<table>
<thead>
<tr>
<th>Title</th>
<th>A multi-axial cyclic viscoplasticity model for high temperature fatigue of P91 steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Barrett, Richard A.; Leen, Sean B.</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2014</td>
</tr>
<tr>
<td>Publisher</td>
<td>Maney Online</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.1179/1743284713Y.0000000382</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/5390</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/10.1179/1743284713Y.0000000382</td>
</tr>
</tbody>
</table>

Some rights reserved. For more information, please see the item record link above.
<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>MST10838R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>A Multi-axial Cyclic Viscoplasticity Model for High Temperature Fatigue of P91 Steel</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Original Research Paper</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Hyperbolic sine constitutive model; P91 steel; Thermo-mechanical fatigue; Ratcheting; Strain-rate sensitivity</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Richard Barrett
NUI Galway
IRELAND |
| Corresponding Author Secondary Information: | |
| Corresponding Author's Institution: | NUI Galway |
| Corresponding Author's Secondary Institution: | |
| First Author: | Richard Barrett |
| First Author Secondary Information: | |
| Order of Authors: | Richard Barrett
T. P. Farragher
N. P. O'Dowd
P. E. O'Donoghue
S. B. Leen |
| Order of Authors Secondary Information: | |
| Abstract: | This paper presents a novel multi-axial, cyclic viscoplasticity material model for high temperature low cycle fatigue of P91 power plant steel. The model incorporates mechanisms-based variable strain-rate sensitivity and the key high temperature cyclic deformation phenomena of cyclic softening and non-linear kinematic hardening. The model has been calibrated to accurately represent the cyclic high temperature constitutive behaviour of 'as received' P91 steel. Details on the material Jacobian, with the consistent tangent stiffness for finite element implementation, are presented. The multi-axial implementation is applied to (i) a notched specimen under strain-controlled loading at 600 °C and (ii) a thin-walled pipe under representative pressurised thermo-mechanical fatigue loading conditions. It is shown that the model for variable strain-rate sensitivity of the present paper predicts significantly different Coffin-Manson notch fatigue life compared to the Chaboche power-law model. Ratchetting is shown to be a key candidate failure mechanism for next generation thermo-mechanical power plant loading conditions, for thin-walled pressurised pipes. |
A Multi-axial Cyclic Viscoplasticity Model for High Temperature Fatigue of P91 Steel

R.A. Barrett1,2, T.P. Farragher1,2, N.P. O'Dowd3, P.E. O'Donoghue2,4, S.B. Leen1,2

1Mechanical Engineering, College of Engineering and Informatics, NUI Galway, Ireland.
2Ryan Institute for Environmental, Marine and Energy Research, NUI Galway, Ireland
3Dept. of Mechanical, Aeronautical and Biomedical Engineering, Materials & Surface Science Institute, University of Limerick, Ireland.
4Civil Engineering, College of Engineering and Informatics, NUI Galway, Ireland.

Abstract: This paper presents a novel multi-axial, cyclic viscoplasticity material model for high temperature low cycle fatigue of P91 power plant steel. The model incorporates mechanisms-based variable strain-rate sensitivity and the key high temperature cyclic deformation phenomena of cyclic softening and non-linear kinematic hardening. The model has been calibrated to accurately represent the cyclic high temperature constitutive behaviour of 'as received' P91 steel. Details on the material Jacobian, with the consistent tangent stiffness for finite element implementation, are presented. The multi-axial implementation is applied to (i) a notched specimen under strain-controlled loading at 600 °C and (ii) a thin-walled pipe under representative pressurised thermo-mechanical fatigue loading conditions. It is shown that the model for variable strain-rate sensitivity of the present paper predicts significantly different Coffin-Manson notch fatigue life compared to the Chaboche power-law model. Ratchetting is shown to be a key candidate failure mechanism for next generation thermo-mechanical power plant loading conditions, for thin-walled pressurised pipes.

1. Introduction

The changing landscape of power generation is such that plants operate with increased flexibility resulting in increased thermo-mechanical fatigue (TMF) of plant components. As modern plant are designed for high creep loading, there is a requirement to characterise the current generation of plant materials under flexible loading. In addition, a move to an ultra-supercritical (USC) cycle results in improved plant efficiency and reduced CO$_2$ emissions, although there is a rise in steam pressure and temperature. Thus, modern plant are required to deal with harsher loading conditions, leading to a reduction in component life.

A newly developed material model [1, 2] for cyclic viscoplasticity and variable strain-rate sensitivity is applied to P91 steel, under multi-axial loading conditions. P91 steel is a 9Cr martensitic steel typically used for plant header and piping systems due to its high creep strength [3]. A number of material models capable of simulating the constitutive behaviour of candidate materials already exist, including the unified Chaboche model [4-7] and the two-layer viscoplasticity model [8, 9]. However, a hyperbolic sine material model has been chosen as it is more representative of the key mechanisms of deformation [10], enabling strain-rate independence of the material parameters and offers greater accuracy through the full stress regime [1, 2, 11]. Initial validation of the performance of the material model is conducted in Barrett et al. [1, 2] and the current application concerns the assessment of the multi-axial performance of the model. To this effect, a notched specimen model has been designed to cover a specific stress regime and the multi-axial capability of the hyperbolic sine material model is assessed by means of analysis of the trends observed in finite element (FE) simulations and comparison with similar work conducted in this field [12-14]. The Coffin-Manson (C-M) [15] relationship is used to predict failure of the notched specimen and to
compare the life of a notched specimen with that of a smooth test specimen. A comparison with the life predicted by a power law model, for both the smooth and notched specimens, is also presented.

The more realistic application of TMF loading of an axisymmetric pipe is also investigated within the present study. The thin-walled pipe is subjected to pressurised TMF cycles at a temperature rate representative of realistic plant [8, 9] and a temperature regime within the range of 400 °C to 600 °C, for which the material model has been calibrated. The importance of ratchetting as a failure mechanism is illustrated vis-a-vis increase in operating pressure, representative of future USC conditions.

2. Material Model

The material model, described briefly here, is based on a hyperbolic sine constitutive equation for the effective accumulated plastic strain-rate [1]:

\[\dot{\epsilon} = \alpha \sinh \beta f \]
(1)

where \(\alpha \) and \(\beta \) are temperature dependent cyclic viscoplasticity material parameters and the function \(f \) defines the elastic domain if \(f \leq 0 \) and the viscous stress if \(f > 0 \). The increment in stress, \(\Delta \sigma \), is evaluated using Hooke's law:

\[\Delta \sigma = \Lambda : \Delta \varepsilon^e = \Lambda : (\Delta \varepsilon - \Delta \varepsilon^p - \Delta \varepsilon^t) \]
(2)

where \(\Lambda \) is the elasticity tensor, \(\Delta \varepsilon^e \) is the increment in elastic strain tensor, \(\Delta \varepsilon \) is the increment in strain tensor, \(\Delta \varepsilon^p \) is the increment in plastic strain tensor and \(\Delta \varepsilon^t \) is the thermal strain tensor increment. The plastic strain tensor increment, \(\Delta \varepsilon^p \), is obtained using a flow rule defined from a thermodynamic framework [1, 16] and described as:

\[\dot{\varepsilon}^p = \frac{\partial \Omega(f)}{\partial f} \frac{\partial f}{\partial \sigma} = \dot{\epsilon} \mathbf{n} \]
(3)

In equation (3), \(\Omega(f) \) is the dissipation potential and \(\mathbf{n} \) is the tensor normal. For the hyperbolic sine material model presented in this study, the dissipation potential is:

\[\Omega(f) = \frac{\alpha}{\beta} \cosh(\beta f) \text{sgn}(f) \]
(4)

and the function \(f \) is defined as:

\[f = J(\sigma - \chi) - R - k \]
(5)

where \(J(\sigma - \chi) \) is the equivalent stress, \(\sigma \) is the stress tensor, \(\chi \) is the back stress tensor which corresponds to the centre of the elastic domain in 3D stress space, \(R \) is the isotropic hardening variable which accounts for expansion/contraction of the elastic domain in 3D stress space and \(k \) is the temperature dependent initial yield stress. The following equations define the evolutions of isotropic and kinematic hardening respectively [17, 18]:

\[\dot{R} = b(Q - R) \dot{\rho} + \left(\frac{1}{b} \frac{\partial b}{\partial T} + \frac{1}{Q} \frac{\partial Q}{\partial T} \right) RT \]
(6)

\[\chi = \chi_1 + \chi_2 \]
(7)
\[
\dot{\chi}_i = C_{i} \dot{\epsilon}^{pl} - \gamma_{i} \chi_{i} \rho + \frac{1}{C_{i}} \frac{\partial C_{i}}{\partial T} \chi_{i} \dot{T}
\]

(8)

where \(b, Q, C_{i} \) and \(\gamma_{i} \) are temperature dependent material parameters and \(i = 1, 2 \). The material parameters for the temperatures modelled are calibrated in [1, 7] and presented in Table 1. Fig. 1 illustrates a typical uniaxial validation result produced by the material model outside the strain-rate, strain-range and temperature of calibration, with a more extensive validation of the material model conducted in [1, 2, 19] and Fig. 2 highlights the considerable cyclic softening observed during high temperature low cycle fatigue (HTLCF) testing at 600 °C.

The material model is implemented in multi-axial form in a UMAT user material subroutine. Viscoplastic behaviour occurs if \(\Omega(f) > 0 \) and \((\partial \Omega(f)/\partial \sigma) : \dot{\sigma} > 0 \) and the increment in plastic strain is obtained using an implicit integration scheme [1]. To ensure efficient simulations, the material Jacobian is provided in the form of the consistent tangent stiffness. The derivation of the consistent tangent stiffness (CTS) can be found elsewhere [19] and is defined as:

\[
\delta \sigma = Z_{1} \delta \epsilon + I Z_{2} : \delta \epsilon + n Z_{3} n : \delta \epsilon - n Z_{4} n_{t} I : \delta \epsilon - \chi_{i} Z_{5} n : \delta \epsilon + \chi_{i} Z_{5} n_{t} I : \delta \epsilon + (s^{tr} - \chi_{i})(Z_{7} n : \delta \epsilon - Z_{7} n_{t} I : \delta \epsilon)
\]

(9)

where \(Z_{i} \) are material parameters (see Table A1 in Appendix) related to the parameters in equations (6) to (8), \(I \) is the identity matrix, \(n_{t} \) is \(n : I \), \(s^{tr} \) is the deviatoric trial stress tensor and \(\chi_{i} \) is the deviatoric back stress tensor from the previous increment. The UMAT implementation and the terms of the CTS are described in more detail in the Appendix.

3. Results and Discussion

3.1 Notched Specimen

The notched specimen (NS) model within the current study is based on a fatigue test specimen with a notch of radius 0.5 mm at the midpoint of the gauge length (see Fig. 3). The notched specimen has an elastic stress concentration factor of 2.9, defined in terms of the axial stress, where the nominal stress is based on the stress remote from the notch root. Fig. 4 depicts the stress ranges covered by the uniaxial test data [20, 21] and the local notch stress regime at 600 °C along with the correlation achieved by the model to the experimental data of [20, 21]. The comparison of the material model presented in equation (1) with minimum creep-rate data of [20, 21], which have been obtained via constant load tests and presented in Fig. 4, illustrates the ability of the model to operate across a broad range of strain-rates. This result enables reliable extrapolation from accelerated laboratory test conditions to the strain-rates typically observed in modern plant [8, 9, 22]. Fig. 5 depicts a comparison of the constitutive behaviour of P91 steel for the initial and 50th cycles for the smooth specimen (SS) and the stress-strain response of the notched specimen at the central axis and notch root, at a temperature of 600 °C with a nominal strain-rate of 0.1 %/s and nominal strain-range of ±0.5 % (see Fig. 6), illustrating the effect of the notch on the stress-strain ranges produced. The nominal strain here is the average strain applied to the gauge length of the specimen of Fig 3, which corresponds to the applied displacement divided by the gauge length. The nominal stress is the total load (in response to the applied displacement) as measured at the
unnotched section of the gage length, i.e. remote from the notch section of Fig 3, e.g. section A-A.

In multi-axial creep and plastic failure, triaxiality, and hence the hydrostatic stress, represent key parameters for failure [23]. Fig. 7 illustrates the predicted distributions of hydrostatic stress and axial plastic strain range with radial position from the central axis to the notch root. The hydrostatic stress is dominated by the axial stress and in the initial elastic regime ($\sigma < \sigma_y$), the highest stress is observed at the notch root. With viscoplastic behaviour, yielding and the maximum plastic strain occur at the notch root. As the loading increases, the maximum hydrostatic stress redistributes away from the notch root. The hydrostatic stress reduces to an almost constant value towards the centre of the specimen. This result is consistent with the work of [12, 14]. As the cycles increase, the stress from an initial peak distribution (N=1), reduces due to the cyclic softening behaviour of P91 steel [7, 24], as illustrated in Figs. 5 and 7. The high localisation of the stress relatively close to the notch root (see Fig. 7a) is concomitant with a high localisation of plastic strain in the zone surrounding the notch root as highlighted in Fig. 7b. However, away from the notch root, a significant portion of the specimen has a strain value slightly lower than the nominal applied strain of ±0.5 %. Initially the maximum von Mises stress is predicted at the notch root, but with increased time is predicted to redistribute circumferentially around the notch to a region labelled ‘A’ in Fig. 8. Fig. 8 also illustrates the predicted redistribution of von Mises stress in terms of the contour plots produced by the FE model at times of 2 s and 505 s respectively.

As the FE predictions illustrate, the inclusion of a stress concentration in the form of a notch has a considerable effect on the performance of P91 steel. This is predicted to cause a significant reduction in life based on a C-M prediction, with the C-M relationship given as [15]:

$$\frac{\Delta \varepsilon_{pl}}{2} = \varepsilon'_f \left(2N_f\right)^c$$

(10)

where N_f is the number of cycles to failure, ε'_f is the fatigue ductility coefficient and c is the fatigue ductility exponent. From the HTLCF experiments conducted by [7, 25, 26] and subsequent identification of the Coffin-Manson constants in [26], ε'_f has a value of 0.4896 and c is -0.5927 at 600 °C. Table 2 contains the C-M predictions for the SS and NS cases, illustrating the influence of a stress concentration on the predicted life in both cases, with excellent agreement achieved for the SS case via comparison with the experimental fatigue life of [26]. The result of the C-M prediction is based on the value of highest axial plastic strain range and future work concerns the execution of a critical plane approach to identify the plane of maximum plastic strain range and account for the multi-axial effects of the inclusion of a notch.

The current study also presents a comparison between the hyperbolic sine model [1] and the more widely used power law model [4, 5]. The constitutive equation in the power law model is defined as:

$$\dot{\rho} = \left(\frac{f}{Z}\right)^\sigma$$

(11)
where Z and n are the power law cyclic viscoplastic material parameters, obtained from the literature [7] and f is defined by equation (5). In Fig. 9a, the stress-strain response produced by both models for the initial loop at the position labelled 'axis' in Fig. 3 are presented, where almost identical results are obtained. At this position, the material response is close to the nominal loading conditions and thus, as this is close to the regime of calibration in both cases, the excellent comparison in Fig. 9a is expected. However, Fig. 9b presents the response at the notch root, where the effects of a stress concentration are observed and a considerable difference between both models is predicted. The power law model predicts a significantly lower plastic strain-range, leading to a 28% higher predicted life, as shown in Table 2. Referring to Fig. 4, the hyperbolic sine model is correlated with experimental data across the full range of test data, giving confidence for extrapolation. The power law model is a linear approximation to a relatively small range of test data and should only be used within that calibrated range of strain and strain-rate. Hence, for this application to the notch root or similar stress (and hence strain-rate) concentrations in realistic applications, it is argued that the hyperbolic sine model is more suitable. A closely related issue is that of extrapolation from common laboratory test conditions (typically comparatively high strain-rate) to realistic (much slower strain-rate) conditions. It is likewise argued here, based on Fig. 4 and the results presented, that the present (hyperbolic sine) model is more suitable and reliable for this purpose.

3.2 Thin-Walled Pipe

The material model is applied to the case of a thin-walled pipe with uniform temperature across the pipe wall, with geometry as in Fig. 10 and pressurised TMF loading conditions as per Fig. 11. Two different cyclic (R=0) operating pressures are considered, a low pressure (LP) case of 17 MPa and a high pressure (HP) case of 25 MPa. The former is representative of current (subcritical) plant operating conditions and the latter of future USC conditions. The calculated hoop stress-strain relationships for the two maximum cycling pressures are illustrated in Fig. 12. In both cases, ratchetting is predicted initially, with significantly more severe values of ratchet strain predicted for the HP case. For the LP case, it is predicted that the effect of ratchetting effectively reduces to plastic shakedown as the cycles increase. However, as depicted in Fig. 13, the effect of ratchetting increases with the number of cycles for the HP case and this illustrates the need to account for the potential of ratchetting as a failure mechanism in thin-walled tubes as plant operating pressures increase. The number of cycles to ratchetting failure, N_r, may be estimated by the following equation [27, 28]:

$$N_r = \frac{\varepsilon_c}{\Delta \varepsilon_r} = \frac{\varepsilon_c}{\sum_{i=1}^{N_i} \Delta \varepsilon_r \sum_{j=1}^{N_j} \frac{2}{3} \Delta \varepsilon_{rj} \Delta \varepsilon_{ij}}$$

(12)

where ε_c is a critical strain, typically taken to be the material ductility, $\Delta \varepsilon_r$ is an equivalent ratchet strain and $\Delta \varepsilon_{rj} \Delta \varepsilon_{ij}$ are the increments in ratchet strain components. Assuming a material ductility of 4% [29], application of equation (12) predicts 240 cycles (~4 yrs) to failure by ratchetting for the HP case. These results highlight possible issues in moving to higher pressures, e.g. USC loading conditions, and the need to conduct life analysis of plant components under increased pressure loading and realistic temperature-pressure histories [8,
9]. It is also noted that future work should assess the ability of alternative non-linear kinematic hardening (NLKH) models to predict the effects of ratchetting accurately, as it is widely accepted that the Armstrong-Frederick NLKH model tends to over-predict ratchet strain [30].

4. Conclusions

A recently developed unified cyclic viscoplasticity material model for variable strain-rate sensitivity is presented for high temperature fatigue of P91 steel and applied to the multi-axial modelling of (i) a notched tension specimen and (ii) a thermo-mechanically pressurised thin-walled pipe. The study concludes that:

- The new material model presented here has the ability to operate across a large stress and strain-rate regime, as typically observed under realistic loading and geometry conditions, and with the ability to allow reliable extrapolation from high-rate laboratory test conditions to low-rate plant conditions.

- When applying material models to conditions outside the regime of calibration, care must be exercised to ensure reliable results. The present novel constitutive model predicted a notch (Coffin-Manson) fatigue life of 28% less than the power-law model, for equal smooth specimen lives, thus demonstrating the need for a reliable extrapolation capability in constitutive modelling.

- Experimental testing of the present material under a multi-axial stress state, e.g. using a notch geometry similar to [13] or tension-torsion tests as presented in [31], to further validate the present material model under multi-axial loading conditions is the subject of ongoing work.

- For pressurised TMF loading of thin-walled pipes, ratchetting is predicted to be a candidate mode of failure, with increased pressure predicted to significantly increase the ratchet rate and strain, and hence reduce component life.

Appendix: UMAT implementation

The hyperbolic sine unified cyclic viscoplastic material model described above is implemented in a UMAT user subroutine for use with Abaqus. The increment in effective plastic strain is determined using an implicit integration scheme:

\[\Delta p = \Delta p + d\Delta p \]

and the iterative increment in effective plastic strain, \(d\Delta p \), is defined as [1]:

\[
d\Delta p = \left[\varphi \left(\frac{\Delta p}{\Delta t} \right) - Z \mathbf{n} : \chi \left(\frac{1}{C_r} \frac{\partial C_r}{\partial T} \right) dT - Z \left(\frac{1}{b} \frac{\partial b}{\partial T} + \frac{1}{Q} \frac{\partial Q}{\partial T} \right) RdT \right]^{-1} \left[\frac{1}{\Delta t} + 3GZ + ZC_r \mathbf{n} : \chi, + Zb (Q - R) \right]
\]

where \(Z = \frac{\partial \varphi}{\partial \sigma} \) and:

\[
\varphi(\Delta p, \chi, R) = a \sinh \beta \left(\sigma_{\text{eq}}^n - 3G\Delta p - R - k \right)
\]
In equation (A3), G is the shear modulus and σ_{e}^{tr} is the equivalent trial stress, defined as:

$$\sigma_{e}^{tr} = \left[\frac{3}{2} (s_{\varepsilon}^{\text{tr}} - x_{\varepsilon}) : (s_{\varepsilon}^{\text{tr}} - x_{\varepsilon}) \right]^{1/2}$$ \hspace{1cm} (A4)

The material Jacobian, $D = \partial \sigma / \partial \varepsilon$, must be provided for each increment that the UMAT is called. To ensure more efficient simulations, the material Jacobian is provided in the form of CTS matrix. The CTS is derived from the definition of the tensor normal [32]:

$$n = \frac{3}{2} \frac{s_{\varepsilon}^{\text{tr}} - x_{\varepsilon}}{\sigma_{e}^{tr}} = \frac{3}{2} \frac{s - x}{\sigma_{e}}$$ \hspace{1cm} (A5)

Rearranging and applying the differential operator produces:

$$\delta s = \frac{\sigma_{e}}{\sigma_{e}^{tr}} \delta s_{\varepsilon}^{tr} + s_{\varepsilon}^{tr} \delta \left(\frac{\sigma_{e}}{\sigma_{e}^{tr}} \right) - x_{\varepsilon} \delta \left(\frac{\sigma_{e}}{\sigma_{e}^{tr}} \right) + \delta x$$ \hspace{1cm} (A6)

The differential kinematic hardening term, δx, is defined in a similar manner to equation (8) and requires the differential increment in effective plastic strain, $\Delta \varepsilon$:

$$\delta \Delta \varepsilon = \frac{Y n : \delta \sigma_{e}^{tr}}{\Delta \varepsilon + 3G Y + Y n : x_{\varepsilon} Y_{i} + Y b (Q - R)} = \frac{Y}{D} n : \delta \sigma_{e}^{tr}$$ \hspace{1cm} (A7)

where Y is defined in a similar manner to Z. Thus, equation (A6) may be redefined in conjunction with equations (8) and (A7) to produce the CTS:

$$\delta \sigma = Z_{x} \delta \varepsilon + 1 Z_{i} I : \delta \varepsilon + n Z_{x} n : \delta \varepsilon - n Z_{x} n_{x} I : \delta \varepsilon - x_{\varepsilon} Z_{x} n : \delta \varepsilon + x_{\varepsilon} Z_{x} n_{x} I : \delta \varepsilon + \left(s_{\varepsilon}^{\text{tr}} - x_{\varepsilon} \right) \left(Z_{x} n : \delta \varepsilon - Z_{x} n_{x} I : \delta \varepsilon \right)$$ \hspace{1cm} (A8)

where the Z_{x} terms are defined in Table A1.

Acknowledgements

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant Number SFI/10/IN.1/I3015. The Authors would like to acknowledge the contributions made by the collaborators of the METCAM project, including Mr. S. Scully of ESB Energy International, Dr. P. Tiernan, and Dr. D. Li of the University of Limerick, and Prof. T.H. Hyde, Dr. C.J. Hyde and Dr. W. Sun of the University of Nottingham.
Table 1: Hyperbolic sine material model parameters.

<table>
<thead>
<tr>
<th></th>
<th>400 °C</th>
<th>500 °C</th>
<th>600 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (GPa)</td>
<td>184</td>
<td>180</td>
<td>142</td>
</tr>
<tr>
<td>α_{COE} ($^\circ$C)</td>
<td>12.95\times10$^{-6}$</td>
<td>13.31\times10$^{-6}$</td>
<td>13.59\times10$^{-6}$</td>
</tr>
<tr>
<td>ν</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Q (MPa)</td>
<td>-55.0</td>
<td>-60.0</td>
<td>-75.4</td>
</tr>
<tr>
<td>b</td>
<td>0.45</td>
<td>0.60</td>
<td>1.00</td>
</tr>
<tr>
<td>C_1 (MPa)</td>
<td>352500</td>
<td>215873</td>
<td>106860</td>
</tr>
<tr>
<td>γ_1</td>
<td>2350</td>
<td>2192</td>
<td>2055</td>
</tr>
<tr>
<td>C_2 (MPa)</td>
<td>48600</td>
<td>48235</td>
<td>31160</td>
</tr>
<tr>
<td>γ_2</td>
<td>405</td>
<td>461</td>
<td>463</td>
</tr>
<tr>
<td>k (MPa)</td>
<td>96</td>
<td>90</td>
<td>43</td>
</tr>
<tr>
<td>β (s)</td>
<td>1.4\times10$^{-6}$</td>
<td>8.0\times10$^{-7}$</td>
<td>1.0\times10$^{-7}$</td>
</tr>
</tbody>
</table>

Table 2: C-M life predictions at 600 °C for the smooth and notched specimens.

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Smooth specimen</th>
<th>Notched specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present sinh</td>
<td>2231</td>
<td>83</td>
</tr>
<tr>
<td>Power law</td>
<td>2272</td>
<td>116</td>
</tr>
</tbody>
</table>

Table A1: Definition of the terms in the CTS.

\[
\begin{align*}
Z_1 &= 2G \frac{\sigma_e}{\sigma_e^n} \\
Z_2 &= K - \frac{1}{3} Z_1 \\
Z_3 &= 2G \frac{2}{3} C_1 \frac{Y}{D} \\
Z_4 &= \frac{1}{3} Z_3 \\
Z_5 &= 2G \gamma_1 \frac{Y}{D} \\
Z_6 &= \frac{1}{3} Z_5 \\
Z_7 &= 2G \left(\frac{1}{\sigma_e^n} - \frac{1}{\sigma_e^{tr}} 3G \frac{Y}{D} \right) + n : \mathbf{X} \left(\frac{1}{\sigma_e^n} \gamma_1 \frac{Y}{D} - \frac{\sigma_e}{\sigma_e^{tr^2}} \frac{Y}{D} \right) \\
Z_8 &= \frac{1}{3} Z_7
\end{align*}
\]
Figure 1: Comparison of the stress-strain response predicted by the FE model with the experimental data of [6] for (a) the initial cycle and (b) the 103rd cycle at 550 °C and a strain rate of 0.01 %/s.
Figure 2: FE predicted stress-strain response for the initial and 300th cycles at 600 °C and a strain-rate of 0.1 %/s, illustrating the cyclic softening behaviour in 9-12Cr steels.

Figure 3: The notch specimen gauge length, axisymmetric FE mesh and symmetrical boundary conditions.
Figure 4: Comparison of the hyperbolic sine material model with the experimental data of [20, 21], illustrating the uniaxial test range and the simulated NS range.
Figure 5: Axial stress-strain response for (a) the initial cycle and (b) the 50th cycle at a temperature of 600 °C and a nominal strain range of ±0.5% and nominal strain rate of 0.1 %/s.
Figure 6: Strain-controlled loading conditions for a nominal strain-rate of 0.1 %/s and nominal strain-range of ±0.5 %.

(a)
Figure 7: FE predicted variation of (a) the hydrostatic stress and (b) the axial plastic strain range with radial position for various cycles, illustrating the effect of stress redistribution and cyclic softening of P91 steel.

Figure 8: FE predicted von Mises contour plots produced by the hyperbolic sine material model at 2 s (N<1) and 505 s (N=25), under strain-controlled HTLCF loading conditions.
Figure 9: FE predicted stress-strain response produced by both the hyperbolic sine and power law material models at (a) the axis of symmetry for the initial loop and (b) at the notch root for the 50th cycle.
Figure 10: FE model setup for the axisymmetric thin-walled pipe geometry.

Figure 11: TMF-OP loading conditions for the pressure and temperature cycles corresponding to a temperature rate of 0.33 °C/s.
Figure 12: FE predicted hoop stress-strain response for TMF-OP loading in the 400-600 °C temperature range and cycling pressure for (a) HP and (b) LP loading conditions.
Figure 13: FE predicted (a) hoop mechanical strain and (b) hoop ratchet strain, plotted as a function of the number of cycles illustrating the effect of ratchetting observed for the conditions outlined in Fig. 12.

References

Assignment of Copyright

Materials Science and Technology (‘the Journal’)

In order for Maney Publishing (‘the Publisher’) to ensure the widest possible dissemination and protection of material published in the Journal, we request authors to assign worldwide copyright in print, digital and other media in their papers, including abstracts, to the Institute of Materials, Minerals and Mining. This enables us to ensure maximum international copyright protection against infringement, and to disseminate your article, and the Journal, to the widest possible worldwide readership. Should the article be rejected from the Journal for any reason, all rights assigned within this document revert back to the author(s) of the article. Please read the explanatory notes of this agreement on the following page.

1. In consideration of the undertaking set out in paragraph 2, the Author(s) as beneficial owner(s) hereby assign(s) to The Institute of Materials, Minerals and Mining all rights, title and interest in the copyright throughout the world in the article named below (which shall be taken to include any or all supplementary material associated with the article*) for the full legal term of copyright.

Article title: A Multi-axial Cyclic Viscoelasticity Model for High Temperature Fatigue of P91 Steel

Name(s) of Author(s): Richard A. Barrett; Tadhg P. Farragher; Noel P. O'Dowd; Padraig E. O'Donoghue; Sean B. Leen.

Manuscript no./ref. MST10838R1.

If this paper is sponsored for Open Access by your grant funders, follow the MORE OpenChoice route by signing and returning this copyright assignment to the address below, and find details of the policy and how to make payment at www.maneypublishing.com/moreopenchoice/info.

So that there should be no doubt, it is understood and agreed that this assignment includes the right to publish or adapt (subject to paragraphs 3 and 4) the material in the article for use in conjunction with computer systems, including networks; the article may be published in printed, CD-ROM, microfiche, on-line, or other machine-readable form or in any other format or medium (electronic or otherwise) approved by the Institute of Materials, Minerals and Mining.

2. Maney Publishing, as the Journal's publisher, hereby undertakes to prepare for publication and publish in the Journal, the Article named in paragraph 1.

3. The Editor of the Journal, and the Publisher, are empowered to make such editorial changes as may be necessary to make the Article suitable for publication. Every effort will be made to consult the Author(s) if substantive changes are required.

4. The Author(s) hereby assert(s) their moral rights under the terms of the Copyright Designs and Patents Act 1988 to be identified as the Author(s) of the Article.

5. The Author(s) warrant(s) that the Article is the Author(s) original work, has not been published before, either in part or whole, and is not currently under consideration for publication elsewhere. The Author(s) also warrant(s) that (a) the Article contains no libellous or unlawful statements, (b) it in no way infringes the rights of others (including the holders of copyright in material used within the Article), (c) that permission has been obtained to reproduce any material or illustrations for which they do not hold copyright, and that (d) the Author(s), as the owners of the copyright, is (are) entitled to make the assignment set out in this agreement. The Author(s) hereby indemnifies/Indemnify the Institute of Materials, Minerals and Mining and the Publisher against any claims for breach of the warranties given above.

6. In cases where the article is a translation of a previously published article, the Author(s) warrant(s) that full permission has been obtained to carry out and publish the translation of the article from its original language, and that it in no way infringes the rights of others (including the holders of copyright in material used within the original Article).

7. The author warrants that the article contains no plagiarised material and agrees that the article may be checked for plagiarism and other ethical questions (including checks carried out using by automated software packages). The Publisher reserves the right to withdraw or retract any article for which, in its reasonable opinion, valid concerns exist over the originality of the article or its compliance with the journal's ethical policy. Maney's plagiarism and ethical policy may be read in full at www.maneypublishing.com/publishingethics.

*If the author(s) cannot assign copyright for any or all the supplementary material, the clause in parentheses should be struck out and a licence to publish provided for this material. If copyright is held by a third party, permission to reproduce this material must be obtained from the copyright holder as laid out in paragraph 5 of this form and submitted to the publisher.

Copyright Assignment

I hereby sign this Assignment of Copyright with the full knowledge and agreement of all Authors named above in 1.

Signed: .. Date: 14/08/2013

Printed name: ..

Please complete all specified fields and sign this form. You must upload a scanned version of the form with your revised paper when resubmitting on Editorial Manager – your paper cannot proceed to publication without it. If you have trouble scanning or uploading the form, contact the Production Editor for assistance.

Production Editor: Geetha Nair, Maney Publishing
g.nair@maneypublishing.com Fax: +44 (0) 20 7451 7307; [Maney Publishing, 1 Carlton House Terrace, London, SW1Y 5AF]
ASSIGNMENT OF COPYRIGHT: EXPLANATORY NOTES

1. The Journal’s policy is to acquire copyright for all contributions for the following reasons:
 a. ownership of copyright by a central organisation helps to ensure maximum international protection against infringement;
 b. requests for permission to reproduce articles in books, course packs or for library loan can be handled efficiently and with sensitivity to changes in international copyright law and to the general desirability of encouraging the widest dissemination of knowledge. At the same time, this relieves editors and societies of a time-consuming and costly administrative burden;
 c. the demand for research literature to be delivered in machine-readable form, on-line or on CD-ROM or downloaded on a file server, can be met efficiently, with proper safeguards for authors, editors and journal owners.

2. As the information market changes, there are opportunities to reach both individual readers and institutions (e.g., companies, schools and public libraries) that are unlikely to subscribe to the journal. This involves working with other organisations to publish online services or CD-ROM, or to deliver copies of individual articles. It also involves registering the Journal with the Copyright Licensing Agency in the UK and the Copyright Clearance Center in the USA, which offer centralised licence arrangements for photocopying. Income received from all of these sources will be used to further the interests of the Journal.

3. As a consequence of the above, your Article will be published in electronic, machine-readable form, and normally printed, in the Journal, and may be stored electronically either by Maney or by a duly licensed third party for delivery as an individual article copy or as part of a larger collection of articles, from a range of journals to meet the specific requirements of a particular market. Assignment of copyright signifies agreement to the Journal making such arrangements.

4. It may be that the Author is not able to make the assignment solely by him- or herself:
 a. If it is appropriate, the Author's employer may sign this agreement. The employer may reserve the right to use the Article for internal or promotion purposes (by indicating on this agreement), and reserve all rights other than copyright.
 b. If the Author is a UK Government employee, TSO will grant a non-exclusive licence to publish the Article in the Journal in any medium or form provided that Crown Copyright and user rights (including patent rights) are reserved.
 c. If the Author is a US Government employee and the work was done in that capacity, the assignment applies only to the extent allowed by US law.

5. Under the UK’s Copyright Design and Patents Act 1988, the Author has the moral right to be identified as the author whenever and wherever the Article is published. He or she also has the right to object to derogatory treatment or distortion of the work. The Journal encourages assertion of this right, as it represents the best of publishing practice and provides an important safeguard for all authors. Clause 4 ensures that moral rights are asserted, as required by the Act.

6. Authors who wish to reproduce material from previously published sources or where the copyright is owned by a third party, such as sections of text, tables or images, must obtain written permission from the copyright holder and the author(s)/artist(s) of the original material. In the case of translations, the author(s) must obtain written permission from the copyright holder of their original article upon which the translation is based. Copyright is required for use in all formats (including digital), in perpetuity and in all geographical regions worldwide (and in colour for illustrations where relevant). For more information please see www.maneypublishing.com/authors/copyright.

7. The Journal will not withhold permission from the Author to use the content of his or her own Article elsewhere after publication in the Journal, provided acknowledgement is given to the Journal as the original source of publication. Further permission is required for republication to be made in a commercial product and authors should contact permissions@maneypublishing.com with their request. Permission is never unreasonably withheld.

8. Authors shall receive a PDF file (Eprint) of the final, published, version of their article, which they may share with colleagues and other research associates, but cannot archive in a personal, institutional, or subject based open access repository. No commercial use shall be made of the article, or the PDF file, without Maney's prior, written permission.

9. Authors may:
 (a) post a copy of their un-refereed paper, sometimes called a pre-print, on their personal or institutional website or in an institutional, or subject based open access repository; and
 (b) post a copy of their refereed and accepted paper, sometimes called a post-print, (before copyediting, typesetting and proofing by Maney), on their personal or institutional website or in an institutional, or subject based open access repository, as long as (i) full acknowledgement is made of the Journal issue in which the article is published, when this information is available; (ii) a link to the published online version of the paper on Maney’s chosen online hosting platform, to the Journal, and the Publisher’s website at www.maneypublishing.com, and any other information specified in the copyright transfer statement, is given; and (iii) no commercial use is made of the article. A posted pre-print of an article should be replaced by a post-print once the article has been accepted for publication. (In the case of translations of
original articles, this is subject to the permissions given by the copyright holder of the original article). For more information please visit www.maneypublishing.com/authors/permissions or email permissions@maneypublishing.com.

10. Exceptions may be made to the policy laid out in paragraphs 8 and 9 of these Explanatory Notes in the following circumstances:

(a) Sponsored Open Access papers (published as MORE OpenChoice papers www.maneypublishing.com/moreopenchoice), are distributed under the terms of the Creative Commons Attribution License 3.0 (see http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted use, distribution and reproduction in any medium provided it is for non-commercial purposes; and that the original work is properly cited. If a paper is not reproduced in its entirety but only in part, or as a derivative work, this must be clearly stated.

(b) Authors whose funding body requires them to deposit the final published article in an open access repository (as a PDF Eprint or in another typeset file format) will be permitted to do so, subject to an embargo period of one year before access is permitted. Where a requirement to archive exists, authors must (i) provide supplementary documentation with this Copyright Assignment Form giving details of the funding body and its requirements and (ii) notify the journal editor and Maney’s managing editor of the intention to archive.

Permission to post the Eprint or another file format is subject to full acknowledgement of the original publication in the Journal and the provision of a link to the journal homepage. No commercial use may be made of any version of the paper archived under these provisions.
Reviewer Response

The Authors thank the reviewer for the time and effort which was obviously invested in reading, in detail, our work. This document summarises changes made in response to the reviewer comments. Each reviewer comment is addressed separately. The changes made are highlighted in yellow in the reviewed manuscript. We believe that the changes made, in light of the reviewers’ comments, have enhanced the quality of the submitted manuscript.

Reviewer #1:

The multi-axial cyclic viscoplasticity model is an interesting important topic. Unfortunately, the paper’s lack of experimental data to prove its great potential. To ask for more experimental work from a group mainly working with modelling is however too much to ask for. But I have some comments that I would like that the authors consider before publication:

1. To clarify to the readers, the authors should give more details regarding the test conditions for the experimental data taken from ref [20] which is used in Fig4. The data you have used are most likely steady-state creep rates from constant load tests I guess. If so this must be obvious to the readers.

This section has been updated to highlight that constant load creep tests were conducted to achieve this minimum creep-rate data.

2. Reference [20] is nothing but a literature review in my opinion, and thus it does not contain any original work. Anyhow the authors use this reference as the source for some of their experimental data. It is much better to give the original reference and give credit to the researchers who deserves it!

The original references have now been provided.

3. The experimental data in Fig. 4 is not identical to the data that can be found in reference [20]. In my opinion there is a shift by a factor of 10 and I have not figured out why? Perhaps I miss something but then there must be some kind of manipulation of the data that is not really clear to the readers.

The authors thank the reviewer for this observation. In fact, there was a discrepancy with respect to the original published data. This has now been rectified, but has not resulted in any changes to the identified material parameter, β, for the cyclic viscoplasticity model.

4. The definition of nominal stress and especially nominal strain is not clear. Nominal strain is not defined at all in the paper. This must be addressed in revised version of the paper.

The text has been updated to clarify the definitions of both nominal stress and nominal strain.

5. As already mentioned above. I think the paper lack of experimental data to verify that the model is suitable for multi-axial purposes. I do not ask to do more testing but I think you must mention that there is a need for more experimental work to be carried out to verify this type of modelling.

A conclusion has been added pointing out the need for multi-axial experimental validation tests for the present material and thus material model. This is the subject of ongoing work by the authors.
Further change to manuscript:

A further change in the text has been included in relation to the choice of Coffin-Manson parameters. The text has been updated to reflect the recent publication of the number of cycles to failure and subsequent C-M constants for the particular 'as-received' material used in this study.