<table>
<thead>
<tr>
<th>Title</th>
<th>Towards a Practical Emergent Knowledge Exploitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nováek, Vít</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2009</td>
</tr>
<tr>
<td>Publisher</td>
<td>AAAI Press</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://www.aaai.org/Press/Proceedings/ijcai09.php</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/545</td>
</tr>
</tbody>
</table>
Towards a Practical Emergent Knowledge Exploitation

Vít Nováček
Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway
IDA Business Park, Lower Dangan, Galway, Ireland
E-mail: FirstName.LastName@deri.org

1 Problem Description

My PhD is about researching novel means for representation and exploitation of emergent knowledge extracted from free text. The aim is to provide a more applicable alternative to state-of-the-art KR approaches that are rather insufficient in this context. The primary motivating use case is knowledge-based intelligent search in life science literature. Both lack and necessity of respective solutions have recently been confirmed by our discussions with medical practitioners. Their opinion seems to be shared by a broader community of publishers and researchers involved in the Elsevier Grand Challenge competition (cf. http://www.elseviergrandchallenge.com/). Thus, the thesis topic is much rather driven by the market pull than attempting for a technology push.

The problem addressed by the thesis has several aspects, as analysed in the remainder of this section. Large scale manual acquisition of knowledge that could be exposed to users of prospective “intelligent” systems is hardly possible. Therefore, (semi)automated solutions are considered as a way to go [Bechhofer and others, 2003]. One of the most prominent automated approaches is ontology learning from text [Maedche and Staab, 2004]. The automatically extracted emergent knowledge is dynamic, often explicitly vague, potentially inconsistent and incorrect, though [Haase and Völker, 2005]. This hampers its meaningful exploitation by the traditional, mostly brittle logics-based querying and inference frameworks [Bechhofer and others, 2003].

Approaches handling noisiness and uncertainty within traditional KR&R generalisations have been proposed – e.g., in [Straccia, 2006]. However, a practical, robust and general-purpose modelling covering the emergent knowledge is deemed hardly possible using the prevalent formal methods [Sheth et al., 2005]. Even if the noisiness of learned ontologies was remedied before applying traditional methods for their exploitation, the shallow structure of the ontologies does not allow for many non-trivial conclusions, anyway [Haase and Völker, 2005; Bechhofer and others, 2003].

Examining alternative inspirations, recent advances in neuroscience [Frith, 2007] show that the most robust inference engines we know of—people—do not actually use logical principles in order to cope with noisy and incomplete information efficiently. [Frith, 2007] and [Gentner et al., 2001] suggest that empirical similarity-based inference is more appropriate in practical settings involving noisy and uncertain data. The thesis essentially rests on applying these inspirations to a novel way of emergent knowledge representation and exploitation.

2 Solution Outline and Research Plan

Regarding syntax, the proposed knowledge representation de facto builds on a simple, standard and widely used triple model (cf. http://www.w3.org/TR/rdf-primer/). However, the subject-predicate-object statements are extended by heuristic positive or negative certainty measures and organised in so called conceptual matrices concisely representing every positive and negative relation of an entity to other entities. Soft empirical updates of the content are realised by fuzzy matrix aggregation operators. Metrics can be easily defined on the conceptual matrices, serving as a natural basis for gradual concept similarities [Nováček, 2009]. These are employed by light-weight inference services of two basic types: 1. retrieval of similar concepts (quite straightforward); 2. fixed-point rule-based materialisation of implicit relations, complex querying (similarity as a basis for soft variable unification and for approximate fixed-point computation). The inference algorithms have anytime behaviour and it is possible to programmatically adjust their completeness/efficiency trade-off.

The suggested solution supports precise legacy knowledge bases that can serve as seed models refining the automatically extracted noisy facts. Editing and querying interfaces with minimal learning requirements (i.e., close to natural language) are supposed to encourage involvement of domain experts in further emergent knowledge refinement. To facilitate user satisfaction, the results of queries on the emergent knowledge bases have to be sorted according to both absolute and query-specific relevance.

The tentative thesis title is Towards a Practical Emergent Knowledge Exploitation. It will contain—in line with the adopted research plan—the following material: (i) motivation, inspirations and comparison to the state-of-the-art; (ii) technical description of the solution; (iii) formal analysis of the implemented algorithms, their anytime behaviour and customisable completeness/efficiency trade-off; (iv) architecture of the respective research prototype and detailed description of its implementation; (v) extensive technical evaluation of the prototype’s precision/recall w.r.t. to a gold stan-
3 Progress to Date and Remaining Tasks

By mid 2008, I have firmly settled on my topic and started to elaborate the basic principles of the proposed emergent knowledge representation framework and inference services. In the end of 2008, I finished a proof-of-concept implementation of the proposed knowledge representation and basic inference services, called EUREEKA (a permuted acronym for Easy to Use Empirical Reasoning about Automatically Extracted Knowledge). Details on the framework, recent updates, promising preliminary results and related approaches are described in [Nováček, 2009; Nováček et al., 2009].

To outline the typical EUREEKA work-flow, the emergent knowledge processing makes use of a so called ACE pipeline (the pipeline can be executed even as ACE*, i.e., as a search for a global fixed point of the respective operations):

- A for addition – the extracted knowledge is incrementally added into a seed knowledge base (either empty, or initialised with a legacy ontology serving for soft emergent knowledge refinement)
- C for closure – after the addition batch, we compute the closure of the actual content using an approximate fixed-point evaluation of a domain rule-set
- E for extension – the extracted concepts are analogically extended by means of similar, yet richer targets in the knowledge base

The resulting knowledge base is exposed to users using a simple conjunctive query language with negation. The answer statements are sorted according to their relevance within the knowledge base – see [Nováček et al., 2009; Nováček, 2009] for details. Examples of queries and selected answers are as follows:

As of March 2009, EUREEKA has already been deployed as a crucial building block of CORAAL [Nováček et al., 2009], a knowledge-based life science literature search engine. CORAAL exposes (in real time) more than 15 millions of automatically extracted and inferred fuzzy statements coming from about 12,000 cancer research publications. The system has been internationally recognised as a recent finalist of the Elsevier Grand Challenge competition.

Several important tasks still remain to be accomplished, though. 1. Formal properties of the algorithms have to be properly analysed – especially the influence the parameters adjusting the convergence speed have on the completeness of the eventual result. 2. The “philosophical” and theoretical relationships between the implemented solution and current approaches to knowledge representation have to be investigated deeper for the thesis. 3. Both technical and user-based preliminary evaluation described in [Nováček, 2009] and [Nováček et al., 2009], respectively, have to be rigorously extended in line with the afore-mentioned research plan. Further work on dissemination of the recent and future results at appropriate venues is also needed in order to prove the thesis potential.

Acknowledgments The PhD work has been supported by the EU IST 6th framework’s projects ‘Knowledge Web’, ‘Nepomuk’ (FP6-507482, FP6-027705) and the ‘Lion’, ‘Lion II’ projects funded by Science Foundation Ireland (SFI/02/CE1/I131, SFI/08/CE/I1380).

References

