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Gent models for the inflation
of spherical balloons∗

Robert Mangan, Michel Destrade

School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland Galway,

University Road, Galway, Ireland

Abstract

We revisit an iconic deformation of nonlinear elasticity: the infla-
tion of a rubber spherical thin shell. We use the 3-parameter Mooney
and Gent-Gent (GG) phenomenological models to explain the stretch-
strain curve of a typical inflation, as these two models cover a wide
spectrum of known models for rubber, including the Varga, Mooney-
Rivlin, one-term Ogden, Gent-Thomas and Gent models. We find that
the basic physics of inflation exclude the Varga, one-term Ogden and
Gent-Thomas models. We find the link between the exact solution
of nonlinear elasticity and the membrane and Young-Laplace theories
often used a priori in the literature. We compare the performance of
both models on fitting the data for experiments on rubber balloons
and animal bladder. We conclude that the GG model is the most ac-
curate and versatile model on offer for the modelling of rubber balloon
inflation.

keywords: spherical shells; membrane theory; rubber modelling; Gent model

1 Introduction

An early success of the modern theory of nonlinear elasticity, as initiated
by Ronald Rivlin in the 1950s, has been the satisfactory modelling of the
inflation of a spherical shell. As early as 1909, Osborne [1] noticed that

∗In memory of Alan Gent, with gratitude for all his inspiring papers
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rubber balloons and monkey bladders had a completely different mechanical
response to inflation. As is known to anyone who has blown up a rubber
party balloon, the initial inflation requires a strong effort, followed by an
easing of the pressure required to continue until a new stiffening regime is
entered, going all the way to rupture. In contrast, the pressure-radius graph
for balloons made of biological tissue (such as early footballs) has a J shape
corresponding to an ever increasing, monotonic, effort. Figure 1 reproduces
Osborne’s classic results (we digitised the graphs displayed in the original
1909 article).

For incompressible isotropic materials, inflation is a universal solution and
thus any strain energy density can be a candidate to model the behaviour
of a real blown-up material. In this paper we revisit some salient features
of this inhomogeneous solution. Starting from the exact solution of non-
linear elasticity for inflated finite thickness spherical shells, we recover and
justify rigorously some of the assumptions made sometimes a priori for thin
elastic membranes. For instance in linear elasticity it is often assumed that
the normal stress component in the membrane is small compared to the
circumferential stress components: here we show that when expanded, the
ratio of the former to the latter is of order one in the relative shell thickness
δ = B/A − 1, where A, B are the inner and outer initial radii, respectively.
Similarly, for modelling rubber balloons, it is often assumed that the Young-
Laplace equations for the equilibrium of bubbles should apply. Here we
provide a rigorous basis for making that assumption. These connections are
derived in Section 2, and then repeated in the Appendix for the case of
cylindrical shells.

Using the approximation for the radial stress, we then look for strain
energy densities which would give a reasonable fit of some classic data to
phenomenological models. Hence in Section 3 we evaluate the performance of
two 3-parameter models, which more or less cover the entire known spectrum
of stress-strain response for rubber-like materials, including the neo-Hookean,
Mooney-Rivlin, Varga, one-term Ogden, Gent-Thomas and Gent models. We
establish explicitly and/or numerically the limitations to be imposed on the
material parameters to predict reasonable physical behaviour.

2 Derivation of the pressure-stretch relation-

ship

Here we recall the exact equations governing the equilibrium of spherical
shells subject to hydrostatic pressure (see e.g., Ogden [2]) and then specialise
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(a) Inflation of a rubber balloon
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(b) Inflation of a monkey bladder

Figure 1: Pressure-radius curves, digitised from Osborne’s 1909 article [1]

them to the case of a thin membrane.
Consider a spherical shell made of an incompressible isotropic hyperelas-

tic material. Let X = X(R,Θ,Φ) and x = x(r, θ, φ) denote the position
of a material particle in the reference and current configurations, respec-
tively. The associated orthonormal bases are (E1,E2,E3) and (e1, e2, e3),
respectively. Suppose the shell is subject to a uniform internal pressure P
and assume it retains its spherical symmetry as it inflates. Then, for purely
radial deformations, the motion of a particle in the shell can be described by

r = r(R), θ = Θ, φ = Φ. (2.1)

From (2.1), we find that the deformation gradient, F = ∂x/∂X, is given by

F = diag(dr/dR, r/R, r/R), (2.2)

in the (ei⊗Ej) basis. The stretch is the ratio of the length of a line element
in the current configuration to the length of the corresponding line element
in the reference configuration. The principal stretches are the square roots
of the eigenvalues of the left Cauchy-Green tensor, B = FFT, and the prin-
cipal directions are along the corresponding eigenvectors. Here, the principal
stretches are thus

λ1 =
dr

dR
and λ2 = λ3 =

r

R
, (2.3)

and the corresponding principal directions are along e1, e2 and e3, respec-
tively. Here λ1 is the radial stretch and λ2 is the circumferential stretch.
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Using the incompressibility condition, det F = λ1λ2λ3 = 1, we have

dr

dR
=
R2

r2
. (2.4)

Letting A, B and a, b denote the inner radius and outer radius of the
shell in the reference and current configurations, respectively, and solving
(2.4) leads to

R3 − A3 = r3 − a3, R3 −B3 = r3 − b3, (2.5)

so that

1− λa3 =
R3

A3
(1− λ3) =

B3

A3
(1− λb3), (2.6)

where λ ≡ λ2 = r/R, λa = a/A and λb = b/B.
The Cauchy stress tensor, T, describes the state of stress in the deformed

material. Due to the symmetry of the problem, there are no shear stresses in
the (ei⊗ej) basis, so that the only non-zero components of the Cauchy stress
tensor T are t1 = T11 (radial stress) and t2 = T22 = T33 (hoop stress). These
are the principal stresses. Because the shell is made of an incompressible
isotropic hyperelastic material, they are given by [2]

t1 = λ1
∂W

∂λ1
− p, t2 = λ2

∂W

∂λ2
− p, (2.7)

where W = W (λ1, λ2, λ3) is the strain energy density function and p is a
Lagrange multiplier associated with the incompressibility constraint, det F =
1, to be determined from the boundary conditions.

In the absence of body forces, the equations for mechanical equilibrium
reduce to

div T = 0. (2.8)

Computing the divergence in spherical polar coordinates, we find that the
only non-trivial component of (2.8) is

dt1
dr

=
2

r
(t2 − t1). (2.9)

Next, we define the auxiliary function Ŵ (λ) = W (λ−2, λ, λ). Then we can
show that this equation is equivalent to [2]

dt1
dλ

=
Ŵ ′(λ)

1− λ3
. (2.10)
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We call P the inflation, i.e. the excess of the internal pressure over the
external pressure, so that the boundary conditions are t1(λa) = −P and
t1(λb) = 0. Integrating (2.10) and imposing the boundary conditions, we
find that

t1(λ) =

∫ λ

λb

Ŵ ′(s)

1− s3
ds and P =

∫ λb

λa

Ŵ ′(λ)

1− λ3
dλ, (2.11)

where s is a dummy variable. Now, introducing the thickness parameter
δ = (B − A)/A and noting from (2.6) that

λb = 1− 1− λ3a
(1 + δ)3

, (2.12)

we can expand P in powers of δ to find

P = δ
Ŵ ′(λ)

λ2
+

δ2

2λ4

[
λ3 − 2

λ
Ŵ ′(λ)− (λ3 − 1)Ŵ ′′(λ)

]
+O(δ3), (2.13)

where λ = λa[1 +O(δ)]. Hence, for thin shells, P can be approximated by

P = δ
Ŵ ′(λ)

λ2
. (2.14)

Similarly, we can also approximate P/t2 for thin shells. First we note
from (2.9) and (2.11) that t2 is given by

t2(λ) =
λ

2
Ŵ ′(λ) +

∫ λ

λb

Ŵ ′(s)

1− s3
ds. (2.15)

Then expanding P/t2 to first order in δ, leads to the following approximation:

P

t2
=

2

λ3
δ +O(δ2) = 2

(
A

a

)3

δ +O(δ2), (2.16)

showing how the normal stress component is small compared to the circum-
ferential stress components. This connection is universal and depends only
on the geometrical dimensions of the shell. Clearly, as the shell inflates, the
hoop stress will be much greater than the internal pressure.

Noting that t2 is equal to the wall tension T divided by the deformed
thickness (B−A)λ1, we can also recover from (2.16) the classical membrane
relation

T =
Pr

2
, (2.17)

where r = a[1+O(δ)]. This relation has often been used a priori to model the
inflation of spherical membranes including rubber balloons [3] and biological
soft tissues such as veinous and arterial aneurysms [4]. As noted by Müller
and Strehlow [5], this is directly related to the Young-Laplace law for bubbles
of fluid with surface tension.

5



3 Pressure-stretch curves

By choosing a constitutive model through W , we can use the expression
(2.14) to plot the pressure-stretch curves for a thin shell subject to inflation.

In this paper we compare the performance of two 3-parameter phenomeno-
logical models of hyperelasticity. The first model, arguably the first such
model ever, was proposed by Mooney [6] in 1940, as

WM = C1(λ
n
1 + λn2 + λn3 − 3) + C2(λ

n
1λ

n
2 + λn2λ

n
3 + λn3λ

n
1 − 3), (3.1)

where C1 > 0, C2 > 0, n > 0. Its initial shear modulus can be computed
from the general formula [7]: µ = W̃ ′′(1)/4 where W̃ (λ) = W (λ−1, λ, 1),
as µM = (C1 + C2)n

2/2. It covers three popular 2-parameter models for
rubber: the Varga [8, 9] model when n = 1, the Mooney-Rivlin model when
n = 2 and the one-term Ogden model [2] when c2 = 0. The second model
is more recent: the so-called Gent-Gent (GG) Model proposed by Pucci and
Saccomandi [10] in 2002. Its strain energy function reads as

WGG = −c1Jmln

(
1− λ21 + λ22 + λ23 − 3

Jm

)
+ c2ln

(
λ21λ

2
2 + λ22λ

2
3 + λ23λ

2
1

3

)
,

(3.2)
where c1 > 0, c2 > 0, Jm > 0, with initial shear modulus µGG = 2(c1 +
c2/3), independent of Jm. This model relies on the concept of limited chain
extensibility and the constant Jm acts as a stiffening parameter: in particular
an equi-biaxial deformation such as spherical inflation is limited to the range
0 < λ < λm where λm is the real root to the bicubic λ−4 +2λ2 = 3+Jm. The
GG model has been used very successfully to model the behaviour of rubber-
like materials [11]. It covers two popular 2-parameter models for rubber, both
due to Gent (hence its name): the Gent-Thomas model [12] when Jm → ∞
and the Gent model [13] when c2 = 0.

At first we model the pressure-stretch behaviour for an inflated rubber
balloon and we leave aside for the time being the data of Osborne [1] for
a monkey bladder subject to inflation. In the case of rubber, the pressure-
stretch curve quickly reaches a maximum in pressure (a limit-point instabil-
ity) and then it begins to decrease. This behaviour reflects our own experi-
ence with inflating toy balloons and is shown by Osborne’s data, see Figure
1(a). However, when we keep inflating a balloon it eventually becomes harder
to stretch further and the pressure increases rapidly again, until bursting
point. Hence the pressure-stretch curve should have a maximum, followed
by a minimum, or in other words, it should have two ascending branches
[5]. In practice, the pressure reaches a maximum, and then the stretch may
suddenly ‘jump’ to a larger value on the second ascending branch: this is the
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so-called inflation-jump instability (Osborne’s data unfortunately stop be-
fore that point). In conclusion, we must limit the range of the parameters in
the model to accommodate the constraints of limit-point and inflation-jump
instabilities, as dictated by the physics of inflation.

Now we examine the theoretical pressure-stretch curves for the Mooney
material, when W = WM. We call PM a scaled, non-dimensional measure of
the pressure and find, using (2.14), that here

PM ≡
P

C1δ
= 2n

[
λn−3 − λ−2n−3 +

C2

C1

(λ2n−3 − λ−n−3)
]
. (3.3)

We use this equation to plot several pressure-stretch curves, for the n = 1
(Varga), n = 2 (Mooney-Rivlin) and n = 3 models, and for several values of
C2/C1, see Figure 2.

PV

P
MR

P3

Figure 2: Pressure-stretch curve for the inflation of a Mooney balloon. For
the n = 1 (Varga), n = 2 (Mooney-Rivlin) and n = 3 cases, the material
parameter C2/C1 takes the values 0.0, 0.1, 0.2, 0.3, as indicated by the ar-
rows. Only the Mooney-Rivlin material (centre) can display both limit-point
instability and inflation-point instability (see dashed horizontal line when
C2/C1 = 0.1).

We see that for n = 1 and n = 3 the pressure-stretch curves never exhibit
an inflation jump and thus those models must be discarded in the modelling
of real rubber balloons. The Varga model has a limit-point instability for all
values of C2/C1; the curve for the model n = 3 exhibits asymptotic behaviour
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for C2/C1 = 0 and is otherwise strictly increasing. We now explain why out
of these three examples only the curve for the n = 2 Mooney-Rivlin material
has two ascending branches.

To calculate the critical value (C2/C1)cr of the material parameter C2/C1

at which the first maximum in the curve ceases to exist, we simply need to
determine the stationary point of inflection, by solving the equations

dP

dλ
= 0,

d2P

dλ2
= 0. (3.4)

We find two roots for λcr, the critical value of λ, but only one of them is real,
and is given by

λcr =

[
9− 7n2 − 3n

√
5n2 − 9

(2n− 3)(n− 3)

] 1
3n

. (3.5)

This expression is only well defined when

3

2
< n < 3. (3.6)

Similarly, the corresponding critical value (C2/C1)cr is only well-defined for
n in the same range. Its general expression is

(C2/C1)cr =
(−2n− 3)

(
−7n2−3n

√
5n2−9+9

2n2−9n+9

)−1/3
− (n− 3)

(
−7n2−3n

√
5n2−9+9

2n2−9n+9

)2/3
(2n− 3)

(
−7n2−3n

√
5n2−9+9

2n2−9n+9

)
+ n+ 3

.

(3.7)
Within that range of possible values for n, PM →∞ as λ→∞, ensuring

the second ascending branch of the plot. This range explain why the cases
n = 1, 3 must be disqualified for the modelling of rubber balloons. Also, the
possibility (C2/C1)cr = 0 is excluded from that range, which rules out the
one-term Ogden material [14]. As a check, we compute these expressions for
the Mooney-Rivlin case n = 2, and recover the values of Goriely et al. [14]:

λcr = (19+6
√

11)1/6 ' 1.84073, (C2/C1)cr =
2
√

11− 3

5(19 + 6
√

11)1/3
' 0.21446.

(3.8)
This last quantity explains why the first three curves C2/C1 = 0.0, 0.1, 0.2
for n = 2 in Figure 2 have a limit-point instability, but the fourth one at
C2/C1 = 0.3 doesn’t.

Next, we investigate the behaviour of two special cases of the GG model.
We begin with the Gent-Thomas model [12], obtained when Jm →∞, as

ŴGT(λ) = c1

(
1

λ4
+ 2λ2 − 3

)
+ c2ln

(
2

3λ2
+
λ4

3

)
, (3.9)
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and where the corresponding scaled pressure is

PGT =
P

c1δ
= 4(λ−1 − λ−7) + 4

c2
c1

(λ6 − 1)

λ3(λ6 + 2)
. (3.10)

We plot the pressure-stretch curves in Figure 3 for various values of c2/c1. We
see that it always exhibits a limit-point instability. These curves illustrate
the expected theoretical behaviour, because solving the condition for a local
maximum (3.4) gives λcr ' 1.182 and (c2/c1)cr = −1.999. But this latter
value is incompatible with basic physics as it would lead to internal buckling
due to loss of ellipticity (it is a simple exercise [15] to show that strong
ellipticity for the Gent-Thomas model is equivalent to c1 > 0, c2 > 0). Hence
for all physical ratios c2/c1, the Gent-Thomas model leads to a limit-point
instability. However, its pressure clearly behaves as λ−1 as λ→∞ so that it
can never model a second ascending branch and must thus be discarded as
a potential model for rubber balloons.

Finally we consider the Gent model [13], which is the GG model in the
case where c2 = 0. We find that the scaled pressure is

PG ≡
P

c1δ
= 4

(λ−1 − λ−7)Jm
(Jm + 3− λ−4 − 2λ2)

, (3.11)

in agreement with Gent [16]. Due to the singularity at λm, there will always
be an ascending branch of the curve as λ increases. Solving the equations
(3.4), we find that there is a limit-point instability as long as Jm > (Jm)cr,
allowing for the modelling of rubber balloons; In the range 0 < Jm < (Jm)cr,
the curve has a monotonic increasing behaviour, more appropriate for the
modelling of the monkey bladder, see Figure 3 for examples. We find that
the critical values of the stiffening parameter and the corresponding critical
stretch are [14]

λcr = (10 +
√

93)1/6 ' 1.6426,

(Jm)cr =
9

49
(32 +

√
93)(10 +

√
93)1/3− ' 17.638, (3.12)

respectively.

4 Curve fitting

Here we look at fitting experimental pressure-stretch data for the inflation
of a balloon to the theoretical pressure-stretch model (2.14) for the Mooney
(3.3) and the GG (3.2) strain energy density functions.

9



P
GT

PG

Figure 3: Left: Pressure-stretch curves for the inflation of a Gent-Thomas
material, for the material parameters c2/c1 = 0.0, 0.3, 0.6, 1.0 (increasing val-
ues indicated by the arrow); Right: Pressure-stretch curves for the inflation
of a Gent material, for the stiffening parameters Jm = 90.0, 60.0, 40.0, 15.0
(decreasing values indicated by the arrow).

For the inflation of rubber balloons, we favour the data from Merritt and
Weinhaus [17] over that of Osborne, because it records the second ascending
branch. We use their Figure 1, digitised using the Datathief [18] program. It
consists of 14 data points. The initial radius of the balloon is given as 1.9173
cm. Because the exact thickness of the balloon used in the experiment is not
known, we take it to be that of a typical rubber balloon, 0.5 mm, so that
δ ' 0.0261. Using the non-linear least-squares fitting routine implemented
in Maple [19], we find the values of the best-fit parameters, as listed in Table
1. In Figure 4, we plot the resulting pressure-stretch curves for both models.
In passing we note that the routine used here minimises the absolute error
over the whole range of recorded stretches but that another approach, based
for instance on minimising the relative error [11], could have been adopted.

We see that although the two curves behave similarly in the first ascending
branch (they have almost the same initial shear modulus: µM ' 5.5, µGG '
5.8 kPa), the GG model performs notably better than the Mooney model
at moderate to large stretches, and is able to capture perfectly the early
rise of the second ascending branch. Its stiffening parameter Jm ' 53.3 is
compatible with other experiments on rubber [13] and indicates a limiting
stretch λm ' 5.3. The stiffening parameter of the Mooney model is n ' 1.97,
really close to the Mooney-Rivlin model; although it is able to capture the
qualitative behaviour of an inflated rubber balloon, it cannot give a good
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quantitative agreement.
From the point of view of the goodness of fit, using 3-parameter models

over 2-parameter models proved to have very little advantage, and we found
(not shown here) that the Gent model (c2 ≡ 0) and the Mooney-Rivlin model
(n ≡ 2) gave almost as good fits as the GG and the Mooney models, respec-
tively. Using the software package R [20], we verified that the p-values for c1
and Jm are practically zero indicating that these parameters are very signif-
icant, while the p-value for c2 is 0.3371 which suggests that this parameter
is not significant and that the Gent model (with c2 = 0) is sufficient. The
same conclusion can be reached for the Mooney model as compared to the
Mooney-Rivlin model (where n = 2). However, we must recall that from
a physical point of view, the dependence of W on the second strain invari-
ant I2 = λ21λ

2
2 + λ22λ

2
3 + λ23λ

2
1 is crucial to model the behaviour of rubber in

modes of deformation other than inflation, see Ogden et al.[11] and Horgan
and Smayda [21]. The conclusion is that the GG model gives the best fit-
ting compared to the other models for the modelling of rubber in spherical
inflation.

Model Parameters

Mooney C1 = 26.76 kPa C2 = 1731 Pa n = 1.968
Gent-Gent c1 = 27.65 kPa c2 = 3851 Pa Jm = 53.33
Mooney C1 = 2065 Pa C2 = 74.44 Pa n = 5.03
Gent-Gent c1 = 31.32 kPa c2 = 0 Pa Jm = 8.127

Table 1: Best-fit parameters for the fitting of the Mooney and GG models to
the pressure-stretch curves for the inflation of a rubber balloon [17] (second
and third rows) and a monkey bladder [1] (fourth and fifth rows).

Finally, for completeness, we look at fitting Osborne’s experimental data
[1] for the inflation of a monkey bladder. Unlike the rubber balloon, the
pressure-stretch curve has no maximum in the case of the monkey bladder,
and exhibits instead a monotonic increasing response. Osborne’s data was re-
covered by scanning his Figure 10 and digitising the curve using the Datathief
[18] program. The initial radius is given as 1.3347 cm, and we take the initial
thickness to be 2 mm so that δ ' 0.15. Here we find that the Mooney model
with n ' 5 gives the best fit, while the GG model is not able to find a best
set of parameters when the constraint c2 > 0 is enforced. It has to settle for
the Gent model instead (c2 = 0) and gives a poor fitting in the moderate
stretch range. We refer to Figure 4 and Table 1 for more detail. However, it
must be kept in mind that Osborne’s data starts with a non-zero pressure,
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and that it is thus not possible to locate precisely what should be the ini-
tial point at λ = 1. Also, as noted by Osborne, the bladder tissue exhibits
“complex aeolotropism” due to the presence of “a web of elastic fibres with a
variable amount of inextensible white fibres intermixed”. It follows that this
strong anisotropy must be taken into account when modelling the inflation
of bladder and that the limit of the assumptions made in this paper have
been reached.

P

P

M

GG

P
M

P
G

Figure 4: Fitted pressure-stretch curves using the Mooney (‘PM’) and the
Gent-Gent (‘PGG’) models for the inflation of a rubber balloon (left) and a
monkey bladder. Blue Curve: experimental data from [17] and [1].
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A Inflation and extension of a cylinder

Here we establish the pressure-stretch relationship for a cylindrical shell made
of an incompressible istotropic hyperelastic material, subject to internal pres-
sure P and constant axial stretch λ3. The derivation is very similar to that
of Section 2, see also Ogden [2].

Let X = X(R,Θ, Z) and x = x(r, θ, z) denote the position of a mate-
rial particle in the reference and current configurations, respectively. The
associated orthonormal bases are (E1,E2,E3) and (e1, e2, e3), respectively.
Assuming the shell retains its cylindrical symmetry under deformation, the
motion of a particle in the shell can be described by

r = r(R), θ = Θ, z = λ3Z, (A.1)

so that the deformation gradient, F = ∂x/∂X, is

F = diag(dr/dR, r/R, λ3), (A.2)

in the (ei ⊗ Ej) basis. Hence, the principal stretches are λ1 = dr/dR (ra-
dial stretch), λ2 = r/R (circumferential stretch) and λ3 = constant (axial
stretch). From the incompressibility condition, det F = 1, we have

dr

dR
= λ−13

R

r
. (A.3)

Letting A, B and a, b denote the inner radius and outer radius of the shell
in the reference and current configurations, respectively, and solving (A.3)
leads to

λ−13 (R2 − A2) = r2 − a2, λ−13 (R2 −B2) = r2 − b2, (A.4)

so that

λ−13 − λa2 =
R2

A2
(λ−13 − λ2) =

B2

A2
(λ−13 − λb2), (A.5)
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where λ ≡ λ2 = r/R, λa = a/A and λb = b/B.
Due to the symmetry of the problem, the only non-zero components of

the Cauchy stress tensor T are t1 = T11(radial stress), t2 = T22 (hoop stress)
and t3 = T33 (axial stress). From the equilibrium equation, div T = 0, we
have

dt1
dr

=
1

r
(t2 − t1), (A.6)

where t1 = λ1∂W/∂λ1−p, t2 = λ2∂W/∂λ2−p, and p is a Lagrange multiplier
due by the constraint of incompressibility. Next, introducing the auxiliary
function Ŵ (λ, λ3) = W (λ−1λ−13 , λ, λ3) and using the chain rule, we find

∂Ŵ

∂λ
= λ−1(t2 − t1). (A.7)

Hence, according to (A.6), we have

dt1
dr

=
dλ

dr

dt1
dλ

=
λ

r

∂Ŵ

∂λ
. (A.8)

Because λ = r/R and R =
√
λ3A2 + λ3r2 − a2, we find that

dλ

dr
=

1

R
(1− λ2λ3). (A.9)

Hence, from (A.8) and (A.9), we deduce the expression

dt1
dλ

=
∂Ŵ

∂λ

1

1− λ2λ3
. (A.10)

Integrating (A.10) and imposing the boundary conditions t1(λa) = −P and
t1(λb) = 0, we find that

t1(λ) =

∫ λ

λb

1

1− s2λ3
∂Ŵ

∂s
ds and P =

∫ λb

λa

1

1− λ2λ3
∂Ŵ

∂λ
dλ, (A.11)

where s is a dummy variable. Expanding P in the thickness parameter
δ = (B − A)/A leads to

P =
1

λλ3

∂Ŵ

∂λ
δ − 1

2λ3λ23

[
λ3λ3

∂2Ŵ

∂λ2
− λ∂

2Ŵ

∂λ2
+
∂Ŵ

∂λ

]
δ2 +O(δ3), (A.12)

where λ = λa[1 +O(δ)].
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Next we set λ3 = 1, so that the cylinder is deforming in the radial direction
only. Determining t2 using (A.6) and (A.11), and expanding P/t2 to first
order in δ leads to the following approximation for thin shells:

P

t2
=

1

λ2
δ. (A.13)

Because t2 is equal to the wall tension T divided by the deformed (B−A)λ1,
we can recover from (A.13) the classical membrane relation

T = Pr, (A.14)

where r = a[1 + O(δ)]. This is the pendant formula to (2.17) for cylinders
[4].
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