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Steel 
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a Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, 

University Park, Nottingham, NG7 2RD, UK 
 

b Department of Mechanical and Biomedical Engineering, Nun's Island,  
National University of Ireland, Galway, Republic of Ireland 

 
Abstract 
 
A programme of cyclic mechanical testing of a 316 stainless steel, at temperatures of up to 600°C 
under isothermal conditions, for the identification of material constitutive constants, has been carried 
out using a thermo-mechanical fatigue test machine (with induction coil heating). The constitutive 
model adopted is a modified Chaboche unified viscoplasticity model, which can deal with both cyclic 
effects, such as combined isotropic and kinematic hardening, and rate-dependent effects, associated 
with viscoplasticity. The characterisation of 316 stainless steel is presented and compared to results 
from tests consisting of cyclic isothermal, as well as in-phase and out-of-phase thermo-mechanical 
fatigue conditions, using interpolation between the isothermal material constants to predict the 
material behaviour under anisothermal conditions.  
 
Keywords: Thermo-mechanical fatigue, Creep, Plasticity, Chaboche unified viscoplasticity 

model, 316 stainless steel 
 
1. Introduction 
 
        Thermo-mechanical fatigue, or TMF, has received an increasing amount of attention over the last 
thirty years. The two most common experimental TMF waveforms are in-phase (IP) and out-of-phase 
(OP) as shown in Figure 1, where φ represents the phase angle between the strain and temperature 
waveforms. Some of the areas of particular interest have included the effect of phase angle on the life 
and failure of materials undergoing TMF as shown by Pahlavanyali et al [1], TMF behaviour of 
superalloys, e.g. Evans et al [2], TMF of specific components, e.g. Harrison et al [3], and crack growth 
under TMF conditions, e.g. Dai et al [4]. 
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           (a)                     (b) 

Figure 1. Schematic representations of an:  
(a) In-phase TMF waveform, φ=0° (b) Out-of-phase TMF waveform, φ=180°. 

 
        Unified material models are considered as a robust way of modelling the behaviour of materials 
where both rate-independent and rate-dependent effects occur simultaneously, e.g. for high 
temperature cyclic loading. The Chaboche unified viscoplasticity model, for example, includes both 
non-linear isotropic hardening and kinematic hardening, for cyclic phenomena such as hardening and 
the Bauschinger effect [5], as well as creep effects. This model was first published by Chaboche and 
Rousselier in 1983 [6, 7] and is discussed further by LeMaitre and Chaboche [8]. Since then the model 
has been widely used, for example, Tong and Zhan et al [9-14]. 
        The present paper is particularly concerned with the application of the Chaboche model to 
anisothermal conditions. In order to achieve this, isothermal tests have been performed to obtain the 
material constants at a range of temperatures. At each temperature, the model has been used to 
simulate isothermal cyclic conditions and the predictions compared to the experimental data. Each 
material constant was then represented as a function of temperature for simulation of the anisothermal 
IP and OP TMF conditions. The results from these simulations are compared to experimental TMF 
data. Examples of previous work on TMF of stainless steel includes that of Santacreu et al [15] 
concerned with automotive exhaust applications and Rau et al [16] in the exploration of more complex 
testing conditions, to understand more realistic behaviours of materials in industrial use. 
 
2. Experimental program 
 
        All of the results presented have been obtained using 316 stainless steel specimens. Table 1 
shows the chemical composition of the 316 stainless steel obtained as an average of three spark 
emission tests performed on material from the same batch as the specimens. 
 

Table 1. Chemical compositions of the 316 stainless steel (wt %) 
Fe Cr Ni Mo Mn Si Cu V Co S C Nb P W Ti Al 
66.4 16.8 11.8 2.15 1.42 0.5 0.49 0.08 0.07 0.03 0.02 0.02 0.01 <0.02 0.01 0.01 

 
2.1. TMF machine and thermal calibration 
        The TMF machine used in this work is an Instron 8862 thermo-mechanical fatigue system which 
utilises radio-frequency (RF) induction heating and forced air cooling through the centre of the 
specimen in order to achieve rapid heating and cooling, respectively. The maximum achievable load 
from the machine is 35kN (limited by the grips) and the maximum allowable temperature is 1100°C.  

Temperature 
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t 

Temperature 

Strain 
ε, T 

t 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 3 

        The requirement for temperature uniformity in the gauge section of the specimen during testing 
was that the entire gauge section was within ±10°C of the target temperature. Therefore initial 
experimental work was concerned with achieving this.  
        Thermocouples were placed along the gauge section of the specimen in order to monitor the 
axial, as well as the circumferential temperature gradients within the specimen gauge section during a 
series of ramp and hold, as well as cyclic thermal testing. Initially the results were not within this 
tolerance, with axial deviations of up to ±30°C from the target temperature. Therefore new coil 
designs were investigated. 
 

 
 

Figure 2. Photograph of the heated specimen, induction coil and 
extensometer setup on the TMF machine. 

 
        A key problem faced was achieving the temperature uniformity required whilst leaving enough 
space between the turns of the coil for the attachment of the extensometer to the gauge section of the 
specimen. Figure 2 shows the final coil design which gives temperature uniformity throughout the 
gauge section to within the tolerance required for target temperatures ranging from 200°C to 1000°C. 
Figure 3 shows the temperature uniformity results obtained using this coil and a 316 stainless steel 
specimen for a target temperature of 800°C. 
 

 
Figure 3. Thermocouple positions and thermal uniformity results using the final coil. 

 
2.2. Isothermal cyclic testing 
        Isothermal cyclic tests were carried out at temperatures of 300°C, 500°C, 550°C and 600°C. 
Figure 4 shows the specimen geometry used in these tests. At each temperature, the test was 
performed for fifty loops at four strain ranges, i.e. stepped strain-range testing (200 loops in total), 
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using one specimen for each temperature. Example results at 600°C from these tests are shown in 
Figure 5. It can be seen that the majority of the material hardening occurred at the first and lowest 
strain range (±0.3%). Therefore these test results at a strain range of ±0.3% were used to obtain the 
material constants for the Chaboche unified viscoplasticity model (see Sections 3 and 4) for each 
temperature.  
 

 
Figure 4. Specimen geometry used on the TMF machine. 

 

-400

-300

-200

-100

0

100

200

300

400

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Strain (%)

S
tr

es
s 

(M
P

a)

 
Figure 5. Isothermal cyclic test results at 600°C. 

 
2.3. TMF 
        The results of two TMF tests, carried out under IP and OP conditions are presented. The IP TMF 
test was carried out using a strain range, ∆ε, of ±0.5% and a temperature range, ∆T, of 300°C with a 
minimum temperature, Tmin, of 300°C and a maximum temperature, Tmax, of 600°C. A saw-tooth 
waveform was used as shown in Figure 1a and the results for this test are shown in Figure 6a. The OP 
TMF test was carried out using a strain range, ∆ε, of ±0.6% and the same temperature wave as the IP 
TMF test, the saw-tooth waveform was is shown in Figure 1b and the results for this test are shown in 
Figure 6b. 
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(a)         (b) 

Figure 6. Experimental TMF data (a) In-phase (b) Out-of-phase. 
 

3. Definition of the material behaviour model 
 
        The Chaboche unified viscoplasticity model has been chosen to represent the uniaxial cyclic 
material behaviour of 316 stainless steel. The uniaxial form of the model is as follows: 
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and kRf −−−= χσ  (2) 

 

where the elastic domain is defined by f ≤ 0 and the inelastic domain by f > 0 

 

 ( )paC ipiii
&&& χεχ −=  (3) 

where i = 1, 2 

 21 χχχ +=  (4) 

 ( )pRQbR && −=  (5) 

 n
1

v pZ&=σ  (6) 

 pp ε&& =  (7) 

 ( ) ( ) ( )pv EsgnkR εεχσσχσ −=−+++=  (8) 

 
        Equation (1), the viscoplastic flow rule, is the governing equation within the model. As can be 
seen from equations (2) to (8), all of the other model variables, such as those used for calculating both 
types of hardening (isotropic, R and kinematic, χ) and viscous stress, σv, are dependent on the value of 
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plastic strain, εp, calculated from this viscoplastic flow rule. Equation (2) is the yield criterion for the 
model. 
        As previously mentioned, this model takes account of both kinematic hardening and isotropic 
hardening. Figure 7 shows the physical meaning of both types of hardening and the effect they have on 
the yield surface, both types of hardening are shown in three-dimensional (principle) stress space. 
When the stress state within the material causes the edge of the yield surface to be reached, kinematic 
hardening, implemented by equations (3) and (4), is represented as the movement of the yield surface, 
as shown in Figure 7a. Isotropic hardening, implemented by equation (5) represents the growth of the 
yield surface, as shown in Figure 7b. 

 

 
(a)          (b) 

 

Figure 7. Schematic representations of hardening behaviour (a) Kinematic (b) Isotropic. 
 
        Equation (6) defines the viscous stress, which takes the form of the widely used Norton creep 
law. Equation (7) shows that the variable, p, used in the calculation of many of the other variables is 
the accumulated plastic strain, εp. 
        The above model has been implemented in Matlab which is a top level programming language.  
 
4. Identification of the material constants 
 
        In total, the material model requires the identification of 10 material constants. Within this 
section are brief descriptions of the methodologies used in calculating these constants, following the 
developments detailed in [11]. 
 
4.1. Initial yield stress, k and Young’s modulus, E 
        From the initial experimental tensile curve, Young’s modulus, E is taken as the gradient of the 
initial linear region. The initial yield stress, k, can be estimated as the stress value at the point at which 
the data begins to deviate from this initial linear region. 
 
4.2. Isotropic hardening parameters, Q and b 
        Equation (5) for the rate of isotropic hardening can be integrated with respect to time to give the 
following equation: 
 

 ( )bpe1QR −−=  (9) 
 
Equation (9) shows that as the accumulated plastic strain, p, increases, R exponentially approaches 
saturation to a value of Q. Therefore, assuming that the material hardening is entirely due to isotropic 
hardening and plotting R against the accumulated plastic strain, the saturated value of R is identified 
as Q, as shown in Figure 8. Then choosing a point roughly half way into the transient region of the 
hardening behaviour, shown circled in Figure 8, the corresponding values of R and p are identified. 
These values (along with the calculated value of Q) are then put into the following equation, which is 
simply a rearranged version of equation (9) for b. By choosing this point roughly half way into the 
transient region of the hardening behaviour, the value of b calculated forces the model to go through 
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this point and with the model saturating at the value of Q, the result is a close model fit to the 
experimental data as shown in Figure 8. 
 

 
( )









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 −
=

p

Q
R1ln

b  (10) 

 

 
Figure 8. Isotropic hardening variable R versus p for 316 stainless steel at 600°C. 

 
 
4.3. Kinematic hardening parameters, a1, C1, a2 and C2  
Equation (3) for the rate of kinematic hardening can be integrated, with respect to time, to give the 
following equations: 
 

 ( )p1C11 e1a
εχ −−=  (11) 

 ( )p2C22 e1a
εχ −−=  (12) 

 
Substituting equations (11) and (12) into equation (8) gives: 
 

 ( ) ( ) v

C

2

C

1 kRe1ae1a p2p1 σσ εε +++−+−= −−  (13) 
 
If the later stages of hardening are considered, it can be assumed that χ1 (and therefore a1 and C1) has a 
negligible effect on the hardening and therefore the kinematic hardening is dominated by χ2 (a2 and 
C2). Therefore, equation (13) can be simplified to: 
 

 ( ) v

C

2 kRe1a p2 σσ ε +++−= −  (14) 
 
Differentiating equation (14) with respect to εp, re-arranging and taking natural logs of both sides gives 
the following equation (assuming yield stress, k, and viscous stress, σv, to be constants): 
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 vs. pε  as shown in Figure 9 allows the identification of C2 from 

the gradient and a2 from the y-axis intercept. Similarly, a1 and C1 can be found, for the lower strain 
region, from equation (13), having already identified a2 and C2 [11]. 
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Figure 9. Plot used in the calculation of the kinematic hardening material 

constants a2 and C2 for 316 stainless steel at 600°C. 
 

        In order to perform this fit to the data, it is necessary to obtain expressions for 
pε

σ
∂
∂

 and 
p

R

ε∂
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, as 

functions of pε , to use in equation (15). For the initial tensile curve (the first quarter cycle), pp ε= , 

which can be substituted into equation (9). This expression can then be differentiated with respect to 

pε , to give the following: 
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Hence, expressions for 
Td

d

ε
σ

 and pε&  are required. The value of Tε&  is controlled during testing as 

hence is known. To obtain pε& , Hooke’s law,  
E

e

σε = , is substituted into the following equation for 

total strain: 
 

 peT εεε +=  (18) 
 
Rearranging equation (18) and differentiating it with respect to time gives the following: 
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Multiplying the final term in equation (19) by 
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 and rearranging gives the following: 
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        In order to obtain an expression for 
Td

d

ε
σ

, a smoothing function is needed to eliminate 

complications caused by scatter in the experimental data, which could cause negative values of 
Td

d

ε
σ

 

to be obtained at some strain values. The smoothing function used in this case is the Ramberg-Osgood 
equation, i.e.: 
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Equation (22) can be substituted into equation (21) to give: 
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which can then be differentiated with respect to Tε  to give: 
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The Ramberg-Osgood constants, namely 0ε , 0σ  and 0n , can be found by rearranging and taking logs 
of both sides of equation (23) to give the following: 
 

 ( ) ( ) 000T logn1lognElog σσσε −+=−  (25) 
 
Therefore, plotting ( )σε −TElog  vs. σlog  allows the identification of n (gradient) and 0σ  (from the 

y-axis intercept). An example of this plot for a temperature of 600ºC is shown by Figure 10. Equation 
(22) can then be used to determine 0ε . Table 2 shows the Ramberg-Osgood constants calculated for 
the four temperatures. 
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Figure 10. Plot of ( )σε −TElog  vs. σlog  used in determining the constants  
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used in the Ramberg-Osgood equation. 
 

Table 2. Ramberg-Osgood constants for 316 stainless steel at multiple temperatures. 
T (°C) ε0 (%) σ0 (MPa) n0 
300 0.21803 337.61 7.2409 
500 0.20277 295.11 6.1627 
550 0.21779 307.65 7.2846 
600 0.19212 267.26 7.0468 

 
4.4. Creep constants, Z and n 
        Typical values of Z and n have been taken from literature, such as Ryu [17] and Hyde [18-20]. 
The Matlab computer program for the model was run varying these constants around the typical values 
in order to obtain good fits to the model; this resulted in the constants presented in Table 2. 
 
4.5. Material constants 
        Table 2 summarises the material constants identified from the isothermal test data for the four 
temperatures. 
 

Table 3. Material constants for 316 stainless steel at multiple temperatures. 
T  
(°C) 

k  
(MPa) 

E  
(GPa) 

b Q  
(MPa) 

a1 

(MPa) 
C1 a2  

(MPa) 
C2 Z  

(MPa.s1/n) 
n 

300 39 154.84 39.46 32.76 119.1 5964.1 108.4 1001.6 179 10 
500 32.5 145.54 33.35 30.41 94.6 6472.6 113.3 979.91 175 10 
550 31 141.26 31 27.8 86.3 6939 114.8 957.69 173 10 
600 30 139.12 28.6 27.43 80.06 7111.9 116 928.7 170 10 

 
 
5. Model predictions 
 
5.1. Comparison of model predictions to isothermal experimental results 
        Figure 11 to Figure 14 show comparisons of the experimental and model results for the 
isothermal cases of 550°C and 600°C for a strain range of ±0.3%. The figures show the monotonic 
tensile curve and first cycle, saturated cycle and hardening behaviour of the material. Figure 15 shows 
the complete predicted history (fifty loops) from the model for a temperature of 600°C, illustrating the 
predicted cyclic hardening phenomenon. 
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          (a)                  (b) 
Figure 11. Comparison of model predictions of cyclic σ-ε behaviour to isothermal experimental data 

at 550°C. (a) Monotonic tensile curve and 1st loop (b) Saturated loop 
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Figure 12. Comparison of model predictions of hardening behaviour to isothermal  

experimental data at 550°C. 
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          (a)      (b) 
Figure 13. Comparison of model predictions of cyclic σ-ε behaviour to isothermal experimental data 

at 600°C. (a) Monotonic tensile curve and 1st loop (b) Saturated loop 
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Figure 14. Comparison of model predictions of hardening behaviour to isothermal  

experimental data at 600°C. 
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          (a)       (b) 

Figure 15. Full σ-ε model predictions for 50 loops under isothermal conditions at 600°C.  
(a) Full loops (b) Zoomed for maximum strain hardening behaviour 

 
5.2. Comparison of model predictions to anisothermal experimental results 
        Table 3 shows that the material constants used in the Chaboche unified viscoplasticity model are 
generally temperature dependent. Therefore, one way of implementing the anisothermal condition 
within the model is to identify expressions for the constants as functions of temperature and inputting 
these expressions to the model rather than single values. This allows each of the constants to be 
calculated at the beginning of each time increment depending on the value of temperature at the 
beginning of that time increment. These values are then used in the calculation of the subsequent 
values of plastic strain, stress, etc, hence creating a temperature-dependent (TMF) material model. 
        Figure 16 and Figure 17 show the experimental/model comparisons for the two TMF test 
conditions. 
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Figure 16. Comparison of model predictions of cyclic σ-ε behaviour to in-phase TMF experimental 
data at high strain range. (a) Monotonic tensile curve and 1st loop (b) Saturated loop 
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Figure 17. Comparison of model predictions of cyclic σ-ε behaviour to out-of-phase TMF 
experimental data at high strain range. (a) Monotonic tensile curve and 1st loop (b) Saturated loop 

 
6. Conclusion 
 
        A unified material model, which includes both (non-linear) isotropic and kinematic hardening 
behaviour as well as viscoplasticity phenomena, such as rate-dependency, has been successfully 
implemented in Matlab. A programme of isothermal and anisothermal thermo-mechanical tests have 
been conducted using induction coil heating, with the temperature uniformity controlled to within 
±10°C up to temperatures of 600°C. The isothermal tests have been employed to identify the material 
constants for the material model at different temperatures between 300°C and 600°C. The 
experimental data has also been employed to validate the Matlab implementation of the unified 
viscoplasticity model, showing excellent model to test correlation for the isothermal tests considered. 
Interpolation of the temperature-dependency of the material constants, for application to the 
anisothermal simulations has also shown reasonably good correlation, although the model appears to 
slightly under-predict the peak tensile stresses during forward plastic deformation and over-predict the 
intermediate to high compressive stresses during reverse plastic deformation. It is also worth noting 
that the material constants were obtained only from the ±0.3% strain range (isothermal) data, due to 
the use of the stepped strain-range technique to minimise specimen usage, whereas the TMF 
experimental data was obtained at strain ranges of ±0.5% and ±0.6%, the model predictions therefore 
represent an extrapolation in terms of the strain range used. Further testing to characterise TMF 
behaviour of the material at the strain range at which the material constants were obtained is expected 
to improve the anisothermal predictions.  
        A parallel project is concerned with development of optimisation techniques for automating and 
refining the process of material constant identification.  
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