<table>
<thead>
<tr>
<th>Title</th>
<th>DING! Dataset Ranking using Formal Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Toupikov, Nickolai; Umbrich, Jürgen; Delbru, Renaud; Hausenblas, Michael; Tummarello, Giovanni</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2009</td>
</tr>
<tr>
<td>Publication Information</td>
<td>Nickolai Toupikov, Jürgen Umbrich, Renaud Delbru, Michael Hausenblas, Giovanni Tummarello "DING! Dataset Ranking using Formal Descriptions", Linked Data on the Web Workshop (LDOW 09), in conjunction with 18th International World Wide Web Conference (WWW 09), 2009.</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/541</td>
</tr>
</tbody>
</table>

Some rights reserved. For more information, please see the item record link above.
DING! Dataset Ranking using Formal Descriptions

Nickolai Toupikov, Jürgen Umbrich, Renaud Delbru, Michael Hausenblas, Giovanni Tummarello
DERI, National University of Ireland, Galway, IDA Business Park, Galway, Ireland
firstname.lastname@deri.org

ABSTRACT
Considering that thousands if not millions of linked datasets will be published soon, we motivate in this paper the need for an efficient and effective way to rank interlinked datasets based on formal descriptions of their characteristics. We propose DING (from Dataset RankiING) as a new approach to rank linked datasets using information provided by the VOID vocabulary. DING is a domain-independent link analysis that measures the popularity of datasets by considering the cardinality and types of the relationships. We propose also a methodology to automatically assign weights to link types. We evaluate the proposed ranking algorithm against other well known ones, such as PageRank or HITS, using synthetic VOID descriptions. Early results show that DING performs better than the standard Web ranking algorithms.

1. MOTIVATION
Following Marshall and Shipman [1], we understand linked datasets in terms of the distributed database perspective. The primary targeted consumers are expected to be machines; a fair degree of automation needs to be guaranteed in order to enable new types of Web applications. While nowadays the number of datasets—published in accordance to the linked data principles [2]—is somewhat limited, this is expected to change soon. Considering thousands if not millions of linked datasets1, one can expect to get lost, soon when trying to identify appropriate datasets for a certain task.

Two issues come to mind when talking about selecting (possibly many) datasets: efficiency and effectiveness. While the former basically refers to how fast certain datasets can be identified, the latter focuses on the relevancy, that is how well the dataset fulfills the stated requirements in a certain context (the domain of the Web application). When faced with a list of potential candidates, one usually wants to rank them according to certain criteria in order to select the most relevant ones.

1A simple estimation might support this argument: take for example relational databases such as MySQL found in nearly every modern Web application, or the manifold repositories in the software development domain (for example, CVS or SVN) or registries (LDAP, OPACs, etc.)—each of them, once on the Web of Data (using out-of-the-box linked data publishing tools such as Triplify [3]) represents at least one dataset.

Our thesis at hand now is that, based on a formal (high-level) description of a dataset’s content and interlinking provided by VOID, Semantic Web clients can effectively rank datasets using well-known strategies such as PageRank [4] or HITS [5] in a very efficient way. Without such high-level descriptions, the client would have to “crawl” a large number of documents in order to analyze and derive precise statistics about the content of a dataset, hereby requiring an excessive amount of time and resources.

The rest of the paper is structured as follows: the next section discusses exiting approaches. Then, we lay out the foundations regarding the formal description of linked datasets in sec. 3 and render our proposal in detail (sec. 4). Further, in sec. 5, we report on early findings when comparing our approach to widely used ones such as PageRank or HITS. We conclude in sec. 6 by discussing the proposed ranking methodology and point out possible future steps.

2. EXISTING WORKS
Link analysis has proven to be effective for query independent quality web search. PageRanks [4] and HITS [5] have been successfully applied to measure the importance of web pages by analysing their link structure. These two algorithms consider only one type of links, i.e. hyperlinks, but has been shown to improve the effectiveness of web search engines [6, 7].

When working on a finer granularity level - such as entity level - with more heterogeneous links, the previous approaches are no longer applicable. In such condition, by assuming that links are equivalent, the analysis of entity relationships does not provide accurate results since links of different types can have various impact on the ranking computation.

Recent works [8, 9] have extended PageRank to consider different types of relations between entities or objects. PopRank [10], a domain independent object-level link analysis, proposes a machine learning approach to automatically assigns a “popularity propagation factor” to each type of relations. ObjectRank [11] goes further by applying authority-based ranking to keyword search in databases where various objects are connected with semantic relations.

The Swoogle search engine [12] was the first one to propose, OntoRank, an adaptation of PageRank for Semantic Web resources. In their work, they compute popularity of resources based on three levels of granularity: documents, terms and RDF graphs. In [13], a link analysis is applied at query time for computing the popularity of resources and contexts (which can be seen as documents or datasets).
Their approach differentiates two levels of link analysis, resources and context graphs, and the different relationships between them.

In this paper, we are studying how to improve search results by ranking datasets according to their popularity. Our approach is based on link analysis between datasets using the information provided by the voID descriptions. We consider the types of relationships but also the cardinality of link sets. We propose also an automatic weighting scheme to find appropriate weights for relation types.

3. DESCRIBING DATASETS

In order to realise our vision of a semantic ranking, we build upon a formal description of the datasets and their interlinking. Only recently the Vocabulary of Interlinked Datasets (voID) [14] has been released; voID is an RDFS vocabulary for describing linked datasets. A dataset in voID is “a collection of data, published and maintained by a single provider, available as RDF, and accessible, for example, through dereferenceable HTTP URIs or a SPARQL endpoint”. Interlinking in voID is modeled utilising a so called linksets. A linkset in voID is “a subset of a dataset, used for storing triples to express the interlinking relationship between datasets; in each interlinking triple, the subject is a resource hosted in one dataset and the object is a resource hosted in another dataset”.

Given that such voID descriptions are published alongside with the datasets, they can be collected via pings, by crawling, or simply follow-your-nose by a semantic indexer such as Sindice [15] or the Yahoo! Search Monkey [16]. We assume such a collection of voID descriptions in the following. We note further that, as voID being metadata about linked data, is RDF-grounded, we can use all current RDF tools and libraries to process, store and visualise it. Further, it is perfectly possible to go from the meta-level to the meta-meta-level, that is having a voID description about voID descriptions.

4. DING—DATASET RANKING

Our proposal for a semantic ranking of RDF datasets is called DING (from Dataset RankINg) and is based on voID descriptions of the datasets.

4.1 Exploiting voID’s characteristics

Based on the voID guide [17] we will review the relevant features of voID in the following and discuss their suitability with respect to dataset selection and ranking.

- The size of the dataset, that is, for example the number of triples or the number of distinct subjects can be used for ranking. In voID this is a voID:statItem property along with one of five predefined dimensions such as voID:numberOfTriples or voID:numberOfDocuments. We have argued in [18] recently that the sheer numbers of triples is likely not a good measure for its value.
- Categorisation of datasets in voID is done using dc:terms:subject along with DBpedia [19] resources. This can be used in a first step to massively decrease the search space. It acts as a sort of lexicon allowing to lookup a category and find related datasets. As a second step, DING can be used to rank the list of datasets matching a certain category.

- The interlinking of a dataset in voID, that is, its outgoing and incoming links, is represented using the voID:linkPredicate property. We identify two potential dimensions that might be exploited for ranking:
 - regarding the semantics of the links (such as rdfs:seeAlso vs. foaf:knows) and
 - on a quantitative level, that is regarding the number of interlinking triples.
- The kind of and number of used vocabularies in a dataset can be seen from the voID:vocabulary property value.
- Other voID characteristics such as void:uriRegexPattern or the technical features of a dataset (such as available serialisations) via void:TechnicalFeature can not directly be used for ranking, though perfectly for filtering (as in case with categorisation).

The following example in Fig. 1 may help highlight our thinking:

![Figure 1: Exemplary collection of four voID descriptions.](image)

4.2 DING! Implementation

In this section, we present how we adapted the weighted PageRank algorithm in order to perform the Dataset ranking based on their interconnection. We then explain how it is possible to assign automatically a weight to a certain link type. PageRank is a ranking system that originates from Web Search Engines using a random walk algorithm. The Ranking system evaluates the probability of finding the web surfer on any given page. This algorithm is based on the assumption that when someone publishes a resource on the web, he will do his best to link the published resource — be it a web page, or in our case — a dataset — to the most relevant and trustworthy resources available on the web. Hence the relevancy is assumed to be related to a high degree of inlinks from other web resources. And from a probabilistic point of view — the more inlinks a dataset has, the most likely the ‘random surfer’ will be lead to it in his journey.

The original PageRank $r(P_i)$ of a web page i is given by

$$r(P_i) = \sum_{P_j \in H(P_i)} \frac{r(P_j)}{|P_j|}$$

(1)
Where \(B_P \) is the set of pages linking to \(P_i \) and \(|P_j|\) is the total number of pages linked by \(P_j \). Hence, \(\frac{1}{|P_j|} \) is in fact the probability for the random surfer to choose to go from \(P_j \) to \(P_i \) out of all pages linked by \(P_j \). This probability referred to as \(p_{j \rightarrow i} \), can be modified in order to provide a weighting of the “importance” of the hyperlink.

The parallel from web documents to voiD descriptions is done in a naive way. The web pages are now datasets, and the hyperlinks correspond to linksets joining the dataset they belong to another:

- \(P_i \) corresponds to an element \(D_i \) define by \texttt{void:dataset}.
- A hyperlink form in the page \(P_i \) pointing to the page \(P_j \) will correspond to a \texttt{void:linkset} element connecting \(D_i \) and \(D_j \), defined as \texttt{void:subsets} of a dataset \(D_i \). The linkset will be referred to as \(L_{i \rightarrow j} \). We also define \(n(L_{i \rightarrow j}) \) as the number of relations in the linkset, and \(s(L_{i \rightarrow j}) \) as the predicate declared in the linkset. For example, in Fig. 1 \(n(L_{1 \rightarrow 3}) = 600 \) and \(s(L_{1 \rightarrow 3}) = "foaf:interest" \). \(\mathcal{L} \) is the set of linksets defined in the entire data collection.
- Similarly to the set \(B_P \) of pages linking to \(P_i \), we define \(O(i) = \{j : \exists L_{i \rightarrow j} \in \mathcal{L}\} \) as the indices of datasets linked from \(D_i \).
- \(p_{i \rightarrow j} \) can be modified according to the information available about the linkset \(L_{i \rightarrow j} \), such as \(s(L_{i \rightarrow j}) \) or \(n(L_{i \rightarrow j}) \), as well as general statistics over \(\mathcal{L} \).

Like in the web page link analysis, the links between datasets deserve a deeper analysis in order to obtain a finer ranking. For example in Fig. 1 the probability of the user going from DS1 to DS3 is likely to be different from the probability of going to DS4 - since the predicate and number of links associated to \(L_{1 \rightarrow 3} \) are not the same as the ones associated to \(L_{1 \rightarrow 4} \).

The goal will hence be to define a weight function \(w(L_{i \rightarrow j}) \). The weight will then be normalized in order to generate the transition probability \(p_{i \rightarrow j} \) as follows.

\[
p_{i \rightarrow j} = \frac{w(L_{i \rightarrow j})}{\sum_{k \in O(i)} w(L_{i \rightarrow k})} \quad (2)
\]

The first approach is simply to define \(w(L_{i \rightarrow j}) = n(L_{i \rightarrow j}) \). In the case of Fig. 1, \(p_{1 \rightarrow 3} = \frac{600}{600+600} \approx 0.23 \) and \(p_{1 \rightarrow 4} = \frac{2000}{2000+600} \approx 0.77 \). However, this definition does not take into account the nature of the link, and the likelihood that the user may well chose foaf:interest above dc:author to browse into another dataset. As a result, additional weights can be assigned based on the nature of the predicate involved in the link.

The values assigned can be either statically predefined, or computed dynamically, given the accumulated voiD information. We present our approach, based on TF-IDF a well known algorithm when it comes to weight the relevance of a term (in our case - the predicate), given its frequency in a data collection. Hence, the weight, given by TF-IDF would be

\[
TF(L_{i \rightarrow j}) = \frac{n(L_{i \rightarrow j})}{\max_{k \in O(i)} n(L_{i \rightarrow k})} \quad (3)
\]

\[
IDF(s(L_{i \rightarrow j})) = \log \frac{N}{1 + \text{freq}(s(L_{i \rightarrow j}))} \quad (4)
\]

Where \(\text{freq}(s(L_{i \rightarrow j})) \) is the frequency of occurrence of linksets using the predicate of \(L_{i \rightarrow j} \) in the collection’s datasets. Finally, we define \(w \) as

\[
w(L_{i \rightarrow j}) = TF(L_{i \rightarrow j}) \times IDF(s(L_{i \rightarrow j})) \quad (5)
\]

5. EXPERIMENTS AND EARLY FINDINGS

In order to verify our thesis that formal descriptions of linked datasets help yielding better results for the ranking of the datasets, we have set up an evaluation framework that executes various ranking algorithms on a synthetic voiD description\(^2\) (see Fig. 2). It is composed of 15 artificial dataset descriptions interlinked using 8 different predicates and partitioned into two clouds (datasets 1 to 9 and 10 to 15). The experiment used several ranking algorithms to estimate the generic relevancy of every artificial dataset within the synthetic cloud.

5.1 The setup

For the evaluation we use the Java Universal Network/Graph Framework (JUNG)\(^3\) to compare the DING algorithm with other established and well known ranking algorithms. Further, we use a naive link-sum rank function (DRank) as a baseline to discuss the results. Three out of the four ranking algorithms are also extended with the DING link weight function. In detail we evaluate and compare the following ranking algorithms:

\(^2\)The full benchmark data is available at \url{http://sw.deri.org/2009/02/DING/example-void-collection.ttl}. Unfortunately no real-world voiD cloud was readily available for the experiment at the time of writing.

\(^3\)\url{http://jung.sourceforge.net/}

Listing 1: An exemplary voiD description.
Table 1: Evaluation results: the top 6 datasets for each ranking algorithm with their normalized score

<table>
<thead>
<tr>
<th>Rank</th>
<th>STD PageRank</th>
<th>DING PageRank</th>
<th>DRank</th>
<th>HITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DS1 (0.20)</td>
<td>DS10 (0.35)</td>
<td>DS10</td>
<td>DS1</td>
</tr>
<tr>
<td>2</td>
<td>DS3 (0.15)</td>
<td>DS4 (0.18)</td>
<td>DS13</td>
<td>DS4</td>
</tr>
<tr>
<td>3</td>
<td>DS (0.14)</td>
<td>DS1 (0.14)</td>
<td>DS11</td>
<td>DS2</td>
</tr>
<tr>
<td>4</td>
<td>DS11 (0.12)</td>
<td>DS11 (0.12)</td>
<td>DS11</td>
<td>DS3</td>
</tr>
<tr>
<td>5</td>
<td>DS13 (0.12)</td>
<td>DS13 (0.16)</td>
<td>DS15</td>
<td>DS3</td>
</tr>
<tr>
<td>6</td>
<td>DS10 (0.072)</td>
<td>DS10 (0.12)</td>
<td>DS14</td>
<td>DS10</td>
</tr>
</tbody>
</table>

- **DRank**: A baseline ranking algorithm using a naive approach. The datasets are ranked according to the number of links they have with other datasets.
- **PageRank**: Google’s page rank algorithm [4].
- **DING PageRank**: Modification of the PageRank Algorithm as described in Sec 4.2.
- **HITS**: Another well known ranking algorithm is HITS [5]. For each data set in the voiD graph a “hubs-and-authorities” importance measure is calculated.

5.2 Results

Table 1 lists the results of the evaluation. The naive ranking approach, DRank, completely leaves out the first cloud for having much less links in its linksets than the second cloud. We see that standard PageRank and HITS algorithms do not take into account the nature of the links and rank DS1 first. Although DS1 is indeed heavily linked by other datasets, it is mostly inlinked by “weak” links like owl:sameAs or rdfs:seeAlso. The information-theory view defined in tfidf suggests that these links — being the most common ones — do not hold as much information content as less common ones, and are therefore less significant. For example while looking for information about an article, the user will get more precise information following dcterms:author than a generic property such as rdfs:seeAlso, and is hence more likely to follow the former. As a result a dataset linked by uncommon links will likely be more significant than one linked by common ones - and should have a higher voiD ranking.

Another advantage of PageRank that makes it very relevant for the Linked Data approach is that it gives a low ranking to datasets that do not have inlinks. The value of a dataset within the cloud is dependent on how well it is linked by other datasets.

6. CONCLUSION

We have presented DING, a new approach to rank linked datasets based on voiD descriptions. Though one might object that currently there are not many voiD descriptions available we argued that this is very likely to change soon. Further, the infrastructure to collect voiD descriptions is in place (voiD being RDF, the requirements to do so are minimal).

We have motivated the need for an efficient and effective way to rank datasets based on their characteristics (contentwise and with respect to the interlinking). Finally we have shown how DING performs in relation to existing ranking algorithms and discussed the results.

Indeed one finds voiD descriptions at time of writing, already; see for example http://void.rkbexplorer.com/.

7. REFERENCES

