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Abstract

This dissertation is concerned with the numerical solution of linear systems arising

from finite difference and finite element discretizations of singularly perturbed reaction-

diffusion problems. Such linear systems present several difficulties that make computing

accurate solutions efficiently a nontrivial challenge for both direct and iterative solvers.

The poor performance of direct solvers, such as Cholesky factorization, is due to

the presence of subnormal floating point numbers in the factors. This thesis provides

a careful analysis of this phenomenon by giving a concrete formula for the magnitude

of the fill-in entries in the Cholesky factors in terms of the perturbation parameter, ε,

and the discretization parameter, N . It shows that, away from the main diagonal, the

magnitude of fill-in entries decreases exponentially. Furthermore, with our analysis, the

location of corresponding fill-in entries associated with some given magnitude can also

be determined. This can be used to predict the number and location of subnormals in

the factors.

Since direct solvers scale badly with ε, one must use iterative solvers. However,

the application of finite difference and finite element discretizations on layer-adapted

meshes results in ill-conditioned linear systems. The use of suitable preconditioners is

essential. In this thesis we analyze several preconditioning techniques. They include

the diagonal and incomplete Cholesky preconditioners for finite difference discretized

systems, and a specially designed boundary layer preconditioner for a finite element

discretized system. The study of the diagonal and incomplete Cholesky preconditioners

focuses on the simplicity and robustness of these techniques; while that of the boundary

layer preconditioner is concerned with optimality.

Finally, a novel contribution of this thesis is a pointwise uniform convergence proof

for one-dimensional singularly perturbed problems. The central idea of the proof is

based on the the preconditioning of the discrete system.
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Chapter 1

Introduction

1.1 Overview

This dissertation addresses the theory and application of solving linear systems that

arise from finite difference and finite element discretizations of certain linear singularly

perturbed boundary value problems in one and two dimensions. These singularly per-

turbed problems are ordinary or partial differential equations in which the highest order

derivatives are multiplied by a small parameter, the perturbation parameter, which we

denote by ε. A simple example of a singularly perturbed convection-reaction-diffusion

problem in one dimension is

−ε2u′′ + a(x)u′ + b(x)u = f(x), on (0, 1), u(0) = u(1) = 0. (1.1)

The terms u′′, u′ and u are the diffusion, convection and reaction terms respectively,

while f is the source term. Solutions of these differential equations usually exhibit

sharp boundary and/or interior layers, which are narrow regions where solutions, and

their derivatives, change abruptly. When a 6≡ 0 the problem (1.1) is of convection-

diffusion type, whereas if a ≡ 0 and b 6≡ 0, it is known as a reaction-diffusion problem.

Such problems, and their two dimensional analogues are the subject of study of this

thesis.

A formal definition of a singularly perturbed problem can be found in [61, Def. 1.1].

It can be summarized for the problem (1.1) as follows. Let uε be the solution to (1.1)

for a specific ε. We say that the problem (1.1) is singularly perturbed for ε → 0 in

certain norm, ‖ · ‖∗, if

lim
ε→0
‖uε − u0‖∗ 6= 0,

where u0 is the solution of the reduced problem

a(x)u′0 + b(x)u0 = f(x), on (0, 1),

1



1.1. OVERVIEW CHAPTER 1. INTRODUCTION

with a suitably chosen boundary condition. It is very important to note that this

definition is norm dependent, see, e.g., [61, Remark 1.2] and also [33, §1.2].

Singularly perturbed differential equations such as (1.1) arise in various practical

applications and mathematical models. For example, convection-diffusion problems

are found in many formulations of fluid flow problems (such as the linearization of

the Navier-Stokes equations, and transport problems), and semi-conductor device sim-

ulation. More details on these two significant examples can be found in [96, pages

1–4]. Further examples are given in [78, 82]. Mathematical models involving systems

of reaction-diffusion problems appear, for example, in simulation of chemical reactions,

wave-current interaction, and biological applications [10, 32, 74].

Finding numerical solutions to the singularly perturbed problems is a great chal-

lenge. The difficulties in applying classical numerical schemes to (1.1) stem from the

fact that, typically, derivatives of u of order p have magnitude O(ε−p). Classical tech-

niques do not have the property of being parameter robust (also known as “uniformly

convergent” and “ε-uniform” in the literature) because they rely on certain derivatives

being bounded, which is not the case as ε→ 0. That is, methods that work well when

ε = O(1), may fail to give meaningful solutions when ε is small, unless one makes

unreasonable assumptions such as the discretization parameter, N , being O(ε−1). A

definition of uniform convergence of a numerical method can be formulated as follows

(see [61, Def. 1.4]):

Let uNε be a numerical approximation of uε obtained by a numerical method.

A numerical method is said to be uniformly convergent with respect to the

perturbation parameter ε in the norm ‖·‖∗ if there exists a positive integer,

N0, independent of ε, such that

‖uε − uNε ‖∗ ≤ η(N), for N ≥ N0,

with the function η satisfying

lim
N→∞

η(N) = 0, and ∂εη ≡ 0. (1.2)

Although many methods which are tailored to singularly perturbed problems are uni-

formly convergent in this strict sense, there are methods which are referred to as “pa-

rameter robust” in the literature, but for which the condition ∂εη ≡ 0 is not satisfied.

For example, the convergence of the standard finite element method on a boundary

layer-adapted mesh (discussed in Chapter 5) can be proven to be of O(ε1/2N−1 lnN +

N−2 ln2N) in the energy norm. Similarly, the patched mesh method proposed by de

Falco and O’Riordan [25] has a pointwise error estimate of O(N−1 lnN + ε). Strictly

speaking, these methods do not converge uniformly in ε in the sense of (1.2). However,

2



1.2. LINEAR SOLVERS FOR SPPS CHAPTER 1. INTRODUCTION

since error bounds depend on a positive power of ε, they behave well as ε→ 0, and so

we will consider them to be parameter robust (this is in contrast to other convergence

estimates which have a negative power of ε. For instance, a näıve analysis of finite

difference method applied to reaction-diffusion problems on a uniform mesh yields an

error bound that is O(N−2 + ε−2N−2), which is not robust with respect to ε).

The ultimate goal of numerical methods for singularly perturbed problems is to

achieve the uniform convergence described above. On the other hand, in this thesis,

our primary interest is in the theoretical and practical questions raised by direct solution

and robust iterative solution methods of the arising linear systems. In next section, we

outline some recent developments on this topic.

1.2 Linear solvers for singularly perturbed prob-

lems

The design of numerical methods that are robust with respect to the perturbation

parameter has been of significant mathematical interest over the past few decades. For

evidence of this, see the monographs [33, 61, 77, 102], the state-of-the-art textbook [96],

and the many references therein. We also refer the reader to the excellent surveys [36,

53, 58, 91, 95, 105] for further exposition and development of this fascinating topic.

Most of these research papers concern the application of finite difference and/or finite

element methods on layer-adapted meshes to achieve ε-uniform convergence. These

robust schemes often lead to a large of linear systems that need to solved. Most

studies proposing these parameter robust methods make the tacit assumption that the

complexity of their algorithms is solely dependent on the discretization parameter, and

is independent of ε. However, in a recent study [72], MacLachlan and Madden point

out that this is not necessarily the case because direct solvers may not be robust for

small ε. Therefore, further detailed studies of linear solvers for singularly perturbed

problems are required.

Surprisingly, there has been very few studies that consider the issue of solving the

linear systems with efficiency that is robust with respect to the perturbation param-

eter. The exceptions to this are mainly for convection-diffusion problems. In [34], a

short analysis of a Gauss-Seidel method for a convection-diffusion problem discretized

on a uniform mesh is given. Roos [90] shows that the condition number of matrix aris-

ing from the standard upwind scheme discretized on a Shishkin mesh for convection-

diffusion problems in one and two dimensions grows unboundedly as ε tends to zero,

and a diagonal preconditioner is proposed to improve this situation. In [6], empirical

results for ILU-based preconditioners are reported, and it is observed that the iteration

3



1.3. THESIS OUTLINE CHAPTER 1. INTRODUCTION

count can be significantly reduced when this strategy is used. The comprehensive text-

book by Elman et al. [30] gives a broad account of iterative solvers of systems resulting

from finite element discretizations; however, uniform convergence and use of boundary

layer-fitted meshes are not discussed. Basic frameworks and several different multigrid

components are presented in [47], though, again, with no reference to fitted meshes.

Similarly, the recent textbook [86] devotes 30 pages to the topic of linear solvers for

singularly perturbed problems (convection-diffusion and reaction-diffusion). While it

discusses the need for parameter robust solvers, it considers only discretizations on

quasi-uniform meshes, which excludes the possibility of layer-adapted meshes where

the local mesh width is ε-dependent. Studies of multigrid methods for convection-

dominated problems on Shishkin meshes can be found in [38, 39], where Gaspar et

al. use a scalable multigrid scheme. By contrast, there has been very few studies

for reaction-diffusion problems in literature compared to those for convection-diffusion

problems. An exception to this is the recent article of MacLachlan and Madden [72].

That paper raised several open questions which are subjects of this thesis, and are

described in detail in next section.

1.3 Thesis outline

In this thesis, we are particularly interested in developing robust algorithms for solving

systems arising from discretizations of singularly perturbed problems. More precisely,

we consider the numerical solution of singularly perturbed reaction-diffusion problems

in one and two dimensions. Our model problems are:

−ε2u′′ + b(x)u = f(x), x ∈ ωx := (0, 1), u(0) = u(1) = 0, (1.3)

and

−ε2∆u+ b(x, y)u = f(x, y), on Ω = (0, 1)2, u(∂Ω) = g(x, y). (1.4)

We are interested in the question of how to robustly and efficiently solve the linear

systems of equations when we discretize the above equations by finite difference or

finite element methods.

In Chapter 3, we analyze the performance of direct solvers for the problem (1.4).

More precisely, we consider the solution of large linear systems of equations that arise

when the two-dimensional singularly perturbed reaction-diffusion equation (1.4) is dis-

cretized by finite difference methods. This leads to system matrices that are positive

definite. The direct solvers of choice for such systems are based on Cholesky factor-

ization. However, as observed in [72], these solvers may exhibit poor performance for

singularly perturbed problems, and so their efficiency is not robust with respect to the

perturbation parameter, ε. We investigate these limitations of a standard direct solver
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for such linear systems, in which the magnitudes of diagonal entries of the system

matrices are dominant compared with small off-diagonal entries. As observed in [72,

§4.1], the filled-in entries in the standard Cholesky factorization decay exponentially

away from the main diagonal. Thus, for small ε and large N , the Cholesky factors

contain many subnormal numbers which are very small (more details can be found in

Section 3.3.1). In practice, this affects computational speed considerably, and so the

amount of time required to solve these linear systems depends badly on the perturba-

tion parameter. There is no mathematical justification of this phenomenon provided

in [72], so we consider it in depth in Chapter 3. We provide an analysis of the distribu-

tion of entries in the factors based on their magnitude that explains this phenomenon,

and give bounds on the ranges of the perturbation and discretization parameters where

poor performance is to be expected.

In Chapter 4, we study the use of diagonal and incomplete Cholesky preconditioners

for the Conjugate Gradient method. This is motivated, in part, by the fact that

there are difficulties in solving such linear systems by direct methods, as discussed

above. Therefore, iterative methods are natural choices. However, in Chapter 4, we

show that the condition number of the coefficient matrix grows unboundedly when

ε tends to zero, and so unpreconditioned iterative schemes, such as the Conjugate

Gradient algorithm, perform poorly with respect to ε. Hence, preconditioners are

required in order to robustly and efficiently solve these linear systems. We provide a

careful analysis of diagonal and incomplete Cholesky preconditionings, and show that

the condition numbers of the preconditioned linear systems are robust and independent

of the perturbation parameter. We demonstrate numerically the surprising fact that

these schemes are more efficient when ε is small, than when ε is O(1). The analysis of

the incomplete Cholesky preconditioner in this chapter also provides an explanation of

why, as shown experimentally in [6], ILU-based preconditioned iterative schemes are

very efficient for singularly perturbed problems.

Our motivation for studying incomplete Cholesky preconditioning stems from the

analysis of Cholesky factorization in Chapter 3, which shows the exponential decrease

in magnitude of the fill-in entries in the factors. This suggests that the incomplete

Cholesky factorization resembles the full Cholesky factorization of the original matrix

when ε � 1, and, so, the incomplete Cholesky approximation of the system matrix

should be a very good preconditioner.

A further motivation is that, although very successful boundary layer precondition-

ers for the problems (1.3) and (1.4) have been proposed in [72], these preconditioners

are not trivial to implement in practice. Their design is based on the structure of

layer-fitted meshes. More precisely, the preconditioners are constructed using a priori

information about the location and width of layers, and also involve different strategies

5
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in different regions. On the other hand, the diagonal and incomplete Cholesky precon-

ditioners considered in Chapter 4 of the thesis are very easy to implement: they are

widely supported on standard platforms, such as MATLAB, and their application does

not require any a priori information.

An offshoot of this work, presented in Chapter 2, though which is not directly

related to the topic of solving linear systems, is an application of preconditioning to

prove ε-uniform convergence for singularly perturbed problems in one dimension. For

these problems, we consider an upwind scheme on a Shishkin mesh. The resulting linear

system is ill-conditioned because the condition number of its matrix grows unboundedly

as ε tends to 0. This is shown in [90], where a relatively simple method for conditioning

the system is also proposed. We modify this method to obtain the same result, but,

at the same time, to make the preconditioned consistency error convergent uniformly

in ε. Therefore, ε-uniform pointwise convergence follows from the standard stability-

consistency principle. In addition, our approach is interesting because it points to a

connection between preconditioning and ε-uniform convergence.

In Chapter 5, we consider the iterative solution of linear systems of equations aris-

ing from the discretization of the problems (1.3) and (1.4) by finite element methods

on layer-adapted meshes. Motivated by the ideas in [72], we present an analysis for

a specially designed boundary layer preconditioner for the one-dimensional reaction-

diffusion problem. We prove optimality of the proposed preconditioner in the sense of

spectral equivalence. Furthermore, appropriate stopping criteria are derived to ensure

that the iterative scheme recovers discretization accuracy, but over-solving is avoided.

We show how the algorithm can be extended to the two-dimensional problem, and pro-

vide numerical experiments which show the efficiency and robustness of this boundary

layer preconditioner.

1.4 Notation

Throughout this thesis, C denotes a generic constant that is independent of both the

perturbation parameter ε and the mesh parameter N . We write f(·) = O(g(·)) if there

exist positive constants C0, and C1, independent of the arguments of f and g, such

that C0|g(·)| ≤ f(·) ≤ C1|g(·)|.

We denote open unit intervals in the x- and y-directions by ωx, and ωy, respectively.

The open unit square is denoted by Ω := (0, 1)2. Notation for one-dimensional grids is

ωNx := {0 = x0 < x1 . . . < xN = 1}, ωNy := {0 = y0 < y1 . . . < yN = 1}.

6
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The two-dimensional Cartesian product grid is

ΩN,N := ωNx × ωNy .

By ‖ · ‖ we denote the maximum vector norm, ‖ω‖ = maxi |ωi|, as well as its

subordinate matrix norm. Otherwise, a generic norm for vectors and matrices will

be denoted by ‖ · ‖∗. For a real-valued function g ∈ C(ω̄x), and a mesh function

GN = [GN
0 , G

N
1 , . . . , G

N
N ]T on ωNx (say), we denote

‖g‖ω̄x = max
0≤x≤1

|g(x)|, ‖g‖ωN
x

= max
0≤i≤N

|g(xi)|, ‖g −GN‖ωN
x

= max
0≤i≤N

|g(xi)−GN
i |.

Similar notation is extended to the two-dimensional domain Ω, and to ΩN,N .

We denote the energy norm, used in finite element analysis, by

‖u‖ε :=
√
ε2‖u′‖2

0 + β2
0‖u‖2

0,

where

(u, v) :=

∫ 1

0

u(x)v(x)dx, and ‖u‖0 = (u, u)1/2.

A numerical method is said to be convergent of order p if the computed error is bounded

by O(N−p). We say a method is referred to being convergent at a rate that is almost

of order p, if the discretization error is greater than O(N−p), but only by some small

factor—typically logarithmic. For example, the rate of convergence of the finite differ-

ence discretization for singularly perturbed problems (1.3) and (1.4) is O(N−2 ln2N)

on a Shishkin mesh (see 1.7.1), which is referred to as “almost second-order”.

A matrix stencil is used to represent the connection between a discretization and the

corresponding entries in the system matrix. The center value of the stencil corresponds

to a diagonal entry of the matrix, with the other terms in the stencil corresponding to

nonzero entries in the same row. Their position in the stencil is related to the location of

the associated nodes in the grid. A simple example is the finite difference approximation

of the second-order derivative in one dimension on ωx, with the equidistant mesh width

h = N−1:

u′′(xi) ≈
u(xi + h)− 2u(xi) + u(xi − h)

h2
.

Then, the resulting system matrix of this discretization on ωNx is tridiagonal, and can

be expressed using the matrix stencil

A :=

[
1

h2

−2

h2

1

h2

]
.

This notation extends to two-dimensional cases. For example, the following 5-point

stencil can be used to express the central finite difference approximation of the second-

7
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order derivative in two-dimensions on a uniform grid:

A :=
1

h2

0 1 0

1 −4 1

0 1 0

 .
The corresponding matrix has at most five nonzero entries per row, with −4/h2 on the

diagonal, and the location of these entries depending on the ordering of nodes in the

grid. For example, when lexicographical ordering is used on a grid with (N+1)×(N+1)

points, the corresponding row of the matrix (neglecting the boundary condition) is

0 . . . 0
1

h2
0 . . . 0︸ ︷︷ ︸
N−2 zeros

1

h2

−4

h2

1

h2
0 . . . 0︸ ︷︷ ︸
N−2 zeros

1

h2
0 . . . 0.

For two real n × n matrices A = (aij), and B = (bij), we write A ≥ B if aij ≥ bij

for all i, j = 1, . . . , n.

1.5 Introduction to singularly perturbed differen-

tial equations

1.5.1 Problems in one and two dimensions

This thesis is primarily concerned with linear singularly perturbed reaction-diffusion

problems in one and two dimensions. Therefore, we shall describe these problems in

detail.

A singularly perturbed, one dimensional, reaction-diffusion differential equation can

be written as

Lu := −ε2u′′ + b(x)u = f(x), x ∈ ωx, u(0) = u(1) = 0. (1.5)

Here we shall assume that the perturbation parameter, ε, belongs to (0, 1], and b and f

are C1(ωx)-functions, where b satisfies

b(x) ≥ β2 > 0, with β > 0, for x ∈ ω̄x.

The operator L satisfies a maximum principle (see, e.g., [89, 96]), and therefore, the

problem has a unique solution. When ε � 1, its solution has two boundary layers:

near x = 0, and x = 1.

To demonstrate the behavior of the solution to (1.5) with respect to the perturbation

parameter, let us consider the following simple example

−ε2u′′ + u = ex, x ∈ ωx, u(0) = u(1) = 0. (1.6)

8
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The solution, which is plotted in Figure 1.1, is easily shown to be:

u(x) =
1

2(1− e−2)

(
ex − e−x

)
− xex

2
, for ε = 1,

and

u(x) =
e−x/ε

(
e(1−1/ε) − 1

)
+ e−(1−x)/ε

(
e1/ε−e)

(1− ε2) (1− e−2/ε)
+

ex

1− ε2
, for ε ∈ (0, 1).
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Figure 1.1: Solution to (1.6) with ε = 1 (left) and ε = 10−2 (right).

In two dimensions, the singularly perturbed reaction-diffusion boundary value prob-

lem is of the form

Lu := −ε2∆u+ b(x, y)u = f(x, y), on Ω = (0, 1)2, u(∂Ω) = g(x, y), (1.7)

where β is a positive constant such that b(x, y) ≥ β2 > 0 for all (x, y) ∈ Ω. When ε

is small, the solution to (1.7) typically has four boundary and four corner layers along

the edges of the unit square. As an example, consider the following problem,

−ε2∆u+ u = ex + y, (x, y) ∈ Ω, u(∂Ω) = 0. (1.8)

The solution to this problem is plotted in Figure 1.2, where the boundary and corner

layers are evident.

1.5.2 Bounds on derivatives and solution decomposition

Estimates of the derivatives of the solution to singularly perturbed problems are re-

quired in order to carry out the numerical analysis of discretization methods. As we

shall see, the derivatives of u grow unboundedly as ε tends to zero, which presents a

challenge when designing robust numerical methods. Here we present bounds on the

derivatives of the solution to (1.5), taken from Linß [61, §3.3.1.2].

9
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Figure 1.2: Solution to (1.8) with ε = 10−2.

Let b, f ∈ Cq[0, 1] for some positive integer q. Then∣∣u(m)(x)
∣∣ ≤ C

{
1 + ε−me−βx/ε + ε−me−β(1−x)/ε

}
for x ∈ (0, 1) and m = 0, 1, . . . , q.

Furthermore, u can be decomposed into the regular and layer components as follows

u = v + w0 + w1,

where

Lv = f, Lw0 = 0, and Lw1 = 0 for x ∈ (0, 1).

The derivatives of these components satisfy∣∣v(m)(x)
∣∣ ≤ C

(
1 + εq−m

)
,

and ∣∣∣w(m)
0 (x)

∣∣∣ ≤ Cε−me−βx/ε, and
∣∣∣w(m)

1 (x)
∣∣∣ ≤ Cε−me−β(1−x)/ε,

for x ∈ [0, 1] and m = 0, 1, . . . , q.

Such a decomposition is usually called a “Shishkin decomposition”, named after

Grigorii I. Shishkin who introduced this concept in [100, 101]. In particular, [101]

contains a decomposition for a reaction-diffusion problem in n dimensions. Here we

consider the decomposition of the two dimensional problem (1.7), for which the detailed

analysis is given in [20]. Let v, wi and zi, i = 1, . . . , 4, denote the regular, boundary and

corner components respectively. Then, subject to sufficient regularity and compatibility

of b, f and g, the solution u can be decomposed as

u = v +
4∑
i=1

wi +
4∑
i=1

zi,

where

Lv = f, Lwi = 0, and Lzi = 0, i = 1, 2, 3, 4.

10
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The regular component v satisfies∥∥∥∥ ∂p+qv∂xp∂yq

∥∥∥∥ ≤ C(1 + ε2−(p+q)), 0 ≤ p+ q ≤ 4.

For the boundary layer component, w1, associated with the edge y = 0, we have

|w1(x, y)| ≤ Ce−yβ/ε,

and ∥∥∥∥∂qw1

∂yq

∥∥∥∥ ≤ Cε−q, 1 ≤ q ≤ 4,

∥∥∥∥∂pw1

∂xp

∥∥∥∥ ≤ C(1 + ε2−p), 1 ≤ p ≤ 4.

The corner function z1 associated with the corner (0, 0) satisfies

|z1(x, y)| ≤ Ce−(x+y)β/ε,

∥∥∥∥ ∂p+qz1

∂xp∂yq

∥∥∥∥ ≤ Cε−(p+q), 1 ≤ p+ q ≤ 4.

Analogous bounds hold for w2, w3, w4, and z2, z3, z4.

These decompositions together with the derivative bounds play a key role in nu-

merical analysis of methods for the singularly perturbed problems (1.5) and (1.7).

1.6 Numerical methods

In this section, we present basic ideas of finite difference discretizations for the prob-

lems (1.5) and (1.7), and a finite element discretization for the problem (1.5). As we

shall see, for instance, the standard finite difference discretization on uniform meshes

is inadequate for singularly perturbed problems. To demonstrate this, we report the

numerical results for the finite difference scheme applied to the problem (1.7) on a

uniform mesh.

1.6.1 The finite difference method

A finite difference method for one-dimensional problems

Let N be the mesh parameter. Given an arbitrary one-dimensional grid

ωNx := {0 = x0 < x1 < · · · < xN = 1} , with hi = xi − xi−1, i = 1, . . . , N,

the standard second order finite difference discretization of the problem (1.5) is given

by

U0 = 0,

11
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−ε
2

h̄i

(
Ui+1 − Ui
hi+1

− Ui − Ui−1

hi

)
+ b(xi)Ui = f(xi), i = 1, . . . , N − 1,

UN = 0,

where

h̄i =
hi + hi+1

2
, i = 1, . . . , N − 1.

We denote mesh functions on ωNx by UN ,WN , etc.

In general, h̄i 6= h̄i+1 on an arbitrary mesh, so the above discretization results in

an unsymmetric linear system of equations. It is natural to consider symmetrising

this operator because of the many advantages of dealing with symmetric and positive

definite linear systems. When the above system is multiplied by a diagonal matrix with

entries h̄i (the first and last entries on the diagonal equal to 1), the symmetrised finite

difference method for the problem (1.5) is given by

U0 = 0,

−ε2

(
Ui+1 − Ui
hi+1

− Ui − Ui−1

hi

)
+ h̄ib(xi)Ui = h̄if(xi), i = 1, . . . , N − 1, (1.9)

UN = 0.

The discretization (1.9) can be written down in matrix form, with boundaries elimi-

nated, as

AUN = fN , (1.10)

where A is an (N − 1)× (N − 1) matrix.

When ε is O(1), one can use a Taylor’s series expansion and a maximum principle

technique to prove the convergence of finite difference scheme on a uniform mesh, with

the following pointwise error bound

‖u− UN‖ωN
x
≤ M

12
N−2, (1.11)

where ‖u(iv)(x)‖ ≤M for all x ∈ ω̄x.

A finite difference method for two-dimensional problems

For the two-dimensional problem (1.7), we take two arbitrary grids, ωNx and ωNy , in

the x- and y-directions respectively. We then apply the natural extension of the

method (1.9) to a grid that is the Cartesian product of ωNx and ωNy , which is de-

noted ΩN,N . Denote the mesh points of an arbitrary rectangular mesh as (xi, yj) for

12
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i, j ∈ {0, 1, . . . , N}, write the local mesh widths as hi = xi − xi−1 and kj = yj − yj−1,

and let h̄i = (hi + hi+1)/2, and k̄j = (kj + kj+1)/2. Then the numerical scheme is(
−ε2∆N + h̄ik̄jb(xi, yj)Ui,j

)
= h̄ik̄jf(xi, yj), i = 1, . . . , N − 1, j = 1, . . . , N − 1,

Ui,j = g(xi, yj), otherwise,

(1.12)

where ∆N is the symmetrised 5-point second-order central difference operator that can

be expressed in stencil notation as

∆N :=



h̄i
kj+1

k̄j
hi
−
(
k̄j

(
1

hi
+

1

hi+1

)
+ h̄i

(
1

kj
+

1

kj+1

))
k̄j
hi+1

h̄i
kj

 . (1.13)

The linear system for the finite difference method can be, again, written as

AUN = fN , where A =
(
−ε2∆N + h̄ik̄jb(xi, yj)

)
, (1.14)

and A is a symmetric positive definite (N − 1)2 × (N − 1)2 matrix. When the prob-

lem (1.7) is not singularly perturbed, an analogue of the one dimensional error esti-

mate (1.11) holds true for this scheme applied on a uniform mesh; see the first two

rows of Table 1.1 below. By contrast, it is well-known that when ε is small, standard

numerical methods, applied on a uniform mesh, do not yield satisfactory computed

solutions. To obtain a meaningful approximation one must make the assumption that

the mesh parameter N is O(ε−1), which is impractical and unrealistic. To demonstrate

this phenomenon, let us consider the following example of the two-dimensional prob-

lem (1.7) which has only two boundary layers, near the edges x = 0 and y = 0, and

one corner layer near (0, 0). Let b(x, y) = 1. The functions f, g are chosen so that

u(x, y) = x3(1 + y2) + sin(πx2) + cos(πy/2) + (1 + x+ y)
(
e−2x/ε + e−2y/ε

)
, (1.15)

which is plotted in Figure 4.1. Table 1.1 below gives the maximum pointwise errors in

the numerical solution to the problem (1.7), which has the solution (1.15), for a range

of values of ε and N on a uniform mesh. It is easy to observe that when ε is O(1), the

method is second-order accurate, as expected. However, when ε is small, for example

ε2 = 10−12 , the reported error increases as N increases, as seen in the last row in

Table 1.1. This is because the boundary layers are not resolved whenever N � ε−1.

As N increases, but is still much smaller than ε−1, more mesh points are close to, or

within, the layers, where the problem is most difficult to solve. Thus the pointwise

error increases, and so does not satisfy the definition of uniform convergence discussed

in Section 1.1.

To see the approximation obtained from the uniform mesh is unsatisfactory, in

Table 1.2, we report the maximum global error in the approximation to (1.15) taken

13
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ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 6.17e-03 1.55e-03 3.90e-04 9.76e-05 2.44e-05 6.10e-06

10−2 6.36e-02 1.71e-02 4.36e-03 1.10e-03 2.75e-04 6.88e-05

10−4 5.06e-02 1.52e-01 2.26e-01 1.13e-01 3.15e-02 8.09e-03

10−6 5.44e-04 2.11e-03 8.22e-03 3.15e-02 1.13e-01 2.32e-01

10−8 5.44e-06 2.11e-05 8.32e-05 3.30e-04 1.31e-03 5.21e-03

10−10 5.44e-08 2.11e-07 8.32e-07 3.30e-06 1.32e-05 5.25e-05

10−12 5.44e-10 2.11e-09 8.32e-09 3.30e-08 1.32e-07 5.25e-07

Table 1.1: ‖u − UN‖ΩN,N with u defined in (1.15) approximated by a FDM on a uniform

mesh.

as the piecewise linear interpolant, (UN)I , of the finite difference solution of (1.7).

Clearly, when ε is small, there is no noticeable decrease in the error as N increases:

the method is not convergent.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 9.86e-03 2.49e-03 6.23e-04 1.56e-04 3.90e-05 9.75e-06

10−2 2.28e-01 7.30e-02 2.05e-02 5.45e-03 1.41e-03 3.59e-04

10−4 1.44e+00 1.10e+00 7.25e-01 3.45e-01 1.17e-01 3.34e-02

10−6 1.52e+00 1.51e+00 1.51e+00 1.46e+00 1.24e+00 8.50e-01

10−8 1.52e+00 1.51e+00 1.51e+00 1.50e+00 1.50e+00 1.50e+00

10−10 1.52e+00 1.51e+00 1.51e+00 1.50e+00 1.50e+00 1.50e+00

10−12 1.52e+00 1.51e+00 1.51e+00 1.50e+00 1.50e+00 1.50e+00

Table 1.2: ‖u − (UN )I‖Ω with u defined in (1.15) approximated by a FDM on a uniform

mesh.

1.6.2 The finite element method

A finite element method for one-dimensional problems

Let H1
0 (ωx) be the space of continuous functions on ωx such that, if w ∈ H1

0 (ωx), then√∫ 1

0

[w′(x)]2dx <∞, and w(0) = w(1) = 0.

The variational formulation of (1.5) is: find u ∈ H1
0 (ωx) such that

Bε(u, v) := ε2(u′, v′) + (bu, v) = (f, v), for all v ∈ H1
0 (ωx),

14
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where, as usual, (u, v) :=
∫ 1

0
u(x)v(x)dx. The finite element (FE) formulation is arrived

at by replacing H1
0 (ωx) with a suitably chosen finite dimensional subspace. A natural

choice is the space of piecewise linear functions on the arbitrary mesh ωNx . Since it may

be that b is not easily integrated, we use a mid-point quadrature rule, equivalent to

approximating b by a piecewise constant function. We will use bi to denote b((xi−1 +

xi)/2). Then the finite element method on an arbitrary mesh for (1.5) leads to the

linear system

AUN = fN , (1.16)

where the system matrix can be written as A = S +M , with

S =

[
−ε

2

hi

ε2

hi
+

ε2

hi+1

− ε2

hi+1

]
,

and

M =

[
hibi
6

hibi + hi+1bi+1

3

hi+1bi+1

6

]
.

The bilinear form (1.6.2) is continuous and coercive, so standard finite element

arguments (see, e.g., the textbook by Brenner and Scott [8]), can be applied to give a

quasi-optimal error estimate

‖u− UN‖ε ≤ C‖u− vN‖ε,

where vN is any piecewise linear function defined on the mesh ωNx . In particular,

‖u− UN‖ε ≤ C‖u− uI‖ε,

where uI is the nodal interpolant of u on ωNx . Since, if ε� 1 and the mesh is uniform,

the interpolant does not capture the layers in u, so one would not expect to obtain an

accurate solution. (Actually, it has been shown by, e.g., Schopf [99], that ‖u−UN‖ε ≤
CN−1/2, independent of ε, but details of this are beyond the scope of this thesis. We

also note that ‖u− UN‖ ' O(1).)

1.7 Uniform convergence on fitted meshes

Solutions of singularly perturbed boundary value problems change abruptly in the

layer regions. As observed in Section 1.6, a standard finite difference scheme on an

equidistant mesh may not yield a satisfactory numerical solution unless we assume

that N is O(ε−1). To resolve the layers, it is natural to have grids that condense in

the layer regions. However, the construction of such grids usually requires a priori

knowledge of the behaviour of the exact solution, see Section 1.5.2. The present sec-

tion is devoted to such meshes, specifically the piecewise uniform Shishkin mesh, and
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the graded Bakhvalov mesh. We outline the construction of these meshes for one and

two-dimensional problems, and give numerical results for a two-dimensional problem

(results for a one-dimensional problem are very similar). We postpone a detailed nu-

merical analysis to Chapter 2, where a novel preconditioning-based proof technique is

introduced.

1.7.1 Shishkin meshes

The piecewise uniform meshes of Shishkin have gained much popularity since the mid-

1990s because of the simplicity of their construction and analysis. The monographs [33,

77], and the textbook [96, §2.4.2] discuss the use of these meshes at length. Miller et

al. [77] provide the analysis of finite difference methods on this mesh for convection-

diffusion and reaction-diffusion problems, whereas Farrell et al [33] focus on detailed

numerical results on Shishkin meshes for various problems in one and two dimensions.

A comprehensive survey, which is devoted to Shishkin’s great contribution to singularly

perturbed problems, is given in [53]. That review paper also fully explains the analysis

that leads to the construction of Shishkin meshes, as well as the Shishkin solution

decomposition for convection-diffusion problems in two dimensions.

We describe here the construction of a Shishkin mesh for the reaction-diffusion

problem in one dimension (1.5), which condenses in the regions near boundary layers

(recall Figure 1.1).

Recall that b in (1.5) is bounded below by β2 > 0. Define the mesh transition point

τx := min

{
1

4
, 2
ε

β
lnN

}
. (1.18)

Then the interval [0, 1] is divided into three subintervals: [0, τx], [τx, 1−τx] and [1−τx, 1].

The mesh is then constructed by subdividing [τx, 1 − τx] into N/2 equidistant mesh

intervals of length H = 2(1 − 2τx)/N , and subdividing each of [0, τx] and [1 − τx, 1]

into N/4 equidistant mesh intervals of length h = 4τx/N , as shown in Figure 1.3.

(We are assuming that N is divisible by 4). When the problem (1.5) is discretized

by the scheme (1.9) on this Shishkin mesh, one can show almost first-order ε-uniform

convergence (see [77, Chapter 6]):

‖u− UN‖ωN
x
≤ CN−1 lnN. (1.19)

A refined analysis using a more sophisticated barrier function technique can be used

to prove that (see [78, Theorem 6.1])

‖u− UN‖ωN
x
≤ CN−2 ln2N. (1.20)
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τx 1− τxh H

Figure 1.3: A Shishkin mesh for a reaction-diffusion problem in one dimension.

See Section 2.5 below for an alternative proof.

A Shishkin mesh for the two dimensional problem (1.7), which typically have four

boundary and four corner layers, (see Figure 1.2), is constructed by taking a Cartesian

product of Shishkin grids on each direction. In Figure 1.4, we show a Shishkin mesh

for the two dimensional reaction-diffusion problems.

Figure 1.4: A Shishkin mesh for a reaction-diffusion problem in two dimensions.

Recall example (1.15), which has only two boundary layers and one corner layer.

For this problem, the transition point is taken as τx = min {1/2, 2ε lnN/β}. Then, the

unit interval is divided into two subintervals [1, τx] and [τx, 1]. We divide each of these

intervals into N/2 equidistant mesh intervals. On y-direction, we take τy = τx, with a

similar construction for subintervals of [1, τy] and [τy, 1].

The first full analysis for a standard finite difference scheme applied on a Shishkin

mesh to solve a two-dimensional reaction-diffusion problem is due to Clavaro et al. [20]

(see also [52] for an extension to coupled systems). More precisely, in [20], the following

parameter robust error estimate is proved: there is a constant C independent of N and

ε such that

‖u− UN‖ΩN,N ≤ CN−2 ln2N. (1.21)

In Table 1.3, we report the maximum pointwise error when (1.7) is solved on the

Shishkin mesh described above. When ε is O(1), the mesh is uniform, and so the

numerical results are identical to those reported in Table 1.1 (first and second rows).

When ε is small, the error decreases with a convergence rate of O(N−2 ln2N) when N
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increases, as seen in (1.21). More importantly, for a fixed N , although we observe that

the error initially increases as ε deceases, due mainly to the mesh jumping from being

uniform to being piecewise uniform, the observed error is robust with respect to ε.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 6.17e-03 1.55e-03 3.90e-04 9.76e-05 2.44e-05 6.10e-06

10−2 6.36e-02 1.71e-02 4.36e-03 1.10e-03 2.75e-04 6.88e-05

10−4 9.04e-02 3.76e-02 1.44e-02 5.00e-03 1.65e-03 5.23e-04

10−6 9.08e-02 3.82e-02 1.47e-02 5.11e-03 1.68e-03 5.35e-04

10−8 9.08e-02 3.83e-02 1.47e-02 5.12e-03 1.69e-03 5.37e-04

10−10 9.08e-02 3.83e-02 1.47e-02 5.12e-03 1.69e-03 5.37e-04

10−12 9.08e-02 3.83e-02 1.47e-02 5.12e-03 1.69e-03 5.37e-04

Table 1.3: ‖u− UN‖ΩN,N with u defined in (1.15) solved by a FDM on a Shishkin mesh.

1.7.2 Bakhvalov meshes

When the problem is not singularly perturbed, the scheme (1.12) applied on a uniform

mesh yields a discrete solution which is fully second-order accurate. However, as ε

becomes small, the convergence rate on the Shishkin mesh is reduced by a logarithmic

factor, as shown in (1.21). However, the more sophisticated graded boundary layer-

adapted mesh of Bakhvalov [7] can be used to recover second-order convergence, i.e.,

if UN is computed on a suitable Bakhvalov mesh, then there exists a constant, C,

independent of both N and ε such that

‖u− UN‖ωN
x
≤ CN−2.

Away from the layers, the mesh is equidistant, like the Shishkin mesh. Inside the

boundary layers, the mesh is graded. It can be described by a mesh generating function,

ψ, defined as

ψ(t) =


χ(t) := −σε

β
ln (1− t/q) , for t ∈ [0, τB],

φ(t) := χ(τB) + χ′(τB)(t− τB), for t ∈ [τB, 1/2],

1− ψ(1− t), for t ∈ (1/2, 1],

where the Bakhvalov mesh transition point τB is chosen so that ψ ∈ C1[0, 1]. The

mesh parameters q and σ are user-chosen and control, respectively, the proportion of

the mesh points in the layer regions, and the grading of the mesh within the layers. A

diagram of such mesh is shown in Figure 1.5.

This mesh was first introduced in [7] in late 1960s for one and two-dimensional

reaction-diffusion problems. A generalization, referred to as a Bakhvalov-type mesh is
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τB 1− τB

Figure 1.5: A Bakhvalov mesh for a reaction-diffusion problem in one dimension.

introduced in [112], where uniform convergence for one dimensional semilinear reaction-

diffusion problems is proved. The extension to coupled systems of two-dimensional

reaction-diffusion problems is presented in [49].

Table 1.4 shows the maximum pointwise error when the two dimensional reaction-

diffusion problem (1.7) is discretized on the Bakhvalov mesh described above. Full

second-order accuracy of the discrete solution is easily observed.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 6.17e-03 1.55e-03 3.90e-04 9.76e-05 2.44e-05 6.10e-06

10−2 3.94e-02 1.00e-02 2.56e-03 6.39e-04 1.60e-04 4.00e-05

10−4 3.41e-02 9.56e-03 2.44e-03 6.13e-04 1.54e-04 3.84e-05

10−6 3.42e-02 9.72e-03 2.49e-03 6.26e-04 1.57e-04 3.94e-05

10−8 3.41e-02 9.72e-03 2.49e-03 6.28e-04 1.58e-04 3.95e-05

10−10 3.41e-02 9.72e-03 2.49e-03 6.28e-04 1.58e-04 3.95e-05

10−12 3.41e-02 9.72e-03 2.49e-03 6.28e-04 1.58e-04 3.95e-05

Table 1.4: ‖u − UN‖ΩN,N with u defined in (1.15) approximated by a FDM on a Bakhvalov

mesh.

1.8 Preliminaries for linear solvers

Our goal in this section is to present some fundamental ideas from linear algebra,

including Geršgorin’s Theorem in Section 1.8.1, that are used in the rest of this thesis.

In Section 1.8.2, we provide some initial analysis of classical iterative linear solvers

such as the Jacobi, Gauss-Seidel and Successive Overrelaxation (SOR) methods for the

problem (1.5). We will show that, for a fixed ε, these schemes are slow to converge,

and scale badly in N , even for one-dimensional problems. Hence, in the rest of the

thesis, we focus on iterative methods that are based on Krylov subspaces, such as the

Conjugate Gradient algorithm and preconditioners for them. Therefore, we conclude,

in Section 1.8.3, with a discussion of preconditioning for solving linear systems.
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1.8.1 Geršgorin’s theorem

A very famous, and useful, theorem to bound the spectral radius of the matrix A is

due to Geršgorin [40].

Theorem 1.1 ([110, Theorem 1.11]). Let A = [ai,j] be an arbitrary n × n complex

matrix, and let

Λi :=
n∑
j 6=i

|ai,j|, 1 ≤ i ≤ n,

where Λi = 0 if n = 1. If λ is an eigenvalue of A, then there is a positive integer r,

with 1 ≤ r ≤ n, such that

|λ− ar,r| ≤ Λr.

Consequently, if λmax and λmin are the largest and smallest eigenvalues, respectively,

of the real symmetric matrix A, from Geršgorin’s Theorem, we get that

λmax ≤ max
i=1,...,n

{
n∑
j=1

|ai,j|
}
, and λmin ≥ min

i=1,...,n

{
|ai,i| −

n∑
j 6=i

|ai,j|
}
.

1.8.2 Classical iterative schemes for solving linear systems

For solving the linear system

Ax = b, (1.22)

one can use direct methods (such as Gaussian Elimination, Cholesky factorization,

or LU factorization). However, when the linear system is large, direct methods are

not suitable since they require too much memory. For this reason, one uses itera-

tive methods. The idea of these methods is that, starting from an initial guess x(0),

the method generates a sequence of vectors {x(1), x(2), . . .} that converges to the true

solution. Many such schemes can be written in the form:

x(m+1) = Rx(m) + c, (1.23)

where R is some suitable matrix.

We present here some analysis of classical iterative solvers such as the Jacobi, Gauss-

Seidel and Successive Overrelaxation (SOR) methods for the linear system arising when

the problem (1.3) is discretized by the finite difference method (1.9) on a Shishkin

mesh. These algorithms, especially the Jacobi and Gauss-Seidel methods, can be used

as smoothers for multigrid methods. Detailed descriptions of these classical schemes

can be found in many standard textbooks, e.g. [26, 110]. Suppose the matrix A has no

zeros on its diagonal. We write A = D−L−U , where D is the diagonal of A, and −L
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and −U are the strictly lower triangular and upper triangular parts of A, respectively.

Then Table 1.5 below summarizes these schemes in terms of (1.23), while Theorem 1.2

gives us details of their convergence properties.

Method R c

Jacobi’s RJ = D−1(L+ U) D−1b

Gauss-Seidel RGS = (D − L)−1U (D − L)−1

SOR(ω) RSOR = (D − ωL)−1((1− ω)D + ωU) ω(D − ωL)−1b

Table 1.5: Classical iterative schemes.

Theorem 1.2 ([26, Theorem 6.1]). The iteration (1.23) converges to the solution

of (1.22) for all starting vectors x0 and for all b if and only if ρ(R) < 1, where ρ(R) is

spectral radius of R.

We now describe the convergence analysis when applying these methods to the linear

system generated by finite difference scheme (1.9) on the Shishkin mesh described in

Section 1.7 for the problem (1.5). The matrix A defined in (1.16) is a symmetric

positive definite (N − 1) × (N − 1) matrix. Furthermore, since b(x) ≥ β2 > 0, the

matrix A is strictly row diagonally dominant. Thus, it is easy to show that the Jacobi

and Gauss-Seidel methods converge [26, Theorem 6.2]. Moreover, A is symmetric and

has positive diagonal entries, so SOR(ω) converges for all 0 < ω < 2 [26, Theorem 6.5].

However, these results only tell us that the method will converge, and not how quickly,

or how the performance depends on ε. In order to compare the speed of convergence

of different solvers and discretizations, we need to define:

Definition 1.1 ([26, Def. 6.5]). The rate of convergence of (1.23) is r(R) ≡ − log10 ρ(R).

The value of r(R) in above definition tells us the increase in the number of correct

decimal digits per iteration.

From the above definition, we observe that the smaller the spectral radius, the

greater the rate of convergence. We investigate use of the iterative schemes described

in Table 1.5 applied to the example (1.6). The left of Figure 1.6 below shows a plot of

the residuals, i.e., ‖b−Ax(m)‖, for each of the Jacobi, Gauss-Seidel and SOR methods,

respectively, using the finite difference scheme (1.9) on a Shishkin mesh with N = 25

and ε = 1, for the first 20 iterations. The right of Figure 1.6 shows a plot of the

spectral radii of the Jacobi, Gauss-Seidel and SOR methods. The initial guess is taken

to be zero in the experiments. It clearly shows that these iterative schemes are linearly

convergent, but the convergence is slow. In contrast, when ε = 10−3, these methods

converge rapidly as seen in Figure 1.7. This is because the off-diagonal entries of the
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symmetrised matrix are very small as ε is small. Therefore, the matrix resembles the

diagonal matrix, which is easy to invert.
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Figure 1.6: Residuals and spectral radii of classical methods for a 1D problem, with ε = 1

and N = 25.
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Figure 1.7: Residuals and spectral radii of classical methods for a 1D problem, with ε = 10−3

and N = 25.

As an example of an analysis of an iterative method for the singularly perturbed

problems, we consider the Jacobi method for the ordinary differential equation (1.5)

on the Shishkin mesh. Applying the Geršgorin’s Theorem to RJ from the table above,

we can give the upper bound for the spectral radius:

ρ(RJ) ≤ max{K1, K2, K3},

where

K1 =
N2

N2 + 32 ln2N
, K2 =

N2ε

N2ε+ β lnN(β − 3ε lnN)/2
,

and

K3 =
N2ε2

N2ε2 + (β − 4ε lnN)2/8
.

It is easy to see that whenN increases, K1 becomes dominant and tends to 1. Therefore,

for a fixed ε, the rate of convergence of the schemes in Table 1.5 decreases as N
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increases: compare Figure 1.7 with Figure 1.8, which shows the corresponding residuals

and spectral radii when ε = 10−3 and N = 28.
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Figure 1.8: Residuals and spectral radii of classical methods for a 1D problem with ε = 10−3

and N = 28.

For two-dimensional problems, these classical iterative schemes become inefficient

due to the increase in the number of degree of freedom from O(N) to O(N2). Figure 1.9

shows the residuals for the Jacobi, Gauss-Seidel, and SOR methods with ε = 10−3, using

the finite difference scheme (1.12) on a Shishkin mesh with N = 25 (left), and N = 28

(right) to the problem (1.7). It is easy to see that convergence slows considerably as

N increases.
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Figure 1.9: Residuals of classical methods for a 2D problem with ε = 10−3, N = 25 (left) and

N = 28 (right).

In Figure 1.10, we plot the residuals computed when the SOR method is applied to

the two-dimensional problem (1.7). On the left of Figure 1.10, we fix N = 26, and vary

ε. As observed for the one-dimensional problem, it is seen that the rate of convergence

increases for smaller ε. However, although the convergence is rapid for the first few

iterations, it then slows with the same convergence rate observed when ε = 1. This is
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because when ε is small, the error associated with the interior region dominates and

easily damped by the SOR method. After that, the error in different regions becomes

balanced. However, in the layer regions, the small local mesh width means that the

discretization resembles that of a diffusion-dominated problem. Therefore, after the

first few iterations, we see the same rate of convergence as when ε = 1. On the right

of Figure 1.10, for a fixed ε = 10−3, we observe slower convergence when N increases.
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Figure 1.10: Residuals of SOR for a 2D problem, for various N and ε.

1.8.3 Preconditioners

As we have seen, the matrices defined in (1.10) and (1.14) are symmetric positive

definite. The most commonly used iterative method for these linear systems is the

Conjugate Gradient (CG) method. CG converges rapidly if the coefficient matrix A

is close to the identity [44]. However, as we shall see in Chapter 4 and Chapter 5,

the matrix A is very ill-conditioned due to the nature of discretization on a special

layer-adapted mesh. Therefore, one should use a preconditioning technique. That is,

we replace the original system by an equivalent one in which it is easier to solve by

iterative methods. For example, the linear system (1.22) can be rewritten as

M−1Ax = M−1b, (1.24)

where M is called a preconditioner. Ideally, M is chosen so that it satisfies the following

properties [97, 44]:

P1) M is a good approximation of A,

P2) it is inexpensive to solve linear system Mx = b.

For example, if we choose M = A, then the condition (P1) is satisfied, but the system

Mx = b in (P2) has the same complexity as the original system. If M is chosen to
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satisfy (P2), for example, by taking M to be the identity matrix, then M will probably

not approximate A very well. Therefore, a suitable preconditioner must balance these

properties. This can be difficult for singularly perturbed problems since the nature

of the linear system can vary so much between subregions. There are many proposed

preconditioners in the literature. We shall study the diagonal and incomplete Cholesky

preconditioners in Chapter 4, and the specially designed boundary layer preconditioner

in Chapter 5.

1.9 Other literature on singularly perturbed prob-

lems

As stated in [95, §1]:

A search of the MathSciNet database for papers published in the years

2005–2014 with MSC Primary Classification 65 (viz., Numerical Analysis)

and the phrase singular* perturb* [in MathSciNet asterisks are wildcards]

yields 879 published works.

This clearly shows that the numerical analysis of singularly perturbed problems is a very

active research topic. In this section we briefly review some other related developments

on singularly perturbed problems. We do not aim to give a full discussion; nevertheless,

we try to provide some recent progress in the field including the approaches of fitted

operator methods and layer-fitted mesh methods.

Before the 1990s, the majority of research papers that focused on ε-uniform conver-

gence where concerned with fitted operators, used on equidistant grids, see, e.g., [28], [77,

Chapter 4], as well as [96, §I.2.1] for a convection-diffusion problem in one dimension.

These schemes are often referred as Il’in-Allen-Southwell schemes [3, 48], and, typi-

cally yield uniform convergence in the maximum norm for one-dimensional singularly

perturbed problems as follows

‖u− UN‖ ≤ CN−1.

Recently, Roos and Schopf [94] extended this scheme to the two dimensional case

by using the hybrid stability approach which is based on discrete Green’s functions.

They show that, under some conditions, the uniform first-order convergence of the Il’in

scheme is retained for the two-dimensional case. The sufficient conditions for uniform

convergence of Il’in-Allen-Southwell schemes were derived by Farrell [35]. Exponentially

fitted finite element methods, which also turn out to be uniformly convergent, have been

derived by a fitted operator approach, see, e.g., [96, §2.2.5] and also [51, 106].
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The 1990s saw the introduction of the simple piecewise uniform Shishkin mesh

(see Section 1.7.1), on which one can obtain convergence, uniformly in ε, by standard

discretizations. Since then much attention has turned into the approach of fitted mesh

methods. For example, in [107], Stynes and Roos extended the analysis based on barrier

functions, which was introduced in the well-known paper [50], to an arbitrary grid for

convection-diffusion problems. More precisely, for one-dimensional convection-diffusion

problems discretized by upwind schemes on the Shishkin mesh, we have

‖u− UN‖ ≤
{
CN−1 lnN, simple upwind scheme,

CN−2 ln2N, modified upwind scheme.

The analogous extensions to two-dimensional convection-diffusion problems are due to

Linß and Stynes [68, 57]. The key ingredients in these papers are the barrier func-

tions introduced in [107], and Shishkin decomposition for two-dimensional convection-

diffusion problems analyzed in [69]. The analysis for systems of singularly perturbed

convection-diffusion problems is due to Linß [59, 60]. The barrier function technique

works fine for Shishkin-type meshes [92]; however, it is unknown that if it can be ap-

plied to Bakhvalov type meshes [61, Remark 4.21]. In particular, uniform convergence

analysis of the upwind finite difference method applied on a Bakhvalov-type mesh to

the two-dimensional convection-diffusion problem is still an open question [95, Ques-

tion 6]. As for non-stationary convection-diffusion problems, the reader is referred

to the monograph [96, Part II] and research papers [16, 17], as well as [43], where a

time-dependent convection-diffusion problem with interior layers is analyzed.

For one-dimensional reaction-diffusion problems, as discussed in Section 1.7, the

detailed convergence analysis is given in [77, Chapter 6] and [78, Chapter 6]. The

extension to two-dimensional problems is provided in [20]. The study of systems

of singularly perturbed reaction-diffusion problems is given in [52, 63, 62, 65, 73].

Higher-order schemes for reaction-diffusion singularly perturbed systems can be found

in, e.g., [18, 19]. For time-dependent reaction-diffusion problems, we refer the reader

to [11, 13, 14, 15, 64]. In particular, Miller et al. [79] proved almost second-order con-

vergence in space by employing a piecewise uniform barrier function, and so improved

on the almost first-order convergence analysis for the steady-state problem proved by

the same authors in [78, Chapter 6].

Within the scope of this thesis, it is impossible to present all advances of this

fascinating topic. We hope the discussion above convinces the reader that this is a

wide and rapidly developing area of research. Although remarkable results have been

achieved over last few decades, there are still many interesting open questions relating

to the numerical solution of singularly perturbed differential equations [95].
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Chapter 2

Uniform convergence via

preconditioning

The concept of uniform convergence is crucial to this thesis which is primarily con-

cerned with direct and iterative solvers of linear systems of equations that arise when

specialized parameter robust methods are used to solve singularly perturbed problems.

Therefore, a detailed theoretical discussion of uniform convergence is warranted. In this

chapter, the main focus is convergence analysis of the singularly perturbed convection-

diffusion problems in one dimension. However, rather than repeating standard theory,

we give a new proof of pointwise uniform convergence when these problems are dis-

cretized by a finite difference scheme. This proof technique has been published as [115]:

R. Vulanović and T. A. Nhan, Uniform convergence via preconditioning, Int. J. Nu-

mer. Anal. Model. Ser. B., 5(4):347-356, 2014. Furthermore, to provide a connection

with later chapters, we also present a simple uniform convergence proof for singularly

perturbed reaction-diffusion problems in one dimension.

2.1 Introduction

We consider the following one-dimensional singularly perturbed problem of convection-

reaction-diffusion type,

Lu := −εu′′ − b(x)u′ + c(x)u = f(x), x ∈ ωx, u(0) = u(1) = 0, (2.1)

where, as usual, ε, is a small positive perturbation parameter, and b, c, and f are

C1(ωx)-functions, with b and c satisfying

b(x) ≥ β > 0, c(x) ≥ 0 for x ∈ ω̄x.
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We preserve the notation of [115], i.e., b(x) and c(x) are the coefficients of the convection

and reaction terms respectively. It is well known, see [50, 71] for instance, that (2.1)

has a unique solution u in C3(ωx), and, in general, has an exponential boundary layer

near x = 0.

We consider a finite difference discretization of (2.1), where the standard central 3-

point finite difference is used for u′′, and 2-point upwind scheme is for u′, on the Shishkin

mesh with N subintervals. It is shown in [90] that the condition number, in the max-

imum norm, of the matrix of the resulting system is of magnitude O(ε−1(N/ lnN)2).

Since this is unsatisfactory when ε → 0, a simple preconditioning is proposed in the

same paper. This behavior of the condition number is contrasted in [90] to that of

the singularly perturbed reaction-diffusion problem, which can be described as (2.1)

with b ≡ 0 and c > 0 on ω̄x. When the reaction-diffusion problem is discretized using

the standard central scheme on the Shishkin mesh, there is no need for preconditioning

because the condition number behaves like O((N/ lnN)2). On the other hand, if a sym-

metrised finite difference schemes is used, the resulting linear system is ill-conditioned.

These will be discussed in detail in Chapter 4.

The standard techniques used to prove ε-uniform convergence of numerical methods

for convection-diffusion problems are quite different from those applied to reaction-

diffusion problems. For example, for the reaction-diffusion problems, one can prove

that a finite difference discretization yields ε-uniform convergence by using the following

principle, which originated from non-perturbed problems:

Principle 2.1. ε-uniform stability and ε-uniform consistency, both in the maximum

norm, imply ε-uniform pointwise convergence.

The ε-uniform convergence proofs which are based on the above principle for reaction-

diffusion problems can be found in [77, Chapter 6], and [112] where a one dimensional

semilinear reaction-diffusion is studied on the generalized Bakhvalov type meshes. In

Section 2.5, we present a uniform convergence proof based on Principle 2.1 for a one-

dimensional reaction-diffusion problem discretized on a Shishkin mesh.

Principle 2.1 does not, however, work for convection-diffusion problems (2.1) be-

cause ε-uniform pointwise consistency is not present, although it is easy to show that

the upwind scheme is ε-uniformly stable in the maximum norm. For these problems,

ε-uniform consistency can be proved in a discrete L1-norm, and so the proofs based

on the stability consistency principle have to rely on some kind of hybrid stability

inequality [5, 61, 67], an approach that typically involves the use of discrete Green’s

functions.

Our main result is that we show that essentially the same preconditioning, which

eliminates the difference in the condition numbers of simple finite difference discretiza-
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tions for the convection-diffusion and reaction-diffusion problems, can also be used to

eliminate the difference in the application of Principle 2.1 to the proofs of ε-uniform

pointwise convergence for these two problem types. We do this by appropriately mod-

ifying the method from [90]. In other words, a suitable preconditioning technique

enables the use of Principle 2.1 for the convection-diffusion problem. Using this ap-

proach, we prove almost first-order pointwise ε-uniform convergence for the upwind

scheme discretizing the problem (2.1) on the Shishkin mesh. This result, however, is

not the main contribution of this chapter, because the same has already been proved

elsewhere (see the above references). However, this conceptually simple proof points

out that there is a connection between preconditioning and ε-uniform pointwise con-

vergence for convection-diffusion problems.

The rest of the chapter is organized as follows. We give the properties of the

continuous solution to (2.1) in Section 2.2. Then, in Section 2.3, we introduce the simple

upwind scheme on the Shishkin mesh and discuss the preconditioning of the discrete

problem. Section 2.4 provides the proof of ε-uniform pointwise convergence. Then, in

Section 2.5, we demonstrate how Principle 2.1 is used to prove ε-uniform convergence

for the reaction-diffusion in one dimension. Finally, some concluding remarks are given

in Section 2.6.

2.2 Solution decomposition

The solution, u, of (2.1) can be decomposed into the regular and boundary layer parts.

We present here a version of such a decomposition taken from [61, Theorem 3.48]:

u(x) = s(x) + y(x), (2.2)

|s(k)(x)| ≤ C
(
1 + ε2−k) , |y(k)(x)| ≤ Cε−ke−βx/ε, (2.3)

x ∈ ω̄x, k = 0, 1, 2, 3.

Details of the construction are given in [61, §3.4.1.2]. The regular component, s, satisfies

Ls = f, x ∈ ωx, while the layer component, y, solves the problem

Ly(x) = 0, x ∈ ωx, y(0) = −s(0), y(1) = 0, (2.4)

We shall use this fact later on in the proof of Lemma 2.2.
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2.3 The discrete problem and conditioning

Recall from Section 1.6 that ωNx := {0 = x0 < x1 < · · · < xN = 1}. We discretize the

problem (2.1) on ωNx using the upwind finite difference scheme:

UN
0 = 0,

LNUN
i := −εD′′UN

i − biD′UN
i + ciU

N
i = fi, i = 1, 2, . . . , N − 1,

UN
N = 0,

(2.5)

where

D′WN
i =

WN
i+1 −WN

i

hi+1

,

and

D′′WN
i =

1

h̄i

(
WN
i+1 −WN

i

hi+1

− WN
i −WN

i−1

hi

)
.

The linear system (2.5) can be written down in matrix form,

ANU
N = f̂N , (2.6)

where AN = [ai,j] is a tridiagonal matrix with a0,0 = 1 and aN,N = 1 being the only

nonzero elements in the 0th andNth rows, respectively, and where f̂N = [0, f1, . . . , fN−1, 0]T .

(Note that in this chapter, for convenience, we index the entries of vectors and matrices

from 0).

It is easy to see that AN is an L-matrix, i.e., ai,i > 0 and ai,j ≤ 0 if i 6= j, for

all i, j = 0, 1, . . . , N . The matrix AN is also inverse monotone, which means that it is

non-singular and that A−1
N ≥ 0 (inequalities involving matrices and vectors should be

understood component-wise), and therefore an M-matrix (inverse monotone L-matrix).

This can be proved using the following M-criterion, see, e.g., [96, Theorem 2.7].

Theorem 2.1. Let A be an L-matrix and let there exist a vector w such that w > 0

and Aw ≥ γ for some positive constant γ. A is then an M-matrix and it holds that

‖A−1‖ ≤ γ−1‖w‖.

To see that AN is an M-matrix, just set wi = 2 − xi, i = 0, 1, . . . , N, in Theorem

2.1 to get that ANw ≥ min{1, β}. This also implies that the discrete problem (2.6) is

stable uniformly in ε,

‖A−1
N ‖ ≤

2

min{1, β} ≤ C. (2.7)

Of course, the system (2.6) has a unique solution UN .

From this point on, we take ωNx to be the standard Shishkin mesh for these prob-

lems. However, our results equally hold true for the slightly generalized Shishkin mesh
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considered in [113]. Let N be even and let J = N/2. While the solution of the

reaction-diffusion problem (1.5) has two boundary layers at both ends of the unit in-

terval with the layer width proportional to the square root of the diffusion parameter;

for the convection-diffusion problem (2.1), the solution has only one boundary layer

near x = 0 with the width of the layer proportional to the diffusion parameter. Hence,

the Shishkin mesh is constructed as follows. Let

τx = min

{
1

2
,
aε lnN

β

}
,

where a is a user-chosen parameter, and we take a ≥ 2. The Shishkin mesh is con-

structed by forming a fine equidistant mesh with J mesh steps of size h in the interval

[0, τx], and a coarse equidistant mesh with J mesh steps of size H in [τx, 1]. We only

consider the case when τx = aε lnN/β, since N is otherwise unrealistically large. We

have that

h =
τx
J
≤ Cε

lnN

N
, and H =

1− τx
J
≤ 2N−1,

and we define ~ = (h+H)/2. In particular, h̄J = ~.

When the discrete problem (2.5) is formed on the Shishkin mesh, it is shown in [90]

that the condition number of AN ,

κ(AN) := ‖A−1
N ‖‖AN‖,

satisfies the following sharp estimate:

κ(AN) ≤ C
N2

ε ln2N
.

Therefore, the system is ill-conditioned when ε → 0. This unpleasant behavior is

eliminated in [90] using the preconditioning by the diagonal matrix D := [diag(AN)]−1.

When the system (2.5) is multiplied by D, the resulting matrix DAN satisfies

‖DAN‖ ≤ C, and ‖(DAN)−1‖ ≤ C
N2

lnN
,

so that

κ(DAN) ≤ C
N2

lnN
. (2.8)

Note, however, that the matrix DAN no longer satisfies ‖(DAN)−1‖ ≤ C, thus the

original stability estimate ‖A−1
N ‖ ≤ C in (2.7) is not preserved. Below we modify the

preconditioning by a diagonal matrix so that the same estimate as in (2.8) holds true,

while the stability of type (2.7) is retained.

Let M = diag (m0,m1, . . . ,mN) be a diagonal matrix with the entries
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mi =



1, i = 0,

h

H
, 1 ≤ i ≤ J − 1,

1, J ≤ i ≤ N.

When the system (2.6) is multiplied by M , this is equivalent to multiplying the equa-

tions 1, 2, . . . , J − 1, of the system (2.5) by h/H. The modified system is

ÃNU
N = Mf̂N , (2.9)

where ÃN = MAN . Let the entries of ÃN be denoted by ãi,j, the nonzero ones being

li := ãi,i−1 =



− ε

hH
, 1 ≤ i ≤ J − 1,

− ε

h~
, i = J,

− ε

H2
, J + 1 ≤ i ≤ N − 1,

ri := ãi,i+1 =



− ε

hH
− bi
H
, 1 ≤ i ≤ J − 1,

− ε

H~
− bi
H
, i = J,

− ε

H2
− bi
H
, J + 1 ≤ i ≤ N − 1,

and

di := ãii =



1, i = 0

−li − ri +
h

H
ci, 1 ≤ i ≤ J − 1,

−li − ri + ci, J ≤ i ≤ N − 1,

1, i = N.

It is easy to see that ÃN is an L-matrix. The next lemma shows that ÃN is an

M-matrix and that the modified discretization (2.9) is stable uniformly in ε.

Lemma 2.1. The matrix ÃN of the system (2.9) satisfies∥∥∥Ã−1
N

∥∥∥ ≤ C.
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Proof. We construct a vector v = [v0, v1, . . . , vN ]T such that

(a) vi ≥ δ, i = 0, 1, . . . , N , where δ is a positive constant independent of both ε and

N ,

(b) vi ≤ C, i = 0, 1, . . . , N ,

(c) livi−1 + divi + rivi+1 ≥ δ, i = 1, 2, . . . , N − 1.

Then, according to Theorem 2.1,

‖Ã−1
N ‖ ≤ δ−1‖v‖ ≤ C.

The vector v can be constructed as follows:

vi = 2 + β −Hi+ λmin
{

(1 + ρ)J−i, 1
}
, for i = 0, 1, . . . , N,

where λ is a fixed positive constant and ρ = βH/ε. This construction is motivated by

the proof of Lemma 4 in [90].

Since N−1 ≤ H ≤ 2N−1, we see that the conditions (a) and (b) are satisfied if we

show that λ ≤ C. We do this next at the same time as we verify condition (c).

When 1 ≤ i ≤ J − 1, we have

livi−1 + divi + rivi+1 = (li + di + ri)vi + liH − riH

=
h

H
civi −

ε

h
+
ε

h
+ bi

≥ β.

For i = J , condition (c) is verified as follows:

lJvJ−1 + dJvJ + rJvJ+1 = cJvJ + lJH − rJ
(
H +

λρ

1 + ρ

)
≥ −rJ

λρ

1 + ρ
+ (lJ − rJ)H

=

(
ε

~H
+
bJ
H

)
λρ

1 + ρ
− εH

h~
+
ε

~
+ bJ

≥ ε+ β~
~H

· λβH

ε+ βH
− εH

h~
+ β

=
1

~

(
ε+ β~
ε+ βH

βλ− εH

h

)
+ β

≥ 1

~

(
βλ

2
− εH

h

)
+ β

≥ β,
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where in the last step we choose λ so that λ ≤ C and

βλ

2
≥ εH

h
.

This is possible to do because
εH

h
≤ C

lnN
≤ C.

Finally, if J + 1 ≤ i ≤ N − 1, we have

livi−1 + divi + rivi+1 = civi + liH − riH + li

[
λ

(1 + ρ)i−1−J −
λ

(1 + ρ)i−J

]
+ ri

[
λ

(1 + ρ)i+1−J −
λ

(1 + ρ)i−J

]
≥ bi +

ρ(1 + ρ)li − ρri
(1 + ρ)i+1−J λ

≥ β +
(li − ri + liρ)ρ

(1 + ρ)i+1−J λ

= β +

(
bi
H
− β

H

)
λρ(1 + ρ)J−i−1

≥ β.

By examining the elements of the matrix ÃN , we see that

‖ÃN‖ ≤ C
N2

lnN
.

When we combine this with Lemma 2.1, we get the following result.

Theorem 2.2. The matrix ÃN of the system (2.9) satisfies

κ(ÃN) ≤ C
N2

lnN
.

To conclude this section, we reiterate that both discrete systems (2.6) and (2.9) are

stable uniformly in ε. Their corresponding stability inequalities are

‖WN‖ ≤ ‖A−1
N ‖‖ANWN‖, (2.10)

and

‖WN‖ ≤ ‖Ã−1
N ‖‖ÃNWN‖, (2.11)

where both ‖A−1
N ‖ and ‖Ã−1

N ‖ are bounded from above by a constant independent of ε.
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2.4 Uniform convergence for the convection-diffusion

problem

Let σi, i = 1, 2, . . . , N −1, be the consistency error of the finite difference operator LN ,

σi = σi[u] := LNui − (Lu)i, (2.12)

that is,

σi = LNui − fi = [AN(uN − UN)]i.

Convergence uniform in ε would follow from (2.10) if we could show that

|σi| → 0 uniformly in ε when N →∞. (2.13)

However, this does not hold true, as the following simple numerical experiment indi-

cates.

Consider the test problem taken from [61, p.1],

−εu′′ − u′ = 1, x ∈ (0, 1), u(0) = u(1) = 0.

The exact solution is easily determined. Table 2.1 clearly shows that (2.13) is not

satisfied.

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 1.33e+1 9.71e+0 6.42e+0 3.95e+0 2.32e+0 1.32e+0

10−3 1.33e+2 9.71e+1 6.42e+1 3.95e+1 2.32e+1 1.32e+1

10−4 1.33e+3 9.71e+2 6.42e+2 3.95e+2 2.32e+2 1.32e+2

10−5 1.33e+4 9.71e+3 6.42e+3 3.95e+3 2.32e+3 1.32e+3

10−6 1.33e+5 9.71e+4 6.42e+4 3.95e+4 2.32e+4 1.32e+4

10−7 1.33e+6 9.71e+5 6.42e+5 3.95e+5 2.32e+5 1.32e+5

10−8 1.33e+7 9.71e+6 6.42e+6 3.95e+6 2.32e+6 1.32e+6

Table 2.1: The maximum norm of the consistency error
[
ANu

N − f̂N
]

on a Shishkin mesh.

However, for the preconditioned system (2.9), the consistency error is

σ̃i[u] =


h

H
σi[u], 1 ≤ i ≤ J − 1,

σi[u], J ≤ i ≤ N − 1,

(2.14)

and it tends to 0, uniformly in ε, when N →∞, as Table 2.2 indicates. We prove this

in the following lemma.
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ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 1.002 0.891 0.697 0.499 0.335 0.216

10−3 0.938 0.823 0.635 0.448 0.297 0.188

10−4 0.932 0.817 0.629 0.443 0.293 0.186

10−5 0.932 0.816 0.629 0.443 0.293 0.186

10−6 0.932 0.816 0.629 0.443 0.293 0.185

10−7 0.932 0.816 0.629 0.443 0.293 0.185

10−8 0.932 0.816 0.629 0.443 0.293 0.185

Table 2.2: The maximum norm of the preconditioned consistency error
[
ÃNu

N −Mf̂N
]

on

a Shishkin mesh.

Lemma 2.2. The following estimate holds true for all i = 1, 2, . . . , N − 1:

|σ̃i[u]| ≤ CN−1 ln2N.

Proof. By a Taylor expansion

u(x±hi) = u(x)±hiu′(x)+h2
i

u′′(x)

2
±h3

i

u′′′(x)

6
+

∫ x±hi

x

(u′′′(ξ)− u′′′(x))
(x± hi − ξ)2

2
dξ,

we have that

|σi[u]| ≤ Chi+1(ε‖u′′′‖i + ‖u′′‖i), (2.15)

where ‖g‖i := maxxi−1≤x≤xi+1
|g(x)| for any C(ωx)-function g, (see, e.g. [77, Lemma 1]).

We use the decomposition (2.2) to get

σ̃i[u] = σ̃i[s] + σ̃i[y].

Then (2.15) and the derivative estimates of s, given in (2.3), immediately imply that

|σ̃i[s]| ≤ CN−1.

It remains to be proved that

|σ̃i[y]| ≤ CN−1 ln2N. (2.16)

For 1 ≤ i ≤ J − 1, we use (2.15) again, together with the derivative estimates of y, see

(2.3):

|σ̃i(y)| ≤ C
h2

H
(ε‖y′′′‖i + ‖y′′‖i) ≤ C

h2

H
ε−2 ≤ CN−1 ln2N.

Therefore, (2.16) is proved in this case.

When J + 2 ≤ i ≤ N − 1, (2.15) and (2.3) give

|σ̃i[y]| ≤ CH(ε‖y′′′‖i + ‖y′′‖i) ≤ CHε−2e−βxi−1/ε ≤ CHε−2e−β(τx+H)/ε

≤ CN
(
Hε−1

)2
e−βH/εe−βτx/ε.
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The estimate (2.16) follows from here because(
Hε−1

)2
e−βH/ε ≤ C,

and because the definition of τx and a ≥ 2 imply that

e−βτx/ε ≤ N−2.

We finally prove (2.16) for i = J, J + 1. In this case, we use similar arguments to

those in [114, Lemma 5], and see also [96, Remark 2.98]. We also use the fact that

Ly = 0 to work with

|σ̃i[y]| = |σi[y]| ≤ Pi +Qi + ci|yi|,

where

Pi = ε|D′′yi|, and Qi = bi|D′yi|.

We immediately have that

ci|yi| ≤ Ce−βxi/ε ≤ Ce−βτx/ε ≤ CN−2.

For Pi, since

|D′′yi| =
∣∣∣∣~−1
i

(
yi+1 − yi
hi+1

− yi − yi−1

hi

)∣∣∣∣ ≤ 2~−1
i ‖y′‖i,

so

Pi ≤ ε
(
2~−1

i ‖y′‖i
)
≤ CNe−β(τx−h)/ε ≤ CN−1.

Analogously, we have

|D′yi| =
∣∣h−1
i+1(yi+1 − yi)

∣∣ ≤ 2h−1
i+1‖y‖[xi,xi+1],

then

Qi ≤ 2h−1
i+1‖y‖[xi,xi+1] ≤ CH−1‖y‖i ≤ CNe−β(τx−h)/ε ≤ CN−1.

This completes the proof.

Note that when the above proof technique is applied to the unpreconditioned con-

sistency error σi as defined in (2.12), this quantity cannot be estimated uniformly in ε.

We can only get that

|σi| ≤ C
lnN

εN
.

It is because we multiply equations 1, 2,. . . , J − 1 of the system (2.5) by h/H to give

the preconditioned truncation error (2.14) that we get the extra ε-factor needed for the

ε-uniform consistency on the fine part of the mesh.

When Lemmas 2.1 and 2.2 are combined, in the application of Principle 2.1, we

obtain the following result.
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Theorem 2.3. The solution UN of the discrete problem (2.6) on the Shishkin mesh

described in Section 2.3 satisfies∥∥UN − u
∥∥ ≤ CN−1 ln2N,

where u is the solution of the continuous problem (2.1).

Remark 2.1. The result of Theorem 2.3 is the same as in [77, Theorem 8.4], proved by

the barrier-function technique for the case c ≡ 0, but with the mesh parameter a > 1. A

finer, but more complicated, analysis in [33, Theorem 3.6] improves the above estimate

to ∥∥UN − uN
∥∥ ≤ CN−1 lnN, (2.17)

with a ≥ 1 and still for c ≡ 0. The same result as in (2.17) is proved in [61, Chapter 4]

for the general problem (2.1), by using a finite element approach to the discretization

scheme, which is slightly different from LN , having hi+1 instead of h̄i in D′′. However,

using the preconditioning arguments, it is not possible to remove the extra logarithmic

factor.

2.5 Uniform convergence for the reaction-diffusion

problem

In this section, we outline the uniform pointwise convergence proof based on Princi-

ple 2.1 for the one-dimensional reaction-diffusion problem (1.5) discretized by a central

finite difference scheme on the Shishkin mesh defined in Section 1.7.1. The main result

is already well established in the literature. Also, unlike the convection-diffusion case,

no special preconditioning is required. However, the inclusion of this result provides

a link to the remaining chapters. First, we provide some details on the solution de-

composition and bounds on derivatives discussed in Section 1.5.2 (see also, e.g., [61,

§3.3.1.2]).

Theorem 2.4 ([61, Theorem 3.35]). Suppose b, f ∈ Cq(ω̄x), with q is a positive integer.

Then (1.5) possesses a unique solution u ∈ Cq+2(ω̄x). It can be decomposed as

u = v + w0 + w1, (2.18)

with

Lv = f, Lw0 = 0, and Lw1 = 0 in ωx.

The regular part, v, satisfies

‖v(m)‖ ≤ C(1 + εq−m), (2.19)
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while for the layer parts, w0 and w1, we have

|w(m)
0 (x)| ≤ Cε−me−βx/ε, and |w(m)

1 (x)| ≤ Cε−me−β(1−x)/ε, (2.20)

for x ∈ ω̄x, and m = 0, 1, . . . , q.

On the Shishkin mesh constructed in Section 1.7.1 for the one-dimensional reaction-

diffusion problem (1.5), we discretize this problem by the following finite difference

scheme

UN
0 = 0,

LNUN
i := −ε2D′′UN

i + biU
N
i = fi, i = 1, 2, . . . , N − 1,

UN
N = 0.

(2.21)

It is very easy to see that the matrix of the linear system (2.21) is an M-matrix. Thus,

the operator LN is stable uniformly in ε. We now prove that the consistency error is

convergent uniformly in ε.

Lemma 2.3. Let σi[u] := LNui − (Lu)i, i = 1, 2, . . . , N − 1, be the consistency error

of the operator LN defined in (2.21) on the Shishkin mesh described in Section 1.7.1.

Then

|σi[u]| ≤

C(ε2N−1 +N−2 ln2N), xi = {τx, 1− τx},
CN−2 ln2N, otherwise.

(2.22)

Proof. The consistency error is split in the same manner as (2.18), i.e., into a regular

part, v, and layer parts, w0 and w1:

|σi[u]| ≤ |σi[v]|+ |σi[w0]|+ |σi[w1]|.

First for the regular part, when xi < τx, or xi > 1 − τx, by a Taylor expansion and

derivative estimate (2.19), we have that

|σi[v]| ≤ Cε2h2‖v(4)‖i ≤ CN−2 ln2N.

For τx < xi < 1− τx, we get

|σi[v]| ≤ Cε2H2‖v(4)‖i ≤ CN−2.

For xi = {τx, 1− τx}, we have

|σi[v]| ≤ Cε2(h+H)‖v(3)‖i ≤ Cε2N−1.

Next for the layer part w0, we use the derivative estimate (2.20) together with the

Taylor’s expansion to show that |σi[w0]| ≤ CN−2 ln2N . To this end, we first consider

xi < τx,

|σi[w0]| ≤ Cε2h2‖w(4)
0 ‖i ≤ CN−2 ln2Ne−βxi−1/ε ≤ CN−2 ln2N.
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For xi ≥ τx, we use the fact that |σi[w0]| ≤ Cε2‖w(2)
0 ‖i to get

|σi[w0]| ≤ Cε2‖w(2)
0 ‖i ≤ Ce−β(τx−h)/ε ≤ Ce−βτx/εeβh/ε ≤ CN−2 ln2N.

An analogous argument can be used to show that

|σi[w1]| ≤ CN−2 ln2N, xi ∈ ωNx .

Combining the above results, we get

|σi[u]| ≤

C(ε2N−1 +N−2 ln2N), xi = {τx, 1− τx},
CN−2 ln2N, otherwise.

This completes the proof.

Invoking Principle 2.1, we obtain the main theorem of this section.

Theorem 2.5. The solution UN of the discrete problem (2.21) on the Shishkin mesh

described in Section 1.7.1 satisfies

∥∥UN − u
∥∥ ≤

C(ε2N−1 +N−2 ln2N), xi = {τx, 1− τx},
CN−2 ln2N, otherwise,

where u is the solution of the continuous problem (1.5).

Despite ε-dependency in the bound above, it can be interpreted as uniform conver-

gence in the sense discussed in Section 1.1. The proof presented here is straightforward

and simple. It only requires the standard truncation error estimate, together with the

bounds on derivatives, and the use of the classical stability-consistency principle. Fur-

thermore, in practice, we usually have ε2 ≤ N−1, and in this case, we recover the usual

almost second-order convergence as in (1.20).

2.6 Concluding remarks

Since WN = (A−1
N M−1)(MANW

N), the stability inequality (2.11) can be represented

as

‖WN‖ ≤ ‖A−1
N ‖′M‖ANWN‖M , (2.23)

where for a matrix B, ‖B‖′M = ‖BM−1‖, and ‖WN‖M = ‖MWN‖. Note that the

matrix norm ‖ · ‖′M is not induced by the vector norm ‖ · ‖M (which is why we denote

them differently), but the two norms are consistent in the sense that

‖BWN‖ ≤ ‖B‖′M‖WN‖M .
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The inequality (2.23) is a stability inequality of hybrid nature, having different vector

norms on the two sides. However, the vector norm ‖ · ‖M is still essentially a maximum

norm and this is completely different from the hybrid stability inequalities used in

[37, 5, 67, 61], which have a discrete L1-norm on the right-hand side. Moreover, these

hybrid stability inequalities are derived by using the discrete Green’s function, which

we do not use here.

In conclusion, although the method presented here gives a slightly weaker result

in some cases, it provides a straightforward proof, based on a simple principle, of

ε-uniform pointwise convergence for the solution of the standard upwind scheme dis-

cretizing the singularly perturbed convection-diffusion problem (2.1). It is even more

interesting that the proof is enabled by the preconditioning of the system arising from

the discretization. Whether this can be used as a general approach when proving

ε-uniform pointwise convergence for other types of singular perturbation problems,

including multi-dimensional ones, remains to be seen, but the generalization to the

semilinear problem of type (2.1) (with c = c(x, u), cu ≥ 0) is straightforward.
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Chapter 3

Direct solvers and their limitations

In this chapter we consider the solution of large linear systems of equations that arise

when two-dimensional singularly perturbed reaction-diffusion differential equations are

discretized by a standard central finite difference method. The system matrices are

symmetric positive definite. The direct solvers of choice for such systems are based on

Cholesky factorizations. However, as observed in [72], these solvers may exhibit poor

performance for singularly perturbed problems. We provide a careful analysis of the

distribution of entries in the Cholesky factors based on their magnitude that explains

this phenomenon, and give bounds on the ranges of the perturbation and discretiza-

tion parameters where poor performance is to be expected. Numerical experiments

supporting the analysis are also reported.

The material in this chapter has been accepted for publication as [83]: Thái Anh

Nhan and Niall Madden, Cholesky factorization of linear systems coming from finite

difference approximations of singularly perturbed problems, Proceedings of BAIL 2014–

Boundary and Interior Layers–Computational and Asymptotic Methods, Lecture Notes

in Computational Science and Engineering, Springer, Berlin, 2015.

3.1 Introduction

The numerical solution of the two-dimensional reaction-diffusion problem (1.7) is ana-

lyzed in this chapter. For the sake of completeness, we briefly recall the model problem:

−ε2∆u+ b(x, y)u = f(x, y), Ω = (0, 1)2, u(∂Ω) = g(x, y), (3.1)

where the “perturbation parameter”, ε, is a small and positive, and the functions g, b

and f are given, with b(x, y) ≥ β2 > 0 and β > 0.
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Using the same notation as in Section 1.6, for a mesh grid ΩN,N on the unit square

and the local mesh widths hi = xi − xi−1, kj = yj − yj−1, h̄i = (xi+1 − xi−1)/2, and

k̄j = (yj+1 − yj−1)/2, the symmetrised 5-point second-order central difference operator

is

∆N :=



h̄i
kj+1

k̄j
hi
−
(
k̄j

(
1

hi
+

1

hi+1

)
+ h̄i

(
1

kj
+

1

kj+1

))
k̄j
hi+1

h̄i
kj

 . (3.2)

The resulting linear system can be written as

AUN = fN , (3.3)

where A is a banded, symmetric positive definite (N − 1)2 × (N − 1)2 matrix whose

entries are defined by

A =
(
−ε2∆N + h̄ik̄jb(xi, yj)

)
. (3.4)

The direct solvers of choice for the symmetric positive definite system (3.3) are variants

on Cholesky factorization. This is based on the idea that there exists a unique lower-

triangular matrix L (the “Cholesky factor”) such that A = LLT (see, e.g., [42, Theorem

4.25]). One of the advantages of Cholesky factorization is that the computational

cost required is half that of other direct solvers, such as Gaussian elimination and

LU factorization, see, e.g., [26, §2.7] and also [42, Chapter 4]. That is, because Cholesky

factorization only has to compute and store the lower triangular matrix L, instead of

both L and U as in the LU factorization process, it is twice as fast as its alternatives.

The goal of this chapter is to investigate Cholesky factorization of matrices in which

the magnitudes of diagonal entries are dominant compared to the off-diagonal entries.

These types of matrices frequently arise from the discretization of differential equations

in which reaction dominates diffusion, such as (3.1) when the perturbation parameter,

ε, is small. It is observed by MacLachlan and Madden in [72], the Cholesky factors of

the matrix A defined in (3.3) have many entries that are extremely small in magnitude.

Those authors also observe the exponential decay in successive fill-in entries during the

factorization process. For large N , this may produce subnormal and underflow-zero

numbers (concepts explained in Section 3.3.1).

To demonstrate this phenomenon, let us consider the Cholesky factor L of the

matrix A in (3.4) with b ≡ 1, and taking a uniform mesh with N = 128 intervals in each

direction. The matrix L contains nonzero entries only between the N th subdiagonal

and the main diagonal. In Figure 3.1, we plot the absolute value of largest entry of

a given diagonal of L. When ε = 1 (on the left), we observe a gradual decay in the

magnitude of fill-in entries. By contrast, when ε = 10−6 (on the right), it is easy to
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see a rapid decay in these values. Moreover, there are entries with magnitudes less

than realmin (the smallest normalized positive number can be represented by IEEE

standard double precision). Note that, in practice, ε can be usually very small and

discretization parameter N can be large. Thus, there are many fill-in entries, the

magnitude of which is less than realmin. The operations on subnormal numbers have

a considerable impact on the computational speed of floating-point calculations (see

Section 3.3.1). Thus, the amount of time required to solve these linear systems depends

badly on the perturbation parameter. As a result, it is important to understand the

propagation of subnormal and underflow-zero numbers in the context of singularly

perturbed differential equations.
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Figure 3.1: Semi-log plot of maximum absolute values of entries on diagonals of L with

ε = 1, N = 27 (left), and ε = 10−6, N = 27 (right).

To demonstrate the effect of the presence of subnormal numbers on computational

efficiency, in Table 3.1 we show the time, in seconds, taken to compute the Cholesky

factorization of A in (3.3) with a uniform mesh, and N = 512, on a single core of AMD

Opteron 2427, 2200 MHz processor, using CHOLMOD (supernodal sparse Cholesky

factorization and update/downdate [12, 22]); with “natural order”, i.e., without a fill

reducing ordering. Our programs that generate the results in Table 3.1, and others

throughout this chapter, were coded in C and compiled using gcc version 4.7.1 with

all optimizations enabled. Observe in Table 3.1 that the time-to-factorization increases

from 52 seconds when ε is large, to nearly 500 seconds when ε = 10−3, when over 1%

of the entries are in the subnormal range. When ε is smaller again, the number of

nonzero entries in L is further reduced, due to underflow, and so the execution time

decreases as well.

We emphasize that this phenomenon is not due to the implementation of the solver.

For example, the degradation of performance with respect to ε is also observed when

the LU factorizations of A are computed using the Unsymmetric MultiFrontal method

(UMFPACK) [23, 24], MA57 [29], and built-in MATLAB routines. Furthermore, we
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ε 10−1 10−2 10−3 10−4 10−5 10−6

Time (s) 52.587 52.633 496.887 175.783 74.547 45.773

Nonzeros in L 133,433,341 133,433,341 128,986,606 56,259,631 33,346,351 23,632,381

Subnormals in L 0 0 1,873,840 2,399,040 1,360,170 948,600

Underflow-zeros 0 0 4,446,735 77,173,710 100,086,990 109,800,960

Table 3.1: Time taken (in seconds) to compute the Cholesky factor, L, of A in (3.3) on a

uniform mesh with N = 29. The number of nonzeros, subnormals, and underflow-zeros in L

are also shown.

have also observed this effect with our own implementation of Cholesky factorization

based on Algorithm 3.1 below.

Motivated by this, in this chapter, we aim to give an analysis that fully explains the

observations of Figure 3.1 and Table 3.1, and that can also be exploited in other solver

strategies. We derive expressions, in terms of N and ε, for the magnitude of entries

of L as determined by their location. Ultimately, we are interested in the analysis

of systems that arise from the numerical solution of (3.1) on appropriate boundary

layer-adapted meshes. Away from the boundary, such meshes are usually uniform.

Therefore, we begin in Section 3.2 with studying a uniform mesh discretization, in the

setting of exact arithmetic, which provides mathematical justification for observations

in Figure 3.1. In Section 3.3.2, this analysis is used to quantify to number of entries

in the Cholesky factors of a given magnitude. As an application of this, we show how

to determine the number of subnormal numbers that will occur in L in a floating-

point setting, and also determine a lower bound for ε for which the factors are free of

subnormal numbers. Finally, the Cholesky factorization on a boundary layer-adapted

mesh is discussed in Section 3.4, and our conclusions are summarized in Section 3.5.

3.2 Analysis of Cholesky factorization on a uniform

mesh

We consider the discretization (3.2) of the model problem (3.1) on a uniform mesh with

N intervals on each direction. The equally spaced mesh width is denoted by h = N−1.

We shall always assume that ε� h, which is typical for a singularly perturbed problem.

More precisely, we shall assume that

δ = ε/h ≤ 0.1. (3.5)
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(See also remarks in Section 3.5). Then the system matrix in (3.3) can be written as

the following 5-point stencil

A =

 −ε2

−ε2 4ε2 + h2b(xi, yj) −ε2

−ε2

 =

 −ε2

−ε2 O(h2) −ε2

−ε2

 , (3.6)

since (4ε2 + h2b(xi, yj)) = O(h2).

Algorithm 3.1 presents a version of Cholesky factorization which was adapted

from [42, page 143]. It computes a lower triangular matrix L such that A = LLT

where A is an n× n real symmetric positive definite matrix. We will follow MATLAB

notation by denoting A = [a(i, j)] and L = [l(i, j)].

Algorithm 3.1 Cholesky factorization:

for j = 1 : n

if j = 1

for i = j : n

l(i, j) =
a(i, j)√
a(j, j)

end

elseif (j > 1)

for i = j : n

l(i, j) =
a(i, j)−∑j−1

k=1 l(i, k)l(j, k)√
a(j, j)

end

end

end

We set m = N − 1, so A is a sparse, banded, m2 ×m2 matrix, with a bandwidth

of m, and has no more than five nonzero entries per row. Its factor, L, is far less

sparse: although it has the same bandwidth as A (see, e.g., [26, Prop. 2.4]), it has

O(m) nonzeros per row. Figure 3.2 below shows the structure of the coefficient matrix

A (on the left) and Cholesky factor L (on the right) when N = 8. We refer to the set

of nonzero entries in L that are zero in the corresponding location in A as the fill-in.

We want to find a recursive way to express the magnitude of these fill-in entries, in

terms of ε and h.

To analyze the magnitude of the fill-in entries, we borrow notation from [97, Sec.

10.3.3], and form distinct sets denoted L[0], L[1], . . . , L[m], where all entries of L that

are of the same magnitude (in a sense explained carefully below) belong to the same

set. We denote by l[k] the magnitude of entry in L[k], i.e., l(i, j) ∈ L[k] if and only if

l(i, j) is O(l[k]). L[0] is used to denote the set of nonzero entries in A, and entries of L

46



3.2. CHOLESKY ON A UNIFORM MESH CHAPTER 3. DIRECT SOLVER

nz = 217

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 349

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

Figure 3.2: The matrix A (left), and Cholesky factor L (right) when N = 23.

that are zero are defined to belong to L[∞]. We shall see that all these sets are quite

distinct, meaning that l[k] � l[k+1] for k ≥ 1.

In Algorithm 3.1, all the entries of L are initialized as a zero, and so belong to L[∞].

Suppose that pi,j is such that l(i, j) ∈ L[pi,j ], so, initially, each pi,j =∞. At each sweep

through the algorithm, a new value of l(i, j) is computed, and so pi,j is modified. From

line 8 in Algorithm 3.1, then the pi,j is updated by

pi,j =

{
0, if a(i, j) 6= 0,

min{pi,1 + pj,1 + 1, pi,2 + pj,2 + 1, . . . , pi,j−1 + pj,j−1 + 1}, otherwise.
(3.7)

Remark 3.1. From (3.7), we see that the fill-in entries in the positions where the

original entries of matrix A are nonzeros belong to L[0].

As we shall explain in detail below, it can be determined that L has the following

block structure, where, for brevity, the entries belonging to L[k] are denoted by [k],

except for the entries in L[0], which correspond to nonzero entries of the original matrix,

and are written in terms of their magnitude:

L =


M

P Q

P Q
. . . . . .

P Q

 , (3.8a)

47



3.2. CHOLESKY ON A UNIFORM MESH CHAPTER 3. DIRECT SOLVER

M =


O(h)

O(ε2/h) O(h)

O(ε2/h) O(h)
. . . . . .

O(ε2/h) O(h)

 ,

P =



O(ε2/h) [1] [2] [3] . . . [m− 2] [m− 1]

O(ε2/h) [1] [2] . . . [m− 3] [m− 2]
. . . . . . . . .

...
...

O(ε2/h) [1] [2] [3]

O(ε2/h) [1] [2]

O(ε2/h) [1]

O(ε2/h)


, (3.8b)

Q =



O(h)

O(ε2/h) O(h)

[3] O(ε2/h) O(h)

[4] [3] O(ε2/h) O(h)
...

...
. . . . . . . . .

[m− 1] [m− 2] . . . [3] O(ε2/h) O(h)

[m] [m− 1] . . . [4] [3] O(ε2/h) O(h)


. (3.8c)

We now explain why the entries of L, which are computed by column, have the

structure shown in (3.8a)–(3.8c). According to Algorithm 3.1, the first column of L is

computed by

l(i, 1) =
a(i, 1)√
a(1, 1)

, for i = 1, . . . , (N − 1)2,

which shows that there are no fill-in entries in this column. For the second column,

the only fill-in entry is

l(m+ 1, 2) =
a(m+ 1, 2)− l(m+ 1, 1)l(2, 1)√

a(2, 2)
=

0−O(ε2/h)O(ε2/h)

O(h)
= O(ε4/h3),

where l(m + 1, 1) and l(2, 1) belong to L[0], so l(m + 1, 2) is in L[1]. Similarly, there

are two fill-ins in third column: l(m + 1, 3) and l(m + 2, 3). The entry l(m + 1, 3) is

computed as

l(m+ 1, 3) =
a(m+ 1, 3)−∑2

k=1 l(m+ 1, k)l(3, k)√
a(3, 3)

=
−l(m+ 1, 2)l(3, 2)√

a(3, 3)
,

which is O(ε6/h5); moreover, since l(m+ 1, 2) ∈ L[1], and l(3, 2) ∈ L[0], so l(m+ 1, 3) ∈
L[2]. Similarly, it is easy to see that l(m+2, 3) ∈ L[1]. We may now proceed by induction
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to show that l(m + 1, j + 1) = O(ε2(j+1)/h(2j+1)) belongs to L[j], for 1 ≤ j ≤ m − 2.

Suppose l(m+ 1, j) = O(ε(2j)/h(2j−1)) ∈ L[j−1]. Then

l(m+ 1, j + 1) =
a(m+ 1, j + 1)−∑j

k=1 l(m+ 1, k)l(j + 1, k)√
a(j, j)

=
−l(m+ 1, j)l(j + 1, j)√

a(j, j)
, (since l(j + 1, k) = 0, ∀k ≤ j − 1),

=
O(ε(2j)/h(2j−1))O(ε2/h)

O(h)
= O(ε(2j+2)/h(2j+1)).

And, because l(j + 1, j) ∈ L[0], we can deduce that l(m+ 1, j + 1) ∈ L[j]. The process

is repeated from column 1 to column m, yielding the pattern for P shown in (3.8b).

A similar process is used to show Q is as given in (3.8c). Its first fill-in entry is

l(m+ 3,m+ 1).

Note that a(m + 3,m + 1) = l(m + 1, 1) = l(m + 1, 2) = 0, that the magnitude of

the entry in L[j] is O(ε2(j+1)/h(2j+1)), and that the sum of two entries of the different

magnitude has the same magnitude as larger one. Then

l(m+ 3,m+ 1) =
−∑m

k=3 l(m+ 3, k)l(m+ 1, k)√
a(m+ 1,m+ 1)

=

[
O
(
ε2

h

)
O
(
ε6

h5

)
+O

(
ε4

h3

)
O
(
ε8

h7

)
+ . . .

+O
(

ε2(m−2)

h(2(m−3)+1)

)
O
(

ε2(m)

h(2(m−1)+1)

)]
1

O(h)

=

[
O
(
ε2

h

)
O
(
ε6

h5

)]
1

O(h)
= O

(
ε8

h7

)
,

and so l(m+3,m+1) belongs to L[3]. Proceeding inductively, as was done for P , shows

that Q has the form given in (3.8c). Furthermore, the same process applies to each

block of L in (3.8a). Summarizing, we have established the following result.

Theorem 3.1. The fill-in entries of the Cholesky factor L of the matrix A defined

in (3.6) are given in (3.8a)–(3.8c). Moreover, setting δ = ε/h as in (3.5), the magni-

tude l[k] is

l[k] = O
(
ε2(k+1)/h(2k+1)

)
= O

(
δ2(k+1)h

)
for k = 1, 2, . . . ,m. (3.9)

Remark 3.2. The formulation given in (3.9) tells us why the values of fill-in entries

decay exponentially with respect to k. In practice, for a reaction-dominated problem the

perturbation parameter is usually very small compared to h. Hence, when ε decreases

and the mesh parameter N increases, the fill-in entries tend to 0 rapidly. This fact

also suggests that an incomplete Cholesky factorization preconditioner would be very

effective for this singularly perturbed problem.
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To conclude this section, in Figure 3.3 we plot the magnitude of the entries of the

vector L(m + 1, 1:m) for various values of ε and N = 128. It clearly shows that the

magnitude of the fill-in entries decays exponentially, as given in (3.9). Furthermore,

when ε = 10−6, only the first 41 entries of the vector L(128, 1: 127) can be plotted

because the magnitudes of the other entries are less than the smallest non-normalized

number in IEEE standard, and are thus flushed to zero.

0 20 40 60 80 100 120

10
−300

10
−200

10
−100

10
0

M
a

g
n

it
u

d
e

s

 

 

ε=1

ε=10
−3

ε=10
−6

Figure 3.3: The magnitude of L(128, 1: 127) for various ε.

3.3 Analysis of Cholesky factorization in a floating-

point setting

In many theoretical studies, it is assumed that computations, such as finding the

Cholesky factors of a matrix, are done exactly. In practice, however, they are im-

plemented on computers with finite precision. Therefore, it is important to understand

the performance of such computations in a floating-point setting.

In this section, we investigate the Cholesky decomposition of the matrix (3.6) in

the context of floating-point arithmetic. We briefly discuss the concept of subnor-

mal and underflow-zero numbers in Section 3.3.1, and in Section 3.3.2 we analyze the

distribution of such numbers in the Cholesky factors.

3.3.1 Subnormal and underflow-zero numbers: a short intro-

duction

We follow closely [87, Chap. 4] and [81, Sec. 1.7] to describe subnormal and underflow-

zero numbers. In the IEEE double precision format, floating point numbers are ex-

pressed as ±(1 + f)× 2Y−1023 where 0 ≤ f < 1 and 52 bits are used to store the binary
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fraction f , with an implied 53rd bit that is the leading 1; 11 bits are used to store

the binary exponent Y ; and the remaining bit stores the sign. So the smallest positive

normalized number is when Y = 1, f = 0, i.e.,

Nmin = (1 + 0)× 2−1022 ≈ 2.2× 10−308.

In the case when the exponent has a zero bit-string (then the implied bit is taken to be

zero), but the fraction has a nonzero bit-string, the number represented is said to be

subnormal. The smallest positive number can be stored in f is 2−52. Thus, the smallest

(non-normalized) positive number that can be stored is as small as 2−52 × 2−1022 ≈
5×10−324. The positive numbers less than this value are flushed to zero, and are called

underflow-zero numbers.

Since subnormal numbers have leading zeros in the fraction, they have reduced

precision compared to normal floating-point numbers. However, they allow for “grace-

ful degradation” by allowing gradual underflow in computations involving very small

numbers.

Although subnormal numbers are part of the official IEEE standard, most proces-

sors do not provide hardware support for arithmetic with these numbers. Instead,

subnormal numbers are handled at the software level. Thus, execution time of compu-

tations that involves subnormal numbers is significantly slower than those that involves

only normal numbers [55] as we have seen in Table 3.1. For an informal discussion, see

Cleve Moler’s blog post of July 7, 2014, [80],which describes the inclusion of subnormals

in the IEEE standard, and the resulting controversy.

3.3.2 Distribution of fill-in entries in a floating-point setting

As discussed above, the time taken to compute these factorizations increases greatly

if there are many subnormal numbers present. Moreover, even the underflow-zeros

can also be expensive to compute, since, in the context of Cholesky factorization, they

typically arise from intermediate calculations involving subnormal numbers. Therefore,

in this section we use the analysis of Section 3.2, to estimate, in terms of ε and N , the

number of fill-in entries in L that are of a given magnitude. From this, one can easily

determine the number of subnormals and underflow-zeros that will be present.

Lemma 3.1. Let A be the m2 ×m2 matrix in (3.3) where the mesh is uniform. Then

the number of nonzero entries in the Cholesky factor L (i.e., A = LLT ) computed

using exact arithmetic is

Lnz = m3 +m− 1. (3.10)
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Proof. A has bandwidth m, and so too does L ([26, Prop. 2.3]). By Algorithm 3.1,

the fill-in entries only occur from row (m+ 1). So, from row (m+ 1), any row of L has

(m+ 1) nonzero entries and there are m(m− 1) such rows, plus 2m− 1 nonzero entries

from top-left block M . Summing these values, we obtain (3.10).

Let |L[k]| be the number of fill-in entries which belong to L[k]. To estimate |L[k]|, it

is sufficient to evaluate the fill-in entries in the submatrices P and Q shown in (3.8).

Table 3.2 describes the number of fill-in entries associated with their magnitude. Note

L[k] |L[k]| in P |L[k]| in Q |L[k]| in [P,Q]

L[1] m− 1 0 m− 1

L[2] m− 2 0 m− 2

L[3] m− 3 m− 2 2m− 5
...

...
...

...

L[k] m− k m− k + 1 2m− 2k + 1
...

...
...

...

L[m−2] 2 3 5

L[m−1] 1 2 3

L[m] 0 1 1

Table 3.2: Number of fill-in entries in P and Q associated with their magnitude.

that there are (m−1) blocks like [P,Q] in L. Then, since l[k] � l[k−1], and the smallest

(exact) nonzero entries belong to L[m], we can use Table 3.2 to determine the number

of entries that are at most O(l[p]), for some given p as:

m∑
k=p

|L[k]| =


(m− 1)(2m− 3) + (m− 1)(m− 2)2 = (m− 1)3 p = 1,

(m− 1)(m− 2) + (m− 1)(m− 2)2 = (m− 2)(m− 1)2 p = 2,

(m− 1)(m− p+ 1)2 p ≥ 3.

These equations can be combined and summarized as follows.

Theorem 3.2. Let A be the matrix of the form (3.6). Then, the number of fill-in

entries in L that are at most O(l[p]) satisfies

m∑
k=p

|L[k]| ≤ (m− 1)(m− p+ 1)2, p ≥ 1. (3.11)

Combining Theorems 3.1 and 3.2 enables us to accurately predict the total number

and location of subnormal and underflow-zero entries in L, for given N and ε. For
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example, recall Figure 3.1 where we took ε = 10−6 and N = 128. To determine, the

diagonals where entries are subnormal using Theorem 3.1, we solve

(εN)2(k+1) ≈ 2−1022N, (3.12)

for N = 128 and ε = 10−6, which yields k ≈ 38. It clearly agrees with the observation

in Figure 3.1; i.e., the maximal value of the entries on diagonals 38 and N − 38 = 90

are less than realmin. Similarly, all entries on diagonals between 40 and 88 are flushed

to zero. Furthermore, for this example, by (3.11), the total number of underflow-zero

and subnormal entries in L are, respectively,

127∑
k=40

|L[k]| = 953, 694, and
39∑

k=38

|L[k]| =
127∑
k=38

|L[k]| −
127∑
k=40

|L[k]| = 44, 352.

Computer experiments verify that this is exactly what is observed in practice. More-

over, the total number of entries with magnitude less than realmin is 998,046 which is

just less than a half of the exact nonzero entries in L, i.e., 2,048,509 (cf. Lemma 3.1).

Such a predictable appearance of subnormals and underflow-zeros is important in the

sense of choosing suitable linear solvers, i.e., direct or iterative ones.

More generally, we can use (3.12) to investigate ranges of N and ε for which sub-

normal entries occur. Since the largest possible value of k is m, a Cholesky factor will

have subnormal entries if ε and N are such that (εN)2N . 2−1022N . Rearranging, this

gives that

ε .
1

N

(
2−1022N

)1/(2N)
= 2−511/NN (1/(2N)−1) =: g(N). (3.13)

The function g(N) defined in (3.13) is informative because it gives the largest value

of ε for a discretization with given N leading to a Cholesky factor with entries less

than 2−1022. For example, Figure 3.4 (on the left) shows g(N) for N ∈ [200, 500]. It

demonstrates that, for ε ≤ 1.05 × 10−3 (determined numerically), subnormal entries

are to be expected for some values of N (cf. Table 3.1). The line ε = 10−3 intersects

g(N) at approximately N = 263 and N = 484, meaning that a discretization with

263 ≤ N ≤ 484 yields entries with the magnitude less than 2−1022 in L for ε = 10−3.

On the right of Figure 3.4 we show that, for large N , g(N) decays like 1/N . Since we

are interested in the regime where ε ≤ 1/N , this shows that, for small ε, subnormals

are to be expected for all but the smallest values of N .

As a final example, in Figure 3.5 on the left, we take ε = 10−6, and show that

subnormals will occur with N greater than 35 (compared with Figure 3.1). When

ε = 10−4, as seen in Figure 3.5 (on the right), the subnormals are expected for any

N ≥ 70. It clearly points out that for small values of ε, subnormal numbers occur in

the Cholesky factorization process even for a relatively small N .

In summary, we emphasize that the presence of subnormals and underflow-zeros

should be taken into account as solving the linear systems whose diagonal entries are
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Figure 3.4: The function g(N) defined in (3.13), with N ∈ [200, 500] (left) and N ∈ [1, 5000]

(right).
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Figure 3.5: The function g(N) defined in (3.13), with N ∈ [1, 40] (left) and N ∈ [1, 100]

(right).

dominant in magnitude compared to off-diagonal entries, such as the system arising

from finite difference discretization of the singularly perturbed problem (3.1) applied

on a uniform mesh. Next section, we will discuss how the analysis of this section can

be integrated to the case of finite difference discretization on a boundary layer-adapted

mesh.

3.4 Cholesky factorization on boundary layer-adapted

meshes

Our analysis so far has been for finite difference methods applied on uniform meshes.

However, a scheme such as (3.4) for (3.1) is usually applied on a layer-adapted mesh,

such as a Shishkin mesh. For these meshes, in the neighbourhood of the boundaries,

and especially near corner layers, the local mesh width is O(εN−1) in each direction,

and so the entries of the system matrix are of the same order, and no issue with
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subnormal numbers is likely to arise. However, away from layers, these fitted meshes

are usually uniform, with a local mesh width of O(N−1), and so the analysis outlined

above applies directly. Since roughly one quarter (depending on mesh construction) of

all mesh points are located in this region, the influence on the computation is likely to

be substantial.

The main complication in extending our analysis to, say, a Shishkin mesh, is in

considering the “edge layers”, where the mesh width may be O(εN−1) in one coordi-

nate direction, and O(N−1) in another. Although we have not analyzed this situation

carefully, in practise it seems that the factorization behaves much like a uniform mesh.

This is showed in Table 3.3 below. Comparing with Table 3.1, we see, for small ε, the

number of entries flushed to zero is roughly three-quarters that of the uniform mesh

case.

ε 10−1 10−2 10−3 10−4 10−5 10−6

Time (s) 52.580 58.213 447.533 179.540 101.507 73.250

Nonzeros in L 133,433,341 133,240,632 127,533,193 78,091,189 62,082,599 54,497,790

Subnormals in L 0 28,282 2,648,308 1,669,345 1,079,992 814,291

Underflow zeros 0 192,709 5,900,148 55,342,152 71,350,742 78,935,551

Table 3.3: Time taken (in seconds) to compute the Cholesky factor, L, of A in (3.3) on a

Shishkin mesh with N = 29. The number of nonzeros, subnormals, and underflow-zeros in L

are also shown.

3.5 Conclusions

The chapter addresses, in a comprehensive way, issues raised in [72] by showing how

to predict the number and location of subnormal and underflow-zero entries in the

Cholesky factors of A in (3.3) for given ε and N .

Further developments on this work are possible. In particular, the analysis shows

that, away from the existing diagonals, the magnitude of fill-in entries decay exponen-

tially, as seen in (3.9), a fact that could be exploited in the design of preconditioners

of iterative solvers. For example, as shown in Lemma 3.1, the Cholesky factor of A,

in exact arithmetic, has O(N3) nonzero entries. However, Theorem 3.2 shows that,

in practice (i.e., in a floating-point setting), there are only O(N2) entries in L when

ε is small and N is large. This suggests that, for a singularly perturbed problem, an

incomplete Cholesky factorization may be a very good approximation for L. This is a

topic considered in Chapter 4.
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In this chapter we have restricted our study to Cholesky factorization of the coeffi-

cient matrix arising from a finite difference discretization of the model problem (3.1) on

a uniform mesh and a boundary layer-adapted mesh. However, the same phenomenon

is also observed in other settings, including the LU factorization of coefficient matrices

coming from both finite difference and finite element methods applied to reaction-

diffusion and convection-diffusion problems. For example, numerical evidence of this

phenomenon in the case of a finite element discretization of a two-dimensional reaction-

diffusion problem is given in Table 5.14. Further investigation is required to establish

the details.

Other applications of this analysis could be also considered. For example, suppose

that Lp denotes the lower triangular matrix formed by dropping all entries in L be-

longing in L[k], k ≥ p + 1. Then, our analysis can be used to estimate the difference

‖L − Lp‖, or even ‖A − Ap‖ where Ap = LpL
T
p . This even opens up the possibility of

employing inexact direct solver strategies based on Ap whose structure has been given.

Finally, we recall from this discussion leading to (3.5) we assume that δ ≤ 0.1. This

means that, for example, when N = 512, then the analysis will hold only when ε ≤
1.9× 10−4. Possible further refinements of the analysis are possible, which would allow

the results to hold for larger values of ε. This is a topic currently under investigation.
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Chapter 4

An analysis of simple

preconditioners on a layer-adapted

mesh

This chapter investigates the iterative solution of a two-dimensional reaction-diffusion

problem when it is discritized by a finite difference method on a Shishkin mesh. As

we have seen in previous chapter, there are difficulties in solving the resulting linear

systems by direct methods when the perturbation parameter, ε, is small. Therefore,

iterative methods are natural choices. The ultimate goal of any numerical method for

solving linear systems in general, and for singularly perturbed problems in particular,

is robustness and efficiency. As stated in [96, page 3]:

It is important to realize that iterative solvers, like the underlying discretiza-

tion, should be robust with respect to the singular perturbation parameter.

However, we show that the condition number of the coefficient matrix grows unbound-

edly when ε tends to zero, and so unpreconditioned iterative schemes, such as the

conjugate gradient algorithm, perform poorly with respect to ε. We provide a careful

analysis of diagonal and incomplete Cholesky preconditionings, and show that the con-

dition number of the preconditioned linear system is independent of the perturbation

parameter. We demonstrate numerically the surprising fact that these schemes are

more efficient when ε is small, than when ε is O(1).

The material of this chapter is based on the article [84]: Thái Anh Nhan and Niall

Madden, An analysis of simple preconditioners for a singularly perturbed problem on a

layer-adapted mesh, submitted for publication, July 2015.
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4.1 Introduction

As a natural progression from Chapter 3, in this chapter we consider iterative solvers,

with a focus on preconditioning techniques. The linear systems in question come from

the finite difference approximation (3.4) of the singularly perturbed two-dimensional

reaction-diffusion differential equation:

−ε2∆u+B(x, y)u = f(x, y), on Ω = (0, 1)2, and u(∂Ω) = g(x, y). (4.1)

Note that, for the sake of convenience in this chapter, we denote the coefficient of

reaction term by B(x, y). This is because, here we follow conventions of standard

numerical linear algebra textbooks, such as [44], and reserve a, b, etc., for the vectors

of diagonal entries of matrices. As usual, it is assumed that there is a positive constant

β such that B(x, y) ≥ β2 > 0.

Example 4.1. Recall the example of a two-dimensional reaction-diffusion problem

given in Section 1.6, for which the problem data are chosen so that the exact solution

is

u(x, y) = x3(1 + y2) + sin(πx2) + cos(πy/2) + (1 + x+ y)
(
e−2x/ε + e−2y/ε

)
. (4.2)

Its solution has two boundary layers along the edges x = 0 and y = 0, as well as one

corner layer near (0, 0), as shown in Figure 4.1.
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Figure 4.1: Example 4.1 with ε = 10−2.

Applying the standard symmtrised 5-point, second-order, central difference operator

defined in (3.2) to the problem (4.1), gives the system matrix

A := −ε2∆N + h̄ik̄jB(xi, yj), (4.3)
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which is a banded, symmetric positive definite (N − 1)2 × (N − 1)2 matrix. We write

the corresponding linear system as

AUN = fN . (4.4)

The analysis given in Chapter 3 has provided us with a useful observation: di-

rect solvers are problematic for singularly perturbed problems (and in any case are of

limited use for large systems), so it is natural to consider the application of iterative

techniques. Surprisingly, as discussed in Section 1.2, little attention has been given to

the development of (parameter) robust and reliable iterative solvers for these problems.

Notable exceptions to this are [6, 34, 38, 39], which all focus on singularly perturbed

convection-diffusion problems; see Section 1.2 and also [72, §1] for a detailed discussion

of these.

The matrix, A, in (4.3) is symmetric positive definite, and so the natural iterative

method for solving (4.4) is the Conjugate Gradient (CG) algorithm, which is based

on Krylov subspace methods, see, e.g., [26, §6.6.3] and also [97, §6.7]. Its benefits

include that it is easy to implement, and is very efficient for many well-conditioned

problems. However, if the linear system is ill-conditioned, convergence may be slow

unless a suitable preconditioning method is employed.

For the reaction-diffusion problem (4.1), a multigrid-based preconditioner was pro-

posed in [72] and shown, in theory and practice, to be robust and efficient. That

approach is quite sophisticated: to optimize efficiency, it applies different precondition-

ing techniques in different regions of the problem domain, depending on the nature

of the solution’s layers. In contrast, in this chapter we investigate the performance of

standard preconditioning techniques whose application does not require any a priori

knowledge of the location of boundary layers, with the goal of showing that they are

robust, and surprisingly effective in the singularly perturbed regime.

We start in Section 4.2 with a detailed description of the layer-adapted Shishkin

mesh constructed for problems which have two edge layers and one corner layer, like the

one given in Example 4.1. In Section 4.3 we give an analysis of the (unpreconditioned)

conjugate gradient algorithm, and show that, unsurprisingly, it performs poorly when

ε is small, due to the unbounded growth of condition number of the discretization

matrix. At the heart of the issue is not just the singularly perturbed nature of (4.1),

but the highly refined meshes used to resolve the boundary layers.

The simplest approach for improving the performance of CG is to employ a diagonal

preconditioner, which is the topic of Section 4.4. As we show, this preconditioner works

very well in the context of fitted mesh methods, by which we mean that it can be proved
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that the condition number of the diagonally preconditioned matrix is independent of

ε.

Our main focus, however, is on the use of an incomplete Cholesky factorization as

a preconditioner, which is analyzed in Section 4.5. This has several motivations, as we

have briefly mentioned in Section 1.3. Here we provide more technical details for these

motivations. Firstly, Ansari and Hegarty [6] have given an empirical study in a related

setting (incomplete LU factorization applied to a convection-diffusion problem), though

without detailed mathematical justification. They find that the number of iterations

required for convergence of linear solvers, such as GMRES and BiCGStab, is adversely

dependent on ε. In order to reduce the number of iterations of the linear solver to ac-

ceptable levels, they use preconditioners based on an incomplete LU factorization with

drop tolerance. In particular, their numerical experiments show that, when the drop-

ping tolerance is of O(ε), the number of iterations is substantially reduced. Secondly,

and more significantly, the studies of direct solvers in [72] and in Chapter 3 have shown

than the fill-in entries in Cholesky factors tend to zero exponentially as ε → 0. So,

in fact, in the singularly perturbed case, and in finite precision, the Cholesky factor-

ization closely resembles an incomplete factorization, a statement we make precise in

Section 4.5. It follows quickly that the incomplete Cholesky factorization without fill-

in, IC(0), yields a preconditioned system matrix whose condition number is bounded

in a parameter-robust way.

To highlight the efficiency of IC(0), we present a theoretical analysis of this precon-

ditioner for two reaction-diffusion problems of the form (4.1). One is a standard case

on a square domain, featuring both edge and corner layers, as in Example 4.1. The

second case features an edge layer, but no corner layers, as would arise for a problem

on a smooth domain, or on a square domain with suitable problem data. This allows

us to distinguish the numerical complexities that are primarily due to the corner layer.

In Section 4.6 we present the results of numerical experiments that examine the

number of iterations needed by the preconditioned conjugate gradient algorithm to

yield a reasonable solution to our problem. It is shown that, not only are the two

preconditioners we study parameter robust (in the sense that it is proven that the

condition number does not degrade as ε → 0), they are even more effective when the

perturbation parameter is small, compared to when it is O(1). It is observed that the

IC(0) is particularly efficient—a fact that is also demonstrated in diagrams showing

convergence rates, and the distribution of the eigenvalues of the different preconditioned

matrices.
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4.2 The Shishkin mesh

The Shishkin mesh for the singularly perturbed problem in Example 4.1 has been briefly

mentioned in Section 1.7.1. We now describe its construction in detail. Since the layers

presented in the solution are all of width O(ε| ln ε|), a mesh transition point is selected

as

τx := min

{
2
ε

β
lnN,

1

2

}
. (4.5)

Then the unit interval, ω̄x, is partitioned into subintervals [0, τx] and [τx, 1], each with

N/2+1 equally spaced mesh points. More precisely, the mesh is ωNx = {x0, x1, . . . , xN},
where

xi =

ihf, for i = 0, 1, . . . , N/2,

τx + (i−N/2)hc, for i = N/2 + 1, . . . , N,

where, particular to this chapter, we use hf := 2τx/N to denote the “fine” mesh-widths

in [0, τx], and hc := 2(1 − τx)/N the “coarse” mesh-widths in [τx, 1]. (Later, we need

hτ := (hf + hc)/2).

We then construct a similar piecewise uniform mesh, ωNy = {y0, . . . , yN}, with

transition point τy = τx. Taking the Cartesian product of ωNx and ωNy gives the two-

dimensional Shishkin mesh, ΩN,N
S , as illustrated on the left of Figure 4.2.

Remark 4.1. If ε is so large that τx = 1/2, then the problem is not singularly perturbed,

and the mesh is uniform. We are specifically interested in the case where the mesh is

nonuniform and so, for the remainder of this chapter, we will assume that ε is small

enough to guarantee that τx < 1/2.

For later analysis, we decompose Ω̄ into subregions associated with the corner layer

at (0,0), the edge layers along x = 0 and y = 0, and the remainder of the region (see

the right of Figure 4.2):

ΩCC := [0, τx)× [0, τy), ΩII := (τx, 1]× (τy, 1],

and

Ωx
EE := (τx, 1]× [0, τy), Ωy

EE := [0, τx)× (τy, 1].

The interfaces of these are subregions are

ωxCE := τx × [0, τy), ωyCE := [0, τx)× τy,
ωxEI := (τx, 1]× τy, ωyEI := τx × (τy, 1], ωTT := {(τx, τy)}.

In next section, we shall show that, in fact, the use of this highly anisotropic Shishkin

mesh results in the condition number of unpreconditioned linear system coming from
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Figure 4.2: The Shishkin mesh, ΩN,N
S , and its decomposition for Example 4.1.

the finite difference discretization (4.3) being adversely dependent on ε. More precisely,

when ε tends to zero, the condition number of the coefficient matrix A grows unbound-

edly, i.e., the system’s conditioning is not robust with respect to the perturbation

parameter.

4.3 The condition number estimate of the unpre-

conditioned matrix

It is well-known that the condition number of the coefficient matrix plays a key role in

the convergence analysis of CG. Let κ2(A) := ‖A‖2‖A−1‖2 be the condition number of

A associated with the 2-norm, and U (k) be the approximation of UN after k iterations

of the CG algorithm. Then the error at iteration k is bounded as follows [44, Theorem

3.1.1]

‖UN − U (k)‖A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k

‖UN − U (0)‖A, (4.6)

where ‖x‖A = (xTAx)1/2. Furthermore, since A is symmetric positive definite, ‖A‖2 =

λmax > 0, where λmax is the largest eigenvalue of the matrix A. Hence, κ2(A) can be

also computed as

κ2(A) = ‖A‖2‖A−1‖2 =
λmax

λmin

,

where λmin is the smallest eigenvalue of the matrix A.

It is clear from (4.6) that, if κ2(A) is large, then convergence will be slow. It is

an easy application of Geršgorin’s Theorem (see Section 1.8.1) to verify that λmax is

bounded above by CN−2. However, the same argument also gives that λmin is at least

h2
f β

2. This is summarised as follows.
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Theorem 4.1. The coefficient matrix A of the symmetrized finite difference discretiza-

tion of (4.1) on the Shishkin mesh, ΩN,N
S , satisfies

κ2(A) ≤ C(ε lnN)−2. (4.7)

Proof. From the definition of hf in Section 4.2, we have hf = 2τx/N = 4ε lnN/(βN).

This implies that λmin ≥ C(ε lnN)2/(N2). Thus,

κ2(A) =
λmax

λmin

≤ C(ε lnN)−2,

which completes the proof.

Theorem 4.1 suggests that the system (4.4) is ill-conditioned when ε approaches

zero. The results of experiments, shown in Table 4.1, demonstrate that this is indeed

the case: the constant in (4.7) is approximately 0.25. One clearly sees that κ2(A) is

proportional to ε−2 for a fixed N , and slightly decreases when N grows for a fixed ε.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 1.43e+02 5.71e+02 2.29e+03 9.15e+03 3.66e+04 1.46e+05

10−2 2.09e+01 8.08e+01 3.20e+02 1.28e+03 5.11e+03 2.04e+04

10−4 2.42e+02 2.65e+02 6.21e+02 1.56e+03 4.17e+03 1.16e+04

10−6 2.50e+04 1.80e+04 1.33e+04 1.69e+04 4.56e+04 1.29e+05

10−8 2.51e+06 1.82e+06 1.34e+06 1.01e+06 7.85e+05 1.30e+06

10−10 2.52e+08 1.82e+08 1.34e+08 1.01e+08 7.85e+07 6.25e+07

10−12 2.52e+10 1.82e+10 1.34e+10 1.01e+10 7.86e+09 6.25e+09

Table 4.1: κ2(A) for the finite difference discretization (4.3) on ΩN,N
S .

To demonstrate that the poor scaling with ε is due to the mesh, rather than the

singularly perturbed nature of the differential equation per se, Table 4.2 shows the

condition number for a range of values of N and ε, but where the mesh is uniform.

Somewhat surprisingly, perhaps, we see that these linear systems are extremely well-

conditioned for small ε. This is because, when ε � N−1, the reaction term in (4.4)

dominates, and so A tends towards a diagonal matrix as ε → 0. (This can also be

reasoned by adapting the arguments of Theorem 4.1 to show that λmax ≤ CN−2 and

λmin ≥ β2N−2).

The adverse ε-dependence of condition number of A, when a layer-adapted mesh is

used, does indeed lead to poor performance of the unpreconditioned conjugate gradient

algorithm; this is demonstrated later in Section 4.6. Therefore, our overall goal is to

study preconditioning techniques that are robust with respect to the singular pertur-

bation parameter. We will do that over the remainder of this chapter by analyzing the

standard diagonal and incomplete Cholesky preconditioners.
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ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 1.43e+02 5.71e+02 2.29e+03 9.15e+03 3.66e+04 1.46e+05

10−2 2.09e+01 8.08e+01 3.20e+02 1.28e+03 5.11e+03 2.04e+04

10−4 1.20e+00 1.82e+00 4.28e+00 1.41e+01 5.34e+01 2.11e+02

10−6 1.00e+00 1.01e+00 1.03e+00 1.13e+00 1.52e+00 3.10e+00

10−8 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.01e+00 1.02e+00

10−10 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00

10−12 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00

Table 4.2: κ2(A) for the finite difference discretization (4.3) on a uniform mesh.

4.4 Diagonal preconditioner

As discussed in Section 1.8.3, in order to accelerate the performance of CG, one uses a

preconditioner, which is usually represented as a matrix. We provide here some more

technical details of preconditioners for CG, in order to carry out the analysis later on.

Suppose M is a preconditioner which is symmetric positive definite. Then, instead of

solving AUN = fN , preconditioned CG solves M−1AUN = M−1fN . This is equivalent

to applying CG directly to solving the symmetric positive definite system

(M−1/2AM−1/2)(M1/2UN) = M−1/2fN , (4.8)

where M1/2 is the principle square root of the symmetric positive definite matrix M .

Furthermore, since the matrices M−1A and M−1/2AM−1/2 are similar, it suffices to

analyze the condition number of the latter.

In this section, we study a simple diagonal preconditioner

D := diag(a11, a22, . . . , ann).

That is, we take M = D in (4.8) where D is the diagonal matrix whose entries are

taken from the main diagonal of A. As we shall show, the condition number of the

resulting system is independent of ε.

Theorem 4.2. Let AD = D−1/2AD−1/2. Then

κ2(AD) ≤ C
N2

ln2N
. (4.9)

Proof. Because AD and D−1A are similar, we have that

κ2(AD) = λmax(D−1A)/λmin(D−1A).

In order to bound λmax(D−1A), we apply Geršgorin’s Theorem to the matrix D−1A.

Since A is strictly diagonally dominant, it is easy to see that λmax(D−1A) ≤ 2. We
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also use Geršgorin’s Theorem to bound λmin(D−1A) from below. Indeed, if λ is an

eigenvalue of D−1A, then

λ ≥ min
i,j

{
h̄ik̄jB(xi, yj)

γij + h̄ik̄jB(xi, yj)

}
, (4.10)

where γij denotes the diagonal entry of (−ε2∆N) in the row corresponding to the

(i, j)-node of the mesh. That is

γij = ε2

(
k̄j

(
1

hi
+

1

hi+1

)
+ h̄i

(
1

kj
+

1

kj+1

))
.

The minimum of (4.10) is achieved when h̄i = k̄j = hf = 4ε lnN/(βN). Hence,

λmin(D−1A) ≥ CN−2 ln2N .

Theorem 4.2 shows that the condition number of the preconditioned linear system

is robust with respect to singular perturbation parameter; Table 4.3 shows this bound

is quite sharp, with the constant in (4.9) being approximately 0.5. Furthermore, notice

that for a fixed N , the system is better conditioned when ε is small, compared to

when ε = 1. It is verified in Section 4.6 that, in practice, diagonally-preconditioned

CG is more efficient when the problem is singularly perturbed. However, even greater

efficiencies are possible when an incomplete Cholesky preconditioner is used; this is the

topic of Section 4.5.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 1.43e+02 5.71e+02 2.29e+03 9.15e+03 3.66e+04 1.46e+05

10−2 2.09e+01 8.08e+01 3.20e+02 1.28e+03 5.11e+03 2.04e+04

10−4 1.42e+01 3.95e+01 1.15e+02 3.54e+02 1.10e+03 3.49e+03

10−6 1.38e+01 3.84e+01 1.12e+02 3.39e+02 1.44e+03 6.12e+03

10−8 1.37e+01 3.82e+01 1.11e+02 3.34e+02 1.04e+03 3.79e+03

10−10 1.37e+01 3.82e+01 1.11e+02 3.33e+02 1.03e+03 3.29e+03

10−12 1.37e+01 3.82e+01 1.11e+02 3.32e+02 1.03e+03 3.28e+03

Table 4.3: κ2(AD) for the finite difference discretization (4.3) on ΩN,N
S .

4.5 Incomplete Cholesky Preconditioner

In this section, we investigate in detail the use of incomplete Cholesky factorization

without fill-in, IC(0), as a preconditioner to the singularly perturbed linear system (4.4)

and show that it is particularly advantageous when ε is very small. Note that the matrix

A defined in (4.4) is symmetric positive definite, so there exists a complete Cholesky
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factorization such that A = LLT , where L is a lower triangular matrix. The idea of

incomplete Cholesky factorization is to set some entries of L to be zeros (or, rather,

don’t compute them at all), and so A ≈ L̃L̃T where L̃ is the incomplete Cholesky

factor. Then, M = L̃L̃T can be used as a preconditioner.

The motivation for this preconditioner comes from the fact that the usual Cholesky

factor of A is quite dense: although A has typically five nonzero entries per row (as-

suming the usual lexicographic ordering), the factors have O(N ) nonzeros per row.

The fill-in entries in the factor are smaller in magnitude than the entries corresponding

to nonzeros in A. Dropping these fill-ins yields an approximate factorization of A that

can be used as a preconditioner. However, as analyzed in Chapter 3, when ε is small,

the fill-in entries are extremely small, which leads us to propose that IC(0) should be

an excellent preconditioner for our problem.

Furthermore, the IC(0) factorization has only the O(N2) nonzero entries that are

in the positions of the nonzeros of A, compared with the O(N3) nonzeros found in

the complete Cholesky factorization. Therefore it is much cheaper to compute. In

addition, it is worth noting that no subnormal numbers are involved in computing the

IC(0) factorization, so, unlike the complete factorization, its computational cost does

not depend adversely on the perturbation parameter.

For our analysis, we first study IC(0) applied to the discretization of (4.1) on an

arbitrary mesh. In Section 4.5.2, we consider the specific case when the mesh is the

Shishkin mesh as given in Figure 4.2. Then, in Section 4.5.3, we outline the results

of the analysis in the specialized case where the solution (and mesh) features an edge

layer, but no corner layers.

4.5.1 Analysis of IC(0) on an arbitrary mesh

For convenience (to avoid square roots in the calculations), we write the incomplete

factorization as L̃D̃L̃T where D̃ is a diagonal matrix. We follow the notation and

description in [44, §11.1]. Let m be the bandwidth of the matrix A. Let a denote the

main diagonal of A, b its first lower diagonal, and c its (m − 1)st lower diagonal. We

want to compute L̃ and D̃ in terms of a, b and c. Let ã denote the main diagonal of

L̃, b̃ its first lower diagonal, and c̃ its (m+ 1)st lower diagonal. Also, let d̃ denote the

main diagonal of D̃. Then, using lexicographical ordering with p = i+m(j− 1), i, j =

1, . . . , N − 1, we have that

b̃ = b, c̃ = c, (4.11)

ãp =
1

d̃p
= ap − b̃2

p−1d̃p−1 − c̃2
p−md̃p−m, p = 1, 2, . . . ,m2, (4.12)

66



4.5. INCOMPLETE CHOLESKY CHAPTER 4. SIMPLE PRECONDITIONERS

with the convention that b̃p = c̃p = d̃p = 0 for p ≤ 0. Then row p of the product

M = L̃D̃L̃T has the form

. . . 0 cp−m rp−m+1 0 . . . 0 bp−1 ap bp 0 . . . 0 rp cp 0 . . . ,

where

rp =
bp−1cp−1

ãp−1

. (4.13)

Note that M has two extra nonzero diagonals compared to A, which are denoted by

r. More precisely, if M = L̃D̃L̃T is the IC(0) preconditioner, then the only difference

between M and A are the diagonals r. That is, if we write A = M−R, then R = [Ri,j]

is the symmetric matrix whose nonzero entries are

Rp,p+(m−2) = rp = Rp+(m−2),p, p = 1, 2, . . . ,m2.

Lemma 4.1. Set Bp := h̄ik̄jB(xi, yj), the scaled reaction term in (4.3). For p =

1, 2, . . . ,m2, the entries ãp and r̃p satisfy

ãp ≥ |bp|+ |cp|+Bp, (4.14a)

rp ≤
bp−1cp−1

|bp−1|+ |cp−1|+Bp−1

. (4.14b)

Proof. The arguments are based on the ideas from [46, Lem. 4.1], but adapted for our

case. From (4.3), the matrix A can be written in stencil notation as

A =

 cp

bp−1 ap bp

cp−m

 ,
where ap ≥ |bp|+ |bp−1|+ |cp|+ |cp−m|+ Bp, and Bp > 0. First, we show by induction

that ãp ≥ |bp| and ãp ≥ |cp|. Indeed, when p = 1, then

ã1 = a1 ≥ |b1|+ |c1|+B1,

so ã1 ≥ |b1| and ã1 ≥ |c1|. Now suppose that

ãq ≥ |bq|, and ãq ≥ |cq|, q = 1, . . . , p− 1.

From (4.11) and (4.12), we have

ãp = ap −
b2
p−1

ãp−1

− c2
p−m

ãp−m

≥ |bp|+ |cp|+ |bp−1|+ |cp−m|+Bp −
|bp−1||bp−1|

ãp−1

− |cp−m||cp−m|
ãp−m

≥ |bp|+ |cp|+Bp (since ãp−1 ≥ |bp−1| ⇒
|bp−1||bp−1|

ãp−1

≤ |bp−1|).

Therefore, ãp ≥ |bp| and ãp ≥ |cp|, for p = 1, . . . ,m2. This establishes (4.14a), which

along with (4.13), completes the proof.
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Applying (4.14b) to an arbitrary mesh, we get that

rp ≤
(−ε2)

k̄j
hi+1

(−ε2)
h̄i
kj+1

ε2
k̄j
hi+1

+ ε2
h̄i
kj+1

+ h̄ik̄jB(xi, yj)

. (4.15)

In the following section, we apply this bound to particular fitted meshes.

4.5.2 Analysis of IC(0) for a corner layer problem

In Lemma 4.1, we gave an estimate for the entries of the matrix R in the general case.

The next theorem gives a concrete upper bound for the entries rp when we employ the

Shishkin mesh, ΩN,N
S , shown in Figure 4.2, which features two edge layers, and a single

corner layer adjacent to (0, 0).

Theorem 4.3. Let A be the coefficient matrix of symmetrised finite difference dis-

cretization on the Shishkin mesh ΩN,N
S , and let M be the associated IC(0) precondi-

tioner. If A = M −R, then,

rp ≤
(εN)2

2N2 + 16 ln2N
, for p = 1, 2, . . . ,m2. (4.16)

Proof. We will show that

rp ≤
ε4

2ε2 + h2
f β

2
, for p = 1, 2, . . . ,m2.

The proof is done by direct computation on the subregions of ΩN,N
S (see Figure 4.2). Be-

cause of the symmetry of (4.15), it is sufficient to examine the regions ΩCC , Ωx
EE, ΩII ,

ωxCE, ω
x
EI , and ωTT .

Case 1: (xi, yj) ∈ ΩCC , then hi+1 = kj+1 = h̄i = k̄j = hf, so, from (4.15), we have that

rCC ≤
ε4

2ε2 + h2
fB(xi, yj)

≤ ε4

2ε2 + h2
f β

2
.

Case 2: (xi, yj) ∈ Ωx
EE, then hi+1 = h̄i = hc, and kj+1 = k̄j = hf, so we get that

rEE ≤
ε2 hf

hc

ε2hc

hf

ε2

(
hf

hc

+
hc

hf

)
+ hfhcβ2

=
ε4

ε2

(
hf

hc

+
hc

hf

)
+ hfhcβ2

≤ ε4

2ε2 + hfhcβ2
≤ ε4

2ε2 + h2
f β

2
.
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Case 3: (xi, yj) ∈ ΩII , then hi+1 = kj+1 = h̄i = k̄j = hc, so

rII ≤
ε4

2ε2 + h2
cβ

2
≤ ε4

2ε2 + h2
f β

2
.

Case 4: (xi, yj) ∈ ωxCE, then hi+1 = hc, h̄i = hτ , and kj+1 = k̄j = hf, so

rCE ≤
ε2 hf

hc

ε2hτ
hf

ε2

(
hf

hc

+
hτ
hf

)
+ hfhτβ2

=
ε4

ε2

(
hf

hτ
+
hc

hf

)
+ hchfβ2

≤ ε4

2ε2 + hchfβ2
≤ ε4

2ε2 + h2
f β

2
.

Case 5: (xi, yj) ∈ ωxEI , then hi+1 = h̄i = kj+1 = hc, and k̄j = hτ , so

rEI ≤
ε2hτ
hc

ε2hc

hc

ε2

(
hτ
hc

+ 1

)
+ hτhcβ2

=
ε4

ε2

(
1 +

hc

hτ

)
+ h2

cβ
2

≤ ε4

2ε2 + h2
f β

2
.

Case 6: (xi, yj) ∈ ωTT , then hi+1 = kj+1 = hc, and h̄i = k̄j = hτ , so

rTT ≤

(
ε2hτ
hc

)2

2ε2
hτ
hc

+ h2
τβ

2

=
ε4

2ε2
hc

hτ
+ h2

cβ
2

≤ ε4

2ε2 + h2
f β

2
.

Combining all these cases, we get that

rp ≤
ε4

2ε2 + h2
f β

2
=

(εN)2

2N2 + 16 ln2N
.

Remark 4.2. Note that (N2)/(2N2 + 16 ln2N) < 1, so (4.16) can be simplified as

‖R‖2 ≤ ‖R‖ ≤ Cε2, (4.17)

since R is symmetric. This highlights the fact that the difference between A and its

IC(0) preconditioner is, in the maximum norm, O(ε2). Furthermore, when ε� 1, the

IC(0) preconditioner satisfies the conditions of being a good preconditioner, stated in

Section 1.8.3. For example, with a small diffusion parameter ε = 10−6, the difference

in the maximum norm between M and A is

‖M − A‖ ≈ 10−12,

showing that condition (P1) is satisfied. Furthermore, the condition (P2) is also satis-

fied because solving Mx = b just involves solving L̃y = b, where y = (D̃L̃T )x. Since, by

definition, L̃ is a lower tridiagonal matrix with only three nonzero entries per row, the

system L̃y = b can be efficiently solved by back-substitution. Then, a similar strategy

is applied for the upper triangular matrix D̃L̃T to solve (D̃L̃T )x = y.
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As shown in Theorem 4.1, the condition number of A depends badly on the per-

turbation parameter, ε. As with the diagonal preconditioner, we will prove that the

condition number of the IC(0)-preconditioned system is independent of ε. In our anal-

ysis, we require the following standard property of a regular splitting. Related results

on regular splitting are discussed in depth in standard textbooks, e.g., [44, Sec 10.4].

Definition 4.1 ([44, Definition 10.3.1]). For the n× n real matrices A,M and R, the

splitting A = M − R is a regular splitting if M is nonsingular with M−1 ≥ 0 and

M ≥ A.

Lemma 4.2 ([44, Theorem 10.3.1]). Let A = M −R be a regular splitting of A, where

A−1 ≥ 0. Then

ρ(M−1R) =
ρ(A−1R)

1 + ρ(A−1R)
< 1,

where ρ(A) is spectral radius of matrix A.

We use the standard finite difference scheme (4.3) to discretize (4.1). As we shall

see, the resulting system matrix is strictly diagonally dominant. In our analysis, we

will make use of the following result of Varah.

Lemma 4.3 ([109, Theorem 1]). If the matrix A is strictly diagonally dominant by

rows, and

α := min
i

(
|aii| −

∑
j 6=i

|aij|
)
> 0,

then ‖A−1‖ < 1/α.

Theorem 4.4. Let A be the discretization matrix in (4.3) on the Shishkin mesh ΩN,N
S ,

and let M be its IC(0) preconditioner. If AM =
(
M−1/2AM−1/2

)
, then

κ2(AM) ≤ C
N2

ln2N
. (4.18)

Proof. We will first show that ‖AM‖2 ≤ C. The coefficient matrix A defined in (4.3)

is symmetric positive definite. Furthermore, since its off-diagonal entries are nonpos-

itive, it is an M-matrix [44, Theorem 10.3.3]. Hence, by [75, Theorem 2.4], the IC(0)

preconditioner M exists uniquely and A = M − R is a regular splitting. In addition,

A being an M-matrix implies that A−1 ≥ 0. Therefore, the premises of Theorem 4.2

are satisfied, so ρ(M−1R) < 1. Then,

‖AM‖2 = ‖M−1/2(M −R)M−1/2‖2 = ‖I −M−1/2RM−1/2‖2

≤ 1 + ‖M−1/2RM−1/2‖2 = 1 + ρ(M−1/2RM−1/2)

= 1 + ρ(M−1R) ≤ 2.

(4.19)
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The next step is to show that ‖A−1
M ‖2 ≤ CN2 ln−2N . First, we use Lemma 4.3 to get

that

‖A−1‖ ≤ C
N2

ε2 ln2N
. (4.20)

Hence, ∥∥A−1
M

∥∥
2

= ρ
(
A−1M

)
≤ ‖A−1M‖ = ‖A−1(A+R)‖

≤ 1 + ‖A−1R‖ ≤ 1 + ‖A−1‖‖R‖.

By (4.17) and (4.20), we get that

‖A−1
M ‖2 ≤ C

N2

ln2N
. (4.21)

The proof is completed by combining (4.19) and (4.21).

As shown by the results in Table 4.4, the bound given by Theorem 4.4 is sharp.

Note that this is the same bound as was found for the diagonal preconditioner in

Theorem 4.2. However, comparing the results in Table 4.4 with the corresponding

results in Table 4.3, we see that C ≈ 0.04 in (4.18), compared to C ≈ 0.5 in (4.9). As

we shall see in Section 4.6, it follows that IC(0) is a more efficient preconditioner.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 9.52 35.71 140.35 558.90 2232.98 8929.29

10−2 2.37 6.89 25.02 97.50 387.46 1547.28

10−4 1.75 3.53 9.06 29.74 106.99 361.05

10−6 1.73 3.48 8.88 25.94 80.98 262.00

10−8 1.73 3.47 8.86 25.85 80.59 260.31

10−10 1.73 3.47 8.85 25.84 80.54 260.12

10−12 1.73 3.47 8.85 25.84 80.54 260.10

Table 4.4: κ2(AM ) for the finite difference discretization (4.3) on ΩN,N
S .

4.5.3 Analysis of IC(0) for a problem without corner layers

Inspection of the proof of Theorem 4.3 shows that the final estimate is dominated by

the terms associated with the corner region, ΩCC , and its interfaces. To verify that

this is indeed the case, we now consider a variant on (4.1) but where the problem

data is chosen such that there are no corner layers at all. This could arise if, for

example, problem (4.1) was posed on a smooth domain: see, e.g., [54] for an analysis

of a semilinear reaction-diffusion problem on a Shishkin mesh for such a case. It could

also arise for a problem on the unit square, but where the data are such that it has
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only one edge layer, or two edge layers along parallel sides of the unit square. This

can happen, for example, if f(x, y)/B(x, y) agrees with g(x, y) on the other boundary

regions of Ω.

For simplicity, we consider such a problem with only one layer along the edge x = 0,

as in Example 4.2 below.

Example 4.2. We modify the problem data of Example 4.1 so that the solution is

u(x, y) = x3(1 + y2) + sin(πx2) + cos(πy/2) + (1 + x+ y)
(
e−2x/ε

)
, (4.22)

which is plotted in Figure 4.3.

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

2.5

xy

Figure 4.3: Example 4.2 with one boundary layer along y-axis when ε2 = 10−6.

Thus Ω̄ has two subregions: Ωy
EE associated with the edge layer along x = 0, and ΩII

for the interior region (see the right of Figure 4.4)

ΩII := (τx, 1]× [0, 1], Ωy
EE := [0, τx)× [0, 1].

The interface of these two subregions is

ωyEI := τx × [0, 1].

Then, a suitable Shishkin mesh, which we denote ΩN,N
Q , is formed by taking ωNx as is

given in Section 1.7.1, but with ωNy uniform.

Applying the finite difference scheme (4.3) on the Shishkin mesh just described, we

obtain the errors in the computed solution in Table 4.5, where almost second-order

convergence is easily observed (see (1.21)).

Figure 4.5 shows the errors in the computed solution of Example 4.1 (left), and

Example 4.2 (right). It highlights the fact that computing an accurate solution in the

edge layer regions is at least as challenging as in the corner layer regions. However, as
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ΩIIΩy
EE

ωy
EI

Figure 4.4: The Shishkin mesh, ΩN,N
Q , and its decomposition for Example 4.2.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 6.16157e-03 1.55254e-03 3.89910e-04 9.74913e-05 2.43787e-05 6.09475e-06

10−2 6.23862e-02 1.67878e-02 4.27930e-03 1.07828e-03 2.69959e-04 6.75285e-05

10−4 9.23588e-02 3.79423e-02 1.44510e-02 5.00241e-03 1.64905e-03 5.22641e-04

10−6 9.38062e-02 3.88367e-02 1.47858e-02 5.11275e-03 1.68984e-03 5.35840e-04

10−8 9.38703e-02 3.88759e-02 1.48182e-02 5.13590e-03 1.69490e-03 5.37153e-04

10−10 9.38759e-02 3.88783e-02 1.48193e-02 5.13653e-03 1.69540e-03 5.37685e-04

10−12 9.38765e-02 3.88785e-02 1.48194e-02 5.13656e-03 1.69542e-03 5.37694e-04

Table 4.5: ‖u− UN‖
ΩN,N

Q
for Example 4.2.

we shall now show, the edge layers are far less problematic than corner layers for linear

solvers, if a suitable preconditioner is used.

The analysis of a result corresponding to Theorem 4.3 is simplified, since there are

only three cases to consider.

Corollary 4.1. Let A be the coefficient matrix of symmetrized finite-difference dis-

cretization on the simplified Shishkin mesh ΩN,N
Q , and let M be the associated IC(0)

preconditioner. If A = M −R, then,

rp ≤
ε3N2

2εN2 + 4β lnN
. (4.23)

Proof. This follows from inspecting the arguments in the proof of Theorem 4.3. Indeed,

let H = N−1 be the equidistant mesh size along the y-direction. Since N−1 ≤ hc ≤
2N−1 and N−1/2 ≤ hτ ≤ 2N−1, both hc and hτ are O(H). In this case, we have only

to consider three cases, and, in the notation of the proof of Theorem 4.3, we have:
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Figure 4.5: Errors for Example 4.1 (left) and Example 4.2 (right) with N = 25 and ε2 = 10−6.

Case 1: (xi, yj) ∈ Ωy
EE, then hi+1 = h̄i = hf, and kj+1 = k̄j = hc, so we get that

rEE ≤
ε2H

hf

ε2 hf

H

ε2

(
H

hf

+
hf

H

)
+ hfHβ2

=
ε4

ε2

(
H

hf

+
hf

H

)
+ hfHβ2

≤ ε4

2ε2 + hfHβ2
.

Case 2: (xi, yj) ∈ ωyEI , then hi+1 = hc, k̄j = kj+1 = H, and h̄i = hτ , so (using

a+ b ≥ 2
√
ab and hc/hτ ≥ 1/2)

rEI ≤
ε2H

hc

ε2hτ
H

ε2

(
H

hc

+
hτ
H

)
+ hτHβ2

=
ε4

ε2

(
H

hτ
+
hc

H

)
+ hcHβ2

≤ ε4

√
2ε2 + h2

cβ
2
.

Case 3: (xi, yj) ∈ ΩII , then hi+1 = h̄i = hc, and kj+1 = k̄j = H so

rII ≤
ε4

2ε2 + hcHβ2
.

Combining all these cases, we get that

rp ≤
ε4

2ε2 + hfHβ2
=

ε3N2

2εN2 + 4β lnN
.

This completes the proof.

In Theorem4.3, for sufficiently small ε, we found that rp behaves like ε2. Corol-

lary 4.1 gives the much smaller bound rp ∼ ε3N2/(εN2 + lnN). Moreover, it allows us

to establish the following result.

Corollary 4.2. Let M be the IC(0) preconditioner of A on the simplified Shishkin

mesh ΩN,N
Q . If AM =

(
M−1/2AM−1/2

)
, then

κ2(AM) ≤ C

(
1 +

ε2N4

2εN2 lnN + 4β ln2N

)
. (4.24)
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Proof. The arguments of Theorem 4.4 can be adapted easily to give that ‖AM‖2 ≤ C,

and that

‖A−1
ε ‖ ≤ C

N2

ε lnN
,

from Lemma 4.3. Then, from (4.23), we get that∥∥A−1
M

∥∥
2

= ρ
(
A−1M

)
≤ ‖A−1M‖ = ‖A−1(A+R)‖

≤ 1 + ‖A−1R‖ ≤ 1 + ‖A−1‖‖R‖

≤ C

(
1 +

N2

ε lnN

ε3N2

2εN2 + 4β lnN

)
≤ C

(
1 +

ε2N4

2εN2 lnN + 4β ln2N

)
.

This completes the proof.

The bound in (4.24) suggests that, for sufficiently small ε, we have that κ2(AM)

is bounded by a constant, which is verified for Example 4.2 in Table 4.6. It follows

that IC(0) should be an excellent preconditioner for this problem. We can deduce two

further facts from this example. First, for iterative procedures, the corner layer regions

are the most troublesome. Secondly, a corresponding result does not hold for the

diagonal preconditioner studied in Section 4.4: the bound given in Theorem 4.2 holds

for the one-layer problem, with only a modest reduction in the associated constant.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 9.52e+00 3.57e+01 1.40e+02 5.59e+02 2.23e+03 8.93e+03

10−2 2.37e+00 6.89e+00 2.50e+01 9.75e+01 3.87e+02 1.55e+03

10−4 1.03e+00 1.20e+00 1.90e+00 4.65e+00 1.51e+01 5.50e+01

10−6 1.00e+00 1.00e+00 1.01e+00 1.05e+00 1.22e+00 1.91e+00

10−8 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00

10−10 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00

10−12 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00

Table 4.6: κ2(AM ) for the finite difference discretization (4.3) on ΩN,N
Q .

4.6 Numerical results

In this section we compare the performance of (unpreconditioned) CG, and the two

approaches to preconditioning discussed in Sections 4.4 and 4.5. To make the com-

parisons meaningful, a carefully chosen stopping criterion must be used so that the
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discretization accuracy is achieved, while taking care not to over-solve the linear sys-

tem. Here we briefly discuss the necessity of a suitable stopping criterion for singularly

perturbed problems. See [72, §4.6] for a detailed discussion. Let e(k) = UN − U (k), the

error in the linear solver’s solution after k iterations. This quantity is unknown, but is

estimated from e(k) = A−1r(k), where r(k) = fN − AU (k) is the residual, leading to

‖e(k)‖ ≤ ‖A−1‖‖r(k)‖.

However, as seen in (4.20), ‖A−1‖ is O(ε−2). Therefore, to guarantee that ‖e(k)‖ has

the same order as the error bound given in (1.21), ‖r(k)‖ must be bounded by

‖r(k)‖ ≤ Cε2N−4 ln4N.

However, this bound is not computationally practical since, for singularly perturbed

problems, the value of ε is typically very small, and so ε2N−4 is extremely small.

Instead, the stopping criterion derived in [72, §4.6] uses the preconditioned residual

approach with which we can approximate ‖e(k)‖A by the inner product of r(k) with the

preconditioned residual, z(k) = M−1r(k), as follows

(z(k))T r(k) ≈ ‖e(k)‖2
A,

when M is a good preconditioner of A.

If ε is so large so that τx = 1/2 in (4.5), then the mesh is uniform, and classical

analysis shows that the error, in the maximum norm, is O(N−2). If τx < 1/2, then, as

given in (1.21), the error is O(N−2 ln2N). Using this preconditioned residual approach

(up to the assumption relating ‖e(k)‖ and ‖e(k)‖2, see details in [72, §4.6]), to achieve

these bounds we iterate until

(z(k))T r(k) ≤ K

N−4, τx = 1/2,

εN−2 ln3N, τx < 1/2,
(4.25)

where K is a user-chosen constant, determined experimentally for a particular precon-

ditioner (but independent of ε and N). For example, for the experiments reported

on below, we took K = 0.5 for diagonally-preconditioned CG, and K = 1 for IC(0)-

preconditioned CG.

We first consider the application of unpreconditioned CG. The approach that leads

to (4.25) makes sense only when a good preconditioner is used. Since we only wish

to demonstrate that the unpreconditioned CG algorithm is not suitable of finite dif-

ference methods on a fitted mesh, we take the (artificial) approach of iterating until

‖e(k)‖ is less than discretization accuracy, or until 5000 iterations are reached. The

resulting iteration counts are shown in Table 4.7. As expected, given Theorem 4.1,
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ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 35 77 163 346 734 1547

10−2 17 40 88 199 428 927

10−4 25 34 65 122 235 452

10−6 59 129 223 361 716 1441

10−8 73 209 578 1317 2278 4150

10−10 86 287 876 2602 5000 5000

10−12 90 332 1110 3640 5000 5000

Table 4.7: Iteration counts for unpreconditioned CG applied to Example 4.1.

the unpreconditioned algorithm performs poorly when the diffusion parameter tends

to zero.

Next we consider the diagonally preconditioned CG algorithm, as analyzed in Sec-

tion 4.4. The iteration counts for this approach are shown in Table 4.8. As expected,

given Theorem 4.2, this algorithm is robust with respect to ε. As ε decreases, and the

mesh transitions from being uniform to piecewise uniform, the number of iterations

needed decreases; thereafter, it is uniform in ε. The initial decrease in the number of

iterations needed is due to several factors:

(a) as seen in Table 1.3, the discretization error initially increases due to reduction in

the order of convergence from O(N−2) to O(N−2 ln2N);

(b) the change in the termination criterion, as given in (4.25);

(c) and, for small ε, the submatrix of A associated with the interior region of the

domain resembles the discretization on a uniform mesh with ε � N−1. Recall

from the discussion leading to Table 4.2 that this means it has a particularly simple

structure.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 41 91 200 434 918 1926

10−2 23 55 126 288 639 1376

10−4 11 19 36 71 140 265

10−6 11 19 35 69 136 258

10−8 11 19 35 69 135 266

10−10 11 19 35 69 147 287

10−12 11 19 35 69 147 288

Table 4.8: Iteration counts for diagonal-preconditioned CG applied to Example 4.1.
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Finally, we consider the IC(0)-preconditioned CG algorithm, as analyzed in Section

4.5. The bound for the condition number given in Theorem 4.4 is the same as for

the diagonal preconditioner. In particular, it is robust with respect to ε. However,

as shown in Table 4.9, IC(0) is considerably more efficient. Of course, the method

is not as efficient (in terms of number of iterations) as the multigrid-based boundary-

layer preconditioner devised in [72]; comparing the results in Table 4.9 with those in [72,

Table 4.7], we see far fewer iterations are required by the boundary-layer preconditioner,

and its performance is essentially independent of N . However, the IC(0) approach is far

simpler to implement, and is widely supported on standard platforms. Furthermore, it

does not require any a priori knowledge of the location of the layers, and so could be

easily applied, for example, to a problem featuring interior layers.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 14 31 65 139 292 626

10−2 8 17 39 85 188 405

10−4 3 5 10 19 41 83

10−6 3 5 9 17 34 69

10−8 3 5 9 17 34 67

10−10 3 5 9 17 34 67

10−12 3 5 9 17 34 67

Table 4.9: Iteration counts for IC(0)-preconditioned CG applied to Example 4.1.

To verify that the algorithm is not under-solving the linear system, in Table 4.10

we give the maximum pointwise error in the approximation U (k) to u, where we have

underlined the digits that agree with the discretization error, ‖u − UN‖. Arguably,

the algorithm is over-solving the system for small ε and some further efficiency may be

gained by refining the choice of K in (4.25).

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 6.17255e-03 1.55463e-03 3.90418e-04 9.76186e-005 2.44107e-05 6.10274e-06

10−2 6.36057e-02 1.70981e-02 4.35619e-03 1.09850e-03 2.74954e-04 6.87776e-05

10−4 9.03240e-02 3.77818e-02 1.43853e-02 4.96686e-03 1.64828e-03 5.61645e-04

10−6 9.08187e-02 3.82459e-02 1.46879e-02 5.10491e-03 1.69172e-03 5.37035e-04

10−8 9.08455e-02 3.82598e-02 1.47019e-02 5.11603e-03 1.69189e-03 5.37033e-04

10−10 9.08480e-02 3.82613e-02 1.47027e-02 5.11639e-03 1.69209e-03 5.37164e-04

10−12 9.08482e-02 3.82614e-02 1.47027e-02 5.11642e-03 1.69210e-03 5.37168e-04

Table 4.10: Errors corresponding to Table 4.9.

An optimally preconditioned matrix should have all its eigenvalues clustered around

1. To investigate how the matrices A, AD and AM differ from this ideal, in Figure 4.6
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below we give semi-log plots of the normalised spectrum (i.e., with the eigenvalues

ordered so that λi ≤ λi+1, we plot κi = λi/λ1 for i = 1, . . . , (N − 1)2; note that

κ = κ(N−1)2) for N = 64. When ε2 = 1 (left), the diagonal of A is constant, and

so the normalised spectra of A and AD are the same. The normalised spectrum of

AM is noticeably smaller. When ε is small (right) the normalised spectrum of the

unpreconditioned matrix is much larger than the other two.
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1010
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Figure 4.6: Normalized spectra of A, AD and AM when N = 26, ε2 = 1 (left), and ε2 = 10−12

(right).

To compare the two preconditioned matrices more closely, in Figure 4.7 we show

the normalised spectra of just AD and AM . In spite of the large aspect ratio for the

mesh rectangles when ε is small (right) we see that the normalised spectra are smaller,

and more uniform.
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Figure 4.7: Normalized spectra of AD and AM when N = 26, ε2 = 1 (left), and ε2 = 10−12

(right).

In Figure 4.8, we show the 2-norm of the residual at each iteration of unprecondi-

tioned CG, and the diagonal and IC(0) preconditioned algorithms, taking N = 64 and

ε2 = 10−6. From this, we can observe the slow and erratic convergence of unprecon-
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ditioned CG. Although both preconditioners lead to fast and smooth convergence, the

IC(0) is dramatically superior to diagonal preconditioning.
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Figure 4.8: Residual reduction for N = 26 and ε2 = 10−6.

We conclude with results of experiments for Example 4.2, which has an edge layer,

but no corner layer. As mentioned, diagonal preconditioning leads to the same bound

for κ2(AD) as in the two-layer case. In practice, the number of iterations required are

only slightly less than as reported in Table 4.8. In contrast, Table 4.11 shows that very

few iterations are required when the IC(0)-preconditioned CG algorithm is applied to

the discretization on ΩN,N
Q (compare with Table 4.9). This agrees with the theoretical

result in Corollary 4.2.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 15 31 65 138 295 619

10−2 8 17 38 85 186 401

10−4 2 2 4 9 18 38

10−6 1 2 2 3 4 6

10−8 1 1 1 2 2 2

10−10 1 1 1 1 2 2

10−12 1 1 1 1 1 2

Table 4.11: Iteration counts for IC(0)-preconditioned CG applied to Example 4.2.

4.7 Conclusion

The numerical solution of linear systems arising from the discretization of singularly

perturbed problems is not trivial: as shown in [72] even the performance of direct

solvers degrades for small ε. Therefore, iterative schemes are needed. However, the
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fitted meshes used to resolve boundary layers lead to linear systems that are poorly

conditioned when ε is small, and so a good preconditioner is even more important than

in the case when ε is O(1). We have proven that the diagonal and incomplete Cholesky

preconditions are good choices in the sense that they are robust with respect to ε. Our

numerical experiments demonstrate that they can be more efficient when ε is small,

compared to when ε = 1. Finally, when the problem features no corner layers, we have

shown that IC(0) is clearly the preconditioner of choice.

Arguably, however, when the corner layer is present, this scheme is suboptimal

when compared with a multigrid-based preconditioner. Therefore, the final major

component of this thesis will be the design and analysis of a multigrid-based boundary

layer preconditioner.
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Chapter 5

Boundary layer preconditioners for

finite element discretizations

applied to reaction-diffusion

problems

In this chapter we consider the iterative solution of linear systems of equations arising

from the discretization of singularly perturbed reaction-diffusion differential equations

by a finite element method. As we have previously discussed, discretizations on layer-

adapted meshes tend to lead to very ill-conditioned matrices. Therefore, careful design

of a suitable preconditioner is necessary in order to solve these linear systems in a way

that is robust, with respect to the perturbation parameter, and efficient. We propose a

boundary layer preconditioner for a one-dimensional problem, in the style of that used

for a finite difference method in [72]. We prove the optimality of this preconditioner, and

establish suitable stopping criteria. Numerical results are presented which demonstrate

that the ideas extend to problems in two dimensions.

The material in this chapter is based on: Scott MacLachlan, Niall Madden and

Thái Anh Nhan, Boundary layer preconditioners for finite element discretizations of

reaction-diffusion problems in one and two dimensions, in preparation.

5.1 Introduction

We consider the solution of linear systems of equations, by iterative methods, that

arise in the discretizations of the singularly perturbed reaction-diffusion differential
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equations (1.5) and (1.7) by finite element methods. For the completeness of this

chapter, we briefly recall the model problems in one and two dimensions:

−ε2u′′ + b(x)u = f(x), on ωx := (0, 1), u(0) = u(1) = 0, (5.1)

and

−ε2∆u+ b(x, y)u = f(x, y), on Ω := (0, 1)2, u(∂Ω) =0. (5.2)

For the analysis in this chapter, we will also assume that there are positive constants

β0 and β1 such that, at all points in ω̄x and Ω̄, we have 0 < β2
0 ≤ b ≤ β2

1 .

The present chapter is motivated and inspired by the ideas in [72], which proposed

and analyzed a robust boundary layer preconditioner for a finite difference discretization

of reaction-diffusion problems in one and two dimensions on layer-adapted meshes. We

wish to extend this approach to finite element discretizations. This presents a number

of challenges, in particular

(a) In a finite difference discretization, the zero-order term contributes only to the

diagonal entries of the system matrix. Away from boundaries, this term dominates,

and so the application of a diagonal preconditioner in this region is both natural

and easy to analyze. However, in the finite element method, the corresponding

term contributes nonzero off-diagonal terms to the system matrix, so the choice of

diagonal preconditioner for the interior region is not straightforward.

(b) For two-dimensional problems, the finite difference method has a five-point stencil,

whereas the finite element method has a nine-point stencil, again complicating the

method and its analysis.

(c) The condition number of the (unsymmetrised) linear systems yielded by finite

difference methods on boundary layer-adapted meshes for Problems (5.1) and (5.2)

is independent of ε (see [90, Remark 2]). In contrast, the condition number of the

finite element discretization depends badly on ε.

For these reasons, in this chapter we focus our analyses on the one-dimensional

problem in Section 5.2. We derive the estimate of the condition number of the finite

element discretization matrix on a boundary layer-adapted mesh in Section 5.2.1. The

analysis of the boundary layer preconditioner is given in Section 5.2.2. Section 5.2.3

contains the derivation of stopping criteria associated with the energy and maximum

norms. The results of numerical experiments showing the optimality of the scheme are

reported in Section 5.2.4.

In Section 5.3, we show how these ideas for the one-dimensional problem can be

extended to the two-dimensional case. The condition number estimate of the system
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matrix is given in Section 5.3.1. The design of a boundary layer preconditioner is

discussed in Section 5.3.2. Section 5.3.3 presents a stopping criterion and numerical

results. Finally, some concluding remarks are made in Section 5.4.

5.2 One-dimensional problems

We discretize (5.1) by a finite element method with linear elements, as described in

Section 1.6.2. That is, we seek to find u ∈ H1
0 (ωx) such that

Bε(u, v) := ε2(u′, v′) + (bu, v) = (f, v), for all v ∈ H1
0 (ωx).

In this chapter we use uN to denote the finite element solution to the problem (5.1).

Recall from Section 1.6.2, the energy norm is

‖u‖ε :=
√
ε2‖u′‖2

0 + β2
0‖u‖2

0.

Then, using standard finite element analysis arguments, one can show that the following

quasi-optimality result holds: there is a constant C, which is independent of ε, such

that

‖u− uN‖ε ≤ C‖u− vN‖ε, for all vN ∈ V N , (5.3)

where V N is the space of piecewise linear functions on the mesh ωNx . Therefore, the

error analysis is purely dependent on the approximation properties of the space V N ,

and it is sufficient to prove a bound for ‖uI − uN‖ε, where uI is the nodal interpolant

to the solution of problem (5.1) in V N .

Our main interest, however, is the resulting linear system coming from the above

finite element discretization. This system is symmetric positive definite and can be

written as

AuN = fN , (5.4)

where A = S +M ,

S =

[
−ε

2

hi

ε2

hi
+

ε2

hi+1

− ε2

hi+1

]
, (5.5a)

and

M =

[
hibi
6

hibi + hi+1bi+1

3

hi+1bi+1

6

]
, (5.5b)

using the same notation as in Section 1.4, i.e., hi = xi − xi−1, i = 1, . . . , N .

Numerous fitted meshes had been proposed for this problem, the most commonly

studied ones being the piecewise uniform mesh of Shishkin (see Section 1.7.1), and the

graded mesh of Bakhvalov (see Section 1.7.2). These meshes have been discussed at

length in Section 1.7, and so we do not repeat the details here. For the analysis later
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in this chapter, we denote the equidistant mesh width of the interior region of these

fitted meshes by hI , which is O(N−1) when ε� 1, and set

hmin = min
1≤i≤N

{hi}.

Throughout this chapter, we assume that ε ≤ N−1, which is usually the case of singu-

larly perturbed problems.

A unified treatment of Shishkin and Bakhvalov meshes, and related meshes, is given

by Linß [61]. In particular, in [61, §2.2], a mesh characterisation function is defined

that, for the problem and method considered here, is

ϑ
[p]
rd(ω

N
x ) := max

i=1,...,N

∫ xi

xi−1

(
1 + ε−1e−β0s/(pε) + ε−1e−β0(1−s)/(pε)) ds, (5.6)

where p is a parameter coming from the method and which depends on the formal order

of the scheme. The characterisation function is the crucial quantity in the following

approximation result.

Theorem 5.1 ([61, Theorem 6.2]). If uI denotes the piecewise linear interpolant of u on

an arbitrary mesh ωNx to the solution of (5.1), then there is a constant, C, independent

of ε, such that

‖u− uI‖ε ≤ C
(
ε1/2 + ϑ

[p]
rd(ω

N
x )
)
ϑ

[p]
rd(ω

N
x ).

Using this result, the convergence properties of a specially constructed mesh can be

established. For the Shishkin mesh, one can invoke (5.3), (5.6), and Theorem 5.1 to

show that

‖u− uN‖ε ≤ C
(
ε1/2N−1 lnN +N−2 ln2N). (5.7)

Based on this estimate, one might expect that, if ε� N−1, this bound would simplify

to N−2 ln2N . However, the ε1/2N−1 lnN term stems from first-order term in the energy

norm, and tends to dominate. To see this, let us consider the following example.

Example 5.1. We apply the finite element discretization to a one-dimensional reaction-

diffusion problem:

−ε2u′′ + u = ex, x ∈ ωx, u(0) = u(1) = 0. (5.8)

Table 5.1 shows computed errors, in the energy norm, by the finite element method

on a Shishkin mesh. This agrees with the error estimate (5.7). Note that, for small ε,

the error is O(ε1/2N−1 lnN).

For the Bakhvalov mesh, we have ϑ
[p]
rd(ω

N
x ) ≤ CN−1, and thus it follows that

‖u− uN‖ε ≤ C(ε1/2N−1 +N−2). (5.9)
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ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 3.7559e-03 1.8779e-03 9.3897e-04 4.6948e-04 2.3474e-04 1.1737e-04

10−2 1.4485e-02 7.2427e-03 3.6214e-03 1.8107e-03 9.0535e-04 4.5268e-04

10−4 1.7910e-02 1.0241e-02 5.7617e-03 3.2012e-03 1.7607e-03 9.6038e-04

10−6 5.6642e-03 3.2388e-03 1.8222e-03 1.0124e-03 5.5683e-04 3.0373e-04

10−8 1.7913e-03 1.0242e-03 5.7623e-04 3.2015e-04 1.7609e-04 9.6048e-05

10−10 5.6665e-04 3.2390e-04 1.8222e-04 1.0124e-04 5.5683e-05 3.0373e-05

10−12 1.7985e-04 1.0250e-04 5.7632e-05 3.2016e-05 1.7609e-05 9.6048e-06

Table 5.1: ‖u− uN‖ε with u defined in (5.8) approximated by a FEM on a Shishkin mesh.

Theoretical analysis of the finite element methods in the maximum norm is outside

the scope of this thesis. However, it is known that the method presented here is (almost)

second-order convergent pointwise. That is, if g∞(ωNx ) denotes the discretization error

in the maximum norm, then

g∞(ωNx ) =

CN−2 ln2N, ωNx is a Shishkin mesh,

CN−2, ωNx is a Bakhvalov mesh.
(5.10)

For maximum norm estimates of finite element methods for reaction-diffusion problems,

but on quasi-uniform meshes, see, e.g., [56, 98]. Related works for so-called balanced

norm may be found in [1, 76, 93, 99]. In particular, in [76] it is shown how to extend

certain results for balanced norms to the maximum norm. Table 5.2 shows the errors

in the maximum norm computed by the finite element method on a Shishkin mesh. It

clearly shows that the convergence is of O(N−2 ln2N), independently of ε.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 8.8508e-07 2.2127e-07 5.5319e-08 1.3834e-08 3.4744e-09 9.3232e-10

10−2 2.4960e-04 6.2399e-05 1.5598e-05 3.8996e-06 9.7489e-07 2.4372e-07

10−4 3.8474e-03 1.2533e-03 3.9601e-04 1.2215e-04 3.6952e-05 1.0994e-05

10−6 3.8483e-03 1.2536e-03 3.9610e-04 1.2218e-04 3.6961e-05 1.0997e-05

10−8 3.8483e-03 1.2536e-03 3.9610e-04 1.2218e-04 3.6961e-05 1.0997e-05

10−10 3.8483e-03 1.2536e-03 3.9610e-04 1.2218e-04 3.6961e-05 1.0997e-05

10−12 3.8483e-03 1.2536e-03 3.9610e-04 1.2218e-04 3.6961e-05 1.0997e-05

Table 5.2: ‖u− uN‖ωN
x

with u defined in (5.8) approximated by a FEM on a Shishkin mesh.

In next section, we propose and analyze a preconditioner for the linear system

(5.4) arising from the finite element solution of the one-dimensional reaction-diffusion

problem. As discussed above, special fitted meshes are required in order to resolve the

boundary layers. Therefore, we show in Section 5.2.1 that the condition number of the

matrix in (5.4) depends badly on ε. Consequently, an unpreconditioned iterative solver
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is not robust, in the sense that, as ε → 0, the number of iterations required increases

(see also the discussion in Chapter 4).

So our goal is to propose a block-structured preconditioner that is suitable for

layer-adapted meshes, which is motivated from the physical distribution of points in

the meshes, and which is optimal, in the sense of spectral equivalence.

5.2.1 Condition number estimate

In general, layer-adapted meshes have intervals of width O(N−1ε) near the boundaries.

As we now show, the condition number of the unpreconditioned discrete system arising

from the finite element discretization on such a mesh is unbounded as ε → 0. This is

similar to that of the unpreconditioned discrete system coming from the symmetrized

finite difference discretization on boundary layer adapted meshes (see Section 4.3).

Recall that the condition number of the matrix A, associated with the 2-norm, is

κ2(A) := ‖A‖2‖A−1‖2. By examining the entries of A as defined in (5.5a), (5.5b), and

applying Geršgorin’s Theorem, we easily see that

‖A‖2 = λmax ≤ (β2
1hI + 4ε2/hI) ≤ CN−1. (5.11)

In addition, we can bound the smallest eigenvalue of A, λmin, from below by Geršgorin’s

Theorem, giving

λmin ≥ min
i

{
hibi + hi+1bi+1

6

}
≥ β2

0hmin

3
. (5.12)

A combination of (5.11) and (5.12) implies the following estimate.

Theorem 5.2. Let A be the matrix associated with the linear system (5.4). Then,

there is a constant C, independent of both N and ε, such that

κ2(A) ≤ C/(Nhmin).

In practice, one finds that this bound is quite sharp for small ε, and the associated

constant is O(1). Therefore, as ε→ 0 the system (5.4) is ill-conditioned. In particular,

for the Shishkin mesh, hmin ∼ ε lnN/(Nβ), implying that κ2(A) ≤ C(ε lnN)−1. In

Table 5.3, it is shown that this bound is sharp, for sufficiently small ε, with C ≈ 3. For

the Bakhvalov mesh, hmin ∼ ε/(Nβ), and so κ2(A) ≤ Cε−1. As shown in Table 5.4,

this bound is also sharp, with C ≈ 1.

Remark 5.1 (Bound on κ∞(A)). The condition numbers associated with the maximum-

norm of the linear system obtained by unsymmetrised finite difference discretizations

of problems (5.1) and (5.2) are independent of ε (see [90, Remark 2]). In contrast,
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ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 1.16e+02 4.64e+02 1.85e+03 7.42e+03 2.97e+04 1.19e+05

10−2 1.04e+01 4.07e+01 1.62e+02 6.47e+02 2.59e+03 1.03e+04

10−4 1.54e+01 2.07e+01 5.82e+01 1.72e+02 5.30e+02 1.68e+03

10−6 1.59e+02 1.35e+02 1.16e+02 1.72e+02 5.30e+02 1.68e+03

10−8 1.59e+03 1.35e+03 1.16e+03 1.01e+03 8.94e+02 1.68e+03

10−10 1.59e+04 1.36e+04 1.17e+04 1.01e+04 8.95e+03 7.98e+03

10−12 1.59e+05 1.36e+05 1.17e+05 1.01e+05 8.95e+04 7.98e+04

Table 5.3: κ2(A) of the problem (5.1) discretized by a FEM on a Shishkin mesh.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 1.16e+02 4.64e+02 1.85e+03 7.42e+03 2.97e+04 1.19e+05

10−2 1.04e+01 4.36e+01 1.86e+02 7.67e+02 3.12e+03 1.26e+04

10−4 1.06e+01 2.80e+01 1.19e+02 4.92e+02 2.00e+03 8.07e+03

10−6 1.23e+02 1.22e+02 1.22e+02 4.92e+02 2.00e+03 8.07e+03

10−8 1.26e+03 1.25e+03 1.25e+03 1.25e+03 2.00e+03 8.07e+03

10−10 1.26e+04 1.25e+04 1.25e+04 1.25e+04 1.25e+04 1.25e+04

10−12 1.26e+05 1.25e+05 1.25e+05 1.25e+05 1.25e+05 1.25e+05

Table 5.4: κ2(A) of the problem (5.1) discretized by a FEM on a Bakhvalov mesh.

the condition numbers of these linear systems arising from finite element discretiza-

tions are dependent on ε. To see this, by direct inspection of the entries of A, we get

‖A‖ ≤ CN−1. We next want to give an upper bound for ‖A−1‖. The argument used

in [72] relies on A being an M-matrix, which is not the case here. Nevertheless, we can

still bound ‖A−1‖ by exploiting the diagonal dominance property and using the Varah’s

Theorem (see Lemma 4.3). Then, for the matrix A as defined in (5.4), we easily see

that

α = min
i

{
hibi + hi+1bi+1

6

}
≥ β2

0hmin

3
.

It follows then that

‖A−1‖ ≤ 3/(β2
0hmin). (5.13)

Hence, the following estimates hold true

κ∞(A) := ‖A‖‖A−1‖ ≤
{
C(ε lnN)−1, ωNx is a Shishkin mesh,

Cε−1, ωNx is a Bakhvalov mesh.

5.2.2 Boundary layer preconditioners

The difficulties associated with solving (5.4) arise from the transition from a mesh that

is very fine in the region close to the boundary, to one that is course and uniform in

88



5.2. 1D PROBLEMS CHAPTER 5. BOUNDARY LAYER PRECONDITIONER

the interior. The scaling of the problems in these regions is very different, and so it

is natural to precondition them differently. Close to the boundaries, the linear system

resembles that of a classical problem (i.e., one that is not singularly perturbed), and

so it is amenable to solution using standard techniques, such as multigrid methods. In

the interior, the entries are dominated by the contribution from the reaction term, so

we employ a diagonal scaling in this region.

Motivated by the ideas in [72], we partition the mesh into two pieces:

• the boundary region including the end points of the left and right layer regions,

ωNB := ωNx ∩ ([0, τx] ∪ [1 − τx, 1]), where the subscript B denotes the boundary

region, and

• the interior (not including the transition points), ωNI := ωNx \ωNB , where the sub-

script I denotes the interior region.

Then, the re-ordered mesh is denoted by ωN := [ωNB ωNI ]. This ordering is also used to

partition the matrix A as

A =

(
ABB ABI
AIB AII

)
. (5.14)

As we explain below, the matrix AII may be approximated, in the spectral sense, by a

suitably chosen diagonal matrix. Furthermore, the submatrices ABI and AIB contain

only two nonzero entries each, and make only a very modest contribution to the system.

Following from these observations, we approximate A in the following way. Recall the

mass matrix, M , defined in (5.5b). Let

DII = mdiag(MII), (5.15)

where m is a positive parameter whose choice depends on the analysis. Define

AD =

(
ABB 0

0 DII

)
. (5.16)

Recall from Section 5.1 that we have assumed that 0 < β2
0 ≤ b(x) ≤ β2

1 for all

x ∈ [0, 1]. Let

δh = (ε/(hIβ0))2 ,

and also set

γ :=
β2

1

β2
0 + β2

1

. (5.17)

Since we are interested in the case where ε� 1, we also have that δh � 1.
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Theorem 5.3. Let A by the system matrix in (5.4) for the finite element solution on

a layer adapted mesh, and let AD be as defined in (5.16). Let m be the parameter in

(5.15) and q be any number such that γq/2 < m < q/2. Then, for all vectors V ,(
θq −

3

m

√
2γδh −

9

m
δ2
h

)
V TADV ≤ V TAV ≤

(
1 +

3

2m
+

6

m
δh +

9

m
δ2
h

)
V TADV,

(5.18)

where

θq = min

{
1− γq

2m
,

1

2m
− 1

q

}
> 0.

Proof. In the same way that we partitioned ωN = [ωNB ωNI ], we partition a generic

vector V as V = [VB VI ]
T , and note that

V TAV T = V T
B ABBVB + 2V T

B ABIVI + V T
I AIIVI ,

and

V TADV
T = V T

B ABBVB + V T
I DIIVI .

Therefore, we require bounds for V T
I AIIVI and V T

B ABIVI .

Firstly, to bound V T
I AIIVI , we easily see that

1

2m
V T
I DIIVI ≤ V T

I AIIVI , (5.19)

since V T
I

(
AII −

1

2m
DII

)
VI ≥ 0 for all VI .

Since A = S + M , the matrices S and M can be partitioned in the same way

as (5.14), and so AII = SII + MII . By Geršgorin’s Theorem, SII can be bounded,

in the sense of spectral equivalence, by the diagonal matrix whose nonzero entries are

(4ε2/hI). Also,
4ε2

hI
=

4ε2hIβ
2
0

h2
Iβ

2
0

≤ δh
6

m

mhI(bi + bi+1)

3
.

So, for any VI ,

V T
I SIIVI ≤ δh

6

m
V T
I DIIVI .

By Geršgorin’s Theorem again, MII can be bounded by the diagonal matrix whose

entries are
hI(bi + bi+1)

2
=

3

2m

(
mhI(bi + bi+1)

3

)
.

Hence,

V T
I MIIVI ≤

3

2m
V T
I DIIVI .

Thus, combing this with (5.19), we get that

1

2m
V T
I DIIVI ≤ V T

I AIIVI ≤
1

m

(
3

2
+ 6δh

)
V T
I DIIVI .
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We proceed to finding upper and lower bounds for V T
B ABIVI . SetDBB = mdiag(MBB).

By the Cauchy-Schwarz inequality,∣∣V T
B ABIVI

∣∣ ≤ ∥∥∥D−1/2
BB ABIVI

∥∥∥
2

∥∥∥D1/2
BBVB

∥∥∥
2
,

for any VB and VI . Now, since V T
BDBBVB ≤ 2mV T

B ABBVB for all VB,∣∣V T
B ABIVI

∣∣ ≤ √2m
∥∥∥D−1/2

BB ABIVI

∥∥∥
2

(
V T
B ABBVB

)1/2
, (5.20)

for any VB and VI .

To bound
∥∥∥D−1/2

BB ABIVI

∥∥∥
2
, we use that∥∥∥D−1/2

BB ABIVI

∥∥∥
2

=
∥∥∥D−1/2

BB (SBI +MBI)VI

∥∥∥
2
≤
∥∥∥D−1/2

BB SBIVI

∥∥∥
2

+
∥∥∥D−1/2

BB MBIVI

∥∥∥
2
.

There are only two nonzero entries in each of SBI and SIB. They are in the first

and last columns, and on different rows. So SIBD
−1
BBSBI has only two nonzero entries,

s1 :=
3ε4

m(hN/4bN/4 + hN/4+1bN/4+1)h2
N/4+1

,

and

s2 :=
3ε4

m(h3N/4b3N/4 + h3N/4+1b3N/4+1)h2
3N/4

,

which are the first and last entries on the diagonal, and with hN/4+1 = h3N/4 = hI .

Then, s1 and s2 can be bounded from above by

3ε4

h3
Imβ

2
0

=
9ε4

2m2h4
Iβ

4
0

2mhIβ
2
0

3
≤ δ2

h

9

2m2

mhI(bi+1 + bi+2)

3
,

for any i. Thus,

V T
I SIBD

−1
BBSBIVI ≤ δ2

h

9

2m2
V T
I DIIVI ,

and so, ∥∥∥D−1/2
BB SBIVI

∥∥∥
2
≤ δh

3

m
√

2

∥∥∥D1/2
II VI

∥∥∥
2
.

We use a similar argument to bound the term involving MBI . From the definition

of γ in (5.17), we see that 1/2 ≤ γ < 1. Also, because

bi+1

bi + bi+1

≤ bi+1

β2
0 + bi+1

≤ β2
1

β2
0 + β2

1

= γ,

it follows that bi+1 ≤ γ(bi + bi+1) for all i. Again we note that there are only two

nonzero entries in each of MBI and MIB, so that there are only two nonzero entries in

MIBD
−1
BBMBI , given by

m1 :=
3h2

N/4+1b
2
N/4+1

36m(hN/4bN/4 + hN/4+1bN/4+1)
,
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and

m2 :=
3h2

3N/4b
2
3N/4

36m(h3N/4bN/4 + h3N/4+1b3N/4+1)
.

Both m1 and m2 can be bounded from above by

hIbi+1

12m
≤ γ

4m2

mhI(bi+1 + bi+2)

3
, for i = N/4 + 1, 3N/4.

Thus,

V T
I MIBD

−1
BBMBIVI ≤

γ

4m2
V T
I DIIVI ,

and so, ∥∥∥D−1/2
BB MBIVI

∥∥∥
2
≤
√
γ

2m

∥∥∥D1/2
II VI

∥∥∥
2
.

Hence, ∥∥∥D−1/2
BB ABIVI

∥∥∥
2
≤
(

3

m
√

2
δh +

√
γ

2m

)∥∥∥D1/2
II VI

∥∥∥
2
.

Recalling (5.20), this gives that∣∣V T
B ABIVI

∣∣ ≤ √2m

(
3

m
√

2
δh +

√
γ

2m

)(
V T
I DIIVI

)1/2 (
V T
B ABBVB

)1/2
,

=
1√
m

(
3δh +

√
γ√
2

)(
V T
I DIIVI

)1/2 (
V T
B ABBVB

)1/2
,

for all VB and VI . Since

2ab ≤ a2/q + b2q, (5.21)

for any real a, b, and q > 0, we have

2
∣∣V T
B ABIVI

∣∣ ≤ 1

q
V T
I DIIVI +

q

2m

(
3
√

2δh +
√
γ
)2

V T
B ABBVB, (5.22)

for all VB and VI . Then, the lower bound for V TAV is

V TAV ≥ V T
B ABBVB − 2

∣∣V T
B ABIVI

∣∣+ V T
I AIIVI

≥ V T
B ABBVB −

1

q
V T
I DIIVI −

q

2m

(
3
√

2δh +
√
γ
)2

V T
B ABBVB

+
1

2m
V T
I DIIVI

≥
(

1− q

2m

(
3
√

2δh +
√
γ
)2
)
V T
B ABBVB +

(
1

2m
− 1

q

)
V T
I DIIVI

=
(

1− q

2m

(
18δ2

h + 6
√

2γδh + γ
))

V T
B ABBVB

+

(
1

2m
− 1

q

)
V T
I DIIVI

≥
(

min

{
1− γq

2m
,

1

2m
− 1

q

}
− 3

m

√
2γδh −

9

m
δ2
h

)
V TADV,

(5.23)

in which q is chosen such that
γq

2
< m <

q

2
to guarantee θq > 0 and maximize its

value.
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As for the corresponding upper bound, it is sufficient to choose q = 1 in (5.21),

then

V TAV ≤ V T
B ABBVB + 2

∣∣V T
B ABIVI

∣∣+ V T
I AIIVI

≤ V T
B ABBVB + V T

I DIIVI +
1

2m

(
3
√

2δh +
√
γ
)2

V T
B ABBVB

+
1

m

(
3

2
+ 6δh

)
V T
I DIIVI

=

(
1 +

γ

2m
+

3

m

√
2γδh +

9

m
δ2
h

)
V T
B ABBVB

+

[
1 +

3

2m
+

6

m
δh

]
V T
I DIIVI

≤
[
1 +

3

2m
+

6

m
δh +

9

m
δ2
h

]
V TADV.

(5.24)

Combining (5.23) and (5.24) completes the proof.

The maximum value of θq is achieved when

1− γq

2m
=

1

2m
− 1

q
.

This gives

m =
q(γq + 1)

2(q + 1)
.

Hence,

θq,max = 1− q + 1

2(γq + 1)
.

In the next corollary, we give a particular lower bound for (5.18) when the reaction

coefficient, b, is constant.

Corollary 5.1. When b in (5.1) is constant, and so γ = 1/2, and thus, the maximum

value of θq is achieved when

m =
q(q + 2)

4(q + 1)
.

Taking q = 1, this gives m = 3/8, and from (5.18), we then obtain the following(
1

3
− 8
√

2γδh − 24δ2
h

)
V TADV ≤ V TAV ≤

(
5 + 16δh + 24δ2

h

)
V TADV. (5.25)

Remark 5.2. We have now established that A is spectrally equivalent to AD, and so

it follows that AD is an excellent preconditioner for A, at least with respect to the

condition (P1) of being a good preconditioner (see Section 1.8.3). However, it does not

satisfy the condition (P2), since solving a system with ABB as the coefficient matrix has

the same computational complexity as one involving A. Nonetheless, this is a useful

intermediate result towards obtaining an optimal preconditioner. This is because ABB,
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unlike the full matrix A, resembles that coming from a classical diffusion-dominated

problem. There are many fast solvers for these problems, with multigrid methods being

the most important. Therefore, it is quite reasonable to replace ABB in AD with a

matrix that is spectrally equivalent to it, which we denote by MBB. We make the idea

precise in the following corollary.

Corollary 5.2. Under the assumptions of Theorem 5.3, if MBB is spectrally equivalent

to ABB, meaning that there exists constants c0 and c1 such that

c0V
T
BMBBVB ≤ V T

B ABBVB ≤ c1V
T
BMBBVB, for all VB,

then the matrix

AM =

(
MBB 0

0 DII

)
.

satisfies

C0V
TAMV ≤ V TAV ≤ C1V

TAMV,

for all V where

C1 = max

{
1 +

3

2m
+

6

m
δh, c1

(
1 +

γ

2m
+

3

m

√
2γδh +

9

m
δ2
h

)}
,

and

C0 = min

{
1

2m
− 1

q
, c0

(
1− q

2m

(
18δ2

h + 6
√

2γδh + γ
))}

.

5.2.3 Stopping criteria

Having constructed a boundary-layer preconditioner that is robust with respect to ε, we

need to derive suitable stopping criteria for its application to problems posed on various

layer-adapted meshes. The approach is similar in spirit to Section 4.6 (and thus, [72,

§4.6]) which was concerned with finite difference approximations and maximum norm

estimates. We now adapt that reasoning to the setting of finite element discretizations

and energy norm estimates.

As in Section 4.6, we require any stopping criterion to be feasible, in the sense of not

needing to compute a residual (say) that is comparable to machine epsilon. However,

as we now show, this may not be possible for an unpreconditioned problem for the

cases of interest, where ε � N−1. This motivates the analysis of the preconditioned

residual approach which, as our numerical experiments show, is effective.
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Stopping criterion associated with the energy norm

Recall that uN is the solution of the discrete problem (5.4). Let u(k) be the kth iterate

computed by the iterative procedure. Naturally, we wish to choose k so that u(k) is as

good an approximation to u as uN . That is, we would like

‖u− u(k)‖∗ ' ‖u− uN‖∗,

in some suitable norm. Since

‖u− u(k)‖∗ ≤ ‖u− uN‖∗ + ‖uN − u(k)‖∗,

this means finding u(k) such that

‖uN − u(k)‖∗ ≤ λ‖u− uN‖∗,

where λ is some moderately small positive constant, for example, λ = 0.01. We know

that, for example on the Shishkin mesh:

‖u− uN‖ε ≤ C(ε1/2N−1 lnN +N−2 ln2N).

Of course, in practice, uN is unknown, so we must estimate the solver error e(k) =

uN − u(k). This can be done with the residual

r(k) = b− Au(k) = b− A(uN − e(k)) = Ae(k),

giving

e(k) = A−1r(k).

Then,

‖e(k)‖ε = ‖e(k)‖A =
√

(e(k))TAe(k) =
√

(e(k))TATA−1Ae(k)

= ‖A−1/2r(k)‖2 ≤ ‖A−1/2‖2‖r(k)‖2 ≤ ‖A−1/2‖‖r(k)‖2.
(5.26)

This is because A is symmetric (and so is A−1), implying that ‖A‖2 ≤ ‖A‖. A1/2,

a principle square root of A, is also symmetric and positive definite with ‖A−1/2‖2 =

‖A−1‖. Recalling the bound for ‖A−1‖ in (5.13), the above calculation gives that,

‖e(k)‖A ≤
√

3‖r(k)‖2

β0

√
hmin

.

Let us denote the finite element discretization error the energy norm yielded by a

particular mesh as gε(ω
N
x ). Then, to ensure that this error is matched by the iterative

solver, we need

‖r(k)‖2 ≤
β0gε(ω

N
x )
√
hmin√

3
.
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In the context of the Shishkin and Bakhvalov meshes, this leads to

‖r(k)‖2 ≤

C(εN−3/2 ln3/2N + ε1/2N−5/2 ln5/2N), ωNx is a Shishkin mesh,

C(εN−3/2 + ε1/2N−5/2), ωNx is a Bakhvalov mesh.
(5.27)

Since we are interested in the case where ε is very small, this demonstrates that the

required residual reduction may not be feasible in a finite precision setting.

Instead, we shall use the standard stopping criterion for the preconditioned conju-

gate gradient algorithm. Let M be a good preconditioner for the matrix A in the sense

that MA ≈ I. Let

r̃(k) = Mr(k),

be the preconditioned residual. Then, the inner product of residual and preconditioned

residual can be used to estimate ‖e(k)‖A because(
r̃(k)
)T
r(k) =

(
e(k)
)T
AMAe(k) ≈ ‖e(k)‖2

A. (5.28)

Therefore, it is straightforward to see that the stopping criterion needed to guarantee

‖e(k)‖ε ≤ gε(ω
N
x ) is

√
(r̃(k))

T
r(k) ≤

C(ε1/2N−1 lnN +N−2 ln2N), ωNx is a Shishkin mesh,

C(ε1/2N−1 +N−2), ωNx is a Bakhvalov mesh.
(5.29)

Stopping criterion associated with the maximum norm

To derive a suitable stopping criterion associated with the maximum norm, we make use

of the standard stopping criterion for preconditioned conjugate gradient as discussed

in [72, §4.6]. We use
1√
n
‖e(k)‖2 ≤ ‖e(k)‖ ≤ ‖e(k)‖2,

for vectors of length n. We make an assumption similar to that of [72, §4.6], i.e., the

error in the maximum norm can be approximated by that in the 2-norm,

‖e(k)‖ ≈ c√
n
‖e(k)‖2 ≤

c√
n
‖A−1/2‖2‖e(k)‖A,

with n ≈ N for the one-dimensional problem (5.1). Since A−1 is symmetric, we have

‖A−1‖2 ≤ ‖A−1‖. From (5.13), it is easy to see that ‖A−1/2‖2 ≤
√

3/(β
√
hmin). Then,

we get ‖A−1/2‖2 ≤
√

3/(β0

√
hmin) ≈ 1/(β0

√
hmin). Thus, we have

‖e(k)‖ ≈ c√
n
‖e(k)‖2 ≤

c√
N
‖A−1/2‖2‖e(k)‖A ≤

c√
N

1

β0

√
hmin

‖e(k)‖A.
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Hence, up to the assumption relating ‖e(k)‖ and ‖e(k)‖2, invoking (5.28), the stopping

criterion to guarantee ‖e(k)‖ ≤ g∞(ωNx ) is given by√
(r̃(k))

T
r(k) ≤ C

β0

√
Nhmin

c
g∞(ωNx )

=

Cε1/2N−2 ln5/2N, ωNx is a Shishkin mesh,

Cε1/2N−2, ωNx is a Bakhvalov mesh,

(5.30)

where we have used g∞(ωNx ) as given in (5.10).

It should be noted that both stopping criteria (5.29) and (5.30) are dependent of

ε. However, where the ε-dependency of the former comes from the error bound (5.7)

and (5.9), that of the latter comes from the fact that hmin is O(εN−1).

5.2.4 Numerical results

Implementation

We will implement the boundary layer preconditioner as part of a CG solver. So, we

briefly recap the preconditioned CG algorithm in order to carefully illustrate the use

of the boundary layer preconditioner, as well as the role of a multigrid algorithm in its

implementation. Suppose that M is a preconditioner. Then, the preconditioned CG

can be written as in Algorithm 5.1 (see, e.g., [26, Alg. 6.12]).

Algorithm 5.1 Preconditioned Conjugate Gradient algorithm:

k = 0;x0 = 0; r0 = b; y0 = M−1r0; p1 = y0

repeat

k = k + 1

z = Apk

νk = (yTk−1rk−1)/(pTk z)

xk = xk−1 + νkpk

rk = rk−1 − νkz
yk = M−1rk

µk+1 = (yTk rk)/(y
T
k−1rk−1)

pk+1 = yk + µk+1pk

until stopping criterion is reached

It is worth mentioning that we do not actually form the inverse of the precondi-

tioner M in the procedures y0 = M−1r0 (line 1), and yk = M−1rk (line 7), within

Algorithm 5.1. Instead, we solve the residual equations My0 = r0, and Myk = rk,
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respectively. If M happens to diagonal, this is easily done. If M comes from an

IC(0) preconditioner, then it just involves solving two triangular systems by back-

substitutions. More generally, however, yk = M−1rk can be interpreted as a call to a

subroutine that returns an approximate solution to yk = A−1rk. Where this routine is

based on a multigrid method, the algorithm is called multigrid preconditioned CG, see,

e.g., [44, §12.1]. In our case, M = AD is the block matrix

AD =

(
ABB 0

0 DII

)
.

Due to this block nature, the components of the system can be solved independently.

The interior component, with the system matrix DII , is easily solved by a diagonal

solver since it is inexpensive to invert a diagonal matrix. To verify Corollary 5.1, we

apply a direct solver to solve the boundary component involving the matrix ABB. We

call this approach boundary layer preconditioned CG (BLPCG) in which ABB is used

as a preconditioner.

The BLPCG algorithm requires the use of a direct solver. Recalling Remark 5.2,

Corollary 5.2 is verified when we replace ABB by a spectrally equivalent matrix MBB.

In this implementation, we apply a (geometric) multigrid preconditioner to solve the

boundary component of the residual systems. We call this approach multigrid boundary

layer preconditioned CG (MG-BLPCG).

Results for unpreconditioned CG

We begin by studying the application of unpreconditioned CG to solve the linear sys-

tem (5.4) which comes from the finite element discretization of Example 5.1 applied

on a Shishkin mesh. Since the stopping criteria discussed in Section 5.2.3 only make

sense if a good preconditioner is used, we terminate the unpreconditioned CG compu-

tation if ‖e(k)‖ is less than discretization accuracy multiplied by a user-chosen constant

λ = 0.01, or 3,000 iterations are reached. Table 5.5 shows the iteration counts for

the unpreconditioned CG applied to Example 5.1. It can be seen that, for a fixed N ,

the iteration counts depend badly on ε. For example, when N = 210, the number of

iterations required for ε2 = 10−8 is 146, but it increases up to 470 for ε2 = 10−12. This

agrees with Theorem 5.2 where the condition number is proportional to (ε lnN)−1 on

a Shishkin mesh.

Results for BLPCG

As discussed above, in the light of verifying Corollary 5.1, we now apply the boundary

layer preconditioner, AD, to Algorithm 5.1. Our boundary layer preconditioner is
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ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 126 253 508 1019 2041 3000

10−2 96 208 445 933 1931 3000

10−4 22 43 86 173 348 701

10−6 22 40 78 151 304 615

10−8 57 69 73 146 291 575

10−10 80 138 191 223 272 549

10−12 78 159 296 470 654 730

Table 5.5: Iteration counts for unpreconditioned CG.

applicable only when ε is sufficiently small that the boundary layers actually exist.

Therefore, we only report results for cases where δh is small enough for this to happen.

In the following numerical experiments, we take m = 3/8 to form the preconditioner

AD, and report results only when δh ≤ 0.1, which is consistent with the spectral

equivalence bounds in Theorem 5.3, and Corollary 5.1. Table 5.6 shows the iteration

counts for the BLPCG, where the stopping criterion (5.29) associated with the energy

norm is used with C = 0.4. It clearly shows the number of iterations is reduced

significantly, compared to Table 5.5. More importantly, the iteration counts are robust

with respect to ε. The iteration counts increase only slightly when ε is small. This is

acceptable since the error bound, in the energy norm, is ε-dependent. Furthermore, as

expected from a spectrally equivalent preconditioner, the iterations counts are optimal

with respect to N . This is contrast to results in Theorems 4.2 and 4.4 where the

estimates are dependent of N (see also corresponding Tables 4.3 and 4.4).

The corresponding errors in the energy norm are shown in Table 5.7, where we

recover the accuracy of Table 5.1 to at least third decimal digit. This also verifies that

the stopping criterion given in (5.29) is sharp.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

10−6 8 8 7 – – –

10−8 9 9 9 9 9 8

10−10 10 10 10 10 10 11

10−12 10 11 11 11 11 12

Table 5.6: Iteration counts for BLPCG, using the energy norm stopping criterion.

In Table 5.8 we report the iteration counts for the BLPCG that yields the computed

error in the maximum norm in Table 5.9, where we take C to be 0.5 in (5.30). For a fixed

N , we observe only a slight increase in the number of iterations when ε becomes small.
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ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

10−6 5.6658e-03 3.2393e-03 1.8223e-03 – – –

10−8 1.7917e-03 1.0246e-03 5.7660e-04 3.2043e-04 1.7621e-04 9.6152e-05

10−10 5.6676e-04 3.2400e-04 1.8231e-04 1.0132e-04 5.5754e-05 3.0377e-05

10−12 1.8011e-04 1.0252e-04 5.7651e-05 3.2034e-05 1.7625e-05 9.6058e-06

Table 5.7: ‖u− uN‖ε by BLPCG.

This is because the maximum norm stopping criterion given in (5.30) is ε-dependent.

Furthermore, the BLPCG algorithm requires a few more iterations compared to the

corresponding iteration counts for the energy norm. This may be because, in this norm,

we are over-solving: Table 5.9 agrees with Table 5.2 to almost all reported digits. The

estimate leading to (5.30) is predicted on the assumption relation ‖e(k)‖2 and ‖e(k)‖. In

contrast, the corresponding criterion of the energy norm bound has no such assumption,

and so is sharper.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

10−6 10 10 8 – – –

10−8 11 11 12 12 12 11

10−10 11 12 13 13 14 14

10−12 12 13 13 14 15 15

Table 5.8: Iteration counts for BLPCG, using the maximum norm stopping criterion.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

10−6 3.8493e-03 1.2537e-03 3.9616e-04 – – –

10−8 3.8502e-03 1.2545e-03 3.9615e-04 1.2220e-04 3.6963e-05 1.0997e-05

10−10 3.8669e-03 1.2548e-03 3.9617e-04 1.2221e-04 3.6963e-05 1.0997e-05

10−12 3.8728e-03 1.2552e-03 3.9675e-04 1.2222e-04 3.6964e-05 1.0998e-05

Table 5.9: ‖u− uN‖ωN
x

by BLPCG.

Results for MG-BLPCG

We now consider into a more realistic setting where, instead of resolving the component

of the system involving ABB, a multigrid-based solver is used. High frequency compo-

nents of errors are damped using the Jacobi or Gauss-Seidel smoothers. Low frequency
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components of errors are resolved by projecting to a lower-dimensional space, and ap-

plying a direct solver, or by applying multigrid methods recursively. Such multigrid

algorithms can be used as solvers, or as preconditioners as described in Remark 5.2.

However, they are best suited to diffusion-dominated problems: they are not effective

on highly isotropic meshes, and too computationally expensive to use in regions where

a diagonal preconditioner would suffice. For more details of multigrid methods, we

refer the reader to textbooks, [9, 108, 116].

In this section, we focus on the use of multigrid as a preconditioner to verify Corol-

lary 5.2. Recall that when δh > 0.1, the boundary layers are not developed, and the

problem is effectively diffusion-dominated. In this case we use multigrid to precondi-

tion the whole system (i.e., we do not decompose into boundary and interior regions).

When δh ≤ 0.1, we employ a multigrid V-cycle, expressed as MBB, to efficiently solve

the boundary component. For the interior component where our preconditioner is di-

agonal, we simply apply a diagonal solver. Our multigrid implementation is based on

the description of [9, Chapter 3]. We use three Gauss-Seidel sweeps (see Section 1.8.2)

as our smoother. As soon as the number of grids in the restriction process reaches 8,

we apply a direct solver and start the projection process.

Table 5.10 shows the iteration counts for the algorithm, where we underlined the

counts for the cases when δh > 0.1. For a fixed ε, we observe the optimality of the

method: iteration counts are unchanged as N increases. For δh ≤ 0.1, we use the

MG-BLPCG algorithm, invoking the stopping criterion (5.29) with C = 0.4 (see the

computed error in Table 5.11). In this case, the iteration counts also are steady and

show only very small dependency on both N and ε. The iteration counts are far less

than that of Table 5.5. More importantly, they are robust with respect to ε and optimal

in N . To verify that the algorithm is not under-solving the linear system, in Table 5.11

we underline the digits that agree with the discretization error, ‖u− uN‖ε.

ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 3 3 3 3 3 3

10−2 3 3 3 3 3 3

10−4 2 2 2 2 2 2

10−6 8 8 7 3 3 3

10−8 9 9 10 10 10 9

10−10 10 10 10 11 11 11

10−12 11 11 11 11 12 12

Table 5.10: Iteration counts for MG-BLPCG, using the energy norm stopping criterion.
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ε2 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

1 3.7559e-03 1.8779e-03 9.3897e-04 4.6948e-04 2.3474e-04 1.1737e-04

10−2 1.4485e-02 7.2427e-03 3.6214e-03 1.8107e-03 9.0535e-04 4.5268e-04

10−4 1.7910e-02 1.0241e-02 5.7618e-03 3.2013e-03 1.7608e-03 9.6050e-04

10−6 5.6658e-03 3.2393e-03 1.8223e-03 1.0124e-03 5.5685e-04 3.0375e-04

10−8 1.7917e-03 1.0246e-03 5.7626e-04 3.2017e-04 1.7609e-04 9.6054e-05

10−10 5.6676e-04 3.2400e-04 1.8231e-04 1.0125e-04 5.5689e-05 3.0378e-05

10−12 1.7988e-04 1.0252e-04 5.7651e-05 3.2034e-05 1.7610e-05 9.6059e-06

Table 5.11: ‖u− uN‖ε by MG-BLPCG.

5.3 Two-dimensional problems

We now turn to a finite element discretization of the two-dimensional reaction-diffusion

problem (5.2) on a tensor product mesh with bilinear elements. As usual, let ωNx and

ωNy be arbitrary meshes, each with N intervals on [0, 1]. Set ΩN,N = {(xi, yj)}Ni,j=0 to

be the Cartesian product of ωNx and ωNy . For any fixed ε, the discretization of −ε2∆u

is straightforward; in order to avoid issues of quadrature in evaluating the weighted

finite element mass matrix entries, we assume that b is approximated as a piecewise

constant on each element, writing bi,j = b(xi+1/2, yj+1/2), for xi+1/2 = (xi +xi+1)/2 and

yj+1/2 = (yj+yj+1)/2. The matrix decomposes into three terms, A = ε2(S(x)+S(y))+M ,

whose stencils are

S(x) =


− kj

6hi−1

kj
6hi−1

+
kj
6hi

− kj
6hi

−kj + kj−1

3hi−1

kj + kj−1

3hi−1
+
kj + kj−1

3hi
−kj + kj−1

3hi

− kj−1

6hi−1

kj−1

6hi−1
+
kj−1

6hi
−kj−1

6hi

 ,

S(y) =


−hi−1

6kj
−hi + hi−1

3kj
− hi

6kj
hi−1

6kj
+

hi−1

6kj−1

hi + hi−1

3kj
+
hi + hi−1

3kj−1

hi
6kj

+
hi

6kj−1

− hi−1

6kj−1
−hi + hi−1

3kj−1
− hi

6kj−1

 ,
and

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 . (5.31)

where
m11 =

hi−1kjbi−1,j

36
, m12 =

kj (hi−1bi−1,j + hibi,j)

18
, m13 =

hikjbi,j
36

,

m21 =
hi−1 (kjbi−1,j + kj−1bi−1,j−1)

18
, m23 =

hi (kjbi,j + kj−1bi,j−1)

18
,
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m22 =
hi−1 (kjbi−1,j + kj−1bi−1,j−1) + hi (kjbi,j + kj−1bi,j−1)

9
,

and

m31 =
hi−1kj−1bi−1,j−1

36
, m32 =

kj−1 (hi−1bi−1,j−1 + hibi,j−1)

18
, m33 =

hikj−1bi,j−1

36
.

The error analysis of reaction-diffusion problems in two dimensions on a Shishkin

mesh can be found in, e.g., [70] and also [96, pages 404–406]. They prove that there

exists a constant independent of both ε and N such that

‖u− uN‖ε ≤ C(ε1/2N−1 lnN +N−2). (5.32)

5.3.1 Condition number estimate

As with the one-dimensional reaction-diffusion problem, we will show that the linear

system of the two-dimensional problem (5.2) is ill-conditioned, when the problem is

discretized by the finite element method on boundary layer-adapted meshes.

First, when ε� 1, by Geršgorin’s Theorem, it is easy to show that

‖A‖2 ≤ CN−2. (5.33)

It is more difficult to find the lower bound for λmin (or, equivalently, upper bound

for ‖A−1‖2). This is because unlike the one-dimensional case, A is not diagonally

dominant. In order to use Geršgorin’s Theorem, we will construct an intermediate

symmetric positive definite matrix Ã so that V T ÃV ≤ V TAV for all V , where we can

easily bound ‖Ã−1‖2. To bound ‖A−1‖2, we use that

‖A−1‖2 ≤ ‖Ã−1‖2.

This can be explained as follows. Since V T ÃV ≤ V TAV , then

λ̃min = min
V

V T ÃV

V TV
≤ min

V

V TAV

V TV
= λmin,

where λmin, and λ̃min denote the smallest eigenvalues of A and Ã, respectively. Both A

and Ã are symmetric positive definite, so

‖A−1‖2 =
1

λmin

≤ 1

λ̃min
= ‖Ã−1‖2.

One simple way to define Ã is to take Ã to be a diagonal matrix whose stencil is

given below

Ã =

0 0 0

0 ã 0

0 0 0

 .
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where

ã = m22 − (m11 +m12 +m13 +m21 +m23 +m31 +m32 +m33)

=
hi−1 (kjbi−1,j + kj−1bi−1,j−1) + hi (kjbi,j + kj−1bi,j−1)

36
.

Then, we can see that V T (A − Ã)V ≥ 0, so V T ÃV ≤ V TAV by the definition of Ã.

For the matrix Ã, by Geršgorin’s Theorem, we easily see that

λ̃min ≥ min
i

{
hi−1 (kjbi−1,j + kj−1bi−1,j−1) + hi (kjbi,j + kj−1bi,j−1)

36

}
≥ β2

0h
2
min

9
.

It follows then that

‖A−1‖2 ≤ ‖Ã−1‖2 ≤ 9/(β2
0h

2
min). (5.34)

Combining (5.33) and (5.34), we obtain

κ2(A) ≤

Cε−2 ln−2N, ΩN,N is a Shishkin mesh,

Cε−2, ΩN,N is a Bakhvalov mesh.
(5.35)

Table 5.12 gives computed values of κ2(A), and shows that the estimate (5.35) is sharp

for the Shishkin mesh with the constant C ≈ 0.5. (We do not include the results

for the Bakhvalov mesh, but they are consistent with (5.35), and we observe that

the corresponding C is approximately 0.01). In particular, for a fixed N , κ2(A) is

proportional to ε−2.

ε2 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

1 4.92e+01 1.97e+02 7.90e+02 3.16e+03 1.26e+04 5.06e+04

10−2 8.83e+00 3.45e+01 1.37e+02 5.48e+02 2.19e+03 8.76e+03

10−4 1.79e+02 2.08e+02 5.15e+02 1.34e+03 3.66e+03 1.03e+04

10−6 1.94e+04 1.44e+04 1.09e+04 1.44e+04 4.02e+04 1.16e+05

10−8 1.95e+06 1.45e+06 1.11e+06 8.62e+05 6.88e+05 1.17e+06

10−10 1.95e+08 1.45e+08 1.11e+08 8.63e+07 6.88e+07 5.60e+07

10−12 1.95e+10 1.45e+10 1.11e+10 8.63e+09 6.89e+09 5.60e+09

Table 5.12: κ2(A) of the problem (5.2) discretized by a FEM on a Shishkin mesh.

5.3.2 Boundary layer preconditioners

As in the finite difference case [72, §4.5], we partition A into a corner region, where the

mesh is highly resolved in both directions, the edge regions, where the mesh is highly

resolved in one direction but not both, and the interior region. Further, we assume
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that the mesh spacing (in both directions) in the non-resolved portions of the grid is

uniform, with spacing hI . Thus, we write

A =

 ACC ACE ACI
AEC AEE AEI
AIC AIE AII

 , (5.36)

where the subscripts C,E and I indicate the block structure of corners, edge layers,

and interior points, respectively. The preconditioner, AD, will be defined using the

same partitioning:

AD =

 ACC 0 0

0 TEE 0

0 0 DII

 . (5.37)

Here DII is the diagonal matrix with entries based on the scaled diagonal of the mass

matrix, i.e., DII = mdiag(MII). The tridiagonal matrix TEE is constructed so that it is

spectrally equivalent to AEE. The choice of TEE stems from the following observation.

Along the edges, rectangles are long and thin with one side of length O(εN−1), and

other side of length O(N−1). Therefore, depending on the orientation of the rectangles,

some entries in AEE are very small compared to others. A preconditioner can be formed

by either neglecting these terms, or aggregating them.

For our implementation, here we consider the approach that TEE is constructed by

summing the coefficients along the direction of the large mesh-width. Considering the

block associated with the edge along x-axis, we’ll decompose AEE = ε2(S
(x)
EE + S

(y)
EE) +

MEE as the (column-wise) tridiagonal terms in ε2S
(y)
EE and MEE to give

TEE =


0 −hIε

2

kj
+
hIkj(bi−1,j + bi,j)

12
0

0

(
hI
kj

+
hI
kj−1

)
ε2 +

hIkj(bi−1,j + bi,j) + hIkj−1(bi−1,j−1 + bi,j−1)

6
0

0 −hIε
2

kj−1
+
hIkj−1(bi−1,j−1 + bi,j−1)

12
0

 . (5.38)

5.3.3 Numerical results

In this section, we only focus on the computed error in the energy norm (rather than the

maximum norm) on a Shishkin mesh since it is the case for which rigorous analysis is

available. We will discuss performance of direct solvers, and demonstrate the difficulties

due to the presence of subnormal numbers, as analyzed in Chapter 3, but for the finite

difference discretization. Then, numerical results for our MG-BLPCG algorithm are

reported.

Example 5.2. We reconsider Example 4.1 in which the data is chosen so that

u(x, y) = x3(1 + y2) + sin(πx2) + cos(πy/2) + (1 + x+ y)
(
e−2x/ε + e−2y/ε

)
. (5.39)
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The errors in the energy norm by the finite element method on a Shishkin mesh are

given in Table 5.13. This agrees with the error estimate seen in (5.32).

ε2 N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

1 4.744032e-02 2.372374e-02 1.186232e-02 5.931216e-03 2.965615e-03 1.482808e-03

10−2 5.914034e-02 2.964357e-02 1.483101e-02 7.416662e-03 3.708476e-03 1.854256e-03

10−4 4.515961e-02 2.669820e-02 1.532879e-02 8.636071e-03 4.800213e-03 2.640514e-03

10−6 1.434196e-02 8.478054e-03 4.867799e-03 2.742527e-03 1.524410e-03 8.385593e-04

10−8 4.551908e-03 2.683635e-03 1.540147e-03 8.676500e-04 4.822686e-04 2.652895e-04

10−10 1.485438e-03 8.534980e-04 4.875788e-04 2.744442e-04 1.525197e-04 8.389624e-05

10−12 5.958432e-04 2.847030e-04 1.558249e-04 8.696908e-05 4.825158e-05 2.653275e-05

Table 5.13: ‖u− uN‖ε to Example 5.2 by a FEM on a Shishkin mesh.

Direct solvers

In order to make computations comparable between different discretizations, we use

the same setting as that of Section 3.1 and [72], i.e., the program was coded in C and

executed using a single core of a node with an AMD Opteron 2427, 2200 MHz processor

and 32Gb of RAM. We use CHOLMOD Version 1.7.1 to solve the sparse symmetric

positive definite linear systems; see [12, 22]. In Table 5.14, we show the time in seconds,

averaged over three runs, required to solve the linear systems that correspond to the

results in Table 5.13. For a fixed N , say N = 211, it is easily observed that the amount

of time required to solve the linear system depends quite badly on the perturbation

parameter.

ε2 N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

1 0.02 0.10 0.72 5.59 35.38 354.82

10−2 0.02 0.10 0.72 5.58 35.32 354.91

10−4 0.02 0.09 0.72 5.58 35.31 355.01

10−6 0.02 0.10 0.72 6.64 102.81 1263.85

10−8 0.01 0.10 0.72 6.26 100.23 1327.79

10−10 0.01 0.10 0.72 6.47 102.83 1349.70

10−12 0.01 0.10 0.72 6.83 106.47 1359.60

Table 5.14: Cholesky (CHOLMOD) solve times for linear systems generated by a FEM on a

Shishkin mesh.

If the results of Table 5.14 are compared with the corresponding results for the finite

difference method, as given in [72, Table 4.1] and also Table 3.3, two issues become

apparent:

106



5.3. 2D PROBLEMS CHAPTER 5. BOUNDARY LAYER PRECONDITIONER

1. When ε is O(1), the solve times for the finite element discretization are about

twice those for the finite difference discretization. This is because the finite

element discretization has a 9-point stencil rather than 5-point stencil of the

finite difference discretization, and so the system matrix has roughly twice the

number of nonzero entries.

2. For the finite difference case, the solve times, as shown in [72, Table 4.1] and Ta-

ble 3.3, initially increase, and then decrease when ε becomes smaller. In contrast,

the solve times for the finite element case increase initially, but then stabilize.

Although we do not offer an analysis of Cholesky factorization in this case, the

framework of Chapter 3 could be used to investigate this.

In Table 5.15, we give the number of nonzero entries in the Cholesky factors pro-

duced by CHOLMOD for a range of values of N and ε, as well as the number of

subnormal entries. This agrees completely with the results of Table 5.14. For small

ε and large N , we observe a significant increase in the number of subnormal numbers

arising in the Cholesky factors, as well as a decrease in the number of nonzero numbers,

due to underflow-zeros.

ε2 N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

1 102124 573163 3239141 17011189 63549693 304900961

0 0 0 0 0 0

10−2 102124 573163 3239141 17011189 63549693 304900961

0 0 0 0 0 0

10−4 102124 573163 3239141 17011189 63549693 304900961

0 0 0 0 0 0

10−6 102124 573163 3239141 17011189 63166392 300992678

0 0 0 0 74982 441440

10−8 102123 573163 3239141 17011189 63276869 293538627

0 0 0 0 69508 955686

10−10 102124 573162 3239134 17011179 63263046 293598199

0 0 0 0 71831 957773

10−12 100011 573160 3239136 17011171 63234561 293268356

0 0 0 0 75100 934242

Table 5.15: Number of nonzero entries (top) and subnormal numbers (bottom) in Cholesky

factors generated by CHOLMOD.
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Boundary layer preconditioned CG

We do not provide an analysis of the boundary layer preconditioner proposed in Sec-

tion 5.3.2. Because the matrix has a 9-point stencil, this would require very detailed

and intricate analysis. However, here we report results of the use of the boundary layer

preconditioner which show that, in practice, the approach is robust and very promising

when the perturbation parameter, ε, is small.

Based on the structure of the boundary layer preconditioner defined in (5.37), we

apply different solver strategies to efficiently solve the linear systems.

• For the corner region, we use the black box multigrid method (BoxMG) of

Dendy [2, 27], and see also [72, §4.4]. This is because the types of problem for

which BoxMG is optimized include those with 9-point stencil, and are diffusion-

dominated, as is the case in this region.

• For the edge region, TEE is a tridiagonal matrix. Therefore, we use the tridiagonal

solver algorithm DPTTRS [111] that is part of LAPACK library of subroutines for

solving problems in numerical linear algebra [4].

• A diagonal solver is used for the interior region since the corresponding precon-

ditioner in this region is a diagonal matrix.

In addition, to enhance the computational efficiency, we introduce three user-chosen

parameters, c1, c2, and c3 to appropriately scale the corner, edge, and interior compo-

nents, respectively, of the preconditioned residual r̃(k) in MG-BLPCG algorithm.

Arguments similar to those in Section 5.2.3 can be used to derive the stopping crite-

rion associated with the energy norm for the two-dimensional problems. In particular,

for a Shishkin mesh, the stopping criterion based on the preconditioned residual is√
(r̃(k))

T
r(k) ≤ C(ε1/2N−1 lnN +N−2). (5.40)

As in the analysis of Section 5.2.2, our boundary layer preconditioner is specially

designed for singularly perturbed problems. Thus, we only report results for cases

where δh ≤ 0.1. In Table 5.16, we give the CPU solve times of MG-BLPCG, together

with the iteration counts. The user-chosen parameters are c1 = 1, c2 = 0.7, and

c3 = 0.5, and the stopping criterion (5.40) is used. We emphasize that the iteration

counts are robust with respect to ε. Furthermore, the iteration counts are optimal with

respect to N , and only slightly depend on ε. This can be explained by the fact that

the stopping criterion (5.40) is ε-dependent.
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To verify that the MG-BLPCG algorithm is not under-solving, Table 5.17 shows

the corresponding errors where we underline the digits that agree with the error in

Table 5.13.

ε2 N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

10−6 0.00 (10) 0.02 (9) 0.09 (9) 0.44 (9) – –

10−8 0.00 (11) 0.02 (11) 0.11 (11) 0.51 (11) 3.00 (11) 17.74 (14)

10−10 0.01 (13) 0.02 (13) 0.13 (13) 0.60 (13) 3.48 (13) 16.60 (13)

10−12 0.01 (15) 0.02 (15) 0.15 (15) 0.68 (15) 3.95 (15) 18.85 (15)

Table 5.16: CPU times (and iteration counts) for MG-BLPCG, on a Shishkin mesh, averaged

over 3 runs.

ε2 N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

10−6 1.434198e-02 8.478082e-03 4.867803e-03 2.742530e-03 – –

10−8 4.551925e-03 2.683645e-03 1.540152e-03 8.676531e-04 4.822693e-04 2.652899e-04

10−10 1.485441e-03 8.534998e-04 4.875798e-04 2.744448e-04 1.525200e-04 8.389643e-05

10−12 5.958436e-04 2.847033e-04 1.558251e-04 8.696920e-05 4.825166e-05 2.653280e-05

Table 5.17: ‖u− uN‖ε by MG-BLPCG.

Table 5.16 clearly shows that, for a small ε and a large N , the MG-BLPCG al-

gorithm is far more efficient than the direct solver used to compute the results in

Table 5.14. For example, when N = 210 and ε2 ≤ 10−8, the MG-BLPCG is about 30

times faster. When N = 211, the algorithm is about 80 times faster. To compare the

solve times by CHOLMOD and the MG-BLPCG, in Figure 5.1, we plot the solve times

versus the degrees of freedom in the system. It can be seen that when the degrees

of freedom increase, the solve times taken by CHOLMOD (marked by circle) increase

more rapidly than that of MG-BLPCG. In fact, the solve times for CHOLMOD grow

quadratically with the degrees of freedom, whereas MG-BLPCG is almost linear.

5.4 Conclusions

We have considered the topic of solving the linear systems arising from the finite ele-

ment discretization of the singularly perturbed reaction-diffusion problems on bound-

ary layer-adapted meshes. The use of such highly nonuniform meshes result in the

unbounded growth of the system matrix condition number. We have derived the sharp

bounds on the condition number of the system matrix arising from a finite element dis-

cretization on any layer-adapted mesh. We have proposed and analyzed the boundary

layer preconditioner for a one-dimensional problem. We have also proposed an anal-

ogous preconditioner for a two-dimensional problem. Although we have not provided
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Figure 5.1: Semi-log plot of solve times taken by CHOlMOD and MG-BLPCG versus the

degrees of freedom.

an analysis of boundary layer preconditioners in this two-dimensional case, numerical

results have shown that it is robust with respect to ε, and very efficient. Appropriate

stopping criteria for both energy and maximum norms have been carefully derived.

Furthermore, our theoretical analysis of the boundary layer preconditioner applies to

any layer-adapted mesh. Although we have chosen to report results for the Shishkin

mesh, numerical experiments demonstrate that the method is successful when applied

to a Bakhvalov mesh.
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Chapter 6

Conclusions

Summary of the thesis

At the beginning of this project in September 2011, our primary goal was to investigate

and develop robust numerical algorithms that can efficiently solve linear systems coming

from finite difference and finite element discretizations applied to singularly perturbed

problems. This presents several challenges. Unlike the topic of designing and analyzing

ε-uniform numerical methods for singularly perturbed problems, which is very active,

the topic of solving the resulting linear systems, in a manner that is parameter robust,

is relatively new. Thus, in literature, there have been very few studies which focus on

solving these linear systems, particularly in the context of layer-adapted meshes. This

means, for example, that we have to establish very fundamental results, such as bounds

on the condition number of unpreconditioned systems.

The thesis has successfully achieved the key target of the project by providing a

detailed analysis of different strategies for solving linear systems of equations when

the singularly perturbed problems are discretized on layer-adapted meshes. We have

advanced the understanding of this topic, not only by showing the difficulties of solving

such systems either both direct or iterative solvers, but also by suggesting appropriate

strategies for improving the performance of iterative solvers.

More precisely, we have analyzed in detail a direct solver based on Cholesky factor-

ization for symmetric positive definite systems by providing estimates for the magni-

tude of fill-in entries in a given location in the factors. Based on this analysis, we can

determine the range of ε and N where the presence of the subnormal and underflow-

zero numbers is expected. This fully explains the question of how the computational

cost of solving a linear system coming from finite difference discretizations applied to

singularly perturbed problems is influenced by ε and N .
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For iterative solvers, we have analyzed the diagonal and incomplete Cholesky factor-

ization preconditioners for reaction-diffusion problems discretized by a finite difference

method. These preconditioners have been proven to be robust with respect to the

perturbation parameter. They are not, however, optimal in N . Therefore, we have

extended the ideas in [72] for spectrally equivalent preconditioners for finite difference

methods to finite element methods.

Although the main interest of this dissertation is designing and developing robust

strategies for solving linear systems of singularly perturbed problems, we have also

provided a new uniform convergence proof technique, which is based on the precon-

ditioning approach, for one-dimensional convection-diffusion problems on a Shishkin

mesh. A simple proof of pointwise uniform convergence (without preconditioning) of

one-dimensional reaction-diffusion problems has also been presented.

Further work

There are many possible extensions of the work of this thesis which can be considered

in the future. Of course, we do not aim to discuss all possibilities of further work

related to this thesis, rather we mention some directions which are inevitably personal

and reflect our own interests.

The preconditioning technique used in Chapter 2 has been extended to a Bakhvalov-

type mesh to prove ε-uniform convergence of a simple upwind scheme for one-dimensional

convection-diffusion problems [85]. It is even more interesting to see whether this ap-

proach can be applied to finite element discretization cases, or to higher-dimensional

problems. The major difference in finite element cases is that the error analysis does

not rely on truncation error estimates, rather the method itself. Nonetheless, this would

be very exciting, since it would establish new maximum norm results (rather than just

giving new analyses of existing results). To extend these results to higher-dimensional

problems, the main difficulty is to prove the stability after preconditioning.

The numerical results presented in Chapter 5 show that the performance of direct

solvers for the finite element case is actually worse than that of the finite difference.

Therefore, we would like to extend the analysis of Chapter 3 to the finite element dis-

cretization in which the primary difficulty is due to the complication of the 9-point

stencil. Furthermore, the analysis has provided a useful tool for estimating the differ-

ence between the full and incomplete Cholesky factors which can be exploited in other

direct solver-like approaches.

For convection-diffusion problems, on the other hand, direct solvers are based on

LU factorizations since the problems are not self-adjoint. Nonetheless, the approach
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of Chapter 3 could be carried over to this case, but it requires more detailed calcula-

tions because we have to compute both L and U , rather than just L as in Cholesky

factorizations.

The extension of the diagonal and incomplete Cholesky preconditioners for finite

difference discretizations on Shishkin meeshes in Chapter 4 to other types of layer-

adapted meshes is straightforward, but detailed computations are required where the

meshes are allowed to be graded in the layer regions. More interestingly, perhaps, the

analysis of the IC(0) preconditioner can be applied to IC(k) preconditioners. In the

notation of Chapter 3, IC(k) factors are formed by keeping all fill-in entries belonging

to L[p] in the Cholesky factors, where p is a positive integer satisfying p ≤ k (see,

e.g., [97, §10.3.3] for a detailed description of IC(k)). We expect IC(k) to be even more

efficient than IC(0). This is because the fill-in entries corresponding to different L[k]

are very distinct in magnitude (see Section 3.2) in the singularly perturbed regime: the

larger k we have; the better approximation we get. Similarly, the incomplete Cholesky

preconditioners with dropping tolerance, IC(µ), where µ denotes the dropping tolerance

in Cholesky factors, could also be studied in the framework of Chapters 3 and 4.

Our numerical results in Chapter 5 show that our proposed boundary layer precon-

ditioner is (almost) optimally efficient for two-dimensional problems. Proving that this

is the case would be an achievable, but nontrivial goal. The extension of the method

from two dimensions to three dimensions seems feasible in practice, but leads to nu-

merous mathematical questions. Firstly, the condition number of unpreconditioned

systems would have to be investigated. For example, we would like to know if the

conditioning of three-dimensional problems is proportional to ε−3. Secondly, since the

use of direct solvers are very limited for higher-dimensional problems due to the expo-

nential increase of computational cost, a preconditioned iterative scheme is alternative.

Our primary interest is the question of how to design a robust preconditioner in three-

dimensional case. Furthermore, we would also like to extend the idea of boundary layer

preconditioners to design similarly structured preconditioners in which they could be

robust and efficient for singularly perturbed problems discretized on different-shaped

domains, rather than the unit square.

Looking further to the future, there are plenty of other related directions and ap-

plications in numerical linear algebra that may be relevant to singularly perturbed

problems. Among the most obvious are domain decomposition approaches based on

Schwarz and Schur methods. The applications and analysis of a Schwarz domain de-

composition method on overlapping subdomains applied to a coupled system of one-

dimensional reaction-diffusion problems can be found in [103, 104], and extended to a

two-dimensional case in [54]. In this way, numerical solutions of some of subdomains

can be solved simultaneously and in parallel. These domain decomposition methods,
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which themselves are iterative, could be used as the basis for a robust preconditioner.

They also have the potential to lead to a different proof-strategy for the boundary layer

preconditioner of Chapter 5. This is because, similar to that decomposition, they sep-

arate the interior, boundary and edge layer regions where we can then apply suitable

proof techniques.

The analysis of Chapter 3 has addressed limitations of direct solvers for singularly

perturbed problems. Therefore, the search for new robust and fast direct solvers for

these problems is a need. The partitioned matrix associated with the regions of the

mesh suggests that solving the systems by a Schur complement method might be a rea-

sonable approach for direct solvers. The studies of fast direct solvers by Martisson et al.

(see, e.g., [41, 45]), which are based on the hierarchical construction of Schur comple-

ments, might be our starting point in this direction. Moreover, the Schur complement

technique is successfully used to construct the sweeping preconditioner [31]. The cru-

cial idea of this approach is to approximate the Schur complement matrix using moving

perfectly matched layers. These preconditioners have been applied to Helmholtz [88]

and Maxwell’s equations [31]. We are interested in applying this technique to singularly

perturbed problems in the near future.

The overall idea of complete and incomplete Cholesky factorizations is “approximate

factorization”. From that point of view, another avenue of investigation is Alternat-

ing Direction Implicit (ADI) techniques in which a time-dependent partial differential

equation can be split into the temporal and spatial components. The analysis of the

ADI for singularly perturbed problems can be found in, e.g., [21, 66]. For problems

that are two-dimensional in space, at each time step, ADI allows to consider further

dimension splitting into x- and y-directions. Therefore, we only need to solve tridiag-

onal systems of N unknowns, rather than a banded system of N2 unknowns. Thus,

from the view point of linear algebra, the methods could be used as preconditioners.

It is clear from the discussion of Section 1.9 that the topic of robust numerical

methods for singularly perturbed problems is an important and active area of research.

We hope that we have given the reader some ideas for potential mathematical investi-

gations of the complementary topic of robust linear solvers, for which there are many

interesting open questions.
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