

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the published version when available.

Title	Metal concentrations in lime stabilised, thermally dried and anaerobically digested sewage sludges.	
Author(s)	Healy, Mark G.; Brennan, Raymond B.; Morrison, Liam	
Publication Date	2015-11-25 Healy, M.G., Fenton, O., Forrestal, P.J., Danaher, M., Brennan, R.B., Morrison, O (2016) 'Metal concentrations in lime stabilised, thermally dried and anaerobically digested sewage sludges'. Waste Management, 48 :404-408.	
Publication Information		
Publisher	Elsevier ScienceDirect	
Link to publisher's version	http://dx.doi.org/10.1016/j.wasman.2015.11.028	
Item record	http://hdl.handle.net/10379/5427	
DOI	http://dx.doi.org/10.1016/j.wasman.2015.11.028	

Downloaded 2024-04-26T17:05:26Z

Some rights reserved. For more information, please see the item record link above.

1	Published as: Healy, M.G., Fenton, O., Forrestal, P.J., Danaher, M., Brennan, R.B.,
2	Morrison, O 2016. Metal concentrations in lime stabilised, thermally dried and
3	anaerobically digested sewage sludges. Waste Management 48: 404-408.
4	dx.doi.org/10.1016/j.wasman.2015.11.028
5	
6	
7	METAL CONCENTRATIONS IN LIME STABILISED, THERMALLY DRIED AND
8	ANAEROBICALLY DIGESTED SEWAGE SLUDGES
9	
10	M.G. Healy ¹ , O. Fenton ² , P.J. Forrestal ² , M. Danaher ³ , R.B. Brennan ¹ , and L. Morrison ⁴ *
11	¹ Civil Engineering, National University of Ireland, Galway, Ireland.
12	² Teagasc Johnstown Castle Environment Research Centre, Co. Wexford, Ireland.
13	³ Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
14	⁴ Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National
15	University of Ireland, Galway, Ireland
16	
17	*Corresponding author. Tel: +353 91 493200; fax: +353 91 525005. E-mail address:
18	liam.morrison@nuigalway.ie
19	
20	Abstract
21	
22	Cognisant of the negative debate and public sentiment about the land application of treated
23	sewage sludges ('biosolids'), it is important to characterise such wastes beyond current
24	regulated parameters. Concerns may be warranted, as many priority metal pollutants may be
25	present in biosolids. This study represents the first time that extensive use was made of a
26	handheld X-ray fluorescence (XRF) analyzer to characterise metals in sludges, having

27	undergone treatment by thermal drying, lime stabilisation, or anaerobic digestion, in 16
28	wastewater treatment plants (WWTPs) in Ireland. The concentrations of metals, expressed as
29	mg kg ⁻¹ dry solids (DS), which are currently regulated in the European Union, ranged from
30	11 (cadmium, anaerobically digested (AD) biosolids) to 1273 mg kg ⁻¹ (zinc, AD biosolids),
31	and with the exception of lead in one WWTP (which had a concentration of $3,696 \text{ mg kg}^{-1}$),
32	all metals were within EU regulatory limits. Two potentially hazardous metals, antimony (Sb)
33	and tin (Sn), for which no legislation currently exists, were much higher than their baseline
34	concentrations in soils (17 to 20 mg Sb kg ⁻¹ and 23 to 55 mg Sn kg ⁻¹), meaning that
35	potentially large amounts of these elements may be applied to the soil without regulation.
36	This study recommends that the regulations governing the values for metal concentrations in
37	sludges for reuse in agriculture are extended to include Sb and Sn.
38	
39	Keywords: Treated sludge; biosolids; metals; land application.
40	
41	1. Introduction
42	
43	More than 10 million tonnes of sewage sludges were produced in the European Union (EU)
44	in 2010 (Eurostat, 2014). Legislation such as the Landfill Directive, 1999/31/EC (EC, 1999),
45	the Urban Wastewater Treatment Directive 91/271/EEC (EC 1991), the Waste Framework
46	Directive (2008/98/EC; EC 2008) and the Renewable Energy Directive (2009/28/EC; EC
47	2009), means that rather than incinerating it or sending it to landfill, there is an increased
48	emphasis on its reuse as a 'product'. Consequently, it is used in the production of energy
49	(Gikas, 2014), bio-plastics (Yan et al., 2008), construction materials (Jiang et al., 2011) and,
50	when appropriate treatment is applied, as an agricultural fertiliser (Koutroubas et al., 2014).
51	

52 There are considerable public acceptance issues around the re-use of treated municipal sludge 53 ('biosolids') as fertiliser (LeBlanc et al., 2008) and, depending on the part of the world, 54 legislation regarding its reuse as such, differs (Milieu et al. 2013a,b,c). Moreover, in some 55 countries such as Belgium (Brussels and Flanders), Switzerland and Romania, the use of 56 biosolids in agriculture is prohibited (Milieu et al. 2013a,b,c). While concerns over the 57 presence of persistent organic pollutants and emerging contaminants, such as 58 pharmaceuticals, have been expressed (Clarke and Cummins, 2014), the presence of toxic 59 metals in sludge, due to the mixing of industrial wastewater with sewage, means that the 60 application of metal-contaminated sludge may cause the contamination of soil and water 61 (Cornu et al., 2001) and accumulation of metals in the food chain (Kidd et al., 2007; Latare et 62 al., 2014). In an attempt to address these concerns, guidance values concerning the maximum 63 allowable concentration of certain metals in biosolids (Table 1) are in place in countries 64 where the reuse of biosolids on land is permitted. The level of exceedance in wastewater 65 treatment plants (WWTPs) is therefore of interest.

66

67 The application of biosolids to agricultural land is governed by various legislation (e.g. in 68 Europe by EU Directive 86/278/EEC (EEC, 1986); in the US by 40 CFR Part 503 (US EPA, 69 1993)). These require that sewage sludge undergoes biological, chemical or heat treatment, 70 long-term storage, or any other process to reduce the potential for health hazards associated 71 with its use. In the EU, land application of biosolids is typically based on its nutrient and 72 metal content, although individual member states often have more stringent limits than 73 governing directives (LeBlanc et al., 2008; EC, 2010; Milieu et al., 2013a,b,c). Guidelines 74 govern the maximum rate of nutrients and metals (e.g. Fehily Timoney and Company, 1999), 75 although as the metal content is normally low relative to the nutrient content of biosolids, 76 application rates are frequently determined by the nutrient content of the biosolids and not

77	their metal content (Lucid et al., 2013). As soil acidification may increase the solubility of
78	metals (Antoniadis et al., 2008), there is a potential risk of metal accumulation in the soil
79	(Álvarez et al., 2002; Mamindy-Pajany et al., 2014), in plants (Latare et al., 2014), or of
80	transport to groundwater, particularly if added in excess (McBride et al., 1999). In countries
81	such as the USA, where in the majority of states biosolids are applied to land based on the
82	nitrogen (N) requirement of the crop being grown and not on a soil-based test (McDonald and
83	Wall 2011), excessive metal accumulation in soil and plants (Wen et al., 2014), or losses in
84	surface and subsurface waters (Oun et al., 2014), may potentially occur.

86 Laboratory and field studies have demonstrated that the addition of biosolids to land as a 87 fertiliser replacement has several beneficial effects (Monera et al., 2002; Latare et al., 2014). 88 They provide nutrients and micronutrients (e.g. zinc (Zn), copper (Cu), cobalt (Co)) required 89 for plant and crop growth, and can be used as an aid in the development of a soil's physical 90 and chemical characteristics. Latare et al. (2014) found that applications of biosolids to land at rates ranging from 10 to 40 tonnes ha^{-1} increased the grain yield of rice by up to 40% and 91 92 increased the available nutrient content of the soil in comparison to equivalent doses of 93 fertilizers. However, the metal content of both the plants (cadmium (Cd)) and soil (Zn) also 94 increased in comparison to the regular fertiliser. Similar results have been found by other 95 researchers (McBride et al., 1999; Stietiya and Wang, 2011).

96

97 Due to the increasing awareness regarding potential risks to the environment and human 98 health, the application of sewage sludge, following treatment, to land as a fertilizer in 99 agricultural systems has come under increased scrutiny. This is mainly a perception issue by 100 the food production sector, which is driven by the belief that best practices for sludge 101 treatment are not being followed (EPA, 2014b). As metals are likely to remain in the soil

102	indefinitely, the characterisation of biosolids prior to land application is important. The aim
103	of this study was to: (1) examine if the metal content of biosolids from high population
104	equivalent (PE) WWTPs in Ireland exceeded permitted limit values and (2) establish a
105	baseline for unregulated metals – potential pollutants of which little is known and from which
106	other global studies may be compared. To our knowledge, this is the first time that extensive
107	use was made of a handheld X-ray fluorescence (XRF) analyser to carry out analysis on
108	biosolids.
109	
110	1.1 Study context in Ireland
111	
112	In Ireland there were 541 urban areas, with PEs ranging up to 2.3 million, that received either
113	preliminary, primary, secondary, or secondary treatment and nutrient reduction in 2012
114	(EPA, 2014a). In 2012, approximately 94% of the national wastewater load received at least
115	secondary treatment, and the WWTPs produced sewage sludge with a total load of 72,429
116	tonnes (dry solids, DS), of which 94.3% was diverted to agriculture, 5.7% was diverted to
117	composting and other uses, and <0.01% was sent to landfill (EPA, 2014a). Of the treatment
118	processes currently in use in Ireland (anaerobic and aerobic digestion, composting, thermal
119	drying), lime stabilisation remains the most popular, due to the relatively small amount of
120	costs involved (EPA, 2014b).
121	
122	2. Materials and Methods
123	

124 2.1 Sample collection and preparation

126	Biosolids were collected from 16 WWTPs or agglomerations, with PEs ranging up to
127	approximately 2.3 million (Table 2). Selection of the WWTPs was predicated on willingness
128	to participate in this monitoring study and geographical location (a good geographical spread
129	was desirable). None of the plants selected had a history of persistent failures in meeting
130	water discharge standards (EPA, 2014a). Of the WWTPs examined, most received landfill
131	leachate in low quantities (no greater than 2% of the total BOD loading on the WWTP),
132	while others received industrial, commercial and domestic/septic tank sludge comprising up
133	to 30% of the total influent BOD loading on the WWTP (Table 2). Eight discrete samples
134	(n=8) of 100 g were collected in clean LDPE containers (Fisher, UK) from each WWTP and
135	stored at -20°C prior to analysis. The biosolids samples were freeze dried (Freezone 12,
136	Labconco, Kansas City, USA) at -50 °C and pulverised in an agate ball mill (Fritsch TM
137	Pulverisette 6 Panetary Mono Mill) with a rotational speed of 500 rpm for 5 min (repeated
138	three times) using an 80 ml agate vial and balls (Ø 10 mm).
139	
140	2.2 Elemental determination
141	
142	A handheld X-ray fluorescence (XRF) analyser (DELTA Series 4000, Olympus INNOV-X,
143	Woburn, MA, USA) in the laboratory (mounted in an integrated bench-top workstation and
144	interfaced with a PC) in soil environmental mode was employed to determine metal (Cd,
145	chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), molybdenum (Mo), nickel (Ni), lead
146	(Pb), antimony (Sb), selenium (Se), tin (Sn), and Zn) concentrations. This portable XRF
147	system consists of a powerful X-ray tube (4 W, Au anode) and a 30 cm ² Silicon Drift
148	Detector (SDD). An internal instrument standardisation was performed using an alloy chip
149	(aligns the Fe and Mo peaks on the spectrum to compensate for temperature drift) and sewage
150	sludge certified reference materials (Trace Metals - Sewage Sludge 2 CRM029, Sewage

151	Sludge 3 CRM031 and Sewage Sludge 4 CRM055, Sigma-Aldrich RTC, Inc., USA) were
152	used for calibration/verification of the P-XRF to matrix match the 'unknown sewage sludge
153	samples' as closely as possible in order to eliminate matrix effect from the P-XRF analysis.
154	Calibration using the Certified Reference Materials (CRMs) was achieved by plotting the
155	XRF data against certified data and inserting a linear trend line to determine the linearity of
156	the calibration (which is used to calculate the factor and offset required to correct the data
157	within the instrument). An aliquot of the homogenised biosolids (approximately 5 g) was
158	packed into polyethylene XRF sample cups and covered with a 4 μ m Prolene sample support
159	window (Chemplex® Industries Inc., USA). Metal concentrations were detected
160	simultaneously and the operating parameters included a measurement time of 180 s at beam
161	currents of up to 200 μA (maximum voltage of 40 kv and energy resolution of 150 eV). The
162	software uses a compton normalisation algorithm to determine mg kg ⁻¹ concentrations of
163	elements by correlation of the X-Ray tube parameters and the intensity and energy seen by
164	the detector.

166 2.3 Quality control

167

168 Quality control included the use of instrumental blanks (SiO₂), analysis of duplicate samples, 169 and the performance of the method and stability of the instrument was evaluated by using 170 CRMs of sewage sludge (Trace Metals - Sewage Sludge 2 CRM029, Sewage Sludge 3 171 CRM031 and Sewage Sludge 4 CRM055, Sigma-Aldrich RTC, Inc., USA), sediments 172 (LKSD-4, lake sediment and PACS-1 marine harbour sediment, National Resources Canada) 173 and soils (SRM 2709a San Joaquin Soil and SRM 2710a Montana Soil I, National Institute of 174 Standards and Technology (NIST), USA). The results of the analysis of the CRMs were in 175 good agreement with their respective certified and reference ranges (Tables S1 and S2).

176	Further confirmation of the validity of the P-XRF technique was provided by the analysis of
177	15% of the sewage sludge samples (taken systematically, representing elemental
178	concentrations across the entire range, as determined by P-XRF) using Inductively Coupled
179	Plasma Mass Spectrometry (ICP-MS) (Agilent 7700) after digestion with aqua-regia (Trace
180	SELECT ®, Sigma Aldrich) in a graphite heating block. For the elements that were above the
181	limit of detection (LOD) of the P-XRF technique (Fe, Cu, Zn, Pb, Se, Mo, Ni, Sn and Cr) in
182	this portion of the sewage sludge samples, a comparison was made between the results
183	obtained from the P-XRF and the concentrations determined by ICP-MS. Correlation
184	coefficients (Pearson Product Moment Correlation for normal distributions and Spearman's
185	Rank Order Correlation for non-normal data) between the P-XRF and ICP-MS results were
186	also determined (SigmaPlot 12, Systat Software Inc, San Jose, CA).
187	
188	3. Results and Discussion
189	
190	3.1 Validation of the P-XRF technique
191	
192	Correlation coefficients between P-XRF and ICP-MS results indicated the suitability and
193	satisfactory use of the P-XRF technique for the quantification of these elements in sewage
194	sludges (Fe: r=0.99, P<0.001; Cu: r=0.95, P<0.0001; Zn: r=0.98, P<0.0001; Se: r=0.95,
195	P<0.0001; Mo: r=0.79, P<0.0001; Sn: r=0.63, P<0.01; Ni: r=0.85, P<0.001; Cr: r=0.82,
196	P<0.01; Pb: r=0.99, P<0.0001). Results of the ICP-MS analysis also confirmed that the levels
197	of Sb and Hg were below the LOD of the P-XRF technique for this portion of comparative
198	samples.
199	

200 3.2 Overview of metal concentrations in sewage sludge

202	The mean concentrations of the metals in the sewage sludge following treatment in the 16
203	WWTPs are given in Table 3. The concentrations of the metals, which are regulated in the
204	EU, and all expressed as mg kg ⁻¹ DS, ranged from 11 (Cd, anaerobically digested (AD)
205	biosolids) to 1273 mg kg ⁻¹ (Zn, AD biosolids), and were well under EU regulatory limits. Of
206	the parameters not regulated in the EU, but regulated elsewhere (Table 1), As, Se, Mo and Cr
207	(Table 3) were well below the upper limits of 75, 100, 75 and 1000 mg kg ⁻¹ , respectively. Of
208	the elements considered bio-essential micro-nutrients measured in this study (Se, Fe, Cu and
209	Zn), all were within either EU or international limits (Table 1) (no limits govern Fe).
210	
211	The biosolids from one WWTP, in which anaerobic digestion was carried out, had an average
212	Pb concentration of 3,696 mg kg ⁻¹ , well in excess of the threshold value of 1,200 mg kg ⁻¹ .
213	The average concentrations (across all treatments) of Cu, Pb and Zn were also well above the
214	median values of internationally published results (Table 4). Lead is amongst the most
215	hazardous metals, which are potentially harmful to human health (Johnson and Bretsch,
216	2002). Other metals measured in this study, which are also potentially harmful, are: Cr, Cd,
217	Sn and Sb. Of these parameters, to date no international standards exist for Sb or Sn in
218	biosolids for reuse in agriculture. In the present study, the average concentration of Sb ranged
219	from 17 to 20 mg kg ⁻¹ (Table 3), which was substantially higher than recorded elsewhere, e.g.
220	<0.01 to 0.06 mg kg ⁻¹ (LeBlanc et al., 2008), 3.4 mg kg ⁻¹ (Eriksson, 2001). As the average
221	concentration of Sb in non-polluted soils is around 0.53 mg kg ⁻¹ (Fay et al., 2007) and
222	elevated concentrations in the soil inhibit the early growth of crop plants (Fjällborg and Dave,
223	2004; Baek et al., 2014), the possibility exists that potentially large applications of this
224	parameter are being land applied without regulation. Tin, in inorganic form, is non-toxic, but
225	a significant portion of sewage sludges may be in a highly toxic, organic form and include

- compounds such as tributyltin (McBride, 2003). The concentrations of Sn measured in this study ranged from 23 to 55 mg kg⁻¹ (Table 3), which was of the same order as other studies (26 mg kg⁻¹ – Eriksson, 2001). Normal ranges of Sn in non-polluting Irish soils are around 1.68 mg kg⁻¹ (Fay et al., 2007). Both parameters, Sb and Sn, however, are not considered to be of risk to animals or humans (USEPA, 1995).
- 231
- 232 3.3 Environmental policy and management implications
- 233

234 Land application of biosolids is, in the main, determined by the nutrient content of biosolids 235 and not by the metal content (Lucid et al., 2013). Therefore, the metal content, even if present 236 in relatively high concentrations in the biosolids, may not have any significant impact on soil 237 quality in the short term. However, accumulation of metals in soil following repeated 238 applications of biosolids, may be problematic – particularly for those elements that are not 239 regulated and are harmful to human health. Guidelines should aim to govern the maximum 240 allowable concentrations of these elements in biosolids, as well as the land to which they are 241 applied. Handheld XRF analysis is a useful, quick and relatively inexpensive method for 242 determining the metal content of biosolids, and should be used frequently to characterise it. 243 244 4. Conclusions

245

The metals from 16 WWTPs in Ireland were below the maximum allowable concentrations of metals for use in agriculture in the EU. In addition, they were also within the median levels for biosolids globally. While current EU and international regulations govern certain priority metal pollutants and bio-essential elements, other metals that are potentially harmful to human health, such as Se and Sn, are omitted from the regulations. This means that a number

251	of toxic metals, which are much higher than their baseline concentrations in soils, are being
252	applied without regulation. It is recommended that the regulations governing the values for
253	metal concentrations in biosolids for reuse in agriculture are extended to cover Sn and Sb. A
254	handheld XRF analyser is a cost-effective and rapid method for the analysis of biosolids, and
255	may be easily applied in WWTPs. Its frequent use would mean that plant managers may
256	determine, with relative ease, the suitability of biosolids for reuse in agriculture.
257	
258	Acknowledgements
259	The authors wish to acknowledge funding from the Irish EPA (Project reference number
260	2012-EH-MS-13) and the Department of Communications, Energy and Natural Resources
261	under the National Geoscience Programme 2007-2013 (Griffiths Award). The views
262	expressed in this study are the authors' own and do not necessarily reflect the views and
263	opinions of the Minister for Communications, Energy and Natural Resources.
264	
265	
266	
267	
268	
269	
270	
271	
272	
273	
274	
275	

276	References

277	

278	Álvarez, E.A., Mochon, M.C., Sánchez, J.C.J., Rodriguez, M.T. 2002. Heavy metal
279	extractable forms in sludge from waste-water treatment plants. Chemosphere 47: 765 – 775.
280	
281	Antoniadis, V., Robinson, J.S., Alloway, B.J. 2008. Effects of short-term pH fluctuations on
282	cadmium, nickel, lead, and zinc availability to ryegrass in a sewage-amended field.
283	Chemosphere 71(4): 759 – 764.
284	
285	Baek, Y.W., Lee, W.M. Jeong, S.W., An, Y.J. 2014. Ecological effects of soil antimony on
286	the crop plant growth and earthworm activity. Environmental Earth Science 71: 895 – 900.
287	
288	Clarke, R.M., Cummins, E. 2014. Evaluation of 'classic' and emerging contaminants
289	resulting from the application of biosolids to agricultural lands: a review. Human and
290	Ecological Risk Assessment: An International Journal 21(2): 492 – 513.
291	
292	Cornu, S., Neal, C., Ambrosi, JP., Whitehead, P., Neal, M., Sigolo, J., Vachier, P. 2001. The
293	environmental impact of heavy metals from sewage sludge in ferrasols (São Paulo, Brazil).
294	The Science of the Total Environment 271: 27 – 48.
295	
296	EC (1991). Council Directive concerning urban waste-water treatment. http://eur-
297	lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1991:135:0040:0052:EN:PDF (Accessed
298	15 April 2015)

- 300 EC (1999). Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste.
- 301 http://www.central2013.eu/fileadmin/user_upload/Downloads/Document_Centre/OP_Resour
- 302 <u>ces/Landfill_Directive_1999_31_EC.pdf</u>. (Accessed 29 July 2015).
- 303
- 304 EEC (1986) Council Directive of 12 June 1986 on the protection of the environment, and in
- 305 particular of the soil, when sewage sludge is used in agriculture (86/278/EEC).
- 306 <u>http://www.efma.org/PRODUCT-STEWARDSHIP-PROGRAM-10/images/86278EEC.pdf</u>
- 307 (Accessed 15 April 2015)
- 308
- 309 EC (2008). Waste Framework Directive.
- 310 <u>http://ec.europa.eu/environment/waste/legislation/a.htm</u> (accessed 15th April, 2015)
- 311
- 312 EC (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April
- 313 2009 on the promotion of the use of energy from renewable sources and amending and
- subsequently repealing Directives 2001/77/EC and 2003/30/EC.
- 315
- 316 EC (2010). Environmental, economic and social impacts of the use of sewage sludge on land.
- 317 Summary Report 1. <u>http://ec.europa.eu/environment/waste/sludge/pdf/part_iii_report.pdf</u>
- 318 (Accessed 15 April 2015)
- 319
- 320 EPA. 2014a. Focus on urban wastewater treatment in 2012. A report for the year 2012. EPA,
- 321 Co. Wexford.
- 322 https://www.epa.ie/pubs/reports/water/wastewater/Focus%20on%20Urban%20Waste%20Wa
- 323 <u>ter% 20Treatment% 20in% 202012% 20-% 20web% 20copy.pdf</u> (Accessed 15 April 2015)
- 324

- 325 EPA. 2014b. Management options for the collection, treatment and disposal of sludge derived
- 326 from domestic wastewater treatment systems. Strive Series No. 123. EPA, Co. Wexford.
- 327 http://www.epa.ie/pubs/reports/research/water/strive123managementoptionsforthecollectiontr
- 328 <u>eatmentanddisposalofslu.html#.U-tngU90zIU</u> (Accessed 15 April 2015)
- 329
- 330 Eriksson, J. 2001. Concentration of 61 trace elements in sewage sludge, farmyard manure,
- 331 mineral fertiliser, precipitation and in soil and crops. Stockholm: Report 5159, Swedish
- 332 Environmental Protection Agency.
- 333
- 334 European Commission. 2011. EUROSTAT.
- 335 http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&language=en&pcode
- =ten00030&plugin=0 (Accessed 15 August 2014).
- 337
- Eurostat (2014) Sewage sludge production and disposal.
- 339 <u>http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_ww_spd&lang=en</u> (Accessed
- 340 15 April 2015)
- 341
- 342 Fay, D., McGrath, D., Zhang, C., Carrigg, C., O'Flaherty, V., Kramers, G., Carton, O.T.,
- 343 Grennan, E. 2007. National soils database. End of Project Report RMIS 5192. Teagasc,
- 344 Johnstown Castle, Co.Wexford.
- 345
- 346 Fjällborg, B., Dave, G. 2004. Toxicity of Sb and Cu in sewage sludge to terrestrial plants
- 347 (lettuce, oat, radish) and of sewage sludge elutriate to aquatic organisms (daphnia and lemna)
- and its interaction. Water, Air and Soil Pollution 155: 3 20.
- 349

350	Fehily Timoney and Company (1999) Codes of good practice for the use of biosolids in
351	agriculture – guidelines for farmers.
352	http://www.environ.ie/en/Publications/Environment/Water/FileDownLoad,17228,en.pdf
353	(Accessed 15 April 2015)
354	
355	Gikas, P. 2014. Electrical energy production from biosolids: a comparative study between
356	anaerobic digestion and ultra-high-temperature gasification. Environmental Technology 35:
357	2140 – 2146.
358	
359	Jiang, D., Ni, G., Ma, G. 2011. Reuse of municipal wastewater sludge for construction
360	material. Advanced Materials Research 156-157: 939-942.
361	
362	Johnson, D.L., Bretsch, J.K. 2002. Soil lead and children's blood lead levels in Syracuse, NY,
363	USA. Environmental Geochemistry and Health 24: 375 – 385.
364	
365	Kidd, P.S., Domínguez-Rodríguez, M.J., Díez, J., Monterroso, C. 2007. Bioavailability and
366	plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-
367	term application of sewage sludge. Chemosphere 66(8): 1458 – 1467.
368	
369	Koutroubas, S.D., Antoniadis, V., Fotiadis, S., Damalas, C.A. 2014. Growth, grain yield and
370	nitrogen use efficiency of Mediterranean wheat in soils amended with municipal sewage
371	sludge. Nutrient Cycling in Agroecosystems 100: 227 – 243.
372	

373	Latare, A.M., Kumar, O., Singh, S.K., Gupta, A. 2014. Direct and residual effect of sewage
374	sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecological
375	Engineering 69: 17 – 24.
376	
377	LeBlanc, R.J., Matthews, P., Richard, R.P. 2008. Global atlas of excreta, wastewater sludge,
378	and biosolids management: moving forward the sustainable and welcome uses of a global
379	resource. United Nations Human Settlements Programme (UN-HABITAT), Kenya.
380	http://esa.un.org/iys/docs/san_lib_docs/habitat2008.pdf (Accessed 15 April 2015)
381	
382	Lucid, J.D., Fenton, O., Healy, M.G. (2013) Estimation of maximum biosolids and meat and
383	bone meal application to a low P index soil and a method to test for nutrient and metal losses.
384	Water, Air and Soil Pollution, 224, 1464-1476.
385	
386	Mamindy-Pajany, Y., Sayen, S., Mosselmans, J.F., Guillon, E. 2014. Copper, nickel and zinc
387	speciation in a biosolid-amended soil: pH adsorption edge, μ -XRF and μ -XANES
388	investigations. Environmental Science and Technology 48: 7237 – 7244.
389	
390	McBride, M.B., Richards, B.K., Steenhuis, T., Spiers, G. 1999. Long-term leaching of trace
391	elements in a heavily sludge-amended sily clay loam soil. Soil Science 164(9): 613 – 623.
392	
393	McBride, M.B. 2003. Toxic metals in sewage sludge-amended soils: has promotion of
394	beneficial use discounted the risks? Advances in Environmental Research 8: 5 – 19.
395	
396	McDonald, N., Wall, D. (2011). Soil specific N advice – utilising our soil nitrogen resources.
396 397	McDonald, N., Wall, D. (2011). Soil specific N advice – utilising our soil nitrogen resources. National Agri-environment Conference 2011 10 November 2011, Athlone.

398 <u>http://www.teagasc.ie/publications/2011/1050/Agrienvironment_Proceedings.pdf</u> (Accessed

399 15 April 2015)

400

- 401 Milieu, WRC, RPA. 2013a. Environmental, economic and social impacts of the use of
- 402 sewage sludge on land. Final Report Part I: Overview Report. Service contract No
- 403 070307/2008/517358/ETU/G4.

404

405 Milieu, WRC, RPA. 2013b. Environmental, economic and social impacts of the use of

406 sewage sludge on land. Final Report - Part II: Report on Options and Impacts. Service

407 contract No 070307/2008/517358/ETU/G4.

408

- 409 Milieu, WRC, RPA. 2013c. Environmental, economic and social impacts of the use of
- 410 sewage sludge on land. Final Report Part III: Project Interim Reports. Service contract No
- 411 070307/2008/517358/ETU/G4.

412

413 Monera, M.T., Echeverria, J., Garrido, J. 2002. Bioavailability of heavy metals in soils

414 amended with sewage sludge. Canadian Journal of Soil Science 59: 433 – 438.

415

- 416 Oun, A., Kumar, A., Harrigan, T., Angelakis, A., Xagoraraki, I. 2014. Effects of biosolids
- and manure application on microbial water quality in rural areas in the US. Water 6: 3701 –
 3723.

- 420 Stietiya, M.H., Wang, J.J. 2011. Effect of organic matter oxidation on the fractionation of
- 421 copper, zinc, lead, and arsenic in sewage sludge and amended soils. Journal of Environmental
- 422 Quality 40: 1162 1171.

- US EPA (1993) *The Standards for the Use or Disposal of Sewage Sludge*, Title 40 of the
 Code of Federal Regulations, Part 503.
- 426
- 427 US EPA (1995) A guide to the biosolids risk assessments for the EPA Part 503 Rule. Chapter
- 428 2. EPA/832-B-93-005. US Environmental Protection Agency, Washington, DC. Available
- 429 at:
- 430 <u>http://water.epa.gov/scitech/wastetech/biosolids/upload/2002_06_28_mtb_biosolids_503rule</u>
- 431 <u>503g_ch2.pdf</u> (accessed 15 April, 2015).
- 432
- 433 Wen, B., Li, L., Zhang, H., Ma, Y., Shan, X.Q., Zhang, S. 2014. Field study on the update
- 434 and translocation of perfluoroalkyl acids (PFAAs) by wheat (*Triticum aestivum* L.) grown in

435 biosolids-amended soils. Environmental Pollution 184: 547 – 554.

- 436
- 437 Yan S., Subramanian S., Tyagi R. and Surampalli R. (2008). Bioplastics from waste activated
- 438 sludge-batch process. Practice Periodical of Hazardous, Toxic, and Radioactive
- 439 Waste Management 12: 239–248.
- 440
- 441
- 442
- 443
- 444
- 445
- 446

	Selenium	Molybdenum	Arsenic (As)	Copper (Cu)	Nickel (Ni)	Lead (Pb)	Zinc (Zn)	Cadmium (Cd)	Chromium (Cr)	Mercury (Hg)	Reference
	(Se)	(Mo)									
					mg kg ⁻¹ d	dry weight (=ppm	1)				
Brazil	100	50	41	1500	40	300	2800	39	1000	17	LeBlanc et al., 2008
China			75	800 - 1500	100 - 200	300 - 1000	2000 - 3000	5 - 20		5 - 15	LeBlanc et al., 2008
EU	-	-	-	1000 - 1750	300 - 400	750 - 1200	2500 - 4000	20 - 40	-	16 - 25	EEC, 1986
Japan			50		300	100		5	500	2	LeBlanc et al., 2008
Jordan	100	75	41	1500	300	300	2800	40	900	17	LeBlanc et al., 2008
Russian Fed.			10	750	200	250	1750	15	500	7.5	LeBlanc et al., 2008
USA	100	75	41-75	1500 - 4300	420	300 - 840	2800 - 7500	39 - 85		17 - 57	US EPA, 1993

Table 1. Limit values for metal concentrations in sludge for use in agriculture.

Site no.	WWTP/	Leachate as %	Industrial/commercial and	Type of treatment
	agglomeration size	of influent BOD	domestic/septic tank sludge ¹	
	(PEs)	load	as % of influent BOD load	
1	2,362,329	< 0.01	<0.01	Thermal drying, anaerobic digestion
2	284,696	0.3	24	Thermal drying
3	179,000	unknown	30	Anaerobic digestion
4	130,000	unknown	0.008	Thermal drying
5	101,000	2.0	unknown	Lime stabilisation
6	86,408	0.2	2.1	Anaerobic digestion
7	76,456	0	0	Anaerobic digestion
8	46,428	0.1	25	Lime stabilisation
9	42,000	< 0.01	15	Thermal drying
10	31,788	0.25	unknown	Lime stabilisation
11	30,000	0.081	0	Thermal drying
12	27,731	0	2.8	Anaerobic digestion
13	27,000	0.2	0	Thermal drying
14	25,000	0.7	0	Thermal drying
15	22,440	0	0	Lime stabilisation
16	6,500	unknown	unknown	Thermal drying
¹ Most r	ecent available figure	es in all WWTPs (2	2013)	

Table 2. Site agglomerations and type of treatment conducted in each location

460	Table 3. Mean (±standard	deviation, SD) met	al concentration	$(mg kg^{-1})$	ⁱ dry weight)	in sludge
-----	--------------------------	--------------------	------------------	----------------	--------------------------	-----------

461 following anaerobic digestion, lime stabilisation, or thermal drying. *n* refers to the number of

462 treatments.

Metal	Anaerobic digestion		Lime stat	oilisation	Thermal dr	ying (n=8)	EU regularity
	(n=5)		(n=4)				upper limits
							(EEC, 1986)
	Mean	SD	Mean	SD	Mean	SD	
Regulated parameters in EU							
Cu	640	411	491	452	464	205	1,750
Ni	25	5	13	2.5	15	7	400
Pb	791	1625	33	25	54	30	1,200
Cd	11	1	13	1	10	3	40
Zn	1,273	749	526	388	869	400	4,000
Hg^1	<lod< td=""><td></td><td colspan="2"><lod< td=""><td colspan="2"><lod< td=""><td>25</td></lod<></td></lod<></td></lod<>		<lod< td=""><td colspan="2"><lod< td=""><td>25</td></lod<></td></lod<>		<lod< td=""><td>25</td></lod<>		25
Non-regulated parameters in EU							
As ²	<lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td></td><td></td></lod<></td></lod<></td></lod<>		<lod< td=""><td></td><td><lod< td=""><td></td><td></td></lod<></td></lod<>		<lod< td=""><td></td><td></td></lod<>		
Se	3	2	3	1	2	1	
Sr	162	61	183	75	114	36	
Мо	5	2	4	1	5	1	
Ag	11	2	11	3	8	3	
Sn	55	57	23	4	23	5	
Sb	20	5	17	3	17	4	
Cr	51	43	25	15	16	12	
Fe	32,135	41,717	9,654	7,264	33,087	43,373	

¹Limit of detection (LOD) = 10 ppm² LOD = 100 ppm

463

Table 4. Measured values for metal concentrations in sludge for use in agriculture (adapted

467	from LeBlanc et al.	, 2008) compared	with average concentration	ations (across all treatments)
			0	· · · · · · · · · · · · · · · · · · ·

	Selenium	Molybdenum	Arsenic	Copper	Nickel	Lead	Zinc	Cadmium	Chromium	Mercury
	(Se)	(Mo)	(As) ¹	(Cu)	(Ni)	(Pb)	(Zn)	(Cd)	(Cr)	$(Hg)^2$
				mg	kg⁻¹ dry we	eight (=pp	m)			
Brazil	27	113	15	255	42	80	689	11	144	2
Bogota,	24		19	163	43	88	1014	76	73	8
Columbia										
Denver, USA	15	20	3	670	16	39	714	2		1
Los Angeles,	15	18	6	1060	51	39	1180	10	84	2
USA										
Milwaukee,	4	11	8	266	32	57	534	4	289	0.3
USA										
Ottawa,			1	460	16	51	593	1	50	1
Canada										
British	4	8	5	888	26	56	588	3	51	3
Columbia,										
Canada										
Finland				244	30	9	332	1	18	0.4
Germany				380	32	62	956	2	61	1
Italy				261	16	76	577	2	22	0.2
Slovenia			2	200	35	150	600	1	90	2
Turkey				70	62	34	300	1	34	
Sapporo,			7	140	35	10	300	<1	29	0.2
Japan										
Suzu, Japan			8		32	5		2	20	1
Moscow,			0-24	0.9-	1.4-	0.8-	3-	0-300	18-1280	0-11
Russ Fed.				1200	306	1070	3820			
Current study	3	5	<lod< td=""><td>520</td><td>18</td><td>252</td><td>886</td><td>12</td><td>35</td><td><lod< td=""></lod<></td></lod<>	520	18	252	886	12	35	<lod< td=""></lod<>

468 measured in the current study.

 1 LOD = 100 ppm; ²Limit of detection (LOD) = 10 ppm