<table>
<thead>
<tr>
<th>Title</th>
<th>Introduction to the special issue on stability under finite deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Destrade, Michel; Saccomandi, Giuseppe</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2010</td>
</tr>
<tr>
<td>Publisher</td>
<td>Oxford University Press</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://imamat.oxfordjournals.org/content/75/4/475</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/5584</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/10.1093/imamat/hxq024</td>
</tr>
</tbody>
</table>

Some rights reserved. For more information, please see the item record link above.
In the botanical gardens of Grenoble, France, there is small bridge, just a few meters long, made of pre-stressed concrete. The bridge dates back to 1855, and is thought to be the oldest manufactured prestressed structure made with concrete. In general, a pre-stressed bridge span is reinforced by parallel metallic rods embedded below the horizontal mid-plane and put under tension, so that the slab is bent slightly upwards. When the bridge is put in place, the span is subjected to its own weight and to external loads, which ensure that the concrete is compressed everywhere. Without the prestress, the weight and loads would bend the span downwards, and create a zone of tension, of which concrete cannot sustain much. This technology thus combines the compressive strength of concrete with the tensile strength of the metallic rods. We can say that the resulting structure is stabilized by pre-stress.

Of course, a pre-stress or a pre-strain can conversely lead to the destabilization of a solid. A classic example is that of the twisting instability of a closed ring: take an elastic straight rod, bend it into a circle by bringing the two ends together, but give the rod a twist before gluing its ends. For a sufficiently high twist, the elastic ring is unstable and folds unto itself, by forming an eight-shape curve (with about two turns of pre-twist) or more elaborate shapes (for higher twists).

Stability studies are highly important for many engineering materials, be they subjected to small pre-strains such as those imposed on pre-stressed concrete, as
Introduction to Special Issue on Stability under Finite Deformation

Figure 1: On the left: Stabilizing a bridge span made of concrete by reinforcing it with steel rods put under tension. Once the span is put in place and subject to loads, the concrete is compressed everywhere. On the right: Destabilizing a ring by twisting a polyurethane rod before gluing its two ends together. For a large enough pre-twist, the ring folds unto itself in a eight-shape.

well as to finite pre-strains, such as those imposed on elastomers in bridge bearings and engine mountings. These studies have developed into a fundamental topic of mathematical modeling, because they are relevant not only to engineering problems, but also to many biological, biomedical, and biomechanical applications (DNA mechanics, cell stiffness, cellular structures, plant growth, microbial filaments, deformation of arteries and veins, skin wrinkling, etc.)

The discipline of elastic stability has a long and distinguished history, dating back at least to the works of Euler. For a comprehensive bibliography and an extensive treatment of most known problems, we refer for example to the textbook by (Bažant & Cedolin 2003). For this Introduction to the Special Issue on Stability under Finite Deformations, we chose to evoke three seminal papers which we believe qualify as pioneering works in this field, and yet seem to be little-known and forgotten (to the best of our knowledge). First, an 1829 article by Augustin-Louis (Cauchy 1829), which contains the first derivation of the equations of motion in a solid which is already in a state of stress. According to (Truesdell 1966), his ‘results were not understood and were reported obscurely or even incorrectly by nineteenth century expositors’. By the time (Lord Rayleigh 1906) modeled the Earth as a solid with initial stress, ‘Cauchy’s results had long been forgotten’, according to (Man & Lu 1987). Second, a most elegant four-page treatment of
the twisted elastic ring instability by John Henry (Michell 1889). According to
(Goriely 2006), this Australian applied mathematician cuts an ‘almost tragic fig-
ure’, whose work has only recently begun to be fully appreciated. In particular,
(Goriely 2006) found out that his result on ring instability has been rediscovered at
least three times in the 20th century. Finally, a 1940 article by the Belgian applied
mathematician, Maurice Biot (1905-1985). Although Biot is well remembered
for laying down the foundations of the theory of poro-elasticity, it is not so well
acknowledged that he can be credited with the modern derivation of the incre-
mental equations of non-linear elasticity (his results are beautifully synthesized
in his 1965 monograph, now out-of-print). In his 1940 article in the Journal of
Applied Physics, he gave a simple and direct exposition of the incremental equa-
tions of elastodynamics, and applied to the study of the influence of initial stress
on seismic waves...

References

Fracture, and Damage Theories. New York: Dover.

11, 522–530.

and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermo-
dynamic Foundations and Applications to Finite Strain. New York: John
Wiley

CAUCHY, A.-L. (1829) Sur l’équilibre et le mouvement intérieur des corps
considérés comme des masses continues, Ex. de Math. 4, 293–319;
reprinted, pp. 342-369 of Oeuvres Complètes d’Augustin Cauchy,
S. II, t. IX, Gauthier-Villars, Paris, 1891; freely available on-line at
http://mathdoc.emath.fr/cgi-bin/oetoc?id=OE_CAUCHY_2_9

GORIELY, A. (2006) Twisted elastic rings and the rediscoveries of Michell’s insta-
ibility. J. Elast. 84, 281-299.

MAN, C.-S. & LU, W.Y. (1987) Towards an acoustoelasitic theory for measure-
ment of residual stress, J. Elast., 17, 159–182.
REFERENCES
