for CRA removal, used second difference spectrum 

information to locate CRAs and to determine spectral noise.  CRA identification was achieved 

by first comparing the negative intensity peaks in the second difference spectrum to the 

automatically defined noise threshold, and then spike removal was realized through adding half 

its negative intensity in the second difference spectrum to its intensity in the original spectrum 

[15].  This method was suitable for processing large datasets; however, the main issue 

encountered was the clipping of Raman bands, particularly when these bands were sharp and 

showed large variations in intensity between spectra.  2DCDR was run on the five simulated 

datasets, and any CRA-free spectra that were clipped during CRA removal were counted.  The 

precision values for all the clipped spectra were also calculated to quantify the extent that CRA-

free spectra were distorted (Table 2).    

The ability of 2DCDR to identify CRAs and therefore subsequently remove the artefact was 

very heavily dependent on noise level, and accuracy got worse as noise increased.  This 

sensitivity was due to the fact that 2DCDR was based on estimated spectral noise.  Since in most 

cases, CRA contamination was only partially removed, high numbers of corrected spectra were 

obtained for all five simulated datasets.  Figure 4b, for example, shows the removal of a CRA at 

1214 cm−1 (spectrum #7, 0.001 noise case) where the difference spectrum does not match exactly 

the profile/intensity of the synthetic CRA.  This small difference while relatively insignificant 

was due to the band clipping, also accompanied by the clipping of another two real Raman bands 

(684 and 830 cm−1).  The precision values which were calculated either from the corrected 

spectra or from the CRA-free but clipped spectra, indicated that there was a certain degree of 

spectral distortion (ca. 1%) compared to the other methods.  Even when there was no added 
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noise, 348 (74%) of the CRA-free spectra were clipped (Figure S-3), and for example at the 830 

cm−1 band, 234 unnecessary modifications were made.   

The 0.001 noise level data were used to calculate the variability of the 348 CRA-free 

spectra that were clipped during CRA removal, in terms of the variation of the Raman bands 

among these spectra.  The degree of spectrum clipping (normalized scale, 0–1 scale) was 

obtained by first computing the difference spectra (raw minus clipped spectra), second dividing 

the difference spectra by the raw spectra, and finally averaging the resultant quotients at each 

wavenumber.  Figure 5 plots the band variability of these spectra and the degree of spectrum 

clipping.  In most cases clipping occurred with bands that were either sharp or had large intensity 

variations between spectra.  

 

 

Figure 5:  The variability (black curve) of the 348 CRA-free spectra clipped by the 2DCDR CRA 
removal (0.001 noise level data) and the degree of spectrum clipping (grey, low intensity curve).  Most 
clipping occurred with Raman bands that were narrow and/or highly variable intensity.  For easy 
visualization, the degree of spectrum clipping was magnified 7000 times.   

 

Schulze proposed a compensating scheme to mitigate unnecessary Raman band clipping in 

2DCDR [15].  If the frequency of CRA occurrence at a given wavenumber across different 

spectra, or at a given pixel location across different measurements followed Poissonian statistics, 

then the detection of a CRA across spectra at a specific wavenumber should have a very low 
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probability, e.g., a Poisson statistical confidence limit of α=0.01 or 0.05.  If the number of 

modified spectra (or more correctly modifications at a specific pixel) was greater than the 

established limit for the detector, then that was statistical proof that sharp bands were being 

clipped and that the spectra should be restored [15].  For example, in our 0.001 noise level case, 

234 excessive modifications were made to the real band at 830 cm−1 in the 348 clipped spectra.  

Therefore, these spectra (or more correctly the 830 cm–1 band) would have to be restored to their 

original intensities (SI).   

 

 

Figure 6:  (a) as acquired Raman spectra show CRAs and small baseline features in a piracetam/proline 
powder mixture, and (b) corrected spectra after application of automated baseline correction using MPLS 
and CRA removal using KPCARD method.    
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Overall, compared to DTCSR and 2DCDR, KPCARD was more accurate, precise in terms 

of both identification and correction of CRA contaminated spectra.  KPCARD was also more 

computationally efficient, and able to automatically accomplish CRA removal on one real 

dataset of 8410 spectra × 849 variables in 45 seconds on a desktop computer.  In contrast, 

2DCDR took ~6 minutes and DTCSR needed ~ 6.7 minutes, when performed with the same data 

set using the same computer configurations (SI).  Overall, across the full Raman dataset from the 

150 samples, KPCARD never took more than 2 minutes to implement, and some sets took less 

than 40 seconds to complete.  

 

4.4  Piracetam-proline mixture quantification:  Ultimately, the rationale for developing the 

method is for the processing of large volumes of Raman data used for low content quantification.  

KPCARD was used for CRA correction of a very large Raman mapping dataset generated from 

50×3 proline-piracetam binary powder mixtures, with 8410 spectra per sample, 1.3 million 

spectra in total [7]  To show how KPCARD was implemented in practice we took a typical 

example from a single map measurement.  For each map measurement (150 in total), there were 

typically between 14–56 CRA contaminated spectra (0.17 to 0.67%) as identified by KPCARD.  

The mean value was 33.6, and standard deviation (STD) was 6.9.  This rate of CRA 

contamination, meant that it was reasonable to use α=0.01 for calculating the upper noise level 

limit at any given wavenumber across the spectra and thus identifying CRAs in KPCARD.  

α=0.05 was also tried but this did not yield any improved results (data not shown).  Figure 6a 

shows the 41 CRA contaminated spectra as acquired from a single 0.1% piracetam sample, 

where these spectra were collected at different surface locations via the 10 probe channels used 

[7].  Since each channel sampled a different physical location with possibly a different 

composition, for each wavenumber position, we get variable signal-to-noise ratios and 

considerable variability between spectra.  All of these particular spectra contained CRAs and a 

small baseline effect.  The baseline can be removed using morphological weighted penalized 

least-squares (MPLS) [36].  

In next step, the mean noise and standard deviation was determined for all 8410 spectra of 

each individual Raman mapping measurement (Table S-3, SI).  The noise was different for each 

channel, as expected; channels 5 and 6 had the largest noise of 51.83±6.02 and 47.79±5.51 au, 
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respectively.  Since these two channels also gave the best spectra, we can safely conclude that 

shot noise was the most important factor [7].  The numbers of pixel rows binned for spectral 

channels 1 to 10 were: 13, 14, 16, 22, 55, 55, 22, 16, 14, and 13 respectively (Table S-3, SI), 

which accounted for the noise differences (larger shot noise for more rows binned).  This was 

confirmed by collecting 8410 spectra from a sample under dark conditions (laser off) with the 

same exposure settings (Figure S-4, SI).  The measured dark noise was very low (0.31–0.51) and 

similar for all channels (Table S-4).  Relative to these mean values, the noise variation along the 

wavenumber axis for each detector channel were small, and therefore, the noise could be 

regarded as having approximately normal distribution.  This fulfilled the requirements for 

implementing KPCARD, using Equations (6) and (7) to determine the first threshold.  CRAs also 

have to be identified and removed from Raman spectra on a channel-by-channel basis because of 

the different noise values.  The 41 KPCARD and baseline corrected spectra from the 10 channels 

(Figure 6b) show no obvious spectral distortions.   

 

 

 

Figure 7:  Quantification of piracetam content (0.05−1.0%) in powder mixtures using Raman spectra that 
were: (a) CRA contaminated, and (b) KPCARD corrected.  Error bars represent standard error for n=3 
replicate samples.  

 

Using CRA corrected Raman spectra, accurate quantitative calibration models were 

established with the powder mixture data, 0−100% piracetam content once the data were 

appropriately pretreated, as detailed previously [7].  Here, piracetam content in the 0.05−1.0% 

concentration range was predicted, using both the CRA removed, and CRA contaminated Raman 

data, and the RMSEP(REP%) values were 0.012%(2.43%) and 0.016%(3.28%), respectively 
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(Figure 7).  The improvement in relative prediction accuracy (i.e., REP%=100×RMSEP/ y , 

where y  = mean value of measured piracetam concentration) was significant.  There was also a 

slight improvement in the intercept value, which again demonstrates the improvement in the 

quantitative model.  

5. Conclusions  

KPCARD has been shown to be both rapid (<1 min. for 8400 spectra) and fully automatable.  

This makes it very applicable to the correction of large volumes of Raman data such as that 

generated by Raman imaging.  When compared to two of the best literature methods, DTCSR 

and 2DCDR, it was much quicker, more accurate and precise.  The method is particularly 

important for the correction of data used for low content, quantitative Raman analysis [7] where 

its implementation delivered a ~25% improvement in RMSEP/REP%.   

6. Supplemental information available 

Supporting information is available at:    

 http://www.sciencedirect.com/science/article/pii/S0003267016301301#ec1  
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