
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-14T15:27:49Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Sindice.com: Weaving the open linked data

Author(s) Tummarello, Giovanni; Delbru, Renaud; Oren, Eyal

Publication
Date 2007

Publication
Information

Giovanni Tummarello, Renaud Delbru, Eyal Oren
"Sindice.com: Weaving the open linked data", Proceedings of
the International Semantic Web Conference (ISWC 2007),
2007.

Item record http://hdl.handle.net/10379/519

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Sindice.com: Weaving the Open Linked Data

Giovanni Tummarello, Renaud Delbru, and Eyal Oren

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland

Abstract. Developers of Semantic Web applications face a challenge with
respect to the decentralised publication model: where to find statements
about encountered resources. The “linked data” approach, which man-
dates that resource URIs should be de-referenced and yield metadata
about the resource, helps but is only a partial solution. We present Sindice,
a lookup index over resources crawled on the Semantic Web. Our index al-
lows applications to automatically retrieve sources with information about
a given resource. In addition we allow resource retrieval through inverse-
functional properties, offer full-text search and index SPARQL endpoints.

1 Introduction

The Semantic Web can be seen as a large knowledge-base formed by sources that
serve information as RDF files or through SPARQL endpoints. A fundamental
feature of the Semantic Web is that the graphs are decentralised: it has no single
knowledge-base of statements but instead anyone can contribute statements by
making them available in a public web space. These sources might have nothing
in common, but by using shared identifiers (URIs) and shared terms, their infor-
mation can be merged to provide useful services to both humans and software
clients.

This decentralised nature of the Semantic Web, much like that of the Web, is
one of its most fascinating characteristics. But for developers of Semantic Web ap-
plications, automatically finding relevant sources of information is a big challange:
how and where to find statements about certain resources?

This paper introduces Sindice, a scalable online service that addresses exactly
this question. Sindice crawls the Semantic Web and indexes the resources en-
countered in each source. A simple API then offers to Semantic Web application
developers the ability to automatically locate relevant data sources and integrate
the data from these sources into their applications.

As shown in Fig. 1, Sindice collects RDF documents from the Semantic Web
and indexes these on resource URIs, IFPs and keywords. The figure shows some
example RDF documents that mention Tim Berners-Lee, either by using his URI
directly or by using inverse functional properties (IFPs) that uniquely identify
him. Sindice offers a user interface through which human users can find these
documents, based on keywords, URIs, or IFPs. More importantly, Sindice allows
Semantic Web agents and clients such as Disco1 to retrieve and integrate these
1 http://www4.wiwiss.fu-berlin.de/rdf_browser/



m b o x : t i m b l @ w 3 . o r g
Fig. 1. Linking disparate information on the Semantic Web

results into a unified information corpus for their users. Note that Sindice may
return sources regardless of whether they reference each other; Sindice may also
return documents that use different identifiers for the same concept, using inverse
functional properties for consolidation.

1.1 Motivation: Data and Linked Data

The amount of semantically structured data available on the Semantic Web has
recently grown considerably. Large and important data collections, e.g. DBLP,
Wikipedia, CiteSeer, SwissProt, Geonames, are now available as retrievable RDF
datasets or SPARQL query endpoints. Projects such as Bio2RDF (Belleau et al.,
2007) are providing real time translation and harmonization of identifiers over
vast amounts of large bioscience databases. Moreover, there is a clear trend toward
embedding more semantic information in conventional web pages with tecniques
such as GRDDL and RDFa.

These developments make the Semantic Web a practical reality in terms of
open availability of significant data. But availability of data and syntactic com-
patibility (e.g. RDF) is just a first step toward implementing the vision of the
Semantic Web as an open and world-wide distributed source of knowledge. The
next step is a Semantic Web of combined and interconnected datasets, or as an
alternative, of client applications which can see such data as interconnected. In-
terlinked datasets with common vocabularies are not yet widespread, as shown
by Ding and Finin (2006) in their study of maintenance and reuse of Semantic
Web ontologies.

Several projects2 promote the interlinked nature of data, whose main prin-
ciples are, (i) that all items should be identified using URI references (instead

2 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData



of blank nodes); (ii) that all URI references should be resolvable on the Web
to RDF descriptions; and (iii) that every RDF triple should be interpreted as a
hyperlink to be followed by Semantic Web browsers and crawlers (Berners-Lee,
2006; Sauermann et al., 2007; Miles et al., 2006).

The linked data approach relates a resource URI to a resolvable web address
making the creator of the identifier the natural “official” source of information
about the resource. On the one hand this approach creates the preconditions
for successful Semantic Web crawling of the Semantic Web by applications and
spiders. Also, it fits scenarios where entities have a clear official ownership such
as personal FOAF profiles.

But on the other hand, the linked data approach alone is not sufficient to
locate all relevant information about a resource, exactly because it only leads to
“official”information. As a parallel in current Web search, we may consider a user
looking for information about a particular mobile phone: not only the information
linked from the producer’s homepage is interesting but also other opinions from
the audienc at large. To aggregate, relate and link disparate sources together that
provide information about the same resources, we need for a crawled overview of
information from the whole (Semantic) Web.

1.2 Usage scenario

Sindice, online at http://sindice.com, allows its users to find documents with
statements about particular resources. Sindice is in the first place not an end-user
application, but a service to be used by any decentralised Semantic Web client
application to locate relevant data sources. As an application service Sindice can
be accessed through its Web API, for human testing and debugging we also offer
an HTML front-end.

Fig. 2 displays the results of searching for the URI of Tim Berners-Lee as
displayed on the HTML interface. The application interface returns the same
results but in various machine-processable formats such as RDF, XML, JSON and
plain text, an example is shown in Listing 1.1. In this example, several documents
are returned, each of which mentions Tim Berners-Lee’s URI. The results are
ranked in order of general relevance and some further information is given to
enable users to choose their preferred source.

Listing 1.1. Documents mentioning Tim Berners-Lee (RDF/XML)
<?xml version=”1.0” encoding=”iso−8859−1”?>
<rdf:RDF xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”

xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”>

<rdf:Description rdf:about=”http://www.w3.org/People/Berners−Lee/card#i”>
<rdfs:seeAlso rdf:resource=’http://www.w3.org/People/Berners−Lee/card’/>
<rdfs:seeAlso rdf:resource=’http://danbri.org/foaf.rdf’/>
<rdfs:seeAlso rdf:resource=’http://heddley.com/edd/foaf.rdf’/>
<rdfs:seeAlso rdf:resource=’http://www.eyaloren.org/foaf.rdf’/>
<rdfs:seeAlso rdf:resource=’http://people.w3.org/simon/foaf’/>
<rdfs:seeAlso rdf:resource=’http://www.ivan−herman.net/foaf.rdf’/>

</rdf:Description>

</rdf:RDF>



Fig. 2. Searching for documents mentioning Tim Berners-Lee (Web interface)

Sindice enables Semantic Web clients such as Piggy Bank (Huynh et al., 2007)
or Tabulator (Berners-Lee et al., 2006) to find documents with information about
a given resource, identified through an explicit URI, an inverse functional property
or a keyword search. This capability fits well on top of many existing Semantic
Web clients. The immediate use for Sindice inside such clients is to enable a “find
out more” button, to be shown next to the available information about a resource.

Upon pressing that button, the client would contact Sindice for a ranked list
of documents with more information about the resource. The user would be pre-
sented with a ranked list of these documents including a human-readable source
description. The user could then choose the sources of interest (or those consid-
ered trustworthy), after which the client application could import the information
from these documents. The user could maybe also select to “always consider these
domains as providers of good information” to allow fully automated information
import during subsequent lookups.

For clients that implement the linked data principles, integration with Sindice
is trivial. Sindice behaves as a “good citizen” of the linked data Web: it provides all
results as RDF that themselves follow the “linked data” principles. For example,
Fig. 3 shows results from Sindice in the Disco3 Semantic Web browser: all resulting
documents are browseable resources themselves and can easily be followed.

3 http://www4.wiwiss.fu-berlin.de/rdf_browser/



Fig. 3. Application integration: Sindice results in the Disco browser

While Sindice supports, uses, and promotes the linked data model (namely
in its crawling and ranking), it also supports locating information about URIs
that are not URLs and cannot be de-referenced such as telephone numbers or
ISBN numbers. But most importantly, Sindice helps locating statements about
resources made outside their “authoritative” source.

1.3 Design principles

Sindice only acts as locator of RDF resources, returning pointers to remote data
sources, and not as a query engine. Sindice is thus conceptually more close to
standard Web search engines but with specific Semantic Web concepts, procedures
and metrics, rather than to Semantic Web search engines such as SWSE (Hogan
et al., 2007) or Swoogle (Finin et al., 2005) which in general aim at providing
general query capabilities over the collections of all the Semantic Web statements.

By only providing pointers to sources, Sindice can avoid many of the complex
issues which Semantic Web search engines must face. These issues include trust,
global entity consolidation policies, voluntary or involuntary denial of services
by queries of excessive complexity or on excessive data, etc. While difficult at
global scale, such problems are easier to handle on the application level, e.g.
by using direct user interaction, domain-specific policies or heuristics. Sindice’s
design supports applications that give the user full control over the considered
data sources: only the information from explicitly appointed sources is used.

For this class of applications, a simple API as offered by Sindice is probably
most of what is needed to connect to the global Semantic Web, without relegating
control over which data sources to consider and which to ignore.



2 Sindice architecture

This section introduces the functional and non-functional requirements on the
Sindice architecture and analyses whether building such a service is technically
feasible on commodity hardware.

2.1 Requirements

The requirements for Sindice can be divided in functional and non-functional
requirements. In terms of base functionality, Sindice offers three services to client
applications: (i) it parses files and SPARQL endpoints while crawling or when
“pinged” explicitly; (ii) it looks up resources (identified by their URI or by a
combination of an inverse-functional property and identifying value) and returns
URLs of RDF documents where these resources occur; and (iii) it searches full-text
descriptions and returns the URLs of sources in which these resources occur. To
fulfil these requirements, the abstract Sindice API thus consists of four methods:

– index(url) => nil: parses and indexes document or SPARQL endpoint at
given URL,

– lookup(uri) => url[]: looks up a resource with given URI, returns a ranked
list of sources in which that resource occurs,

– lookup(ifp, value) => url[]: looks up a resource uniquely identified with
property-value pair, returns a ranked list of sources in which that resource
occurs,

– lookup(text) => url[]: looks up a textual query, returns a ranked list of
sources in which the given terms occur.

Additionally, we have three non-functional design requirements. First, we want
to minimise the index size, so as to allow indexing of the whole (current) Semantic
Web on a single commodity node without networked storage or disk-arrays. Sec-
ondly, we want to minimise lookup times, so as to allow applications to use Sindice
by default to lookup more information for any encountered resource. Thirdly, we
want to allow continuous live updates of the index so as to keep the index up-to-
date.

2.2 Architecture design

The architecture consists of several independent components that operate in sev-
eral pipelines to achieve crawling, indexing, and querying. Each pipeline will be
discussed in detail in Section 3. Here we briefly introduce the overall architecture,
as shown in Figure 4.

The Web frontend is the main entry point, divided in a user interface for human
access and an HTTP API for machine access. Then, there are several components
for crawling and indexing RDF documents. The crawler autonomously harvests
RDF data from the Web and adds it to the indexing queue. If pinged (through
the human interface or the API) to parse new documents, these are also added to
the queue. The gatekeeper evaluates each entry in the queue and decides whether,



Fig. 4. Sindice architecture

and with which priority, we want to index it, based on whether we have seen the
document before, its last modification date, its content digest, etc. The indexer
extracts URIs, IFPs and keywords from each document (using the reasoner for IFP
extraction) and adds these to their respective index. During lookup, the interface
components only need to pass the queries to the relevant index, gather the results,
and generate the required output such as HTML pages with appropriate layout.

The three indices store occurrences of resource URIs, resource IFPs and liter-
als in RDF documents. The URI index contains an entry for each resource URI
that lists the document URLs where this resource occurs. The IFP index is sim-
ilar, except that instead of explicit resource URIs, the uniquely identifying pair
(property, value) is used as index key, again pointing to a list of document URLs
where this pair occurs. This index allows lookup of resources with different URIs
that actually identify the same real-world thing. The literal index contains an en-
try for each token (extracted from the literals in the documents), again pointing
to a list of document URLs.

In designing the index, we optimise for disk space and lookup times. Since the
only required access pattern is from resource to mentioning sources, an inverted
index of URI occurrences in documents is a natural structure. In general, lookup
on such an index can be performed in almost constant time over the size of the
index.

2.3 Feasability

Before detailing the internals of Sindice, we analyse its feasibility. We analyse a
representative sample of Semantic Web data and analyse graph-theoretical prop-
erties that allow us to predict the required index size using inverted index struc-
tures.

As an indication of required index size, we aim to store, on a single com-
modity machine, at least a billion unique resources. To predict the project index
size for indexing such resources, we have crawled Semantic Web data for around
four weeks and collected some 3.2 million unique resources. Our crawl seems a



representative collection of Semantic Web data: the SWSE search engine cur-
rently contains around 11 million unique URIs excluding blank nodes4, whereas
Ding and Finin (2006) estimated the Semantic Web to contain around 10 million
documents in August 2006.

The required index space in terms of indexed resources depends primarily on
how often each resource is mentioned, i.e. the ratio between resources (URIs)
and documents (URLs). We analysed how often the same URIs where mentioned
across different documents, which is plotted in Fig. 5. The left graph shows a
zoomed result in log-scale, the right graph shows the complete data in log-log-
scale. These graphs demonstrate that distribution (reuse) of URIs over documents
follow a power-law and therefore exhibit scale invariance. This scale-free property
means that the ratio of URIs/URLs will remain constant as the Semantic Web
grows which means that we can estimate the average number of times a resource
will be mentioned independent of the size of the Semantic Web.

The power law found in URI occurrences is not surprising since choosing URIs
is a social process and thus prone to properties such as preferential attachment
that result in scale-free networks. Our result corresponds with an earlier analysis
(Ding and Finin, 2006) showing other properties of Semantic Web graphs to follow
power-law behaviour as well

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●

●
●
●●

●●
●●●●

●●●●
●●●

●●
●●

●●●●●●●
●●

●●●●●●●

●
●
●●

●●

●
●●●

●
●●●

●
●
●●●●●●

●
●●●●

●
●
●
●
●
●●

●●
●
●

●

●●

●●
●
●

●
●

0 20 40 60 80 100

5e
+

01
5e

+
02

5e
+

03
5e

+
04

5e
+

05

occurrence of shared URIs
(log scale)

number of distinct sources

nu
m

be
r 

of
 U

R
Is

●

●

●

●

●
●

●
●

●
●
●●

●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●
●●
●●
●●●●
●●●●
●
●●●●●●●●

●●●●●
●●●
●●
●
●●
●●
●
●●
●●
●
●
●
●
●
●●●
●●●●●

●
●●●●
●

●
●

●●

●

●

●

●

●

●●●●

●
●
●

●

●

●

●●
●●●
●

●

●
●

●
●●●●●
●

●●
●
●
●

●

●
●●

●

●●●●
●●
●●●●

●

●●
●●

●
●
●●
●
●

●●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●●

●●●

●

●
●

●
●

●

●
●

●

●

●

●●
●
●

●

●
●
●●
●

●

●

●

●

●

●
●●

●●

●

●
●
●●
●
●●●●
●

●

●
●
●
●

●
●

●
●
●

●●
●

●
●

●

●

●
●
●●

●

●
●

●
●
●

●●●
●●

●

●
●

●
●

●

●
●
●
●●
●
●

●●

●

●

●

●
●
●

●
●

●●

●

●

●
●
●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●●

●●●

●

●

●●●
●
●

●

●
●

●

●

●

●

●

●

●

●●●●●

●

●●

●
●●
●
●

●●●●

●
●

●●

●●●

●●●●●●

●

●

●

●●

●

●●●●●

●

●●

●

●

●●●●●

●
●

●●●

●

●●●●

●●●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●●●

●

●●●

●

●

●●

●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●

●

●

●●●●

●●●

●

●●●●

●●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●

2 5 10 20 50 100 500 2000 5000

1
10

0
10

00
0

occurrence of shared URIs 
(log−log scale)

number of distinct sources

nu
m

be
r 

of
 U

R
Is

Fig. 5. Occurrence of same resources (URIs) in different documents

With respect to feasability, the index size of our crawl on the simple persistent
hashtable of URI occurrences was around 2.5GB for 3.2 million URIs. Given the
scale-invariance of the URI/URL ratio we can extrapolate from this data and
estimate to need around 785 bytes per resource; indexing a billion unique resources
would thus require around 785GB, an ordinary capacity for commodity harddisks.

4 personal communication with A. Hogan



3 Inside Sindice

The Sindice service indexes RDF graph and then enables users or Semantic Web
applications to find the location of an sources through querying. We conceptualise
these two tasks by two pipelines: an indexing pipeline and a querying pipeline.

3.1 Indexing pipeline

The indexing pipeline performs a sequence of tasks, described in Fig. 6, to index
an RDF graph.

Fig. 6. Overview of the indexing pipeline

Scheduler The indexing pipeline takes as input an RSS feed or an external
ping that specifies an RDF graph location. The URL, corresponding to the RDF
graph location, is injected into the scheduler. The scheduler acts as a collector of
URLs waiting to be processed and avoid overloading Web servers. The scheduler
maintains a small hashtable with metadata for each visited source (e.g. visiting
time and hash). We only revisit sources after a threshold waiting time and we
only reparse the source’s response if the content hash has changed.

Graph extraction The URLs in the scheduler can be of two types: RDF re-
sources and SPARQL end points. In the first case, we retrieve the file and send it
to the parser. In the case of a SPARQL endpoint, we send to the database one or
more queries to extract its full content.

Graph parsing Every time an RDF graph is retrieved successfully, it is sent to
the graph parser. The parser first verifies the validity of the RDF graph. It then
extracts all URIs from the graph and injects them into the scheduler, following
the linked data principle to treat every URI as a hyperlink to more information.



Graph processing The graph processor then extracts and indexes the full-
text and all resource identifiers in the graph. We also extract indirect identifiers,
namely pairs (p, o) for all inverse functional properties that are mentioned in the
graph. Extracting these IFPs requires two additional steps: the recursive expan-
sion of the graph with all its schema information, followed by OWL inferencing
to identify all IFPs in these schemas (described below).

Finding inverse functional properties A graph typically does not explicitly men-
tion which of its properties are inverse functional; rather, the graph would refer to
one or more schema definitions, which may recursively depend on other schemas.

We therefore proceed as follows: we fetch the definition of each property, fol-
lowing the linked data principle, by de-referencing its URI and importing the
returned definition into the RDF graph. This “schema fetching” task is repeated
recursively until fixpoint. At this point we perform inferencing using the OWL
“ter Horst” fragment (ter Horst, 2005). This fragment is expressive enough for
finding inverse functional properties and has efficient entailment prodedures. Af-
ter this reasoning step, we query the combined model for IFPs and proceed with
the creation of identifiers as explained above.

Reasoning cache To improve the graph processing we cache the reasoner’s output.
Since reasoning over a large schema to find all inverse functional properties is
computationally expensive it could quickly form an indexing bottleneck. However,
the reasoning results need to be separated for each document, to prevent malicious
users from “infecting” results on a global scale by defining a property to be inverse
functional (while it is not).

The graph processor therefore uses a caching system based on the set of prop-
erties explicitly used in a graph. For example, if a FOAF profile mentions some
properties and classes such as foaf:name, foaf:Person, we only perform the
graph reasoning if that exact set of properties and classes has not occurred be-
fore. Then, after graph expansion and identifying the set of IFPs (e.g. foaf:mbox
and foaf:personalHomepage) we cache the found IFPs using the set of properties
and classes in the original document as cache key.

3.2 Querying pipeline

The querying pipeline is on the other hand splitted into three main stages: the
index retrieval, the ranking phase and the result generation.

Index retrieval The query is looked up in the inverted index, which can be
implemented either as an on-disk hashmap or in an information retrieval engine.
The list of results is cached for later reuse, and is invalidated daily to keep the
result up-to-date.

Ranking phase After index retrieval the results are ranked according to various
metrics. Since for popular resources our index could easily return many hundreds
or thousands sources, providing a ranked list is crucial.



We have designed a ranking function that requires only little metadata for each
source and is relatively fast to compute; it does not construct a global ranking of
all sources but ranks sources based on their own metadata and external ranking
services. The following metadata values for each source are computed and their
value combined using an unweighted average:

– Hostname: we prefer sources whose hostname is the same as the resource’s
hostname, in support of the linked data paradigm. For example, we consider
that more information on the resource http://eyaloren.org/foaf.rdf#me
can be found at the source http://eyaloren.org/foaf.rdf than at an ar-
bitrary “outside” source, such as http://g1o.net/g1ofoaf.rdf.

– External rank: we prefer sources hosted on sites which rank high using tra-
ditional Web ranking algorithms. These rankings can be purchased or can be
estimated using various techniques (Davis and Dhillon, 2006).

– Relevant sources: we prefer sources that share rare terms (URIs, IFPs, key-
words) rather than common terms with the requested terms. This relevance
metric is comparable to the TF/IDF relevance metric (Frakes and Baeza-
Yates, 1992) in information retrieval.

Result generation Once the resulting data sources are ranked into order of
importance, Sindice can export them into different syntaxes, such as the HTML
Web interface, RDF, XML, JSON, and plain text.

3.3 Crawling ontology

On February the 2nd 2007, Geonames experienced what has been called “the first
distributed denial of service on the Semantic Web”5. What happened, however,
was not due to malicious behaviour but rather due a Semantic Web Crawler simple
a bit too fast in following the linked data paradigm and resolving each of the 6.4
million URL/URI on the server. As the result of each one of these calls is a query,
the load on the server was in the end very high leading to the denial of service.
It has been suggested that this could have been avoided if the geoname database
RDF dump, which was in fact being made available, had been imported as an
alternative to full site crawling. But how could the spider have known that?

Our crawling ontology6 helps Semantic Web spiders and clients alike in in-
dexing and operating over large quantity of Semantic Linked data. Through this
ontology, a site administrator can avoid denial of services and ensure that the
data will be used in the form which is optimal for the task.

The crawling ontology augments the existing robots.txt protocol; all relevant
statements should be located in a srobots.rdf file, on the site root as done in the
robots.txt file. The main class to be used is the DataEquivalenceStatement,
which states that data represented in three possible ways (linked data, SPARQL
endpoint, or data dump) is equivalent, allowing the client to choose one of these
representations
5 http://geonames.wordpress.com/2007/02/03/friendly-fire-semantic-web-crawler-ddos/
6 http://sindice.com/srobotsfile



To follow the protocol, a client retrieving a resource URL should first check for
the traditional robots.txt; next, it should check for the existence of srobot.rdf,
to see whether the URL is maybe part of a larger dataset that can be downloaded
instead.

To increase awareness of the srobot.rdf file, a link to it can be also provided
as a ”see also” statement both in the RDF data dump as a description of the file
location URL itself and in the RDF returned by resolving the linked data URLs.
Multiple Data Equivalence Statements can be used as necessary for different data
sets served by the same host.

4 Related work

We are aware of two Semantic Web search engines that index the Semantic Web
by crawling RDF documents and then offer a search interface over these docu-
ments. SWSE7 crawls not only RDF documents but also “normal” HTML Web
documents and RSS feeds and converts these to RDF (Harth et al., 2007; Hogan
et al., 2007). SWSE stores all triples found in the crawling phase including their
provenance and offers rich queries, comparable to SPARQL, over these quads.
Similarly, Swoogle (Finin et al., 2005) crawls and indexes the Semantic Web data
found online.

Some differences between these engines and Sindice have already been high-
lighted during this paper. To the best of our knowledge, none of these engines
seem to display continuous crawling capabilities, probably due to the cost and
complexity of updating an index which can answer relational queries. Also, al-
though SWSE allows IFP lookups in its query capabilities, it does not perform
reasoning to extract these IFPs but instead extracts only several hardcoded prop-
erties. Finally, none of these engines provide indexing based on “linked data”
paradigm reasoning, SPARQL endpoint indexing and the ability to index large
repositories consciously through the Sitemap extention.

Table 1 shows an overall comparison of our approach against on the one hand
traditional Web search engines such as Google or Yahoo! and on the other hand
Semantic Web (SW) search engines such as SWSE or Swoogle. Whereas tradi-
tional Web search focuses on document retrieval for HTML documents, and SW
search focuses on building a global database of retrieved triples, we provide a doc-
ument retrieval service for RDF documents. Sindice is thus conceptually close to
traditional Web search engines but employs different ways of finding documents
and indexes more than only natural language texts).

Finally, our service is related to http://pingthesemanticweb.com, which
maintains a list of recently updated documents and currently lists over seven
million RDF documents. The service does not perform indexing and does not
allow lookups over its content, it does offer a periodical dump of updated docu-
ments. We see the service as a companion to Sindice and we in fact use it as input
to our crawling pool.

7 http://swse.deri.org/



Web search SW search Sindice

focus document retrieval global database SW document retrieval
orientation Web documents triples/quads RDF documents
URI lookup – + +
IFP lookup – ± +
scalability + ± +
full queries - + -
SPARQL indexing - - +

Table 1. Approaches in (Semantic) Web information retrieval

5 Conclusion

We have presented Sindice, a public API to locate the sources of Semantic Web
annotations, be these RDF files or SPARQL endpoints. By committing to this
simple service Sindice provides a much needed interweaving framework for the
Semantic Web achieving very high scalability while maintaining overall neutrality
on issues such as trust, reputation, ontologies and identifiers. Such neutrality is
key to the use of Sindice regardless of the needs and purpose of the Semantic Web
client: clients will be free to chose their sources according to their preferences,
requirements and possibly aided by the assistance and supervision of the end
user.

Apart from the Sindice service as such, the contributions of this paper are: a
crawling ontology which can avoid the high inefficiency of blindly navigating sites
that support the “linked data” paradigm; a strategy for calculation of IFPs as
found in crawled RDF files ; a simple strategy to locate human-readable descrip-
tions of RDF files and their web ranking; a result strategy strategy and finally the
discovery of a power-law behaviour regarding URI reuse on the Semantic Web.

In future work, we aim to provide a Sindice client-side library that implements
useful procedures such as smushing or equality reasoning, using “linked data”
practices and involving potentially many Sindice calls. We are also working on
a distributed index, and potentially a distributed pinging architecture as well.
Finally, Sindice services could be provided over UDP, removing the time needed
for TCP handshake to provide a more responsive service.

Acknowledgements This material is based upon works supported by the Science
Foundation Ireland under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694.

References

F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, et al. Bio2RDF: Towards a
mashup to build bioinformatics knowledge system. In Proceedings of the WWW
Workshop on Health Care and Life Sciences Data Integration for the Semantic
Web. 2007.

T. Berners-Lee. Linked Data. W3C Design Issues, 2006.



T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, et al. Tabulator: Exploring
and analyzing linked data on the Semantic Web. In Proceedings of the ISWC
Workshop on Semantic Web User Interaction. 2006.

J. V. Davis and I. S. Dhillon. Estimating the global pagerank of web communities.
In Proceedings of the International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 116–125. 2006.

L. Ding and T. Finin. Characterizing the Semantic Web on the web. In Proceedings
of the International Semantic Web Conference (ISWC). 2006.

T. W. Finin, L. Ding, R. Pan, A. Joshi, et al. Swoogle: Searching for knowledge
on the semantic web. In Proceedings of the National Conference on Artificial
Intelligence (AAAI). 2005.

W. B. Frakes and R. A. Baeza-Yates, (eds.) Information Retrieval: Data Struc-
tures & Algorithms. Prentice-Hall, 1992.

A. Harth, J. Umbrich, and S. Decker. Multicrawler: A pipelined architecture for
crawling and indexing Semantic Web data. In Proceedings of the International
Semantic Web Conference (ISWC). 2007.

A. Hogan, A. Harth, and S. Decker. Reconrank: A scalable ranking method for
semantic web data with context. In Second International Workshop on Scalable
Semantic Web Knowledge Base Systems. 2006.

A. Hogan, A. Harth, J. Umbrich, and S. Decker. Towards a scalable search and
query engine for the web. In Proceedings of the International World-Wide Web
Conference. 2007. Poster presentation.

H. J. ter Horst. Combining RDF and part of OWL with rules: Semantics, decid-
ability, complexity. In Proceedings of the International Semantic Web Confer-
ence (ISWC), pp. 668–684. 2005.

D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank: Experience the Semantic
Web inside your web browser. Journal of Web Semantics, 5(1):16–27, 2007.

A. Miles, T. Baker, and R. Swick, (eds.) Best Practice Recipes for Publish-
ing RDF Vocabularies. W3C Working Draft, 2006. http://www.w3.org/TR/
swbp-vocab-pub/#redirect.

L. Sauermann, R. Cyganiak, and M. Völkel. Cool URIs for the Semantic Web.
Tech. Rep. TM-07-01, DFKI, 2007.


