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ABSTRACT 

Neuronal cell death plays a role in many chronic neurodegenerative diseases with the loss of 

particular subsets of neurons. The loss of the neurons occurs during a period of many years 

which can make the mode(s) of cell death and the initiating factors difficult to determine. In 

vitro and in vivo models have proved invaluable in this regard, yielding insight into cell death 

pathways. This review describes the main mechanisms of neuronal cell death, particularly 

apoptosis, necrosis, excitotoxicity and autophagic cell death, and their role in 

neurodegenerative diseases such as ischemia, Alzheimer’s, Parkinson’s and Huntington’s 

diseases. Crosstalk between these death mechanisms is also discussed. The link between cell 

death and protein mishandling, including misfolded proteins, impairment of protein 

degradation, protein aggregation is described and finally, some pro-survival strategies are 

discussed. 

Key words:  

Alzheimer’s disease (AD); Apoptosis; Autophagic cell death (ACD); Autophagy; 

Endoplasmic reticulum (ER) stress; Excitotoxicity; Heat shock proteins (Hsps); Huntington’s 

disease (HD); Ischemia; Parkinson’s disease (PD); Protein aggregation; Ubiquitin-

proteasome system (UPS); Unfolded protein response (UPR) 
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Introduction: neurodegeneration in disease 

Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), 

Huntington’s disease (HD) and ischemia, are characterised by the loss or dysfunction of 

particular groups of neurons. Neuronal dysfunction may not necessarily be the result of 

neuronal cell death. It can be caused by synaptic loss, impairment of long term potentiation 

(LTP) or disruption of neuronal signalling as a result of disease pathology. These events 

often precede neuronal cell loss in chronic neurodegenerative diseases [1]. Aging is a factor 

in these diseases, suggesting that accumulation of neuronal stresses over time causes cell 

death. However, during normal aging there is relatively little neuronal loss, which is in 

contrast to a high degree of neuronal death in neurodegenerative diseases [2]. This review 

will focus on mechanisms of cell death in neurons and will attempt to bring together some 

common themes around protein handling that may help to shed light on the causes of 

neuronal cell death in neurodegenerative diseases. The underlying genetic basis of some 

neurodegenerative diseases such as familial AD, familial PD and HD has helped greatly in 

furthering our understanding of what causes neuronal cell death in these diseases and the type 

of cell death that is induced.  

 

Mechanisms of cell death in neuronal cells 

Although it is recognized that neurons die in neurodegenerative diseases, the mode of cell 

death is often unclear. There are a number of recognized ways in which neuronal cells can 

die, including apoptosis, necrosis, autophagic cell death and excitotoxicity. Other forms of 

cell death such as oncosis and paraptosis have not been studied much in neurons, and a role 

for these modes of cell death in neurodegenerative diseases is not known, largely because of 

the lack of specific markers [1].  

Necrosis 

Necrosis is an acute form of cell death. It is characterised by loss of ATP, dissipation of ion 

gradients, cell swelling and ultimately cell lysis (Fig. 1A). Necrosis thus causes inflammation 
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in the surrounding region due to release of cell contents into the environment. Necrotic cell 

death is usually caused by severe cellular stress, e.g., by high levels of toxins. Necrosis is not 

a programmed form of cell death in that there is no identifiable biochemical pathway, and 

once initiated, this form of cell death does not offer much potential for therapeutic 

intervention since it tends to be acute in nature.  

Apoptosis 

Apoptosis was originally defined as ‘shrinkage necrosis’, exhibiting condensed and 

fragmented nuclei in shrunken cells. In contrast to necrosis, apoptosis is characterised by 

maintenance of cellular ATP and the initiation of a biochemical pathway leading to cell 

shrinkage, budding off of apoptotic bodies and phagocytosis of these cell particles. There is 

no associated cell lysis or inflammation. Biochemically, apoptosis is associated with the 

activation of caspase proteases that exist in a functional hierarchy of initiator and 

downstream effector caspases (Fig. 1B). Effector caspases cleave a wide variety of protein 

substrates to cause the degradation and demise of the cell [3]. There are at least two well-

characterised ways in which caspase activation is initiated in mammalian cells. These are the 

intrinsic (or mitochondrial) pathway and the extrinsic (or death receptor) pathway.  

In the intrinsic pathway, caspase activation is triggered by the release of cytochrome c from 

the mitochondria into the cytosol, where it plays an essential role in the formation of a 

multimeric caspase activation complex called the apoptosome [4, 5]. Specifically, cytosolic 

cytochrome c interacts with Apaf-1 which, in the presence of dATP, leads to clustering and 

autoactivation of initiator caspase-9 [4, 6]. Active caspase-9 causes cleavage and activation 

of downstream effector caspases, such as caspase-3. This occurs in response to several 

apoptotic stimuli including neurotoxins such as colchicine, glutamate, 6-hydroxydopamine 

[7-9]. It should be noted that other pro-apoptotic factors such as Smac/Diablo, apoptosis-

inducing factor (AIF) and Omi/Htra2 are also released from the mitochondria during 

apoptosis [10]. One of these, AIF can induce chromatin condensation without caspase 

activation (Fig. 1C) and in fact, apoptotic nuclear morphology in neuronal cells is not always 

associated with caspase activity [11, 12]. In the extrinsic pathway, ligand binding of death 

receptors (e.g., Fas, TNF-receptor, TRAIL receptors) leads to trimerization of these receptors 

and the formation of an intracellular multiprotein complex. The initiator caspases-8 or -10 are 
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part of this complex, and proximity-induced autoactivation leads to their cleavage and full 

activation (Fig. 1B) [13].  

Apoptosis can be regulated at various points in the pathway. Mitochondrial integrity, and 

thus the intrinsic pathway, is regulated by the Bcl-2 family, which includes both pro- (e.g., 

Bax, Bak) and anti-apoptotic (e.g., Bcl-2, Bcl-xL) members, which either promote or inhibit 

release of pro-apoptotic factors into the cytosol (Fig. 1B) [14-16]. Downstream of the release 

of cytochrome c, caspase activation and activity are regulated by the inhibitor of apoptosis 

protein (IAP) family of proteins [17].  

Excitotoxicity 

Particular to neuronal cells is death by excitotoxicity which is toxicity caused by excessive 

stimulation of the NMDA subtype of glutamate receptors. This form of neuronal cell death 

occurs as a result of ATP depletion that occurs during ischemia. The loss of ATP causes 

general depolarization of neurons, thus stimulating neurotransmitter release, and impairing 

ATP-dependent neurotransmitter re-uptake systems. Since glutamate is the most abundant 

excitatory neurotransmitter in the brain, this leads to overexcitation of NMDA receptors (Fig. 

1C). These ligand-gated ion channels allow influx of Ca2+. Cytosolic Ca2+ is then sequestered 

by the mitochondria and by the endoplasmic reticulum (ER). If excessive, this can cause ER 

stress and/or mitochondrial permeability transition [18]. It is open to discussion, however, 

whether excitotoxicity can really be considered a separate form of cell death, as it is linked to 

activation of both apoptosis and necrosis (Fig. 1C). For example, in vitro evidence shows that 

glutamate can cause both early necrosis and delayed apoptosis in neurons [19].  

Autophagic cell death 

The word autophagy comes from the Greek meaning ‘self-eating’. It is primarily a 

mechanism by which organelles, protein aggregates and some proteins are degraded by the 

cell (see section below on autophagy). It may also be a pathway to cell death termed 

autophagic cell death (ACD), which is thought to due to excessive autophagy (Fig. 1D) [20]. 

ACD has a distinct morphology, including organelle swelling, vacuolation of the cytoplasm 

and membrane disruptions leading to local inflammation [21]. Although autophagy is 

generally associated with conditions of starvation, where it plays a pro-survival role in 

providing amino acids and other building blocks of cellular macromolecules, markers of 
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autophagy have been observed during cell death. ACD has mainly been associated with 

developmental cell death, where massive autophagy causes irreversible cellular atrophy, 

leading to cell death of large numbers of cells [22]. Recently induction of cell death that is 

dependent on autophagy (Atg) genes, such as Atg7 or Beclin1 has been reported [23, 24].  

Crosstalk between different cell death mechanisms 

Many cell death stimuli can induce more than one mode of cell death depending on the 

conditions, such as the severity of the stress, duration of the stress, the underlying ‘health’ of 

the cell, particularly with regard to redox levels and mitochondrial integrity. Some 

researchers have proposed that there is a continuum of cell death mechanisms in ischemic 

and excitotoxic death, with apoptosis and necrosis at opposite ends of a scale that 

incorporates cell death mechanisms featuring some but not all of the characteristics of 

apoptosis and necrosis [25-27]. Notably, certain neurotoxins, such as glutamate which 

induces excitotoxicity, and 6-hydroxydopamine which is a Parkinson’s mimetic, can induce 

both apoptosis and necrosis in vitro [8, 19]. The mode of death induced by glutamate has 

been shown to depend on mitochondrial transmembrane potential (ΔΨm) [19, 28]. The ΔΨm 

controls three interrelated mitochondrial functions of relevance to neuronal survival: namely, 

ATP synthesis, Ca2+ accumulation, and superoxide generation [29]. During exposure of 

cerebellar granule cells to glutamate, both ΔΨm and ATP levels decline rapidly (Fig. 1C) 

[19]. In those neurons with irreversibly dissipated ΔΨm, necrosis rapidly ensues, while the 

surviving population recover both ΔΨm and energy levels and subsequently undergo delayed 

apoptosis [19]. Since many of the cytoplasmic and nuclear changes observed during 

apoptosis require energy in the form of ATP, the ability of mitochondria to generate 

sufficient ATP may be one important factor that directs neurons towards necrosis or 

apoptosis [19, 30] , such that if ATP levels are at least partially maintained, the cell is capable 

of undergoing apoptosis and if ATP levels fall profoundly, necrotic killing ensues [31]. This 

is supported by the observation that while treatment of cerebellar granule cells with 

glutamate induces delayed apoptosis, treatment with a combination of glutamate and the 

irreversible mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) 

results in necrosis [19].  

There is also mounting evidence of crosstalk between apoptosis, autophagy and ACD. 

Inhibition of caspases induces cell death that is dependent on the autophagy genes Atg7 and 
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Beclin 1 (also known as Atg6) [23]. Conversely, inhibition of autophagy can trigger apoptosis 

[32]. At a basic level autophagic digestion of injured mitochondria may also help to ensure 

that only healthy mitochondria endure within cells. The intrinsic pathway of apoptosis 

requires the presence of Bax/Bak, but the mode of cell death switches to ACD in the absence 

of Bax/Bak [33]. Similarly, in apoptosis-deficient cells that lack Bax and Bak, prolonged 

stress to the ER results in cell death that resembles necrosis and is associated with autophagy 

[34]. Inhibition of autophagy with 3-methyladenine or Atg5 knockdown in these cells 

promoted survival, which suggests that in apoptosis-competent cells autophagy has a pro-

survival function, while in apoptosis-deficient cells autophagy is part of the cell death 

process, i.e., ACD [34].  

During recent years, details of the molecular mechanisms that mediate crosstalk between 

different cell death mechanisms are beginning to be elucidated. One group of molecules that 

play a role at the intersection of apoptosis, autophagy and ACD is the Bcl-2 family. The best 

understood function of Bcl-2 proteins is in the regulation of apoptosis through control of the 

release of pro-apoptotic factors from mitochondria. Recently, Bcl-2 has been shown to also 

inhibit autophagy [32, 35] and ACD [36]. It has been suggested that the anti-autophagy 

function of Bcl-2 may help maintain autophagy at levels that are compatible with cell 

survival, rather than cell death [35]. However, the effect of Bcl-2 on autophagy is 

controversial as it has also been reported to sensitize cells to autophagy and permit autophagy 

to develop through inhibition of apoptosis [33, 37]. Bcl-2 inhibition of autophagy is mediated 

through its interaction with Beclin 1 [35]. Beclin 1 was the first identified mammalian 

autophagy gene product and plays an essential role in autophagosome formation [38]. 

However, it was originally identified in a screen for Bcl-2-interacting proteins [39]. Recently, 

Beclin 1 has been shown to be a novel BH3-only protein and to interact with a number of 

anti-apoptotic Bcl-2 family members including Bcl-2, Bcl-xL, Bcl-w and Mcl-1 [40-43]. 

Thus, one possible scenario is that a Bcl-2:Beclin 1rheostat acts as a switch between 

autophagy and apoptosis.  

The autophagy gene product, Atg5, is another protein having roles in both autophagy and 

apoptosis. Atg5 is involved in the early stages of autophagosome formation [44]. Atg5 has 

been reported to interact with FADD (Fas-associated protein with death domain), mediating 

interferon-γ-induced cell death [45]. Atg5-mediated cell death, but not vacuole formation, 

was blocked in FADD-deficient cells [45]. In contrast, inhibition of autophagy with 3-
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methyladenine or expression of an Atg5 mutant blocks both cell death and vacuole formation 

[45]. A more recent study shows that calpain-mediated cleavage of Atg5 produces a truncated 

form of Atg5 that can translocate from the cytosol to mitochondria, associate with Bcl-xL and 

trigger cytochrome c release [46]. Thus, truncated Atg5 may promotes apoptosis by acting in 

a manner reminiscent of some BH3-only proteins that inactivate anti-apoptotic Bcl-2 proteins 

and permit Bax/Bak-mediated cytochrome c release [47]. Since Ca2+ influx is a major factor 

in excitotoxicity it will be particularly interesting to observe the role, if any, of truncated 

Atg5 in excitotoxic neuronal cell death. One might speculate that calpain-mediated cleavage 

of Atg5 during excitotoxicity diverts cytoprotective autophagy and promotes cell death. 

However, calpains have also been shown to inactivate caspases and in this way, convert 

apoptotic death to necrotic death [48]. Therefore, it is difficult to predict whether apoptosis or 

necrosis would be the outcome of calpain-mediated cleavage of Atg5 and caspases within the 

same neuron. It is likely that mitochondrial outer membrane permeabilisation (even perhaps 

involving truncated Atg5) permits the release of pro-apoptotic factors such as AIF which 

induces nuclear condensation. This scenario would support the suggested continuum model 

of cell death patterns (Fig. 1C) and the experimental observation of neurons that exhibit 

characteristics of both apoptosis (condensed nuclei) and necrosis (cell lysis, lack of caspase 

activity) [11, 26, 27].  

Increasingly, we are learning that there are compensatory cell death pathways that are 

induced if one route to cell death is blocked. Research in this area is gathering momentum, 

particularly with regard to crosstalk between apoptosis and autophagy (Fig. 2). In addition to 

the Bcl-2 family, Beclin 1 and Atg5 there continue to be new proteins identified that 

participate in both apoptosis and ACD, e.g., the novel transmembrane protein TMEM166 

[49]. The current models suggest that apoptosis and autophagy may be mutually exclusive 

pathways, which would further suggest that apoptosis and ACD are also mutually exclusive. 

This idea is supported by the accumulating evidence such as the effect of Bcl-2:Beclin 1 

interaction and calpain-mediated cleavage of Atg5 . However, at least one study has reported 

the accumulation of autophagic vacuoles preceding apoptotic cell death [50]. Is this 

indicating that there is also a continuum of death patterns between apoptosis and ACD? It 

will be interesting during the coming years to learn the role, if any, of crosstalk between 

different cell death pathways in neurodegenerative diseases. 
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Mechanisms of neuronal cell death in neurodegenerative disease: the evidence 

There is growing evidence from post-mortem patient tissue describing the modes of cell 

death observed in neurodegenerative diseases. Such evidence has been difficult to 

accumulate, partly due to the protracted nature of most neurodegenerative diseases, such that 

only a tiny proportion of the whole cell population are in the process of dying at any one 

time. Since cell death occurs over many years, the snap-shot representation obtained from 

such samples can only reveal cells that have recently died. Usually these tissues are 

representative of the end-stage of the disease, far-removed in time from when we would 

ideally like to be treating such patients to attempt to prevent neuronal cell death. Often the 

dying/dead cells display mixed signals and defy classification into distinct patterns of cell 

death. Another difficulty with patient samples is that markers used for different modes of cell 

death can be overlapping, non-specific, and therefore, prone to misinterpretation. For 

example, terminal transferase dUTP nick-end labeling (TUNEL staining) has been used as a 

marker of apoptosis in human brain tissue. However, TUNEL can also label necrotic cells 

[51]. Therefore, it is imperative that the correct criteria are used to monitor different modes of 

cell death. Usually more than one characteristic feature of the type of cell death should be 

considered. TUNEL staining needs to be combined with others, e.g., ultrastructural analysis 

of nuclear morphology, or demonstration of activated or cleaved caspases, such as caspase-3 

or -8, using specific antibodies for the identification of apoptosis [52]. Although criteria for 

the identification of autophagy have recently been published, and markers for autophagy have 

been identified in different neurodegenerative diseases [53], it is not yet possible to be certain 

that these are indicative of the occurrence of ACD. 

Much evidence regarding mechanisms of cell death in neurodegenerative diseases comes 

from models, either in vitro cell culture systems or in vivo models of the disease. These use 

acute toxin exposure and/or genetic mutations found in disease and have contributed much to 

promote the view that apoptosis and other forms of cell death play important roles in 

neuronal cell death in neurodegenerative diseases. However, models are limited since they 

tend to examine the effect of just one toxin or one gene on cell death, and they generally 

involve acute exposure to insults, which may not be relevant to the protracted degeneration 

observed in patients. Nevertheless, they have greatly increased our knowledge of the 

biochemical mechanisms of neuronal cell death in neurodegenerative diseases. In the 
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following section, some of the major neurodegenerative diseases and the link to neuronal cell 

death mechanisms are described. 

Alzheimer’s disease 

AD is the most common neurodegenerative disease. It is clinically characterized by 

progressive memory loss and cognitive dysfunction, resulting in severe dementia. The 

pathology of AD includes the loss of medium and large pyramidal neurons from hippocampal 

regions [54-56] and the presence of extracellular placques containing amyloid filaments and 

intracellular neurofibrillary tangles composed of hyperphosphorylated tau [57]. Familial AD 

is caused by mutations in amyloid precursor protein or presenilin-1 or –2. Presenilins play a 

crucial role in γ-secretase activity, which is responsible for proteolytic processing of amyloid 

precursor protein, producing the β-amyloid peptide [58]. AD mutations lead to altered 

processing that is accompanied by increased production of a slightly larger peptide, β-

amyloid-42, which is prone to oligomerization, forming fibrils and placques [59]. It is 

uncertain what leads to neuronal cell death in AD. 

Studies of post-mortem brain tissue indicate that neuronal apoptosis occurs in AD [60]. 

Active caspases have been detected in post-mortem tissue from AD brains [61-63]. However, 

this has been disputed by others who report no apoptotic morphology in Alzheimer's disease 

cases [64]. In vitro models show that β-amyloid can induce apoptosis [65, 66]. Presenilin 

mutations sensitize neurons to induction of apoptosis and to excitotoxicity [67, 68]. In fact, it 

has been suggested that accumulation of β-amyloid leads to increased sensitivity to 

excitotoxicity in AD [69] and excessive activation of NMDA receptors has been specifically 

linked to β-amyloid-induced degeneration in a rat model [70]. It has also been suggested that 

excitotoxicity might have a more important role in later stages of AD [71]. Although 

autophagy has been linked to models of AD, there is no evidence that this is part of a cell 

death pathway [72]. 

Parkinson’s disease 

PD is the second most common neurodegenerative disease, mainly affecting people over 55 

years. Pathologically it is characterised by the degeneration of dopaminergic neurons in the 

substantia nigra pars compacta and the presence of eosinophilic intracytoplasmic inclusions 

(Lewy bodies) within the surviving neurons. This leads to dopamine depletion in the striatum 
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which is the direct cause of the clinical features of bradykinesia, resting tremor and rigidity. 

The clinical symptoms of PD become evident when there is a loss of about 50-60% of the 

dopaminergic neurons within the substantia nigra. Thus, PD is a good example of a 

neurodegenerative disease where neuronal cell loss is directly responsible for the clinical 

features observed. The cause of PD is most probably multifactorial, with genetic 

predisposition, environmental toxins and aging being important factors in disease initiation 

and progression for both hereditary and sporadic PD. To date, mutations in at least 13 PARK 

genes have been linked to the pathogenesis of familial PD [73]. These include mutations in 

genes that encode the proteins α-synuclein, parkin, PTEN-induced kinase 1 (PINK1), DJ-1, 

leucine-rich repeat kinase2 (LRRK2) and ubiquitin carboxy-terminal hydrolase L1 (UCHL1) 

[73]. Of these, parkin and UCHL1 are linked to the ubiquitin-proteasome system (UPS) that 

degrades damaged or misfolded proteins [74]. In addition, several of these genes, including 

parkin, PINK1, DJ-1 and Omi/Htra2 are linked to the mitochondria, and may have roles in 

mitochondrial function and resistance to oxidative stress [75]. The molecular mechanisms 

that initiate dopaminergic neuron loss in PD are not known. Evidence from various sources 

suggest a role for toxin-induced death, oxidative stress, defects in mitochondrial complex I, 

protein aggregation and impairment of the UPS [76-78]. 

The presence of apoptotic chromatin clumps along with TUNEL staining in neuromelanin-

containing cells in the substantia nigra PD post-mortem tissue suggests that apoptotic cell 

death contributes to neuronal loss in PD [79-82]. However, others have been unable to 

confirm these findings [83, 84]. Activated caspase-3 has also been observed in these cells 

[81]. There is also evidence for a role for the extrinsic apoptotic pathway in post-mortem 

studies of PD brain. These are related to the increased levels of TNFα, soluble Fas and the 

Fas adaptor protein FADD in the midbrain of PD patients [85-87]. Importantly, increased 

active caspase-8 has been detected in neuromelanin-containing substantia nigra neurons in 

PD brains [88, 89]. In vitro models of PD using the Parkinson mimetics MPP+ (1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine) and 6-hydroxydopamine have reported both apoptosis and 

necrosis [8, 90-92]. The pesticide rotenone induces caspase-3-mediated apoptosis in ventral 

mesencephalic dopaminergic neurons [93]. Inducible expression of mutant α-synuclein 

decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis 

[94]. Targeted overexpression of α-synuclein in the nigrostriatal system has provided a new 

animal model of Parkinson's disease [95]. In this model there is selective degeneration of 

nigral dopamine neurons with activation of caspase-9 [96]. Some early studies proposed a 
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role for excitotoxicity in PD although subsequent research has not supported this hypothesis 

[97, 98]. However, there may be a role for ACD in PD. Ultrastructural examination revealed 

autophagosome-like structures in melanized neurons of the substantia nigra in PD patients 

[99-101]. It has been reported that the neuromelanin granules in catecholaminergic neurons 

of the substantia nigra are delimited by double membranes, and may in fact be 

autophagosomes sequestering dopamine and metabolites to protect the cell from their lethal 

accumulation in the cytosol [101]. In support of these findings, dopamine and MPP+ have 

been shown to induce ACD in human neuroblastoma cells [102, 103].  

Huntington’s disease 

HD is one of a number of trinucleotide repeat disorders. It is caused by a dominantly-

inherited expansion of a translated CAG repeat in the N-terminus of the huntingtin protein. 

The length of the CAG expansion inversely correlates with age of onset of disease symptoms 

[104]. The main clinical symptom is the occurrence of generalized involuntary movements, 

which is a consequence of the selective loss of the medium spiny neurons in the neostriatum 

[104, 105]. The disease pathology is characterised by the presence of nuclear inclusions 

containing mutant huntingtin [106]. Neuronal cell death in HD may be linked to the 

accumulation of toxic mutated huntingtin fragments since expansion of the huntingtin CAG 

repeat above 35 results in neuronal cell death [107-109]. Although a number of interacting 

proteins have been identified, the physiological role of huntingtin is not known.  

Caspases have been shown to be activated in HD brains [110, 111]. Interestingly, huntingtin 

itself is a substrate for caspases, generating truncated fragments containing the polyglutamine 

tract that may be toxic [112-114]. Excitotoxicity has been suggested to play a role in the 

pathogenesis of HD. The medium spiny neurons that are lost in HD are innervated by 

glutamate-releasing neurons from the cortex, and they selectively degenerate upon 

administration of glutamate receptor agonists into the rat striatum [115]. Postmortem analysis 

of early stage HD patient brains indicates increased levels of the NMDA receptor agonist, 

quinolinic acid, and its precursor 3-hydroxy-kynurenine, suggesting that it may act as an 

endogenous excitotoxin in HD [116]. Moreover, expression of mutant huntingtin is related to 

alterations in glutamate neurotransmission, including decreased glutamate uptake, altered 

trafficking and functionality of glutamate receptors [117]. Cultured medium spiny neurons 

from transgenic mice expressing different mutations in huntingtin are more sensitive to 
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excitotoxic damage [118], although, in vivo experiments have produced conflicting results 

[119, 120]. However, a direct link between mutant huntingtin expression and excitotoxicity 

in HD patients has not been shown. Autophagy is stimulated by huntingtin, but it is not 

known if this is related to ACD [121]. Paradoxically, certain mutant forms of huntingtin can 

protect neurons from cell death [122]. 

Ischemia 

Ischemia, or stroke, is an acute condition caused by an interruption in blood supply, leading 

to localized deprivation of oxygen, glucose, and trophic support in the brain. Since neurons 

are reliant on a constant supply of oxygen and glucose to generate ATP, the loss of ATP 

during ischemia causes rapid dissipation of ion gradients, leading to uptake of water and cell 

swelling, lysis and cell death.  

Ischemia is characterized by acute neuronal cell death and delayed death that occurs many 

days after the initial insult [123, 124]. The initial phase of cell death is necrotic and the 

delayed death is apoptotic. Neuronal cell death at the ischemic core tends to be necrotic, 

while in the penumbra region it is apoptotic, suggesting that the severity of the insult 

determines the mode of cell death [123, 124]. Both phases of cell death can be blocked by 

antagonism of NMDA receptors [125]. This cell death is excitotoxic and thus shares the same 

characteristics in terms of a continuum of necrosis and apoptosis being induced [25, 26]. 

Upregulation of Beclin 1 is observed in the ischemic penumbra, along with and subcellular 

redistribution of the autophagic marker LC3 to vacuolic structures in ischemic neurons 

indicating that autophagy is induced during ischemia [126-128]. However, ACD has not been 

conclusively shown. 

 

Recurring themes around protein mishandling in neurodegenerative diseases 

Key to the prevention and treatment of neurodegenerative diseases is an understanding of the 

mechanisms that trigger neuronal cell death. Notably, different neurodegenerative diseases, 

with different causes, genetic mutations, different patterns of neuronal death, often display a 

number of common features which include ER stress, oxidative stress, mitochondrial 

dysfunction, impairment of the proteasome and protein aggregation. These changes are often 

interrelated, causing disruption of normal neuronal function and eventually leading to cell 
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death. The picture is further complicated by the fact that neurons mount pro-survival 

responses to protect themselves from these detrimental, disease-related changes. Therefore, 

neurons in the final stages of their demise often present a complex picture reflecting a 

struggle between pro-death factors and pro-survival responses, and teasing out the sequence 

of events can be a challenge. Here we will discuss neurodegenerative diseases with relation 

to problems in protein handling. 

Protein homeostasis in cells is a balance between protein synthesis and protein degradation. 

Disruption of this equilibrium leads to problems of accumulation and aggregation of excess 

or misfolded proteins. Many neurodegenerative diseases including AD, PD and HD are 

characterised by the accumulation and aggregation of misfolded proteins. Misfolding and/or 

aggregation of proteins can be the result of problems during synthesis due to impairment of 

the synthesis/folding machinery, or mutations in the sequence of the protein causing incorrect 

folding or a tendency to aggregate. Proteins can also become unfolded at some point during 

their life cycle, or undergo abnormal cleavage generating proteins that cannot fold properly 

or have a tendancy to aggregate. Similarly, mutations in proteins such as proteases can cause 

the inappropriate accumulation of proteins that cannot be processed further. In addition, 

proteasome impairment can render a cell unable to degrade misfolded proteins efficiently, 

thus compounding the problem. 

Endoplasmic reticulum stress, the unfolded protein response and ER stress-induced cell 

death 

The ER is the site of synthesis and folding of secreted, membrane-bound and some organelle-

targeted proteins. It also acts as a major store for intracellular Ca2+. The protein folding 

capacity of the ER is highly sensitive to alterations in cellular ATP levels, Ca2+ levels, and 

the redox state of the cell, all of which result in the accumulation and aggregation of unfolded 

proteins, a condition referred to as ER stress [129]. In response cells mount the unfolded 

protein response (UPR) [129]. In mammalian cells, this is a three-pronged protective strategy 

resulting in halt of general protein synthesis to reduce the backlog of proteins, induction of 

Grp78 and Grp94 chaperone proteins to aid folding of proteins already in the system, and 

ER-associated degradation to remove proteins that cannot be refolded by the ER. This 

concerted cellular response is mediated through three ER transmembrane receptors: 

pancreatic ER kinase (PERK), activating transcription factor-6 (ATF6) and inositol-requiring 
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enzyme 1 (Ire1) [130]. In resting cells, all three ER stress receptors are maintained in an 

inactive state through their association with the ER chaperone, Grp78. On accumulation of 

unfolded proteins, Grp78 dissociates from the three receptors, which leads to their activation 

and triggers the UPR. 

Although UPR activation is primarily a protective response by the cell, if the stress is 

unresolved, prolonged activation of the UPR may trigger cell death [129]. In fact, in recent 

years, a third apoptosis pathway has been proposed, whereby endoplasmic reticulum (ER) 

stress leads to direct activation of initiator caspase-12 which is located at the ER [131]. 

However, since full length caspase-12 is not expressed in the majority of humans, and since 

many reports demonstrate that mitochondrial release of cytochrome c, apoptosome formation 

and activation of caspase-9 are required for ER stress-induced apoptosis, it is likely that this 

death occurs via the intrinsic pathway [132-134]. For example, we and others have recently 

shown that ER stress-induced apoptosis requires upregulation of the Bcl-2 family member 

Bim which further implicates a requirement for the mitochondrial pathway [133, 135]. The 

details of how UPR signalling is switched from pro-survival to pro-death is unclear and is a 

subject of much research, reviewed in [129]. Induction of the transcription factor, CHOP, has 

been shown to be required for ER stress-induced apoptosis [136]. Recently, the attenuation of 

IRE1 activity by persistent ER stress has been identified as a potential switch [137]. If this is 

involved in neuronal cell death in neurodegenerative diseases that exhibit ER stress, it 

suggests the exciting possibility of altering disease pathogenesis by manipulating the UPR.  

ER stress is linked to the pathogenesis of several different chronic neurodegenerative 

disorders, where UPR markers are seen to be upregulated. For example, markers of UPR 

activation (phosphorylated PERK and Grp78) are increased in AD brains [138]. These 

changes were seen in normal-appearing neurons, suggesting a role for the UPR early in AD 

neurodegeneration. Furthermore, presenilin-1 and –2 reside in the ER, and AD mutations 

appear to impair the ER stress response and enhance vulnerability to stress-induced apoptosis 

[67, 68]. It has also been suggested that presenilin-1 mutations may deregulate endoplasmic 

reticulum Ca2+ stores [139]. Immunoreactivity for phosphorlyated PERK and phosphorylated 

eIF2α has also been detected in neuromelanin-containing dopaminergic neurons in the 

substantia nigra of PD cases [140]. The phospho-PERK immunoreactivity was colocalized 

with increased α-synuclein immunoreactivity in dopaminergic neurons [140]. In vitro models 

using two Parkinson’s disease mimetic compounds, 6-hydroxydopamine and MPP+, trigger 
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ER stress in dopaminergic neurons [141, 142]. Furthermore, neuronal cultures from PERK 

knockout mice, display an increased sensitivity to 6-hydroxydopamine [142], while a null 

mutation in CHOP results in a reduction in 6-hydroxydopamine-induced apoptosis in vivo 

[143]. However, protection was not observed in the chronic MPTP model, despite robust 

expression of CHOP [143]. In trinucleotide repeat disorders such as HD, the intracellular 

accumulation of polyglutamine triggers ER stress by inhibiting protein degradation and has 

been linked to the induction of neuronal cell death by N-terminal mutant huntingtin [144-

146]. ER stress is also a factor in neuronal cell death during ischemia, with upregulation of 

CHOP [147, 148].  

Protein degradation: the ubiquitin-proteasome system and autophagy 

Misfolded or unwanted proteins are degraded within the cell via two pathways. The 

ubiquitin-proteasome system (UPS) is the main degradatory pathway for the majority of 

intracellular proteins. This system is linked to ER stress responses since ER-associated 

degradation feeds proteins into the UPS for degradation. Secondly, autophagy is used by the 

cell to eliminate unwanted or damaged organelles via lysosomal degradation and can also be 

used for degradation of proteins.  

Ubiquitin-proteasome system 

The UPS involves conjugation of ubiquitin to target substrates, followed by destruction of the 

tagged protein by the 26S proteasome system [149]. Conjugation of ubiquitin to proteins 

involves a series of enzyme reactions. Ubiquitin-activating enzyme E1 generates a high-

energy intermediate, E1-ubiquitin. Next, E2 enzymes transfer ubiquitin from E1 to E3 ligase 

that is bound to specific substrates, to which it ligates activated ubiquitin [149]. Cells usually 

contain just one E1, a few E2 and many E3s, the latter of which are specific for just a small 

number of substrates. Tagged proteins are then degraded into peptides by the proteasome, a 

barrel-shaped, multiprotein, proteolytic complex.  

Alterations in the UPS have been connected to several neurodegenerative diseases [150, 151]. 

Proteasome inhibition leads to the intracellular accumulation of ubiquitinated proteins and 

causes cell death [152, 153]. The accumulation of ubiquitin conjugates is often found in 

protein aggregates, which include the neurofibrillary tangles of AD, Lewy bodies in PD and 

nuclear inclusions in HD [154, 155]. It is likely that accumulation of ubiquitin conjugates 
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reflects failed attempts by the UPS to remove the damaged/abnormal proteins that have been 

tagged for destruction (Fig. 3). This could be caused by malfunction or overload of the UPS, 

or from structural changes in specific protein substrates, halting their degradation.  

Proteasome activity is impaired in AD [156]. In the brains of some AD patients a mutated 

ubiquitin with an extra 20 amino acids at its C-terminus has been observed [157]. This 

mutated ubiquitin forms polyubiquitin chains that cannot be disassembled and potently 

inhibit proteasomal degradation of proteins to which they are attached [158]. UPS 

impairment may also play a role in PD. The PD-associated gene parkin is an E3 ligase, 

involved in the addition of ubiquitin chains to a select number of protein substrates [159, 

160]. It is frequently mutated in early onset PD with loss of ligase function and a reduction in 

degradation of target proteins [159, 161, 162]. One target of parkin is Pael-R (Parkin-

associated endothelin receptor-like receptor) and loss of parkin function results in 

accumulation of Pael-R, ER stress and neuronal cell death [163, 164]. Conversely, 

overexpression of parkin suppresses ER stress-induced cell death [164]. Parkin is abundantly 

expressed within mesencephalic dopaminergic neurons which may explain part of their 

selective vulnerability [159]. Another mutated-in-PD gene, UCH-L1, was originally 

characterized as a deubiquitinating enzyme [165]. However, it has also been found to act as a 

ubiquitin ligase [166] and a mono-ubiquitin stabilizer [167]. Discovery of these mutations in 

genes linked to UPS function has led to the hypothesis that some PD mutations cause 

aberrant accumulation of substrates that may be toxic [168]. In addition, reports that α-

synuclein is degraded through the proteasome led to the idea that abnormalities in UPS-

mediated degradation of α-synuclein underlie PD [169-171]. Systemic administration of 

proteasome inhibitors produces pathological features that are similar to those found in 

Parkinson’s disease [172, 173]. However, some groups have been unable to reproduce these 

results [174]. The intracellular accumulation of polyglutamine in HD inhibits protein 

degradation and has been linked to the induction of neuronal cell death by N-terminal mutant 

huntingtin [144-146]. 

Autophagy 

Autophagy mediates the intracellular degradation of organelles and protein complexes that 

are too big to pass through the narrow pore of the proteasome. It is normally associated with 

nutrient and growth factor deprivation where it promotes cell survival through provision of 
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molecular building blocks [20]. However, it can also be induced by the presence of protein 

aggregates such as are found in neurodegenerative diseases (Fig. 3). Three types of 

autophagy have been described in mammalian cells: macroautophagy, microautophagy and 

chaperone-mediated autophagy (CMA) [175]. They all share the lysosome as a common 

endpoint, but differ in the substrates targeted, their regulation and the conditions under which 

they are preferentially activated. In macroautophagy, intracellular components are 

sequestered by a limiting membrane to form an autophagic vacuole, the autophagosome, that 

then fuses with lysosomes to degrade the contents [176]. In microautophagy, substrates are 

directly internalised through invaginations of the lysosomal membrane. CMA is specialised 

for the degradation of selective substrate proteins that contain a KFERQ (or similar) motif 

which is recognized by heat shock cognate protein, HSC70, which translocates the proteins 

into the lysosomes [177].  

Autophagy has been linked to different neurodegenerative diseases. However, it is unclear if 

this phenomenon is the result of increased autophagic activity, or decreased fusion of 

autophagosomes with lysosomes [178]. It has been reported that β-amyloid generation may 

occur in autophagic vacuoles [179]. Autophagy is also linked to PD [99, 101]. α-Synuclein is 

degraded by both CMA and the proteasome [180, 181]. Pathogenic α-synuclein mutations 

block CMA-mediated degradation of α-synuclein and of other substrates which may underlie 

the toxic gain-of-function of these mutants [181]. Increased autophagosomes are seen in HD 

[121], which may be linked to the processing of huntingtin fragments by autophagy [182]. 

Autophagic neuronal death may play a role in neonatal brain ischemia [127, 128].  

The presence of autophagosomes in neurons in neurodegenerative disorders has raised 

questions about whether they are contributing to neuronal cell death or protecting against it. 

Emerging evidence supports the view that induction of autophagy is a neuroprotective 

response and that inadequate or defective autophagy, rather than excessive autophagy, 

promotes neuronal cell death in most of these disorders. A cytoprotective role for autophagy 

by catabolising intracellular substrates for energy, and by removing damaged mitochondria 

and other factors that trigger apoptosis, is clear [183]. Autophagy also prevents toxic effects 

of misfolded or abnormal proteins by sequestering them inside autophagosomes delivering 

them to the lysosome for degradation [184]. This suggests that increased autophagy observed 

in neurodegenerative diseases may be linked to an increase in the levels of misfolded and 
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aggregated proteins, and/or to increased numbers of damaged mitochondria, both of which 

are associated with aging.  

Although the UPS and autophagy were thought to work in parallel, recent investigations 

suggest a functional link between the two. For example, proteasome inhibition activates 

autophagy and suppression of autophagy causes polyubiquitinated protein aggregates [185]. 

Toxicity due to proteasome inhibition can be rescued by autophagy induction [152, 186]. The 

obvious interpretation is that autophagy upregulation simply provides an alternative route for 

protein degradation when the UPS is impaired. However, it is also possible that by removing 

mitochondria from the cell autophagy induction reduces cellular susceptibility to subsequent 

apoptotic stimuli mediated by the mitochondrial pathway [32, 187]. 

Protein aggregation 

Proteins that are misfolded and escape degradation may be prone to aggregation. This occurs 

because misfolded proteins often expose hydrophobic surfaces that would normally be 

protected within the interior of the protein. This leads to abnormal protein-protein 

interactions and formation of intracellular inclusions [188]. The formation of intracellular 

inclusions may result from the build-up of high concentrations of proteins in the cell, and/or 

aberrant protein folding.  

Many neurodegenerative diseases are characterised by the presence of aggregated protein 

deposits, such as the extracellular amyloid plaques and intracellular neurofibrillary tangles 

found in AD, Lewy bodies found in most forms of PD, nuclear inclusions found in HD. 

Protein aggregates often contain high levels of ubiquitin, as well as of misfolded proteins. 

[154, 155]. The two most striking pathological features of AD are aggregated extracellular 

deposits of β-amyloid plaques and intracellular neurofibrillary tangles of 

hyperphosphorylated tau proteins. Both of these are caused by the misfolding and conversion 

of highly soluble proteins into insoluble, filamentous polymers. Mutations in the amyloid 

precursor protein in certain forms of familial AD lead to its aberrant cleavage by the γ-

secretase complex, resulting in the production of β-amyloid42 which is prone to aggregation 

and leads to formation of extracellular amyloid plaques. β-amyloid42 has been shown to 

induce apoptosis in neurons in culture, and to cause oxidative stress. In PD α-synuclein is 

recognized as a major component of Lewy bodies [189]. It has a tendency to form protein 

aggregates which is increased in mutant forms of the protein [190, 191]. 
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It is likely that the accumulation of protein aggregates is linked in some way to 

neurodegeneration. However, a direct link between aggregate formation and cell death has 

not been shown (Fig. 3). Protein aggregates may disrupt normal functioning of neurons, and 

this stress may lead to initiation of cell death. For example, protein aggregation can cause 

UPS impairment [145]. It has also been suggested that the accumulation of mutant protein 

into cellular aggregates may be neuroprotective, probably depending on the nature and the 

function of the protein in question. In this scenario intracellular protein deposits would 

become deleterious only after reaching a certain level within the cells.  

 

Towards pro-survival therapies for neurodegenerative diseases 

There is a large body of evidence linking impairment of protein handling with neuronal loss 

in neurodegenerative diseases. Model systems clearly demonstrate that neuronal cell death 

can be induced acutely by excessive ER stress, inhibition of the UPS, inhibition of autophagy 

or excessive autophagy. The protracted nature of many neurodegenerative diseases indicates 

that neurons can protect themselves from a certain amount of damage before there is severe 

disruption to function and viability. This suggests that the life or death of an individual 

neuron is dependent upon the overall burden of accumulated misfolded or aggregated 

proteins, balanced against the overall capacity of the cell to deal with this effectively and 

safely.  

Therapeutic approaches aimed at modulating the activity of protein degradation systems, the 

UPS and autophagy, are therefore of particular relevance to neurodegenerative disease. 

However, since the UPS has roles in synaptic activity and neuronal plasticity, proteasome-

modulating drugs could have deleterious effects in the nervous system [150, 192]. 

Macroautophagy-activating drugs such as rapamycin have been shown to increase clearance 

of aggregate-prone polyglutamine mutant proteins and mutant α-synuclein [193, 194]. In fact, 

in a transgenic HD mouse model, autophagy-enhancing drugs decrease aggregate formation 

and improved HD-associated behavioural tasks [193]. Thus, this class of drugs may prove 

particularly useful in promoting degradation of protein aggregates, and thus allowing 

improved neuronal function.  
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Neurons themselves mount protective responses to various stresses. Increases in chaperone 

proteins such as heat shock proteins (Hsps) are observed in the presence of misfolded 

proteins to help with refolding. In several neurodegenerative diseases there is evidence for 

increased expression of Hsps [195]. For example, focal cerebral ischaemia increases the 

levels of several classes of heat shock proteins and their corresponding mRNAs [196]. 

Notably, the inducibility of Hsps decreases with aging, which may contribute to the inability 

of aged neurons to fully protect themselves from stresses such as protein misfolding, 

aggregation and oxidative stress [197]. Hsps promote survival via several different 

mechanisms [198]. They aid in the refolding and/or degradation of misfolded proteins [199]. 

Hsp27 and Hsp70 can regulate apoptosis through their ability to inhibit release of pro-

apoptotic factors from the mitochondria and to interact with key components of the 

apoptosome [200-204]. The small Hsps, Hsp27 and αB-crystallin can also modulate 

intracellular redox potential and help maintain cytoskeletal integrity [198]. Hsps can promote 

survival in models of various neurodegenerative diseases [195]. Hsps reduce neuronal cell 

death in models of Parkinson’s disease. Heat shock (which leads to elevated expression of 

inducible Hsp27 and Hsp70) is protective in in vitro models of Parkinson’s disease [8, 90] 

while Hsp27 itself is protective against 6-hydroxydopamine-induced apoptosis in vitro [8]. 

Hsp27 but not Hsp70 is protective against α-synuclein-induced cell death in neuronal cells 

[205]. Viral vector-delivered Hsp70 is protective against MPTP toxicity in an in vivo model 

of Parkinson’s disease [206]. Hsp27 also protects against polyglutamine toxicity and 

suppresses the increase of reactive oxygen species caused by huntingtin [207], while Hsp70 

can alter the endosome-lysosomal localization of huntingtin [208]. Hsp70 overexpression is 

neuroprotective in a model of cerebral ischaemia [209]. 

Currently, available therapies for neurodegenerative diseases treat only the symptoms, but 

not the cause of the disease. As we understand more clearly the cause of these diseases, and 

improve diagnostic ability at pre-symptomatic and early stages, we may be able to develop 

therapies that slow or halt the underlying neurodegeneration. From a therapeutic point of 

view, the use of apoptosis inhibitors such as caspase inhibitors has failed to prevent 

neurodegeneration. Likely, the damage is too far advanced for inhibition of these late-stage 

participants to be effective and the cell will find another way to die, e.g., by necrosis. For 

example, recent clinical failures with apoptosis inhibitors in Parkinson's disease underscore 

the need for a shift in thinking with regard to drug discovery for neurodegenerative diseases 

[210]. Targeting the causes of cell death is the next major challenge in generating effective 
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therapies, and in this regard, strategies incorporating chaperones and/or protein degradation-

enhancing drugs may prove a worthwhile endeavour.  
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FIGURE LEGENDS 

Figure 1. Mechanisms of cell death. See text for details. A. Necrosis is characterised by loss 

of ATP which leads to cell lysis and release of cellular contents into the extracellular 

environment. B. Apoptosis induction involves different pathways leading to caspase 

activation. In the extrinsic pathway, ligand binding to death receptors (e.g., Fas) induces their 

trimerisation and recruitment of caspase-8 through death domain-containing adaptor proteins 

(e.g., FADD). This leads to auto-activation of caspase-8 which can directly activate effector 

caspases. Alternatively, in some cells Bid cleavage by caspase-8 is required for death. 

Truncated Bid translocates to the mitochondria and activates the intrinsic pathway. The 

intrinsic pathway is activated by toxins or conditions which cause stress to the mitochondria 

or endoplasmic reticulum (ER). Such stresses often alter the levels of, or cause post-

translational modification of, Bcl-2 family proteins, initiating the release of cytochrome c 

from the mitochondria. For example, ER stress upregulates the unfolded protein response 

(UPR) which increases expression of BimEL, a BH3-only protein that antagonises Bcl-2 and 

Bcl-xL, permitting Bax-mediated cytochrome c release. Once in the cytosol, cytochrome c 

stimulates formation of the apoptosome complex, leading to caspase-9 activation. Initiator 

caspases (e.g., caspase-8 and -9) are shown in yellow, downstream effector caspases (e.g., 

caspase-3) are shown in red. C. Excitotoxicity is caused by the influx of Ca2+ through the 

NMDA receptor. This can result in apoptosis, necrosis, or cell death that exhibits apoptotic 

nuclear morphology without caspase activation, suggesting a continuum of death patterns. D. 

Autophagic cell death may be due to excessive autophagic digestion, as a result of 

dysregulation of the pathway by unknown mechanisms. 

Figure 2. Crosstalk between apoptosis, autophagy and autophagic cell death. The 

schematic depicts some points of crosstalk between these pathways (see text for details). 

Figure 3. Protein metabolism in neurons. Misfolded proteins can occur as a result of 

mutations, oxidative damage, erroneous proteolysis or other post-translational modifications. 

These can be refolded by chaperones such as Hsps, or targeted for proteasomal degradation 

by the addition of ubiquitin (Ub). Impairment of UPS-mediated degradation can lead to 

formation of protein aggregates, which may be degraded via autophagy. The accumulation of 

misfolded proteins or protein aggregates leads to neuronal cell death by an unknown 

mechanism. 
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