QOLLSCOILNAGAILLIMHE

[JNIVERSITY oF GALWAY

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the
published version when available.

Title Xilinx FPGA implementation of a pixel processor for object
detection applications

Author(s) | McCurry, Peter; Kilmartin, Liam; Morgan, Fearghal

Publication
Date 2000-06

Item record | http://hdl.handle.net/10379/5010

Downloaded 2024-03-13T07:35:06Z

Some rights reserved. For more information, please see the item record link above.

Qo
EY HMC HMD

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Xilinx FPGA Implementation of a Pixel Processor for Object
Detection Applications

Peter Mc Curry, Fearghal Morgan, Liam Kilmartin

Communications and Signal Processing Research Unit,
Department of Electronic Engineering, National University of Ireland, Galway.
Tel: +353-91-524411, Fax: 750511
! E-mail: peter.mccurry(@nuigalway.ie

Abstract

This paper describes an FPGA and distributed RAM architecture for an image pixel processor
implementing primary elements of an object detection system. A comparison of the system
performance with existing DSP processor-based alternatives is detailed. An implementation
using the RCI1000-PP FPGA-based development platform and Handel-C hardware
programming language is outlined. A system architecture is proposed for an image pixel
processor for elements of a machine vision based object detection system.

Keywords
FPGA, Virtex, RC1000-PP, Handel-C, Object Detection, Image Processing.

1. Introduction

Considerable research is currently ongoing, in many different fields of signal processing, to
evaluate and compare programmable software and hardware platforms for the
implementations of various signal processing algorithms. A design decision regarding which
type of platform to use for a particular algorithm is particularly crucial where the sampling
frequency, or the dimensionality of the signal being sampled, is high.

Previous research [1] describes a real time object detection, image-processing system based
upon a network of software programmable TMS320C44 floating-point digital signal
processors. This paper examines an alternative implementation of some of the object
identification algorithmic stages ref. [1] using an FPGA-based platform and multiple
independently accessible RAM data banks. The particular image processing algorithms
examined are generally applicable to many different machine vision and image coding
applications. The paper also compares the processing capabilities of a Xilinx FPGA-based
platform with those of the system based on a dedicated signal processor.

2. Object Detection Application

The application outlined in [1] provides automated score detection in the game of hurling by
detecting the presence of the object (ball) in an image frame and monitoring the ball’s
position and motion in three dimension relative to the known position of the goal posts.
Figure 1 shows a block diagram outlining the algorithmic structure of the object identification
process of the system already developed.

Image Image Object Image
p| Capture & - p| Partition & L p| Definition L p| Classifier -
Tmage Delta Frame Tagging Object
Generator Location

Figure 1 — Object Identification Process Algorithmic Block Diagram

L3

The object identification process can be broken down into the following stages:
L. Image Capture and Delta Frame Generation

The image capture and delta frame generation stage of processing identifies any
regions of motion in each incoming monochrome video frame in which an object may
exist. A difference, or delta frame, is generated by subtracting each incoming video
frame from a reference background frame (in which the object does not exist), on a
pixel-by-pixel basis. Non-zero data in the delta frame indicates motion. This technique
is often used in image recognition systems ref. [2]. The background frame is updated at
regular frame intervals in order to keep the background image up to date with the scene
being observed by the system.

2. Image Partition and Tagging

The delta frame is then further analysed by sub-dividing the complete delta image
frame into 8x8 pixel square regions, termed blocks. An energy value is calculated for
each of these blocks by simply summing the square of the pixel values forming the
block. If the energy value for a given block is above a certain threshold value, then the
block is tagged to indicate that it contains an element of motion compared to the
background and hence requires further analysis to determine if it contains the object
object.

3. Object Definition and Object Classification

The classification stage makes a decision as to whether any 16x16 pixel square region
of interest of the delta image contains the object. A single isolated block can form the
centre of the 16x16 pixel square region passed on to the classification stage. However,
before block image data is passed to the image classification stage, the object definition
stage first determines if any tagged blocks have neighbouring tagged blocks. If so, a
16x16 pixel square region formed as an overlap of the neighbouring blocks, is passed
to the classification stage. Whereas some of the morphological algorithms in the object
classification stage are specific to the particular application for which the system
outlined in [1] was developed, there are a number of filtering and pixel processing
based routines which are of a more general nature, and hence could be applied to other
image processing applications.

A two-dimensional video frame position of the object may be transferred to a further
processing stage, which estimates the precise three-dimensional position of the object.

| | [H i - ¥

3. DSP Processor based Object Detection System

This section outlines the operation and limitations of the DSP processor solution described in
[1]. The complete video processing system outlined in [1] is implemented on a network of
interconnected Texas Instruments TMS320C44 processors. Figure 2 shows the structure of
the processor network and the tasks allocated to each processor.

Software
Synchronisation Signals

1
Programmable Digital ,
Video Cameras” Video Frames (320x400 pixels) @ 25-30

frames/sec

Motion Detection Motion Detection TMS320C44
TMS320C44 ; &sbnre o

#1 Software

Video Frame Segments Containing
Motion

TMS320C44 Object Identification

#3 Software
l Position of Ball if bresent in Current Frames
TMS320C44 Score Detection
#4 Algorithm
Point Score\Ball Wide Events
Sent to PC Software over PCI Bus

Figure 2. TMS320C44 Processors Configuration for Object Detection

The TMS320C44-based system outlined above is capable of a maximum throughput of
approximately 30 frames per second for a frame size of 400x300 pixels and using a 30 MHz
clock. This provides reasonable performance for object speeds less than 100 kph. However,
this system operates at nearly full processing capacity and, for higher object speeds, common
for the sliotar in the game of hurling, the accuracy of the overall system deteriorates rapidly.

Improved performance and accuracy could be maintained if the system:
(1) Used higher clock speeds

(i1) Used more co-processors and distributed memory banks _
(iif) Used higher frame rates (up to 100 frames per second) and a suitable video
camera

(iv) Processed larger frame sizes, e.g., 512x512 pixel frames

This paper considers an alternative, FPGA-based, pixel and image-processing platform using
multiple distributed independent memory banks and compares performance to that of the
general purpose DSP processor approach.

4. FPGA-based Implementation

This section describes the application of FPGA technology and distributed memory banks to
the object detection application.

4.1 FPGA Technology and RAM bandwidth

FPGAs allow large-scale parallel processing and pipelining of data flow. Latest FPGAs
provide enormous processing resources, significant on-chip RAM and support very high
clock speeds. FPGAs are therefore suitable for implementing object detection systems
discussed above. Implementation of the first two stages of the object detection system using
an FPGA is described in this paper. The system supports a 512x512 pixel frame size. Since
each pixel contains one byte of data, the frame size is 262,144 bytes. However, even the
significant on-chip RAM provided in Xilinx Virtex FPGAs [3] (262,000 bits in the case of
XCV400) is not sufficient to support a useful level of internal RAM frame buffering in the
object detection application described. Therefore, additional external SRAM banks are
required to provide storage during processing of image data arrays. The high I/O capability of
FPGAs supports access to multiple RAM banks simultaneously, enabling effective and
efficient pipelining. Partitioning and pipelining of the algorithms using multiple, distributed
memory banks offers significant improvements in performance compared to the processor-
based implementation described. The use of multiple memory banks removes a significant
performance bottleneck.

4.2 RC1000-PP Virtex Based Implementation

Figure 3 illustrates the system level architecture of the pixel processor, comprising an FPGA,
internal RAM and four separate SRAM memory banks.

PC Host —|
_______________________ A A
i] PCI Bus
................... J D
[
[
[
[}
[
b
!
Frames to be Ctrl 1 1 Status Returned
Processed Pl Tagged
! Blocks
FPGA
: Arbitration -
Bank Select ¢ | Enable Blocks for FPGA
1 / Host SRAM
¥ Bank | Pixel Processor Access
SRAM e P SRAM
ARB P Creates Delta — ARB
Bank 0 Frame &
Analyse for
Motion
SRAM SRAM
Ranks (/1 Ranks 2/3
R -P
2MB 2MB e 2MB 2MB

Figure 3. System level architecture of pixel processor.

The RC1000-PP development system [4] provides such an architecture and comprises a
Xilinx Virtex (or XC4K) device, 8 Mbytes of external SRAM divided into four separate
independently accessible RAM banks, and a PCI interface to host PC. The RC1000-PP
development system comprises a XCV400 Virtex FPGA, offering up to 468,000 usable gates
and 10kbytes of internal RAM. The development system uses the Handel-C programming
language to define FPGA functionality. Handel-C is a C like language, which supports
parallelism and flexible data size. The Handel-C code is compiled and translated into a
Xilinx .netlist format before place and route, pin allocation and creation of FPGA
configuration bitstream file. Handel-C simulation enables early high-level simulation of the
system and promotes fast proto-type development. Pre-defined routines such as RAM
read/write, FPGA/host interfacing, 1/O control etc enable development of a very effective user
interfaces. It should be noted that Handel-C requires use of an entirely synchronous design
methodology.

4.3 Object Detection System Level Description

External SRAM banks 0 and 1 are used to store 16 image frames, including the current and
background frames. The host writes current image to SRAM banks 0/1 before relinquishing
ownership to the FPGA for processing. All accesses by host and FPGA are 32-bit allowing
concurrent processing of 4 pixels. The Handel-C function Main handshakes with the host,
controls the FPGA pixel processing unit. SRAM banks 2/3 alternately store a reduced image
data set, containing only tagged block pixel data on a frame-by-frame basis, as well as frame
number, time and the location of the tagged block within the frame. Further processing
(object definition and object classification) can be performed either on the host or, for greater
performance, on the FPGA. Considerable spare FPGA bandwidth, internal RAM and the
availability of the tagged image data alternately in bank 2 or 3 enables substantial object
definition and object classification processing to be performed by the FPGA in parallel with
subsequent frame tagging. This is currently under investigation.

4.4 FPGA Pixel Processor Core Architecture

Figure 4 illustrates the pixel processor core architecture.

Main
I
Bank Select | Enable
Frame Number
v Deltalmg ¢
Bank 0, Currentlmg DFG > Block Bank 3
4? g Delta Energy
Addr 0 Frame Evaluation Tagged >
FrameReader Addr 3
. Generator Block
Bank | Backlmg Write >
Addr2
To Ext
Addr 1 RAM
< L Temp Bank 2
dAddress Block >
P Write A
Address

AGU 4"
Address —
Generation

’ ’ Unit i :

Internal Ram for temp
Block store

ddAddress

Figure 4. The pixel processor core architecture.

The following pipeline stages execute within the FPGA, four pixels at a time, on each block
in sequence:

1. Concurrent read of background and current pixel

2. Subtract current/background to obtain absolute pixel difference

3. Temporarily save each pixel of block data to internal RAM (64 bytes of Block Store
required). If the sum of the 64 pixel delta values within the block is greater than a
pre-defined energy threshold (performed by the Block Energy Evaluation Unit), write
the block data to external RAM bank 2 or 3. Use two internal RAM banks to store
alternate block data until it is written to external RAM if tagged. Store frame number,
tagged block location data, time etc for subsequent object definition and
classification.

The Address Generation Unit (AGU) provides both the external and internal RAM addresses.

4.5 System Performance

The delta frame generation, block partition and tagging have been implemented and
demonstrated using the RC1000-PP FPGA development system and Handel-C hardware
programming language. A system clock frequency of 33MHz is used. External SRAM cycle
time is 17ns. Pixel data is stored and processed 4 pixels (32-bits) at a time. FPGA frame
tagging execution time for a 512*512 pixel frame is therefore 30nSec * 65,536 = 1.966mSec.
FPGA frame tagging and host current frame writes are performed sequentially in the proposed
system.

L

5. Comparison of FPGA vs DSP Processor Implementation

In order to fully understand the increased flexibility and performance, which the RC1000-PP
Virtex-based system platform offers, compared to the software programmable DSP solution
[1], a benchmarking test was carried out. This involved determining the maximum processing
time required to implement the first two stages of the object identification process, on an
image frame of 512x512 pixels. In addition to comparing the best processing performance of
the TMS320C44 based system and the RC1000-PP Virtex based system, initial experiments
were also carried out to estimate the best processing performance for the algorithms using
TMS320C62x and TMS320C64x devices, Texas Instrument’s cutting edge flagship
processors and cores, which are based on a highly paralleled ALU. Table 1 illustrates the
results.

Platform Xilinx Virtex TMS320C44 TMS320C62x TMS320C64x
(100MHz (30 MHz Clock) (300 MHz (1.1 GHz Clock)
Clock) Clock)
Processing Time 1.966 77.4 3.7 3.15
(mSec)

[~ ™ ¥ " ._]
1 j

Table 1 Comparison of processing times for first two stages of object detection, 512x512
pixels per frame
(Calculations for TMS320C6x devices assume use of SRAM with 3 nSec access times)

Results show that the FPGA-based implementation is significantly faster than the currently
implemented TMS320C44 based system. Additionally, results show that the FPGA system is
also superior in terms of processing power requirements than even the high-end TMS320C6x
devices. This is primarily due to the ease in which the FPGA device can be used to parallel
and pipeline execution of the basic quad pixel based processing (i.e. subtraction,
multiplication, addition etc.). Using faster SRAMs and higher FPGA clock speed would
increase performance further. Current research is focusing on a similar comparison of the
processing platforms for the more complex image processing algorithms, which exist in the
later processing stages, and an examination, of how much of the complete objection
identification and tracking system can be integrated onto a single FPGA-based platform.

6. Conclusion

We have described the application of FPGA and distributed RAM to image object detection
and compared performance with DSP processor-based alternatives. Image delta frame
generation, block partition and tagging have been implemented and demonstrated using the
RC1000-PP FPGA development system and Handel-C hardware programming language.
Results demonstrate the performance advantages of the proposed solution to high /O
bandwidth and computationally intensive processing applications compared to DSP processor
implementation. Current and future work includes similar implementation of the object
definition and object classification processing stages.

Acknowledgements
This research is funded by Xilinx Ireland.

References

l. L. Kilmartin, M. O Conghaile, “Real Time Image Processing Object Detection and

Tracking Algorithms?, Proceedings of the Irish Signals and Systems Conference, NUI,
Galway, June 1999, pp. 207-214

2. M. Fahy, M. Siyal, ‘An image detection technique based on morphological edge detection

and background differencing for real-time traffic analysis’, Pattern Recognition Letters 16
1321-1330, 1995

3. The Programmable Logic Data Book, Xilinx, 1999,

4. H. Styles, W. Luk, "Customising Graphics Application : Techniques and Programming

Interface”, IEEE Symposium on Field Programmable Custom Computing Machines
(FCCMO00), April 2000.

