

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-13T10:53:26Z

Some rights reserved. For more information, please see the item record link above.

Title Processing ontology alignments with SPARQL

Author(s) Polleres, Axel

Publication
Date 2008

Publisher IEEE Computer Society

Item record http://hdl.handle.net/10379/533

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Processing ontology alignments with SPARQL
(Position paper)

Jérôme Euzenat
INRIA & LIG

Grenoble, France
Email: jerome.euzenat@inrialpes.fr

Axel Polleres Digital Enterprise Research Institute
National University of Ireland, Galway

Email: axel.polleres@deri.org

François Scharffe University of Innsbruck
Innsbruck, Austria

Email: francois.scharffe@uibk.ac.at

Abstract

Solving problems raised by heterogeneous ontologies
can be achieved by matching the ontologies and processing
the resulting alignments. This is typical of data mediation
in which the data must be translated from one knowledge
source to another. We propose to solve the data translation
problem, i.e. the processing part, using the SPARQL query
language. Indeed, such a language is particularly adequate
for extracting data from one ontology and, through its CON-
STRUCT statement, for generating new data. We present ex-
amples of such transformations, but we also present a set of
example correspondences illustrating the needs for partic-
ular representation constructs, such as aggregates, value-
generating built-in functions and paths, which are missing
from SPARQL. Hence, we advocate the use of two SPARQL
extensions providing these missing features.

1 Introduction

Dealing with heterogeneity between ontologies is very
often achieved by establishing correspondences between
entities found in these ontologies and transforming data ac-
cording to these correspondences, be it for integrating het-
erogeneous data sources or exchanging messages between
services. Relations between entities featured in alignments
may be very complex. For expressing them, we have devel-
oped an expressive alignment language independent from
knowledge representation and processing languages [1].

When one wants to actually transform data, the corre-
spondences expressed in this language must be processed.
In particular, data translation is needed when instances, de-
scribed using a source ontology, have to be provided as

instances of a target ontology. This scenario is expected
to become common as more ontologies are developed and
used to describe RDF data. A natural choice for translat-
ing data would be to use a query language because they
allow extracting and transforming data. Hence, when buy-
ing into RDF(S) and OWL being the standards for describ-
ing ontologies and data, SPARQL [2] is a natural candi-
date as a language for expressing and processing the cor-
respondences. However, SPARQL is not powerful enough
for covering the full complexity of the expressive language
in particular because it lacks the possibility to express ag-
gregates, value-generating functions and paths. Thus, we
propose to combine two recent extensions of SPARQL in
order to be able to transform data according to complex
alignments: SPARQL++ [3] provides aggregates, value-
generating built-ins and (possibly recursive) processing of
mappings expressed in SPARQL and PSPARQL [4] pro-
vides queries on path expressions (made from regular ex-
pression patterns) which are sufficient for expressing those
of the expressive language.

Below, we illustrate this paper with a data translation
problem between the FOAF [5] and vCard1 ontologies.
Both vocabularies describe information about persons and
organizations, both are extensively used, and they cover
complementary as well as overlapping aspects.

2 Alignment Representation

The Alignment format [6] allows the representation of
simple correspondences between ontological entities. It
provides an interchange format between alignments created
by ontology matching algorithms [7]. It is organized around
a small set of constructs: an alignment is described through

1http://www.w3.org/2006/vcard/ns

a set of correspondences, together with related metadata
such as the aligned ontologies, its purpose, or the way it
was built. Alignments are made of a set of correspondences
giving a description of the alignment entities. Each cor-
respondence describe the relation between two ontological
entities. A measure of confidence in the correspondence is
given.

A sample correspondence, expressing the equivalence
between a vCard and a person is described as follows:

<Cell>
<entity1 rdf:resource="&foaf;Person"/>
<entity2 rdf:resource="&vc;VCard"/>
<measure rdf:datatype="&xsd;float">1.0</measure>
<relation>equivalence</relation>

</Cell>

The Alignment format format however only permits the
representation of one-to-one correspondences between ho-
mogeneous ontological entities. It is thus not able to rep-
resent complex correspondences such as the one introduced
below. Particularly, it would need the following constructs:

• operators to relate an entity in one ontology to a com-
bination of entities in the other.

• conditions restricting entities scope

• transformation of properties values such as aggre-
gates functions or datatype conversions.

We have developed an expressive alignment language
[1] extending this format to overcome the aforementionned
limitations. This language extends the cell description of
the alignment format with new constructs. First, it distin-
guishes four types of ontology entities: Classes, Relations,
Properties and Instances. Relations relate two classes, while
properties relate classes to datatypes. Heterogeneous corre-
spondences such as class to relation can be specified. En-
tities can be grouped together via set operators. Specific
conditions are available for each kind of entities in order to
restrict their scope. The scope of a class can therefore be
restricted by the value, type or occurrence of one of its at-
tributes. Relations can be restricted on the type of their do-
main or range, and attributes can be restricted on their value,
or domain type. Finally, it is possible to specify transfor-
mations on attributes values by referring to methods or web
services. We give in the following an example cell includ-
ing attribute value conditions in order to restrict the scope of
classes (people having a work phone number starting with
+33476 are based near Grenoble).

<Cell>
<entity1>
<Class rdf:about="&foaf;Person">

<attributeValueCondition>

<Restriction>
<onProperty

rdf:resource="&foaf;based_near"/>
<comparator

rdf:datatype="&xsd;string">
xsd:equals</comparator>

<value rdf:datatype="&xsd;string">
Grenoble</value>

</Restriction>
</attributeValueCondition>

</Class>
</entity1>
<entity2>
<Class rdf:about="&v;VCard">

<attributeValueCondition>
<Restriction>
<onProperty

rdf:resource="&v;workTel"/>
<comparator

rdf:datatype="&xsd;string">
xsd:startsWith</comparator>

<value rdf:datatype="&xsd;string">
+33476</value>

</Restriction>
</attributeValueCondition>

</Class>
</entity2>
<measure RDF:datatype=’&BSD;float’>1.0
</measure>
<relation>equivalence</relation>
</Cell>

This language provides a high level description of ontol-
ogy alignments. It can be conveniently used as an exchange
format between matching algorithms, graphical user inter-
faces and mediation languages. Let see how it can be pro-
cessed when one needs to transfer data from one ontology
to another.

3 Grounding

Ontology mediation is a complex process involving two
main phases [9]. At design time, the alignment is con-
structed: matching algorithms are used to automatically dis-
cover correspondences, and graphical mapping interfaces
assist the process of refining these correspondences, eventu-
ally using correspondence patterns [10]. An expressive ex-
change format, such as the one presented above, is required
in order to carry the meaning of the correspondences.

At run time, the previously built alignments are executed
in a particular mediation task such as merging two ontolo-
gies in a new one, translating a query addressed to a source
ontology into a query addressed to a target ontology, or
translating the data described under a source ontology into
instance data described according to a target ontology. For
each task, the best adapted formalism should be used. When

merging ontologies, the alignment should be expressed as
axioms in the ontology language. When translating queries,
a rule language might be best appropriate. When translat-
ing instance data, a query language such as SPARQL seems
to be best appropriate. SPARQL has the advantage to be
widely used for querying RDF data on the web. This makes
SPARQL-based data translation more usable for semantic-
web users in comparison to rule languages or XML-based
extraction techniques.

We call grounding the process of transforming the align-
ment expressed in an alignment representation formalism
into the knowledge representation formalism executable for
a particular task. For the data translation task presented in
this paper, we need to specify a grounding from the expres-
sive alignment format to a proposed executable form.

The example correspondence betwen Foaf files and
vCards in Section 2 will be by this process translated in a
corresponding SPARQL expression.

4 Data translation using SPARQL

SPARQL [2] is a W3C candidate recommendation for
querying RDF. Typically, queries in SPARQL are used to
select bindings of RDF-Terms to variables from a set of
source RDF graphs (also called the dataset2) according to a
graph pattern, i.e. in a slightly simplified view such a query
follows the general structure:

SELECT variables
FROM dataset
WHERE { graph pattern }

Answers to a SPARQL query Q rely on computing the
set of possible homomorphisms from the basic graph pat-
tern(s) of Q into the RDF graph representing the knowledge
base.
In the patterns SPARQL queries support features such as fil-
ter expressions, unions, i.e., disjunction, or optional query
parts to allow sophisticated queries. For instance, to select
all addresses and their full names from a vCard file using
vCard’s RDF representation [11] one could use the follow-
ing query

SELECT ?X ?FN
WHERE { ?X vc:FN ?FN .

FILTER isLiteral(?FN) }

If we want to exploit instance data described under one
ontology while our application has been designed for the
other, we need a translation mechanism. Through its CON-
STRUCT statement, SPARQL also provide the possibility
to construct an RDF graph as the result of a query over an-
other graph. This is a natural mechanism for writing map-
ping rules between RDF vocabularies. For instance, the fol-
lowing query illustrates a CONSTRUCT query translating
a foaf:Person into a vc:VCard .

2The FROM clause will be omitted in subsequent examples.

CONSTRUCT { ?x rdf:type vc:VCard }
WHERE { ?x rdf:type foaf:Person }

This simple example needs to be completed in order to ad-
ditionally translate – possibly recursively – a person’s prop-
erties, like name, address, or telephone number.

CONSTRUCT queries can be applied the same selec-
tions as the other queries: The query above can be modified
to map the names in vCard addresses to FOAF as follows:

CONSTRUCT { ?X foaf:name ?FN . }
WHERE { ?X vc:FN ?FN .

FILTER isLiteral(?FN) }

Particularly, the mapping from Section 2 above can likewise
be modeled by a simple CONSTRUCT statement:

CONSTRUCT { ?X a foaf:Person.
?X foaf:based_near "Grenoble"ˆˆxsd:string. }

WHERE { ?X a v:VCard .
?X v:workTel ?PH.

FILTER startsWith(?PH, "+33476") }

and executing it on a set of instance data represented in RDF
would yield the transformed ontology instances in the target
ontology.

However, it turns out that the available constructs are not
sufficient for a fully-fledged mapping language.

5 SPARQL extensions for accurate transla-
tion

We introduce below three features that SPARQL lacks,
though they would be particularly useful for processing
alignments. These features are aggregate computation, in-
dividual generation and path expressions.

5.1 Aggregates

The DOAP vocabulary [12] contains revision, i.e., ver-
sion numbers of released versions of projects. With an ag-
gregate function MAX, one can map DOAP information into
the RDF Open Source Software Vocabulary [13], which
talks about the latest release of a project, by picking the
maximum value (numerically or lexicographically) of the
set of revision numbers specified by a graph pattern as fol-
lows:

CONSTRUCT { ?P os:latestRelease
MAX(?V : ?P doap:release ?R.

?R doap:revision ?V) }
WHERE { ?P rdf:type doap:Project . }

Other aggregates, such as count, average, or sum, might
be needed for complex and complete mappings.

5.2 Individual generation

Completing the mapping betwen vCard and FOAF, if we
try mapping from vc:homeTel to foaf:phone, we ob-
serve that the former is a datatype property and the latter an
object property. Basically, a mapping needs a conversion
function, generating a new URI

CONSTRUCT {?X foaf:phone
xsd:anyURI(

fn:concat("tel:",fn:encode-for-uri(?T))).}
WHERE { ?X vc:tel ?T . }

Such value generations are not allowed in SPARQL at
the moment, but defined and implemented in an extended
version of SPARQL, called SPARQL++ [3], which we con-
sider a valid basis for a mapping language, but there are
still more issues missing. Blank nodes, which correspond
to existential variables in mapping rule heads, involve some
more complications, which are discussed in more detail in
[3].

5.3 Paths

Another missing part is path expressions, which are not
expressible in SPARQL, a fairly surprising fact for a lan-
guage which claims to be a graph query language.

PSPARQL [4] extends SPARQL by replacing the atomic
SPARQL graph patterns, i.e., RDF graphs with variables, by
RDF graphs with variables and paths expressions in place
of relations. Paths can be seen as complementary with ag-
gregations: where aggregation join pieces together, paths
extract them individually.

The following example of a PSPARQL query exhibits in
the second and third lines of the WHERE clause, two path
expressions made from the indefinite composition (+) and
composition (.) operators.

SELECT ?X, ?Y
WHERE { ?Z foaf:name ?X.

?Z foaf:knows+ . foaf:worksFor ?Y
?Y vc:adr . vc:city "Innsbruck". }

The above query returns pairs of person and company
such that the person indirectly knows someone working
in this company and this company is based in New-York.
PSPARQL offers other operators such as disjunction (—),
Kleene closure (*) and atomic negation (!) but only com-
position is currently used in the expressive alignment lan-
guage presented above. Otherwise, all SPARQL is pre-
served. In [4], it is shown that the complexity of SPARQL
is preserved by the extension and provides algorithms for
answering PSPARQL queries.

6 Conclusion: putting them together

In summary, we claim that a query language is an ade-
quate means for transforming data according to some align-
ment. However, the current specification of SPARQL is
not powerful enough for supporting this task with expres-
sive alignments which are necessary for carefully describ-
ing relations between ontologies. We claim that the com-
bination of SPARQL extensions, namely SPARQL++ and
PSPARQL, can serve as a fruitful basis to ground expressive
ontology alignments into concrete executable mappings be-
tween data RDF graphs adhering to different, overlapping
ontologies.

Thus, in order to implement a complete alignment frame-
work, we propose two things: (1) an implementation of a
SPARQL data transformation engine integrating PSPARQL
[4] and SPARQL++ [3], and (2), a grounding of an abstract,
expressive alignment language to this new PSPARQL++.

The authors are currently working on reconciling their
different proposed extensions towards a common prototype.

References

[1] J. Euzenat, F. Scharffe, and A. Zimmermann, “Expres-
sive alignment language and implementation,” Knowl-
edge Web Network of Excellence (EU-IST-2004-
507482), Tech. Rep. Project Deliverable D2.2.10,
2007.

[2] E. Prud’hommeaux and A. S. (eds.), “SPARQL
query language for RDF,” Nov. 2007, w3C Proposed
Recommendation, available at http://www.w3.org/TR/
2007/PR-rdf-sparql-query-20071112/.

[3] A. Polleres, F. Scharffe, and R. Schindlauer,
“SPARQL++ for mapping between RDF vocabu-
laries,” in OTM 2007, Part I : Proceedings of
the 6th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE
2007), ser. Lecture Notes in Computer Science,
vol. 4803. Vilamoura, Algarve, Portugal: Springer,
Nov. 2007, pp. 878–896. [Online]. Available: http:
//www.polleres.net/publications/poll-etal-2007.pdf

[4] F. Alkhateeb, J.-F. Baget, and J. Euzenat, “Extend-
ing SPARQL with regular expression patterns,” Insti-
tut National de Recherche en Informatique et Automa-
tique (INRIA), Tech. Rep. 6191, May 2007.

[5] D. Brickley and L. Miller, “FOAF vocabulary specifi-
cation,” Jul. 2005, http://xmlns.com/foaf/0.1/.

[6] J. Euzenat, “An API for ontology alignment,” in Proc.
3rd international semantic web conference, Hiroshima
(JP), 2004, pp. 698–712.

[7] J. Euzenat and P. Shvaiko, Ontology matching.
Springer, 2007.

[8] M. Klein, “Combining and relating ontologies: an
analysis of problems and solutions,” in Workshop on
Ontologies and Information Sharing, 2001.

[9] F. Scharffe, J. Euzenat, C. Le Duc, A. Mocan,
and P. Schvaiko, “Analysis of knowledge transforma-
tion and merging techniques and implementations,”
Knowledge Web Network of Excellence (EU-IST-
2004-507482), Tech. Rep. Project Deliverable D2.2.7,
2007.

[10] F. Scharffe, J. Euzenat, Y. Ding, and D. Fensel,
“Correspondence patterns for ontology mediation,” in
Proceedings of the Ontology Matching Workshop at
ISWC, ISWC. Busan, Korea: CEUR, November
2007.

[11] R. Iannella, “Representing
vCard objects in RDF/XML,” Feb. 2001, w3C Note,
available at http://www.w3.org/TR/vcard-rdf.

[12] E. Dumbill, “DOAP: Description of a project,” http:
//xam.de/ns/os/.

[13] M. Völkel, “RDF (open source) software vocabulary,”
http://xam.de/ns/os/.

